JP2008046029A - Optical-type vibration strain measuring device - Google Patents

Optical-type vibration strain measuring device Download PDF

Info

Publication number
JP2008046029A
JP2008046029A JP2006222937A JP2006222937A JP2008046029A JP 2008046029 A JP2008046029 A JP 2008046029A JP 2006222937 A JP2006222937 A JP 2006222937A JP 2006222937 A JP2006222937 A JP 2006222937A JP 2008046029 A JP2008046029 A JP 2008046029A
Authority
JP
Japan
Prior art keywords
laser
distortion
laser light
vibration
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006222937A
Other languages
Japanese (ja)
Other versions
JP4825621B2 (en
Inventor
Mitsuyasu Noda
満靖 野田
Michiaki Suzuki
道明 鈴木
Akira Maekawa
晃 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENSHIRYOKU ANZEN SYST KENKYUS
GENSHIRYOKU ANZEN SYST KENKYUSHO KK
Original Assignee
GENSHIRYOKU ANZEN SYST KENKYUS
GENSHIRYOKU ANZEN SYST KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENSHIRYOKU ANZEN SYST KENKYUS, GENSHIRYOKU ANZEN SYST KENKYUSHO KK filed Critical GENSHIRYOKU ANZEN SYST KENKYUS
Priority to JP2006222937A priority Critical patent/JP4825621B2/en
Publication of JP2008046029A publication Critical patent/JP2008046029A/en
Application granted granted Critical
Publication of JP4825621B2 publication Critical patent/JP4825621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical-type vibration strain measuring device that is applicable also to high-temperature measuring objects, capable of performing strain measurements, including both torsion strain and bending strain, having less noise and high accuracy and reliability, by directly measuring the deformations of a measuring object portion. <P>SOLUTION: Each deformation of at least six spots of the measuring object portion that vibrates is measured, by using at least six laser displacement gauges mounted on one holder, and the strain caused by the vibrational deformations consisting mainly of bending deformation and torsion strain, generated in the measuring object, are calculated by an operation device from the difference between each displacement that has been measured by each laser displacement gauge. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、曲げ変形及びねじり変形の両方を主体にして生じたひずみを計測するための光学式振動歪み計測装置に関するものであり、特に振動変位の検出部を、一つのフォルダーに少なくとも6基のレーザ変位計を2段状に配列固定したコンパクトな一体構造のものとすると共に、測定対象部位に平面状のフィンを有するレーザビーム反射用治具を配設する構成とすることにより、装置構造の簡素化と小型化及び計測精度の大幅な向上等を可能にした光学式振動歪み計測装置に関するものである。   The present invention relates to an optical vibration distortion measuring apparatus for measuring strain generated mainly by both bending deformation and torsion deformation, and in particular, at least six vibration displacement detection units are provided in one folder. By adopting a structure in which the laser displacement meter is compactly integrated with two stages arranged and fixed, and a laser beam reflecting jig having planar fins is disposed at the measurement target site, The present invention relates to an optical vibration distortion measuring apparatus that enables simplification, miniaturization, and significant improvement in measurement accuracy.

発電所等の各種プラントに設備された配管や機器等は、プラント運転中の加熱や機械的負荷によって絶えず複雑な応力を受けており、所謂応力歪みを生じている。例えば、振動している配管等の梁状の構造物には、曲げ変形及びねじり変形を主体とする振動歪みが発生することになり、これ等の発生した歪みは、可能な限りリアルタイムで正確に計測すると共に、計測した歪み情報を設備管理システムへ伝達する必要がある。   Piping, equipment, and the like installed in various plants such as power plants are constantly subjected to complex stresses due to heating and mechanical loads during plant operation, and so-called stress distortion occurs. For example, a vibrating structure, such as a pipe-like structure, is subject to vibration distortion mainly consisting of bending deformation and torsional deformation. In addition to measurement, it is necessary to transmit the measured distortion information to the equipment management system.

而して、上記配管等に発生している振動歪みを計測する方法としては、歪みゲージを直接に振動している測定対象物に貼付けする方法(特開2003−194508号)や、多数の加速度計を測定対象物の測定対象部位を含む相当の広範囲に取り付け、加速度計の計測値から測定対象物の変形状態を把握すると共に、演算によって対象部位に発生している歪みを求める方法(特開平11−014445号等)等が開発されている。   Thus, as a method of measuring the vibration distortion generated in the pipe or the like, a method of attaching a strain gauge directly to a measurement object (Japanese Patent Laid-Open No. 2003-194508), or a number of accelerations A method of attaching a meter to a considerable range including the measurement target part of the measurement target, grasping the deformation state of the measurement target from the measurement value of the accelerometer, and obtaining the distortion generated in the target part by calculation 11-014445 etc.) have been developed.

しかし、何れの計測方法にも多くの難点があり、例えば、イ.計測装置のセッティング等に多くの手数を必要とし、計測に必要とする作業量が膨大なものになること、ロ.歪みゲージを貼付けする方法は、ノイズが多いうえ、高温の測定対象物には適用し難いこと、ハ.加速度計等を用いる方法は、測定したい歪みに影響を与える要因以外の他の要因を含んだ情報から間接的に測定対象物の変形を把握し、その把握した変形から歪みを演算するものであるため、誤差が大きく且つ作業に熟練を要すること、等が問題点として残されている。   However, each measurement method has many difficulties. A large amount of work is required for setting the measuring device, and the amount of work required for the measurement becomes enormous; The method of attaching a strain gauge is noisy and difficult to apply to high-temperature measurement objects. The method using an accelerometer, etc. indirectly grasps the deformation of the measurement object from information including other factors other than the factors affecting the strain to be measured, and calculates the distortion from the grasped deformation. For this reason, there are problems such as large errors and skill required for work.

一方、前述の如き問題を解決するものとして、例えば運転中及び停止中のプラント設備を構成する機器・装置の形状に関するデータをレーザ光を用いて取得し、予め設定した運転中及び停止中の機器・装置の三次元位置評価点(基準評価点)と、一定経時後の運転中及び停止中の機器・装置の三次元位置評価点とから夫々の移動量を算出し、当該移動量の大きさ等に基づいてプラント設備の健全性を判断するようにした技術が開発されている(特開2001−41717号)。   On the other hand, in order to solve the problems as described above, for example, data relating to the shape of equipment and devices constituting the operating and stopping plant equipment is acquired using laser light, and preset operating and stopping equipment.・ Calculate the amount of movement from the three-dimensional position evaluation point of the device (reference evaluation point) and the three-dimensional position evaluation point of the device / device that has been operating and stopped after a certain period of time, and the magnitude of the amount of movement A technique for determining the soundness of plant equipment based on the above has been developed (Japanese Patent Laid-Open No. 2001-41717).

当該特開2001−41717号の技術は、高放射線線量箇所や高所等の機器、装置にも適用できると云う利点を有するものの、依然として計測装置が複雑且つ大型であり、計測そのものにも多くの手数が掛かるうえ、運転中の機器、装置の三次元位置評価点の検出だけでは、機器・装置の健全性(例えば配管の歪み)を高精度で連続的に監視できないと云う問題がある。   Although the technique disclosed in Japanese Patent Laid-Open No. 2001-41717 has the advantage that it can be applied to equipment and devices such as high radiation dose locations and high places, the measuring device is still complicated and large in size, and many of the measurements themselves are performed. In addition to the time required, there is a problem that the soundness (for example, distortion of piping) of the device / device cannot be continuously monitored with high accuracy only by detecting the three-dimensional position evaluation point of the device being operated or the device.

同様に、前記歪みゲージや加速度計を用いる場合の問題点を解決するものとして、レーザ光のスペクトルパターンを利用したり、或いはドップラー効果を利用することにより試料表面の2箇所間の伸び又は縮み量を計測する装置が開発されている(特開平7−4928号、特開平9−297010号、特開2001−124516号等)。   Similarly, in order to solve the problems in the case of using the strain gauge or the accelerometer, the amount of elongation or shrinkage between two locations on the sample surface by using the spectrum pattern of laser light or by using the Doppler effect Have been developed (JP-A-7-4928, JP-A-9-297010, JP-A-2001-124516, etc.).

しかし、従前のレーザ光を用いたこの種の歪み計測装置は、何れも計測可能な歪みが曲げ変形を主体とする振動歪みだけであり、配管系に生ずる重要な歪みの一つであるねじり変形を主体とする振動歪みには対応できないと云う問題がある。   However, with this type of strain measurement device using conventional laser light, the only measurable strain is the vibration strain mainly consisting of bending deformation, and the torsional deformation is one of the important distortions that occur in the piping system. There is a problem that it cannot cope with vibration distortion mainly composed of.

また、従前のレーザ変位計を用いた歪み計測装置に於いては、測定対象部位の外表面が配管等のように曲面の場合には、計測方向と直交方向に配管が振動したときに、レーザ光の反射に対する曲面の影響により、必然的に曲げ変形を主体とする歪みの計測誤差が大きくなると云う問題がある。   Also, in a conventional strain measurement device using a laser displacement meter, when the outer surface of the measurement target part is a curved surface such as a pipe, the laser is used when the pipe vibrates in a direction orthogonal to the measurement direction. Due to the influence of the curved surface on the reflection of light, there is a problem that the measurement error of distortion mainly consisting of bending deformation becomes large.

更に、従前のレーザ光を用いたこの種の歪み計測技術は、何れも複数基の独立したレーザ変位計を単に並設しただけのものであり、例えば、2基のレーザ変位計を並設した場合には、各レーザ変位計の取付け部の相対的な変形やバラツキによる測定誤差の発生が避けられないうえ、複数個のレーザ変位計を夫々単独に組み合せするだけであるため歪み計測装置が大型化することになり、計測装置の小型や所謂ハンディタイプの歪み計測装置の実現が困難となる。   Further, this type of strain measurement technique using conventional laser light is simply a parallel arrangement of a plurality of independent laser displacement meters, for example, two laser displacement meters are arranged in parallel. In this case, it is inevitable that measurement errors occur due to relative deformations and variations in the mounting portions of each laser displacement meter, and the strain measurement device is large because only a plurality of laser displacement meters are combined individually. Therefore, it becomes difficult to realize a small measuring device or a so-called handy type strain measuring device.

加えて、複数基のレーザ変位計を単に組み合せしただけの歪み計測装置においては、その計測値に歪みに直接関係しない部分(即ち、歪みを測定したい対象部分以外の領域)の情報が必然的に含まれることになり、結果として歪み検出精度の低下を招くと云う難点がある。   In addition, in a strain measuring device that is simply a combination of a plurality of laser displacement meters, information on a portion that is not directly related to strain (that is, a region other than the target portion where strain is to be measured) is necessarily included in the measured value. As a result, there is a disadvantage that the distortion detection accuracy is lowered.

特開2003−194508号JP 2003-194508 A 特開平11−014445号Japanese Patent Laid-Open No. 11-014445 特開2001−41717号JP 2001-41717 A 特開平7−4928号JP-A-7-4928 特開平9−297010号JP-A-9-297010 特開2001−124516号JP 2001-124516 A

本発明は、従前のレーザ光を利用した光学式振動歪み計測装置、特にスペクトルパターン移動量の検出を基本とする装置における上述の如き問題、即ち、イ.曲げ変形を主体とする振動歪みの計測には対応できるが、配管系に生ずるねじり変形を主体とする振動歪みの計測には対応が困難なこと、ロ.測定対象部位が配管外表面のように面状の場合には、計測方向と直交方向に配管が振動したときにはレーザ光の曲面反射の影響により歪みの計測誤差が大きくなること、ハ.複数基以上のレーザ変位計を単に並設しただけの装置は、各レーザ変位計の取付け部の相対的な変形やバラツキに起因する測定誤差の発生が不可避であること、ニ.歪み計測装置の小型化、ハンディタイプ化が図れないこと、ホ.測定値に、歪みを測定したい対象部位以外の領域の情報が含まれることになり、歪み検出精度を高めることが困難なこと等の問題を解決せんとするものであり、一つの共通フォルダーに2段状に取り付けした少なくとも6個以上のレーザ変位計を用いることにより、曲げ変形とねじり変形を主体とする両振動ひずみの計測が出来ると共に、高温や高放射熱量の測定対象物にも容易に適用することができ、しかも、対象部位についてノイズの少ない高精度な歪み計測が行え、装置の小型やハンディ化をも可能とした光学式振動歪み計測装置を提供することを、発明の主たる目的とするものである。   The present invention relates to the above-described problems in the conventional optical vibration distortion measuring apparatus using laser light, particularly the apparatus based on detection of the movement amount of the spectral pattern. Although it can cope with measurement of vibration distortion mainly composed of bending deformation, it is difficult to cope with measurement of vibration distortion mainly composed of torsional deformation generated in the piping system. In the case where the measurement target portion is planar like the outer surface of the pipe, when the pipe vibrates in the direction orthogonal to the measurement direction, the distortion measurement error increases due to the influence of the curved reflection of the laser beam. An apparatus in which a plurality of laser displacement gauges are simply arranged side by side is inevitable to generate measurement errors due to relative deformation and variation of the mounting portions of the laser displacement gauges. The strain measuring device cannot be downsized and handheld, e. The measurement value includes information on the region other than the target region where the strain is to be measured, and it is difficult to improve the strain detection accuracy. By using at least 6 laser displacement meters mounted in a step shape, it is possible to measure both vibrational strains, mainly bending deformation and torsional deformation, and easily apply to high temperature and high radiant heat measurement objects. It is a main object of the present invention to provide an optical vibration distortion measuring apparatus that can perform high-precision distortion measurement with less noise on a target portion, and that can be downsized and handheld. Is.

上記発明の課題を解決するため、本願請求項1の振動歪み計測装置に係る発明は、一つのフォルダーに2段状に取り付けた少なくとも6基のレーザ変位計を用いて振動する測定対象部位の少なくとも6箇所の変位を測定し、各レーザ変位計により計測した変位の差から測定対象物に発生している曲げ変形及びねじり変形を主体とする振動変形による歪みを演算装置により演算する構成としたことを発明の基本構成とするものである。   In order to solve the above-mentioned problems, the invention relating to the vibration strain measuring apparatus of claim 1 of the present application is characterized in that at least a measurement target portion that vibrates using at least six laser displacement meters attached in a two-stage manner to one folder. The displacement is measured at six locations, and the distortion due to the vibration deformation mainly consisting of bending deformation and torsion deformation generated in the measurement object is calculated from the difference in displacement measured by each laser displacement meter. Is a basic configuration of the invention.

本願請求項2の発明は、請求項1の発明において、複数のレーザ変位計の光源として共通の光源を用いるようにしたものである。   The invention of claim 2 of the present application is the invention of claim 1, wherein a common light source is used as the light source of the plurality of laser displacement meters.

本願請求項3の振動歪み計測装置に係る発明は、振動する梁状の測定対象物の外表面に中心軸線方向に所定間隔を置いて配列した少なくとも3個の第1レーザ光反射板及び前記第1反射板と中心軸線に対して対称に配列した少なくとも3個の第2レーザ光反射板と、前記各第1レーザ光反射板及び各第2レーザ光反射板へレーザビームを入射すると共に各反射板からの反射レーザビームを個別に受光する少なくとも6基のレーザ変位計と、当該各レーザ変位計を2段状に配列して載置固定するフォルダーと、前記各レーザ変位計により測定した各反射板上の検出点の振動変位を用いて測定対称物の対象部位の振動変形によるねじり歪み及び曲げ歪みを含む歪みを演算する演算装置とから構成したことを発明の基本構成とするものである。   The invention according to claim 3 of the present application relates to at least three first laser light reflectors arranged at predetermined intervals in the central axis direction on the outer surface of a vibrating beam-like measurement object, and the first At least three second laser light reflecting plates arranged symmetrically with respect to one reflecting plate and the central axis, a laser beam incident on each first laser light reflecting plate and each second laser light reflecting plate and each reflection At least six laser displacement meters that individually receive the reflected laser beams from the plate, a folder in which the laser displacement meters are arranged and fixed in two stages, and each reflection measured by each laser displacement meter The basic configuration of the present invention includes a calculation device that calculates distortion including torsional distortion and bending distortion due to vibrational deformation of a target portion of the object to be measured using the vibration displacement of the detection point on the plate.

本願請求項4の発明は、請求項3の発明において、測定対象物を配管とすると共に、前記第1レーザ光反射板及び第2レーザ光反射板を、配管の外周面へ着脱自在な短円筒体の外表面に180°の角度ピッチでもって外方へ向けて突設した平板状のフィン体とするようにしたものである。   A fourth aspect of the present invention is the short cylinder according to the third aspect, wherein the object to be measured is a pipe, and the first laser light reflecting plate and the second laser light reflecting plate are detachably attached to the outer peripheral surface of the pipe. A flat fin body projecting outward at an angular pitch of 180 ° on the outer surface of the body is used.

本願請求項5の発明は、請求項3の発明において、少なくとも6基のレーザ変位計を、2段状に配列した2基の共通発光部と少なくとも6基のレーザ変位計の受光部とから形成し、前記共通発光部から各検出点へレーザ光を入射する構成としたものである。   The invention of claim 5 of the present application is the invention of claim 3, wherein at least six laser displacement meters are formed from two common light emitting portions arranged in two stages and at least six light receiving portions of the laser displacement meters. And it is set as the structure which injects a laser beam into each detection point from the said common light emission part.

本発明においては、一つの共通するフォルダーに複数のレーザ変位計を取り付けしたものを用いているため、各変位計の取り付け部の相対的な変形やバラツキに起因する誤差が無くなり、高精度な歪みの計測が出来ると共に、レーザ変位計の取り付けにも堅固な取り付け装具を必要とせず、歪み計測装置の高精度化と小型化及び又はハンディ化が可能となる。   In the present invention, since a plurality of laser displacement meters attached to one common folder is used, there is no error due to relative deformation or variation of the attachment parts of each displacement meter, and high-precision distortion is achieved. In addition, the mounting of the laser displacement meter does not require a rigid mounting equipment, and the strain measuring device can be highly accurate, downsized and / or handheld.

また、本発明では、2段状に配列した少なくとも6個のレーザ変位計を用いて、測定対象物の軸線方向に間隔を置いて定めた少なくとも3位置の上・下6ケ所の変位から歪みを測定するようにしているため、振動変形によるねじり歪みと曲げ歪みの両方を含む振動歪みを正確に演算することができると共に、歪みを測定したい部位の変形を直接測定するようにしているため、歪みに直接関係する部分の情報に係るデータのみを用いて測定対象部位の歪みを求めることができ、結果として歪みの計測精度を大幅に向上させることができる。   Further, in the present invention, using at least six laser displacement meters arranged in two stages, distortion is detected from displacements at six positions above and below at least three positions determined at intervals in the axial direction of the measurement object. Since it is designed to measure vibration distortion including both torsional distortion and bending distortion due to vibration deformation, and to directly measure the deformation of the part where distortion is to be measured, distortion It is possible to obtain the distortion of the measurement target region using only the data relating to the information directly related to the information, and as a result, the distortion measurement accuracy can be greatly improved.

更に、本発明の請求項2及び請求項5の発明に於いては、単一の発光部を複数の変位計の光源として共用する構成としているため、光学式振動歪み計測装置の小型化及び製造コストの大幅な引下げが可能になると共に、計測器そのものの操作性が高まり、所謂歪み測定のし易い取扱性に優れた装置にすることができる。   Further, according to the second and fifth aspects of the present invention, since the single light emitting portion is shared as the light source of a plurality of displacement meters, the optical vibration strain measuring device can be downsized and manufactured. The cost can be drastically reduced, and the operability of the measuring instrument itself can be improved, so that a device with excellent operability that facilitates so-called strain measurement can be obtained.

加えて、本発明の請求項4の発明に於いては、第1レーザ反射板及び第2レーザ反射板を測定対象物である配管の所望箇所へ正確に且つ簡単に取付け固定することができ、歪み測定の作業能率を大幅に高めることができる。   In addition, in the invention of claim 4 of the present invention, the first laser reflection plate and the second laser reflection plate can be accurately and easily attached and fixed to a desired portion of the pipe as the measurement object, The work efficiency of strain measurement can be greatly increased.

以下、図面に基づいて本発明の実施形態を説明する。
[実施形態1]
図1は、本発明に係る光学式振動歪み計測装置Aの全体構成を示す説明図であり、図2は本発明で使用するレーザ光反射板取付具Cの斜面図、第3図はレーザ光反射板取付具Cの断面図、図4は、第1実施形態に係る光学式振動歪み計測装置Aを用いた歪み計測の実施態様を示す斜面図、図5は、図4の歪み計測において、変位から歪みを求める演算式で用いる記号の説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
FIG. 1 is an explanatory view showing the overall configuration of an optical vibration distortion measuring apparatus A according to the present invention, FIG. 2 is a perspective view of a laser beam reflector mounting fixture C used in the present invention, and FIG. 3 is a laser beam. 4 is a cross-sectional view of the reflector fixture C, FIG. 4 is a perspective view showing an embodiment of strain measurement using the optical vibration strain measuring apparatus A according to the first embodiment, and FIG. It is explanatory drawing of the symbol used with the calculating formula which calculates | requires distortion from displacement.

図1乃至図4に於いて、Aは光学式振動歪み計測装置、Bは振動変位検出部、Cはレーザ光反射板取付具、Sは配管支持固定箇所、P1a〜P3bは検出ポイント、1は測定対象物である配管、2はレーザ変位計、3はレーザ変位計を支持固定するフォルダー、4aは電源装置、4bはAD変換装置、5は演算装置、6aは入射レーザビーム、6bは反射レーザビーム、7はケーブル、8は短円筒体、8aは突起体、9aは第1レーザ光反射板、9bは第2レーザ光反射板、10a・10bは予備のレーザ光反射板である。 1 to 4, A is an optical vibration distortion measuring device, B is a vibration displacement detector, C is a laser light reflector mounting fixture, S is a pipe support fixing point, P 1a to P 3b are detection points, 1 is a pipe which is an object to be measured, 2 is a laser displacement meter, 3 is a folder for supporting and fixing the laser displacement meter, 4a is a power supply device, 4b is an AD converter, 5 is an arithmetic device, 6a is an incident laser beam, and 6b is A reflected laser beam, 7 is a cable, 8 is a short cylindrical body, 8a is a projection, 9a is a first laser light reflecting plate, 9b is a second laser light reflecting plate, and 10a and 10b are spare laser light reflecting plates.

前記測定対象物である配管1は、図1に示す如く所謂片持ち梁状に支持されており、その先端部は矢印イ−イ′方向へ往復振動をしている。尚、本実施形態では、外径34mm、内径27.2mmのステンレス鋼配管の一方の支持点から約10mm位離れた位置P1を第1検出点としている。 The pipe 1 which is the measurement object is supported in a so-called cantilever shape as shown in FIG. 1, and its tip portion reciprocates in the direction of arrow II '. In this embodiment, a position P 1 that is about 10 mm away from one support point of the stainless steel pipe having an outer diameter of 34 mm and an inner diameter of 27.2 mm is set as the first detection point.

前記レーザ変位計2には、公知の(株)キーエンス製LK−G80型レーザ変位計(サンプリング周期20μs、分解能0.2μm)が使用されている。尚、当該レーザ変位計は如何なる型式のものであっても良いことは勿論である。また、レーザ変位計そのものは公知であるため、ここではその詳細な説明は省略する。   For the laser displacement meter 2, a known LK-G80 type laser displacement meter (sampling period 20 μs, resolution 0.2 μm) manufactured by Keyence Corporation is used. Of course, the laser displacement meter may be of any type. Further, since the laser displacement meter itself is known, its detailed description is omitted here.

また、本実施形態においては、6基の同一仕様のレーザ変位計を2段状に配列して使用しているが、6基以上のレーザ変位計を使用して測定精度をより高めるようにしても良いことは勿論である。   In this embodiment, six laser displacement meters having the same specifications are arranged in two stages, but the measurement accuracy is improved by using six or more laser displacement meters. Of course, it is also good.

前記フォルダー3は、平盤状の鋼板から四角の枠体に形成されており、その下方部には適宜の固定用金具(図示省略)が設けられている。尚、フォルダー3の材質は硬質の合成樹脂盤であってもよく、軽量であってレーザ変位計2を確実に支持固定することが出来、しかもレーザ変位計の支持固定によって変形を生じないものであれば、如何なる材質及び形態のものであってもよい。また、当該フォルダー3とその上に載置固定した6基のレーザ変位計2などから、本発明に係る光学式振動歪み計測装置Aの振動変位検出部Bが形成されている。   The folder 3 is formed from a flat plate-shaped steel plate into a square frame, and an appropriate fixing bracket (not shown) is provided at a lower portion thereof. The material of the folder 3 may be a hard synthetic resin board, is lightweight, can securely support and fix the laser displacement meter 2, and does not cause deformation by the support and fixation of the laser displacement meter. Any material and form may be used. Further, the vibration displacement detector B of the optical vibration strain measuring apparatus A according to the present invention is formed from the folder 3 and six laser displacement meters 2 mounted and fixed thereon.

前記電源装置4a及びAD変換装置4bは、フォルダー3とは別体として設けられており、レーザ変位計2からケーブル7を介して入力された変位計測信号が、AD変換装置4bでデジタル信号に変換され演算装置5へ入力される。   The power supply device 4a and the AD conversion device 4b are provided separately from the folder 3, and the displacement measurement signal input from the laser displacement meter 2 via the cable 7 is converted into a digital signal by the AD conversion device 4b. And input to the arithmetic unit 5.

前記演算装置5には、パーソナルコンピュータが用いられており、後述する各演算式(1)乃至(12)に基づいて振動する歪み(曲げ歪み及びねじり歪み)の振幅や測定対象物1の振動変形時の曲率半径R等が夫々演算される。   A personal computer is used for the arithmetic device 5, and the amplitude of strain (bending strain and torsional strain) that vibrates based on arithmetic expressions (1) to (12) to be described later and the vibration deformation of the measurement object 1. The curvature radius R at the time is calculated.

前記レーザ光反射板取付具Cは、図2及び図3に示すように配管1の外周面へ装着する短円筒体8と、その外表面から外方へ垂直に突出させた平板状の反射板9a、9b、10a、10bと、短円筒体8の内周面に固定した断面四角状のリング状の突起体8a等から形成されており、4枚の各反射板9a、9b、10a、10bは90°の角度ピッチで短円筒体8に取付け固定されている。   As shown in FIGS. 2 and 3, the laser light reflector mounting fixture C includes a short cylindrical body 8 to be mounted on the outer peripheral surface of the pipe 1, and a flat reflector that projects vertically outward from the outer surface thereof. 9a, 9b, 10a, 10b and a ring-shaped protrusion 8a having a square cross section fixed to the inner peripheral surface of the short cylindrical body 8 and the like, and each of the four reflecting plates 9a, 9b, 10a, 10b. Are fixedly attached to the short cylindrical body 8 at an angular pitch of 90 °.

当該レーザ光反射板取付具Cは、配管1の任意の測定対象部位へ短円筒体8の弾性力を利用して装着固定される構造となっており、予め定めた所定の間隔で3個のレーザ光反射板取付具Cが、配管1へ固定される。
即ち、配管1へ装着された3個の取付具Cは、各第1レーザ光反射板9a及び第2レーザ光反射板9bが配管1の軸線方向に夫々一列状となるように整列される。その結果、第1レーザ光反射板9aと第2レーザ光反射9bとは軸対称状に取付け固定された状態となる。
The laser light reflector mounting fixture C has a structure that is attached and fixed to an arbitrary measurement target portion of the pipe 1 by using the elastic force of the short cylindrical body 8, and includes three pieces at predetermined intervals. A laser beam reflector mounting fixture C is fixed to the pipe 1.
That is, the three fixtures C attached to the pipe 1 are aligned so that the first laser light reflecting plate 9a and the second laser light reflecting plate 9b are in a line in the axial direction of the pipe 1, respectively. As a result, the first laser light reflecting plate 9a and the second laser light reflecting 9b are attached and fixed in an axially symmetrical manner.

尚、本実施形態においては、短円筒体8の有する弾性力を利用してレーザ光反射板取付具Cを配管1へ装着固定するようにしているが、開閉自在に二つ割りした短円筒体8の端部をボルト・ナット等を利用して相互に連結固定する構造としてもよい。   In the present embodiment, the laser light reflector mounting fixture C is mounted and fixed to the pipe 1 by utilizing the elastic force of the short cylindrical body 8. The ends may be connected and fixed to each other using bolts, nuts, or the like.

また、本実施形態では、上方又は下方からレーザビーム6aを入射する場合を考慮して、前記第1レーザ光反射板9a及び第2レーザ光反射板9bの他に、反射板10a、10bを短円筒体8に設けているが、配管1の振動方向が定まっているような場合には、当該反射板10a、10bは除いてもよい。   In the present embodiment, in consideration of the case where the laser beam 6a is incident from above or below, in addition to the first laser light reflection plate 9a and the second laser light reflection plate 9b, the reflection plates 10a and 10b are short. Although provided in the cylindrical body 8, when the vibration direction of the pipe 1 is fixed, the reflectors 10a and 10b may be omitted.

また、本実施形態においては、3個のレーザ光反射板取付具Cを検査対象部位へ個別に設けるようにしているが、短円筒体8を横幅の長いものにして3個のレーザ光反射板取付具Cを一体化し、一つの短円筒体8に第1レーザ光反射板及び第2レーザ光反射板を夫々3枚づつ所定の間隔を置いて一列状に固定した構成のものとしてもよい。   In the present embodiment, the three laser light reflector mounting fixtures C are individually provided at the site to be inspected, but the short cylindrical body 8 is long and the three laser light reflectors are provided. The fixture C may be integrated, and the first laser light reflecting plate and the third laser light reflecting plate may be fixed to the single short cylindrical body 8 in a row at predetermined intervals.

更に、当該レーザ光反射板取付具Cの短円筒体8の内周面には、断面四角形の突起体8aが固定されており、当該突起体8aを設けることにより、レーザ光反射板取付具Cの取付位置をより正確に規制することができる。   Further, a projection body 8a having a square cross section is fixed to the inner peripheral surface of the short cylindrical body 8 of the laser beam reflector mounting fixture C. By providing the projection body 8a, the laser beam reflector mounting fixture C is provided. The mounting position can be more accurately regulated.

次に、本発明に係る光学式振動歪み計測装置による振動歪み等の計測方法等について説明する。
先ず、検査対象物(配管1)の対象部位へ3個のレーザ光反射板取付具Cを所定の間隔を置いて装着し、各第1レーザ光反射板9a及び各第2レーザ光反射板9bの間隔及び整列状態を調整する。
次に、光学式振動歪み装置Aの振動変位検出部Bを前記各レーザ光反射板9a、9bと対向状に配置する。本発明に係る光学式振動歪み計測装置Aの振動変位検出部Bは可搬式に構成されているため、フォルダー3の設置位置を調整することにより、レーザ変位計2と測定対象物1の外表面との間隔を8cm位に選定し、その後フォルダー3を静止台(図示省略)上に固定する。
尚、図1の実施形態の光学式振動歪み計測装置にあっては、分解能0.2μm程度の振動変位(サンプリング周期20μs)の計測が可能である。
Next, a method for measuring vibration distortion and the like by the optical vibration distortion measuring apparatus according to the present invention will be described.
First, three laser light reflector mounting fixtures C are attached to a target portion of the inspection object (pipe 1) at a predetermined interval, and each first laser light reflector 9a and each second laser light reflector 9b. Adjust the interval and alignment state.
Next, the vibration displacement detector B of the optical vibration distortion apparatus A is disposed so as to face the laser light reflecting plates 9a and 9b. Since the vibration displacement detector B of the optical vibration strain measuring apparatus A according to the present invention is configured to be portable, the outer surface of the laser displacement meter 2 and the measurement object 1 can be adjusted by adjusting the installation position of the folder 3. Is set to about 8 cm, and then the folder 3 is fixed on a stationary table (not shown).
In the optical vibration distortion measuring apparatus of the embodiment shown in FIG. 1, vibration displacement (sampling period 20 μs) with a resolution of about 0.2 μm can be measured.

その後、各レーザ変位計2を作動させ、図4、図5に示すように夫々の入射光6a及び反射光6bを用い、6箇所の検出ポイント(即ち、3個の第1レーザ光反射板9a及び3個の第2レーザ光反射板)P1a〜P3bにおける振動の変位量、即ち振動変位の振幅u11、u12、u13、μ21、u22、u23を測定する。
尚、図5において、Dは測定対象物(配管)1の直径又は厚さ、Rは測定対象物1が振動で変形した形状の曲率半径、u11、u12、u13、u21、u22、u23は各レーザ変位計2で測定した各検出点P1a〜P3bの振動変位の振幅、X1、X2はレーザ変位計2の間隔、hはレーザ変位計2の高さ方向の間隔、θはひねり角、Gは横弾性係数、εは曲げ歪みの振幅、γはねじり歪みの振幅、τは応力である。
Thereafter, each laser displacement meter 2 is operated, and as shown in FIGS. 4 and 5, using the respective incident light 6a and reflected light 6b, six detection points (that is, three first laser light reflecting plates 9a). And three second laser light reflectors) P 1a to P 3b are measured for vibration displacement amounts, ie, vibration displacement amplitudes u 11 , u 12 , u 13 , μ 21 , u 22 , u 23 .
In FIG. 5, D is the diameter or thickness of the measurement object (pipe) 1, R is the radius of curvature of the shape of the measurement object 1 deformed by vibration, u 11 , u 12 , u 13 , u 21 , u 22 and u 23 are amplitudes of vibration displacements of the detection points P 1a to P 3b measured by the laser displacement meters 2, X 1 and X 2 are intervals of the laser displacement meters 2, and h is a height direction of the laser displacement meters 2. , Θ is a twist angle, G is a transverse elastic modulus, ε is an amplitude of bending strain, γ is an amplitude of torsional strain, and τ is stress.

前記各レーザ変位計2で計測された変位量、即ち振動変位の振幅u11、u12、u13、u21、u22、u23は、ケーブル7及びAD変換装置4bを経て演算装置5へ送られ、ここで下記の(1)〜(12)式に基づいて、測定対象物1の振動ひずみ(曲げ歪み)の振幅ε、振動歪み(ねじり歪み)の振幅γ及び振動変形形状の曲率半径R等が演算される。
尚、当該(1)〜(4)式は機械工学便覧等に開示されているものであり、演算式としては公知のものである。
The displacements measured by the laser displacement meters 2, that is, the amplitudes u 11 , u 12 , u 13 , u 21 , u 22 , u 23 of the vibration displacements are sent to the arithmetic unit 5 via the cable 7 and the AD converter 4b. Here, based on the following equations (1) to (12), the amplitude ε of the vibration strain (bending strain), the amplitude γ of the vibration strain (torsional strain), and the radius of curvature of the vibration deformation shape of the measurement object 1 R and the like are calculated.
In addition, the said (1)-(4) type | formula is disclosed by the mechanical engineering handbook etc., and is a well-known thing as an arithmetic expression.

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

Figure 2008046029
Figure 2008046029

測定対象物をステンレス鋼管1(外径D=34mm、内径φ=27.2mm、支持固定点Sから約10mm離れた位置P1(第1レーザ光反射板9a及び第2レーザ光反射板9bの各中心点P1a・P1b)を第1検出点とし、且つステンレス鋼管1の外表面とレーザ変位計2間の距離を36mmとして、図4に示した光学式振動変位計測装置をセットした。 The object to be measured is the stainless steel tube 1 (outer diameter D = 34 mm, inner diameter φ = 27.2 mm, position P 1 approximately 10 mm away from the support fixing point S (of the first laser light reflecting plate 9a and the second laser light reflecting plate 9b). The optical vibration displacement measuring device shown in FIG. 4 was set with each center point P 1a · P 1b ) as the first detection point and the distance between the outer surface of the stainless steel tube 1 and the laser displacement meter 2 being 36 mm.

尚、この時のレーザ変位計2の設置間隔はX1=36mm、X2=72mmであり、また、レーザ変位計2で測定した振動変位の各振幅はu11=0.0034mm、u12=0.0271mm、u13=0.0384mm、u21=0.0010mm、u22=0.029mm、u23=0.0318mmであった。 The installation interval of the laser displacement meter 2 at this time is X 1 = 36 mm and X 2 = 72 mm, and the amplitudes of the vibration displacement measured by the laser displacement meter 2 are u 11 = 0.0034 mm, u 12 = They were 0.0271 mm, u 13 = 0.0384 mm, u 21 = 0.0010 mm, u 22 = 0.029 mm, and u 23 = 0.0318 mm.

更に、この時の測定対象部位の演算した振動変形形状の曲率半径Rは、R=102047mm、曲げ歪みの幅εはε=167μstrainであった。この歪みは、配管1の縦弾性係数EをE=200000N/mm2とすると、応力σがσ=32.5N/mm2の場合の歪みに、また横弾性係数GをG=7690N/mm2とすると、応力τがτ=1.14N/mm2の場合の歪みに相当する。
[実施形態2]
Further, the curvature radius R of the vibration deformation shape calculated for the measurement target part at this time was R = 102047 mm, and the bending strain width ε was ε = 167 μstrain. When the longitudinal elastic modulus E of the pipe 1 is E = 200000 N / mm 2 , this strain is the strain when the stress σ is σ = 32.5 N / mm 2 , and the lateral elastic modulus G is G = 7690 N / mm 2. Then, it corresponds to the strain when the stress τ is τ = 1.14 N / mm 2 .
[Embodiment 2]

図6は、本発明の第2実施形態に係る光学式振動歪み計測装置Aの概要を示す傾斜面であり、図6に於いて11はレーザ変位計発光部、12はレーザ変位計受光部である。   FIG. 6 is an inclined surface showing an outline of the optical vibration distortion measuring apparatus A according to the second embodiment of the present invention. In FIG. 6, 11 is a laser displacement meter light emitting unit, and 12 is a laser displacement meter light receiving unit. is there.

即ち、当該第2実施形態においては、レーザ変位計の発光部11が共通の発光部に形成されており、1台の共通発光部11から各検出点P1a、P2a、P3aへ同時にレーザビーム6aが入射されると共に、各検出点P1a、P2a、P3aからの反射レーザビーム6bが各レーザ変位計の受光部12へ入射されるよう構成されている。
尚、図6において、3はフォルダー、6aは入射レーザビーム、6bは反射レーザビームであり、光学式振動歪み計測装置Aとしての作動やこれを用いた歪み計測方法は、前記図1乃至図3に示した第1実施形態の場合と同じである。
That is, in the second embodiment, the light emitting unit 11 of the laser displacement meter is formed in a common light emitting unit, and laser is simultaneously transmitted from one common light emitting unit 11 to each detection point P 1a , P 2a , P 3a . While the beam 6a is incident, the reflected laser beam 6b from each of the detection points P 1a , P 2a , P 3a is configured to be incident on the light receiving unit 12 of each laser displacement meter.
In FIG. 6, 3 is a folder, 6a is an incident laser beam, and 6b is a reflected laser beam. The operation as the optical vibration distortion measuring apparatus A and the distortion measurement method using the same are described in FIGS. This is the same as the case of the first embodiment shown in FIG.

本発明は、発電所等のあらゆるプラント設備や自動車等の機器・装置に於ける梁状の振動構造物の振動歪みの計測に適用できるものである。   The present invention can be applied to measurement of vibration distortion of a beam-like vibrating structure in any plant equipment such as a power plant and equipment / devices such as automobiles.

本発明に係る光学式振動歪み計測装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the optical vibration distortion measuring device which concerns on this invention. 本発明で使用するレーザ光反射板取付具Cの斜面図である。It is a perspective view of the laser beam reflector mounting fixture C used in the present invention. レーザ光反射板取付具Bの断面図である。It is sectional drawing of the laser beam reflector mounting tool B. 本発明の第1実施形態に係る光学式振動歪み計測装置を用いた歪み計測の実施態様を示す斜面図である。It is a slope figure showing an embodiment of distortion measurement using an optical vibration distortion measuring device concerning a 1st embodiment of the present invention. 図2の歪み計測において、変位から歪みを求める演算式中で使用されている各記号の説明図である。FIG. 3 is an explanatory diagram of each symbol used in an arithmetic expression for obtaining a strain from a displacement in the strain measurement of FIG. 2. 本発明の第2実施形態に係る光学式振動歪み計測装置の概要を示す斜面図である。It is a perspective view which shows the outline | summary of the optical vibration distortion measuring device which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

Aは光学式振動変位測定装置
Bは振動変位検出部
Cはレーザ光反射板取付具
Sは支持固定箇所
1a〜P3bは検出ポイント(合計6ケ所)
Dは測定対象物1の直径(又は厚さ)
Rは振動変形した形状の曲率半径
u11〜u23はレーザ変位計で測定した振動変位の振幅
1、X2はレーザ変位計の取付け間隔
εは曲げ歪みの振幅
γはひねり歪みの振幅
1は測定対象物(配管)
2はレーザ変位計
3はフォルダー
4aは電源装置
4bはAD変換装置
5は演算装置
6aは入射レーザビーム
6bは反射レーザビーム
7はケーブル
8は短円筒体
8aは突起体
9aは第1レーザ光反射板
9bは第2レーザ光反射板
10aレーザ光反射板
10bレーザ光反射板
11は共通発光部(共通光源)
12はレーザ変位計受光部
A is the optical vibration displacement measuring device B the vibration displacement detector C is laser light reflective plate fixture S support fixing portion P 1a to P 3b detection points (a total of 6 locations)
D is the diameter (or thickness) of the measuring object 1
R is the radius of curvature of the deformed shape
u 11 to u 23 are vibration displacement amplitudes X 1 and X 2 measured with a laser displacement meter, laser displacement meter mounting interval ε is bending strain amplitude γ and twist strain amplitude 1 is an object to be measured (pipe)
2 is a laser displacement meter 3, a folder 4 a, a power supply 4 b, an AD converter 5, an arithmetic unit 6 a, an incident laser beam 6 b, a reflected laser beam 7, a cable 8, a short cylinder 8 a, and a projection 9 a reflecting the first laser beam. The plate 9b is the second laser beam reflecting plate 10a, the laser beam reflecting plate 10b, and the laser beam reflecting plate 11 is a common light emitting unit (common light source).
12 is a laser displacement meter light receiving unit

Claims (5)

一つのフォルダーに2段状に取り付けた少なくとも6基のレーザ変位計を用いて振動する測定対象部位の少なくとも6箇所の変位を測定し、各レーザ変位計により計測した変位の差から測定対象物に発生している曲げ変形及びねじり変形を主体とする振動変形による歪みを演算装置により演算する構成としたことを特徴とする光学式振動歪み計測装置。   Measure the displacement of at least six locations of the measurement target that vibrate using at least six laser displacement meters mounted in two stages in one folder, and use the difference in displacement measured by each laser displacement meter to determine the measurement target. An optical vibration distortion measuring apparatus characterized in that a distortion due to vibration deformation mainly consisting of generated bending deformation and torsion deformation is calculated by an arithmetic device. 複数のレーザ変位計の光源として共通の光源を用いる構成としたことを特徴とする請求項1の光学式振動歪み計測装置。   The optical vibration distortion measuring apparatus according to claim 1, wherein a common light source is used as a light source of the plurality of laser displacement meters. 振動する梁状の測定対象物の外表面に中心軸線方向に所定間隔を置いて配列した少なくとも3個の第1レーザ光反射板と、前記第1反射板と中心軸線に対して対称に配列した少なくとも3個の第2レーザ光反射板と、前記各第1レーザ光反射板及び各第2レーザ光反射板へレーザビームを入射すると共に各反射板からの反射レーザビームを個別に受光する少なくとも6基のレーザ変位計と、当該各レーザ変位計を2段状に配列して載置固定するフォルダーと、前記各レーザ変位計により測定した各反射板上の検出点の振動変位を用いて測定対称物の対象部位の振動変形によるねじり歪み及び曲げ歪みを含む歪みを演算する演算装置とから構成したことを特徴とする光学式振動歪み計測装置。   At least three first laser light reflectors arranged at predetermined intervals in the central axis direction on the outer surface of the vibrating beam-like measurement object, and the first reflector and the symmetrical arrangement with respect to the central axis At least six second laser light reflecting plates and at least six laser beams incident on the first laser light reflecting plates and the second laser light reflecting plates and individually receiving the reflected laser beams from the reflecting plates. Measurement symmetry using a basic laser displacement meter, a folder in which each laser displacement meter is arranged and fixed in two stages, and a vibration displacement of a detection point on each reflector measured by each laser displacement meter An optical vibration distortion measuring device comprising an arithmetic device for calculating distortion including torsional distortion and bending distortion caused by vibration deformation of a target part of an object. 測定対象物を配管とすると共に、前記第1レーザ光反射板及び第2レーザ光反射板を、配管の外周面へ着脱自在な短円筒体の外表面に180°の角度ピッチでもって外方へ向けて突設した平板状のフィン体とするようにした請求項3に記載の光学式振動歪み計測装置。   The object to be measured is a pipe, and the first laser light reflection plate and the second laser light reflection plate are moved outward at an angular pitch of 180 ° on the outer surface of a short cylindrical body that is detachable from the outer peripheral surface of the pipe. The optical vibration distortion measuring device according to claim 3, wherein the fin is a flat fin projecting toward the surface. 少なくとも6基のレーザ変位計を、2段状に配列した2基の共通発光部と少なくとも6基のレーザ変位計の受光部とから形成し、前記共通発光部から第1レーザ光反射板及び第2レーザ光反射板上の各検出点へレーザ光を入射する構成とした請求項3に記載の光学式振動歪み計測装置。   At least six laser displacement meters are formed from two common light emitting portions arranged in two stages and at least six light receiving portions of the laser displacement meters, and the first light emitting plate and the first laser light reflecting plate are formed from the common light emitting portions. The optical vibration distortion measuring apparatus according to claim 3, wherein laser light is incident on each detection point on the two laser light reflecting plate.
JP2006222937A 2006-08-18 2006-08-18 Optical vibration distortion measuring device Expired - Fee Related JP4825621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222937A JP4825621B2 (en) 2006-08-18 2006-08-18 Optical vibration distortion measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222937A JP4825621B2 (en) 2006-08-18 2006-08-18 Optical vibration distortion measuring device

Publications (2)

Publication Number Publication Date
JP2008046029A true JP2008046029A (en) 2008-02-28
JP4825621B2 JP4825621B2 (en) 2011-11-30

Family

ID=39179910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222937A Expired - Fee Related JP4825621B2 (en) 2006-08-18 2006-08-18 Optical vibration distortion measuring device

Country Status (1)

Country Link
JP (1) JP4825621B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115338552A (en) * 2022-10-18 2022-11-15 中建安装集团有限公司 System and method for controlling edge angle of cylinder of soil covering tank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4981356B2 (en) * 2006-05-10 2012-07-18 株式会社原子力安全システム研究所 Optical vibration distortion measurement method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456470A (en) * 1977-10-13 1979-05-07 Ishikawajima Harima Heavy Ind Shape fault detector
JPS56111407A (en) * 1980-02-08 1981-09-03 Toshiba Corp Shaft torsion detecting method
JPS6435203A (en) * 1987-06-19 1989-02-06 Schenck Ag Carl Method and apparatus for measuring deformation of test piece for material tester
JPH0682237A (en) * 1992-09-01 1994-03-22 Mitsubishi Heavy Ind Ltd Warping measurement method of plate-like product
JPH06109434A (en) * 1992-09-29 1994-04-19 Nkk Corp Panel-strain-amount measuring apparatus after correction of welding strain of panel for structure
JPH09311021A (en) * 1996-05-24 1997-12-02 Topy Ind Ltd Method for measuring three-dimensional shape using light wave range finder
JPH11344395A (en) * 1998-06-02 1999-12-14 Systemseiko Co Ltd Method and device for detecting deformation of rotary shaft
JP2007303917A (en) * 2006-05-10 2007-11-22 Genshiryoku Anzen Syst Kenkyusho:Kk Optical type vibration strain measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456470A (en) * 1977-10-13 1979-05-07 Ishikawajima Harima Heavy Ind Shape fault detector
JPS56111407A (en) * 1980-02-08 1981-09-03 Toshiba Corp Shaft torsion detecting method
JPS6435203A (en) * 1987-06-19 1989-02-06 Schenck Ag Carl Method and apparatus for measuring deformation of test piece for material tester
JPH0682237A (en) * 1992-09-01 1994-03-22 Mitsubishi Heavy Ind Ltd Warping measurement method of plate-like product
JPH06109434A (en) * 1992-09-29 1994-04-19 Nkk Corp Panel-strain-amount measuring apparatus after correction of welding strain of panel for structure
JPH09311021A (en) * 1996-05-24 1997-12-02 Topy Ind Ltd Method for measuring three-dimensional shape using light wave range finder
JPH11344395A (en) * 1998-06-02 1999-12-14 Systemseiko Co Ltd Method and device for detecting deformation of rotary shaft
JP2007303917A (en) * 2006-05-10 2007-11-22 Genshiryoku Anzen Syst Kenkyusho:Kk Optical type vibration strain measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115338552A (en) * 2022-10-18 2022-11-15 中建安装集团有限公司 System and method for controlling edge angle of cylinder of soil covering tank
CN115338552B (en) * 2022-10-18 2023-01-24 中建安装集团有限公司 System and method for controlling edge angle of cylinder of soil covering tank

Also Published As

Publication number Publication date
JP4825621B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
TWI475201B (en) Torque Correction Device of Multi - Force Meter and Torque Correction Method
JP5838165B2 (en) Material testing machine
EP1766324A1 (en) Measurement probe for use in coordinate measuring machines
CN107421808B (en) A kind of device and method of contactless Hopkinson pressure bar measurement
JP4981356B2 (en) Optical vibration distortion measurement method
JP2018179958A (en) Optical spindle multiple degrees-of-freedom error measurement device and method
WO2000079216A1 (en) Ball step gauge
EP3312556A1 (en) Mechanical strain amplifying transducer
JP5736822B2 (en) Elongation measuring system and method
JP4825621B2 (en) Optical vibration distortion measuring device
CN103234485A (en) Parallelism detection method
JP2003222507A (en) Optical fiber sensor and strain monitoring system using sensor
CN102506804A (en) Device and method for measuring turning angle of cross section at 2D length position of middle part of tested pipe
CN109724727B (en) Method and device for measuring residual stress of curved surface blade of gas turbine
RU2308397C2 (en) Device for conducting the towing tests of marine engineering facility model in model testing basin
JP2010145340A (en) Device and method for measuring size of large component
US9644954B2 (en) Device for measuring the surface state of a surface
JP6611582B2 (en) Measuring device and measuring method
JP2018165688A (en) Shape measurement device and shape measurement method
JP2017015707A (en) Axial force measuring apparatus, axial force measuring method, ultrasonic inspection apparatus, ultrasonic inspection method and vertical probe fixture used for the same
CN111121638B (en) Method for calibrating displacement of material testing machine
RU2728725C1 (en) Device for precision calibration of fiber-optic sensors with bragg grating
RU145007U1 (en) DEVICE FOR MEASURING SUPPORT REACTIONS
JP2004053437A (en) Instrument for measuring displacement
KR101033031B1 (en) Strain measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees