JP2008045891A - Radiation thermometer - Google Patents

Radiation thermometer Download PDF

Info

Publication number
JP2008045891A
JP2008045891A JP2006219163A JP2006219163A JP2008045891A JP 2008045891 A JP2008045891 A JP 2008045891A JP 2006219163 A JP2006219163 A JP 2006219163A JP 2006219163 A JP2006219163 A JP 2006219163A JP 2008045891 A JP2008045891 A JP 2008045891A
Authority
JP
Japan
Prior art keywords
lens
radiation thermometer
objective lens
light beam
objective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006219163A
Other languages
Japanese (ja)
Inventor
Tadashi Kobayashi
正 小林
Fumihiro Sakuma
史洋 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Chino Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Chino Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006219163A priority Critical patent/JP2008045891A/en
Publication of JP2008045891A publication Critical patent/JP2008045891A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly-accurate radiation thermometer having a reduced area effect. <P>SOLUTION: This radiation thermometer 1 for measuring a temperature from an infrared ray quantity having an objective lens 6 for condensing infrared rays emitted from a measuring object has characteristics wherein the objective lens 1 is constituted of three lenses, namely, bonded type doublet lenses 6A and a single lens 6B, and the interval (dmm) between the doublet lenses 6A and the single lens 6B and an optical focal distance (fmm) of the objective lens 6 satisfy two relational expressions simultaneously: 80≤f≤100mm (relation 1), and 0.7≤d/f≤0.75 (relation 2). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、測定対象から放射される赤外線により測定対象の温度を測定する放射温度計に係り、特に放射温度計の温度校正を行う標準用単色放射温度計に関するものである。   The present invention relates to a radiation thermometer that measures the temperature of an object to be measured by infrared rays emitted from the object to be measured, and more particularly to a standard monochromatic radiation thermometer that performs temperature calibration of the radiation thermometer.

従来から、測定対象である物体から温度センサへの電磁波としての熱の移動(熱放射)が行われ、その電磁波の状態変化を捉えることで、測定対象の温度を求める温度計として放射温度計が知られている。そして、この種の放射温度計の標準体系である標準放射温度計を用いた校正には、亜鉛(419.527℃)、アルミニウム(660.323℃)、銀(961.78℃)、銅(1084.62℃)の定点物質の凝固点を利用した定点黒体が採用されている。   Conventionally, the movement of heat (heat radiation) as an electromagnetic wave from an object to be measured to a temperature sensor is performed, and a radiation thermometer is used as a thermometer to obtain the temperature of the measurement object by capturing the change in state of the electromagnetic wave. Are known. For calibration using a standard radiation thermometer which is a standard system of this type of radiation thermometer, zinc (419.527 ° C.), aluminum (660.323 ° C.), silver (961.78 ° C.), copper ( A fixed-point black body utilizing the freezing point of a fixed-point substance of 1084.62 ° C. is employed.

標準放射温度計には、以下に説明するように、JIS(日本工業規格)の規定(標題 放射温度計の性能試験方法通則 JIS C 1612:2000、以下「JIS C 1612」)により定められた0.9μm形と、0.65μm形の2種類の単色放射温度計が用いられている。
・0.9μm形:測定波長帯域の中心波長が0.85μm〜0.95μmまでの範囲にある単色放射温度計で、中心波長から0.1μm以上離れた波長領域における分光感度が中心波長の2×10-4以下とする。
・0.65μm形:測定波長帯域の中心波長が0.64μm〜0.66μmまでの範囲にある単色放射温度計で、中心波長から0.1μm以上離れた波長領域における分光感度が中心波長の1×10-4以下とする。
As described below, the standard radiation thermometer is defined by JIS (Japanese Industrial Standards) (title General Rules for Performance Test Methods for Radiation Thermometers JIS C 1612: 2000, hereinafter “JIS C 1612”). Two types of monochromatic radiation thermometers are used: 0.9 μm type and 0.65 μm type.
0.9 μm type: A monochromatic radiation thermometer whose center wavelength in the measurement wavelength band is in the range of 0.85 μm to 0.95 μm, and the spectral sensitivity in the wavelength region separated by 0.1 μm or more from the center wavelength is 2 at the center wavelength. × 10 -4 or less.
0.65 μm type: Monochromatic radiation thermometer with a center wavelength of 0.64 μm to 0.66 μm in the measurement wavelength band, and the spectral sensitivity in the wavelength region 0.1 μm or more away from the center wavelength is 1 at the center wavelength. × 10 -4 or less.

図10は、非特許文献である「JIS C 1612」に記載されている標準用単色放射温度計の概略説明図である。標準放射温度計51は、接眼レンズ52、減光フィルタ53、リレーレンズ54、偏光ミラー55、アパチャミラー(視野絞り)58及び対物レンズ56を介して測定対象である対象物(不図示)に焦点を合せる。
一方、対象物から出射された測定波長である光(電磁波)が対物レンズ56に集光され、開口絞り57を通してアパチャミラー58上に結像するように配置されている。アパチャミラー58には、視野を限定する小さな穴58aが開口しており、この穴58aを通過した光のみがコンデンサレンズ59及び干渉フィルタ60を通過し、シリコン検出素子61に導かれる構成である。
FIG. 10 is a schematic explanatory diagram of a standard monochromatic radiation thermometer described in “JIS C 1612” which is a non-patent document. The standard radiation thermometer 51 is focused on an object to be measured (not shown) through an eyepiece 52, a neutral density filter 53, a relay lens 54, a polarizing mirror 55, an aperture mirror (field stop) 58, and an objective lens 56. Match.
On the other hand, the light (electromagnetic wave) having the measurement wavelength emitted from the object is collected on the objective lens 56 and arranged on the aperture mirror 58 through the aperture stop 57. The aperture mirror 58 has a small hole 58a that limits the field of view, and only the light that has passed through the hole 58a passes through the condenser lens 59 and the interference filter 60 and is guided to the silicon detection element 61.

また、図11に示すように、可視領域から近赤外域までの色収差(光の波長の違いに起因する収差)を補正するため、対物レンズ56を低分散高屈折率硝子56Aaと高分散低屈折率硝子56Abとの内面同士が接着された接合型ダブレットであるダブレットレンズ56Aと単レンズ56Bとで構成されている。   Further, as shown in FIG. 11, in order to correct chromatic aberration (aberration caused by a difference in light wavelength) from the visible region to the near infrared region, the objective lens 56 is made of a low dispersion high refractive index glass 56Aa and a high dispersion low refraction. It is composed of a doublet lens 56A and a single lens 56B, which are junction type doublets in which the inner surfaces of the rate glass 56Ab are bonded to each other.

さらに、放射温度計の場合、測定距離が変わっても指示値(出力値)が変化しないように開口絞り57を設け、ピント合わせ操作により対物レンズが前後に移動しても、レンズ視野角θを一定にしている。   Furthermore, in the case of a radiation thermometer, an aperture stop 57 is provided so that the indicated value (output value) does not change even if the measurement distance changes, and the lens viewing angle θ can be set even if the objective lens moves back and forth by the focusing operation. It is constant.

そして、この種の放射温度計に用いられる対物レンズ光学系には、以下の性能が求められる。
1.低温での出力感度を得るためのレンズ開口角の大きい、明るい光学系であること。
2.測定距離によってピント合せが可能で、なお且つ、定点黒体炉の一般的な開口径φ6 mmを観測するために、最小の集光エリアの大きさ(以下、最小標的サイズ)はφ3 mm以下とする。0.65μm単色放射温度計の場合は、最小標的サイズはφ1mm 以下であること。
3.直視ファインダーによるピント合わせを行うために、可視領域と測定を行う近赤外域 とで色収差の小さい光学系であること。
4.高精度な測定を行うための面積効果の少ない光学系であること。
And the following performance is calculated | required by the objective-lens optical system used for this kind of radiation thermometer.
1. A bright optical system with a large lens aperture angle to obtain output sensitivity at low temperatures.
2. Focusing is possible according to the measurement distance, and in order to observe the general opening diameter of φ6 mm of the fixed-point blackbody furnace, the minimum condensing area size (hereinafter referred to as the minimum target size) is φ3 mm or less. To do. In the case of a 0.65 μm monochromatic radiation thermometer, the minimum target size shall be 1 mm or less.
3. An optical system with small chromatic aberration in the visible region and the near-infrared region to be measured in order to focus with the direct viewfinder.
4). An optical system with little area effect for high-precision measurement.

前述の性能に関する要求事項1を満たすために、標準用単色放射温度計の対物レンズは一般的に焦点距離が80〜100mm、レンズ開口径が凡そφ40mmの仕様となっている。従って、例えば0.9μm標準用単色放射温度計では、測定温度範囲の最低温度400℃において約0.1℃の測定感度を得るためには、レンズ開口径はφ40mm程度必要である。   In order to satisfy the requirement 1 regarding the above-described performance, the objective lens of the standard monochromatic radiation thermometer generally has a focal length of 80 to 100 mm and a lens aperture diameter of approximately φ40 mm. Therefore, for example, in a 0.9 μm standard monochromatic radiation thermometer, in order to obtain a measurement sensitivity of about 0.1 ° C. at a minimum temperature of 400 ° C. in the measurement temperature range, a lens aperture diameter of about 40 mm is necessary.

さらに、性能要求事項3を満たすための色収差(光の波長の違いに起因する収差)を補正する一般的な手法として、低分散高屈折率硝子と高分散低屈折率硝子の2つの素子を貼り合わた複合レンズであるダブレットレンズ(素子の間に空気間隔がある空気分離型タブレットと、内面で両者が接着している接合型ダブレットとがある)を用いることが広く知られており、放射温度計用対物レンズにもこの技術が応用されている。このダブレットレンズ構成とすることで、可視域から近赤外域まで(550〜1000nm)の色収差補正が可能である。   Furthermore, as a general technique for correcting chromatic aberration (aberration caused by the difference in light wavelength) to satisfy performance requirement 3, two elements of a low dispersion high refractive index glass and a high dispersion low refractive index glass are pasted. It is widely known to use a doublet lens that is a combined compound lens (there is an air-separated tablet with an air gap between the elements and a bonded doublet in which both are bonded on the inner surface). This technology is also applied to measuring objective lenses. With this doublet lens configuration, chromatic aberration correction from the visible range to the near infrared range (550 to 1000 nm) is possible.

また、性能要求事項4にある面積効果とは、温度が同じであっても、測定対象物である熱源の大きさによって放射温度計の指示値が変動する現象であり、一般的には熱源が大きくなるほど指示値が高くなる傾向にある。非特許文献1によれば、面積効果は光学系開口絞りによる回折、対物レンズでの散乱、或いはレンズ鏡筒内反射などが原因となって生じていると考えられている。   In addition, the area effect in the performance requirement 4 is a phenomenon in which the indication value of the radiation thermometer fluctuates depending on the size of the heat source as a measurement object even when the temperature is the same. The larger the value, the higher the indicated value. According to Non-Patent Document 1, it is considered that the area effect is caused by diffraction by an optical system aperture stop, scattering by an objective lens, reflection in a lens barrel, or the like.

一般的に、標準用単色放射温度計にて他の放射温度計の目盛校正を行う場合は、通常比較黒体炉を用いて行うが、定点黒体炉の開口径は概してφ6mmであるのに対し、比較黒体炉の開口径はφ30mm〜φ50mmである。それ故、定点黒体炉にて目盛校正された標準用単色放射温度計は開口径の大きい比較黒体炉を計測すると、面積効果によって誤差を生じることとなり、正確な目盛校正が実施できない。これが面積効果の小さい単色放射温度計が望まれる理由である。
JIS C 1612:2000 放射温度計の性能試験方法通則
In general, when calibrating the scale of another radiation thermometer with a standard monochromatic radiation thermometer, it is usually performed using a comparative blackbody furnace, although the fixed-point blackbody furnace has an opening diameter of generally 6 mm. On the other hand, the opening diameter of the comparative blackbody furnace is 30 mm to 50 mm. Therefore, when the standard monochromatic radiation thermometer calibrated in the fixed-point blackbody furnace measures a comparative blackbody furnace having a large opening diameter, an error occurs due to the area effect, and accurate scale calibration cannot be performed. This is why a monochromatic radiation thermometer with a small area effect is desired.
JIS C 1612: 2000 Radiation thermometer performance test general rules

上述のように、放射温度計の光学系が測定精度に及ぼす誤差要因としては、光学系の明るさ不足や実際の測定対象と光学スポット(標的)の不一致、各種光学収差や色収差の影響、或いは測定物体の面積の違いによって放射温度計の出力が変化する面積効果などが挙げられ、物体の温度を非接触で計測できる放射温度計において、高精度な測定性能が求められている。   As described above, the error factors that the optical system of the radiation thermometer exerts on the measurement accuracy include insufficient brightness of the optical system, mismatch between the actual measurement target and the optical spot (target), the effects of various optical aberrations and chromatic aberrations, or There is an area effect in which the output of the radiation thermometer changes depending on the difference in the area of the measurement object, and a high-precision measurement performance is required for a radiation thermometer that can measure the temperature of the object in a non-contact manner.

また、従来の標準用単色放射温度計に用いられてきた対物レンズは、主に明るさの確保と色収差の補正に設計の主眼が置かれ、面積効果の低減に対してはあまり注意が払われてこなかった。これは面積効果の要因が複雑であり、明確でなかったことに起因しているが、標準用単色放射温度計は一般の放射温度計の目盛校正を行う目的に使用されるため、前述の光学系による誤差要因の極小化が特段に求められる温度計である。   In addition, objective lenses used in conventional standard monochromatic radiation thermometers mainly focus on ensuring brightness and correcting chromatic aberration, so much attention has been paid to reducing the area effect. I did not come. This is because the area effect factor is complicated and unclear, but the standard monochromatic radiation thermometer is used for calibration of general radiation thermometers. It is a thermometer that requires special minimization of the error factor by the system.

さらに、図12または図13に示すように、従来の放射温度計はダブレットレンズ56Aと単レンズ56Bとで構成される対物レンズ56の間隔を狭くして配置しているため、対物レンズ56間のレンズのピントを無限遠に合わせた時よりも、図13に示す短い方に対応させた位置、つまりレンズを前方に移動させるほど第1面の光束径(有効径)が大きくなって、明るさが制限される。また、無限遠に合わせたレンズ位置では、レンズ中央部の限られた部分を通る光線のみ集光し、それ以外の外周部の光線は鏡筒内での迷光成分となる虞がある。   Further, as shown in FIG. 12 or FIG. 13, the conventional radiation thermometer is arranged with the interval between the objective lenses 56 formed by the doublet lens 56 </ b> A and the single lens 56 </ b> B being narrowed. Compared to when the lens is focused at infinity, the position corresponding to the shorter side shown in FIG. 13, that is, as the lens is moved forward, the light beam diameter (effective diameter) of the first surface increases, resulting in brightness. Is limited. In addition, at the lens position adjusted to infinity, only the light beam passing through a limited portion at the center of the lens is collected, and the other light beam at the outer periphery may become a stray light component in the lens barrel.

そこで、この発明の目的は以上の点に鑑み、放射温度計の対物レンズにおいて、可視域から近赤外域(550〜1000nm)までの色収差や球面収差の補正を行い、明るさと結像性能を確保し、且つ、レンズ表面での2次反射光の進行方向を制御することで、面積効果の影響を低減した高精度な放射温度計を達成しようとするものである。   In view of the above, the object of the present invention is to correct brightness and imaging performance by correcting chromatic aberration and spherical aberration from the visible range to the near infrared range (550 to 1000 nm) in the objective lens of the radiation thermometer. In addition, by controlling the traveling direction of the secondary reflected light on the lens surface, an object is to achieve a highly accurate radiation thermometer in which the influence of the area effect is reduced.

上記の課題を解決するため、本発明の請求項1記載の放射温度計は、測定対象からの出射された赤外線を集光する対物レンズを有し、赤外線量から温度計測を行う放射温度計において、該対物レンズは接合型のダブレットレンズと単レンズの計3枚のレンズで構成され、該ダブレットレンズと該単レンズの間隔(dmm)と前記対物レンズの光学系焦点距離(fmm)とで以下の2つの関係式がともに成り立つことを特徴とする。
80mm≦f≦100mm (関係式1)
0.7≦d/f≦0.75 (関係式2)
In order to solve the above problems, a radiation thermometer according to claim 1 of the present invention is a radiation thermometer that includes an objective lens that collects infrared rays emitted from a measurement object and performs temperature measurement from the amount of infrared rays. The objective lens is composed of a total of three lenses including a cemented doublet lens and a single lens. The distance between the doublet lens and the single lens (dmm) and the optical system focal length (fmm) of the objective lens are as follows. These two relational expressions hold together.
80mm ≦ f ≦ 100mm (Relational formula 1)
0.7 ≦ d / f ≦ 0.75 (Relational formula 2)

請求項2記載の発明は、請求項1記載の放射温度計において、前記対物レンズを構成する各レンズの各面間における反射光線のゴースト像位置が、各レンズの屈折光線による正規の結像位置に配置される視野絞りの位置から所定距離以上離れているか、或いは該反射光線が発散光線となるように、各レンズの各面の曲率半径を定めていることを特徴とする。   According to a second aspect of the present invention, in the radiation thermometer according to the first aspect, a ghost image position of a reflected light beam between each surface of each lens constituting the objective lens is a normal imaging position by a refracted light beam of each lens. The radius of curvature of each surface of each lens is determined so that the distance from the position of the field stop disposed at a predetermined distance or more or the reflected light beam becomes a diverging light beam.

請求項3記載の発明は、請求項1または2記載の放射温度計おいて、前記対物レンズを構成する各レンズにおいて、その硝種の屈折率(nd)とアッベ数(νd)が、前記ダブレットレンズではnd=1. 65±0. 3、νd=55±5とnd=1. 80±0. 5、νd=25±5である2枚の光学ガラスの貼り合わせであり、前記単レンズではnd=1. 65±0. 3、νd=55±5の光学ガラスで、且つ、像側レンズ面の曲率半径(R)が200mm≦R<400mmのメニスカス形状(片面が凸面で、反対面が凹面のレンズ)であることを特徴とする。   According to a third aspect of the present invention, in the radiation thermometer according to the first or second aspect, in each lens constituting the objective lens, the refractive index (nd) and Abbe number (νd) of the glass type are the doublet lens. Nd = 1.65 ± 0.3, νd = 55 ± 5, nd = 1.80 ± 0.5, and νd = 25 ± 5, and the single lens is nd. = 1.65 ± 0.3, νd = 55 ± 5 optical glass, and the image side lens surface has a radius of curvature (R) of 200 mm ≦ R <400 mm (one side is convex and the other side is concave) Lens).

請求項4記載の発明は、請求項1〜3の何れかに記載の放射温度計において、比較黒体炉を用いて放射温度計の目盛校正に使用される標準用単色放射温度計としたことを特徴とする。   The invention described in claim 4 is the radiation thermometer according to any one of claims 1 to 3, wherein a standard monochromatic radiation thermometer is used for calibration of the radiation thermometer using a comparative black body furnace. It is characterized by.

以上の構成により、この発明によれば、ダブレットレンズと単レンズの間隔を比較的大きくとることで、レンズ表面での反射光を鏡筒側壁に逃してやること、不要なレンズ外周部の光線や光軸中心から大きく離れた光源からの光線が直接レンズ内部まで入射しないようにすることで、面積効果が低減される。   With the above configuration, according to the present invention, the distance between the doublet lens and the single lens is made relatively large, so that the reflected light on the lens surface is allowed to escape to the lens barrel side wall, and unnecessary light rays and light on the outer periphery of the lens. The area effect is reduced by preventing light from a light source far away from the axis center from directly entering the lens.

また、ダブレットレンズと単レンズの間隔を大きくとることで、ある一定のレンズ有効径にて最大のレンズ明るさを確保することが可能となっている。   Further, by increasing the distance between the doublet lens and the single lens, it is possible to ensure the maximum lens brightness with a certain effective lens diameter.

さらに、対物レンズの各面間における反射光線を順次シミュレーションし、そのゴースト像位置が、レンズの屈折光線による正規の結像位置である視野絞りの位置から所定距離以上離れるように、或いは発散光線状態となるように、レンズ各面の曲率半径を定めることで、面積効果をさらに低減することができる。   In addition, the reflected light beam between each surface of the objective lens is simulated in order, and the ghost image position is more than a predetermined distance from the position of the field stop, which is the normal imaging position by the refracted light beam of the lens, or the divergent light state By defining the radius of curvature of each lens surface, the area effect can be further reduced.

以下、この発明の最良の形態について、添付する図1〜図9を参照しながら説明する。図1は本発明に係る放射温度計の光学系のレイアウト図であり、図2はレンズ間距離dとFナンバーの関係を示すグラフ図であり、図3は本発明に係る放射温度計の光学系の無限遠ピント位置における光路図であり、図4は本発明に係る放射温度計の光学系の近距離ピント位置における光路図であり、図5は本発明に係る放射温度計の対物レンズにおける各レンズ面を説明するための説明図であり、図6(a)〜(c)は図5における第4面と第3面を反射面として各種光線を追跡した場合のシミュレーション図であり、図7(a)〜(c)は図5における第5面と第1面を反射面として各種光線を追跡した場合のシミュレーション図であり、図8(a)〜(c)は図7において視野絞り近くに集光した場合のシュミレーション図であり、図9は本発明の放射温度計と従来の放射温度計との面積効果測定結果の比較例を示すグラフ図である。   Hereinafter, the best mode of the present invention will be described with reference to FIGS. FIG. 1 is a layout diagram of an optical system of a radiation thermometer according to the present invention, FIG. 2 is a graph showing the relationship between the inter-lens distance d and the F number, and FIG. 3 is an optical diagram of the radiation thermometer according to the present invention. 4 is an optical path diagram at an infinite focus position of the system, FIG. 4 is an optical path diagram at a short distance focus position of the optical system of the radiation thermometer according to the present invention, and FIG. 5 is an objective lens of the radiation thermometer according to the present invention. FIGS. 6A to 6C are simulation diagrams for tracking various light rays with the fourth surface and the third surface in FIG. 5 as reflection surfaces, and FIG. 7 (a) to (c) are simulation diagrams in the case where various rays are traced using the fifth surface and the first surface in FIG. 5 as reflection surfaces, and FIGS. 8 (a) to (c) are field stops in FIG. It is a simulation diagram when condensing near. Is a graph showing a comparative example of area effect measurement results of the radiation thermometer and a conventional radiation thermometer of the present invention.

まず、図1〜図4を参照しながら、本例の放射温度計の構成について具体的に説明する。なお、以下で説明する放射温度計は、構成する対物レンズの最大口径をφ40mmに固定した放射温度計とし、接眼レンズ等のファインダー光学系の構成については説明を省略する。   First, the configuration of the radiation thermometer of this example will be specifically described with reference to FIGS. The radiation thermometer described below is a radiation thermometer in which the maximum aperture of the objective lens to be configured is fixed to φ40 mm, and the description of the configuration of the finder optical system such as an eyepiece is omitted.

図1に示すように、本例の放射温度計1は、低分散高屈折率硝子6Aaと高分散低屈折率硝子6Abとの内面同士が接着された接合型ダブレットであるダブレットレンズ6Aと単レンズ6Bとで構成される対物レンズ6で測定対象(不図示)から放射される赤外線を集光し、この集光した赤外線を開口絞り7を介して視野絞り8に集光した後、コンデンサレンズ9と干渉フィルタ10を通ってシリコン検出素子11に達して、この集光した赤外線量に応じた電気信号に変換される。   As shown in FIG. 1, the radiation thermometer 1 of this example includes a doublet lens 6A and a single lens, which are bonded doublets in which inner surfaces of a low dispersion high refractive index glass 6Aa and a high dispersion low refractive index glass 6Ab are bonded to each other. The infrared rays emitted from the measurement target (not shown) are collected by the objective lens 6 composed of 6B, and the condensed infrared rays are collected on the field stop 8 via the aperture stop 7 and then the condenser lens 9 And reaches the silicon detecting element 11 through the interference filter 10 and is converted into an electrical signal corresponding to the amount of the collected infrared rays.

さらに説明すると、低分散高屈折率硝子6Aaと高分散低屈折率硝子6Abとで構成されるダブレットレンズ6Aと単レンズ6Bの3枚構成の対物レンズ6において、レンズの最大開口径をφ40mmに固定した場合の距離400mmから無限遠までのピントあわせが可能な焦点距離f=100mm光学系における間隔dと実現可能な最小Fナンバー(絞り値のことで、口径比でレンズの明るさを表すと1より小さな数値になるので、口径比の逆数、すなわち焦点距離を各絞りでの有効口径で割った数値が使用されている。故に、レンズの明るさはFナンバーの二乗に反比例する。)の関係を調べると、図2に示すようにd=72mmにて、Fナンバーは最小値3をとり、焦点距離がf=88mmの場合には、同様にd=62mmにて、Fナンバー最小値2. 6をとり、焦点距離がf=80mmの場合には、同様にd=56mm、Fナンバー最小値2.4をとる。対物レンズ6が、ダブレットレンズ6Aと単レンズ6Bにおける間隔dとレンズ焦点距離fとの間で、80mm≦f≦100mmにおいて0.7≦d/ f≦0.75の関係を満たすとFナンバーが最小となり、明るいレンズとなる。   More specifically, in the objective lens 6 having a triplet structure of a doublet lens 6A and a single lens 6B composed of a low dispersion high refractive index glass 6Aa and a high dispersion low refractive index glass 6Ab, the maximum aperture diameter of the lens is fixed to 40 mm. In this case, the focal length f of the optical system capable of focusing from a distance of 400 mm to infinity and the distance d in the optical system and the minimum feasible F number (the aperture value, which is expressed as the lens brightness in terms of aperture ratio, is 1 Since this is a smaller numerical value, the reciprocal of the aperture ratio, that is, the numerical value obtained by dividing the focal length by the effective aperture at each aperture is used, so the brightness of the lens is inversely proportional to the square of the F number. As shown in FIG. 2, when d = 72 mm, the F-number has a minimum value of 3, and when the focal length is f = 88 mm, similarly, F = 88 mm. Taking the bar minimum 2.6, if the focal length of f = 80 mm are likewise d = 56 mm, taking the F-number minimum value 2.4. When the objective lens 6 satisfies the relationship of 0.7 ≦ d / f ≦ 0.75 at 80 mm ≦ f ≦ 100 mm between the distance d between the doublet lens 6A and the single lens 6B and the lens focal length f, the F-number is obtained. Minimal and bright lens.

また、対物レンズ6は、迷光成分による面積効果が低減するため、各面間における反射光線のゴースト像位置が、レンズの屈折光線による正規の結像位置である視野絞り8の位置から所定距離以上離れるか、或いは反射光線が発散光線状態となるように、レンズ各面の曲率半径を定めている。   Further, since the objective lens 6 reduces the area effect due to the stray light component, the ghost image position of the reflected light beam between each surface is a predetermined distance or more from the position of the field stop 8 which is the normal image formation position by the refracted light beam of the lens. The radius of curvature of each surface of the lens is determined so that the reflected light beam is in a divergent light beam state.

さらに、対物レンズ6は、色収差を低減するため、各レンズの屈折率(nd:フラウンホーファー線のd線(587nm)に対する屈折率)とアッベ数(νd:光学ガラスの分散率を示す数値で、光学恒数ともいう。フラウンホーファー線のC線、D線、d線、F線に対する屈折率をnC,nD,nd、nFとして、νd=(nd−1)/(nF−nC)で定義される。)とに基づく関係として、光学特性がnd=1. 65±0.3 、νd =55±5とnd=1. 80±0. 5、νd =25±5である2枚の光学ガラスの貼り合わせであるタブレットレンズと、光学特性がnd=1. 65±0. 3、νd=55±5である光学ガラスである単レンズ6Bとで構成されている。また、面積効果を低減するため、単レンズ6Bの像側レンズ面の曲率半径(R)が200mm≦R<400mmのメニスカス形状としている。   Furthermore, in order to reduce chromatic aberration, the objective lens 6 is a numerical value indicating the refractive index of each lens (nd: the refractive index of the Fraunhofer line with respect to the d-line (587 nm)) and the Abbe number (νd: the dispersion rate of the optical glass, Defined as νd = (nd-1) / (nF-nC), where the refractive indices of the Fraunhofer lines for C-line, D-line, d-line, and F-line are nC, nD, nd, and nF. The two optical glasses having optical characteristics of nd = 1.65 ± 0.3, νd = 55 ± 5, nd = 1.80 ± 0.5, and νd = 25 ± 5. And a single lens 6B which is an optical glass having optical characteristics of nd = 1.65 ± 0.3 and νd = 55 ± 5. In order to reduce the area effect, the radius of curvature (R) of the image side lens surface of the single lens 6B is a meniscus shape of 200 mm ≦ R <400 mm.

このように、上記関係が成り立つ対物レンズ6を具備することで、φ40mmの開口径にてFナンバーが最小となり明るい光学系となる。また、レンズのピント位置に依らず常時レンズのほぼ全面を通る光線を集光する光学系となり、面積効果の原因であるところの迷光となり得る、余分な光線の入射を防ぐものとなる。   Thus, by providing the objective lens 6 that satisfies the above relationship, the F-number is minimized at an aperture diameter of φ40 mm, resulting in a bright optical system. In addition, the optical system always collects light passing through almost the entire surface of the lens regardless of the focus position of the lens, thereby preventing the incidence of extra light that can be stray light that causes the area effect.

さらに、図3または図4に示すように、従来の放射温度計の光学系と比べて対物レンズ6の間隔dが大きく設定されているため、主点の位置がレンズ系の中に移ることで、ピント合わせによるレンズを移動させても、レンズ第1面の有効径の増加度合は小さくなり、無限遠の位置の場合の有効径とほぼ変わらなくすることが可能となる。   Further, as shown in FIG. 3 or FIG. 4, since the distance d of the objective lens 6 is set larger than that of the optical system of the conventional radiation thermometer, the position of the principal point moves into the lens system. Even if the lens is moved by focusing, the degree of increase in the effective diameter of the first lens surface becomes small, and it is possible to make it almost the same as the effective diameter in the case of the position at infinity.

次に、図5〜図8を参照しながら、本例の放射温度計1の面積効果についての性能を調べるため、各レンズ表面における反射光の影響についてシミュレーション実験を行った。   Next, in order to investigate the performance of the radiation thermometer 1 of this example with respect to the area effect, a simulation experiment was performed on the influence of reflected light on each lens surface with reference to FIGS.

図5に示すように、本実験では、図中左方向の物体側から対物レンズ6のレンズ面をそれぞれ第1面、第2面、・・・、第5面とし、第6面は開口絞り面7とし、第1面から左に500mm離れた位置を物体面とした。また、結像面には視野絞り8を置いた。そして、3枚構成の対物レンズ6における上記レンズ面から任意の2面を選び、これらの面を1度目に入射した際は反射面として、2度目の入射の際は屈折面として作用させることで、光線の進行方向を追跡して計算し、視野絞りを通過する光線の度合を調べた。なお、本実験では、物体からレンズ第1面に入射する光線の本数は3968本とし、次のレンズ面に到達した光線は追跡を続け、レンズ面の外に外れた光線は計算を中止させることを繰り返し、最終的に視野絞りを通過する光線の本数を求めた。   As shown in FIG. 5, in this experiment, the lens surfaces of the objective lens 6 are the first surface, the second surface,..., The fifth surface from the object side in the left direction in the drawing, respectively. Surface 7 was the object surface at a position 500 mm to the left from the first surface. A field stop 8 was placed on the image plane. Then, two arbitrary surfaces are selected from the lens surfaces in the three-lens objective lens 6, and these surfaces are made to act as reflecting surfaces when incident for the first time and as refracting surfaces when incident for the second time. Then, the traveling direction of the light ray was tracked and calculated, and the degree of the light ray passing through the field stop was examined. In this experiment, the number of light rays incident on the first lens surface from the object is 3968, the light rays that have reached the next lens surface are continuously tracked, and the light rays that are outside the lens surface are stopped from being calculated. The number of rays finally passing through the field stop was determined.

具体例として第4面と第3面を反射面にとり、入射角0°、7°、10°の光線をシュミレーションして追跡した場合の光路図を図6に示す。図6(a)は入射角0°における光路図、図6(b)は入射角7°における光路図、図6(c)は入射角10°における光路図である。図6(a)〜(c)では、ダブレットレンズ6Aと単レンズ6Bの間隔を離すことで反射光が光学系の外側に逸れることが判る。   As a specific example, FIG. 6 shows an optical path diagram in the case where the fourth surface and the third surface are reflection surfaces, and light rays having incident angles of 0 °, 7 °, and 10 ° are simulated and traced. 6A is an optical path diagram at an incident angle of 0 °, FIG. 6B is an optical path diagram at an incident angle of 7 °, and FIG. 6C is an optical path diagram at an incident angle of 10 °. In FIGS. 6A to 6C, it can be seen that the reflected light deviates outside the optical system by separating the doublet lens 6A and the single lens 6B from each other.

また、図7の光路図は、第5面と第1面を反射面にとり、図6と同種の光線をシュミレーションして追跡したものであり、図7(a)は入射角0°における光路図、図7(b)は入射角7°における光路図、図7(c)は入射角10°における光路図である。図7(a)〜(c)では、入射角を有する光線は光学系の外側に逸れることが判る。   Further, the optical path diagram of FIG. 7 is obtained by simulating and tracking the same kind of light rays as in FIG. 6 with the fifth surface and the first surface as reflection surfaces, and FIG. 7A shows the optical path diagram at an incident angle of 0 °. 7B is an optical path diagram at an incident angle of 7 °, and FIG. 7C is an optical path diagram at an incident angle of 10 °. 7A to 7C, it can be seen that a light beam having an incident angle deviates outside the optical system.

一方、図7と同じ構成の対物レンズ6であっても、レンズの曲率半径によっては図8(a)〜(c)に示すように、視野絞り8の近くにゴースト像を結ぶことで、視野絞り8を通過する反射光の量が大きくなる場合もある。しかし、その場合には、レンズ最終面である第5面の曲率半径を変えた上で光学系全体を調整することにより、視野絞り8を通過する反射光の量を低減することができる。   On the other hand, even if the objective lens 6 has the same configuration as that shown in FIG. 7, depending on the radius of curvature of the lens, a ghost image is formed near the field stop 8 as shown in FIGS. In some cases, the amount of reflected light passing through the diaphragm 8 increases. However, in that case, the amount of reflected light passing through the field stop 8 can be reduced by adjusting the entire optical system after changing the radius of curvature of the fifth surface, which is the final lens surface.

このように、上述したシュミレーション結果から、対物レンズ6の各面間における反射光線のゴースト像位置が、レンズの屈折光線による正規の結像位置である視野絞り8の位置から所定距離以上離れるか、或いは反射光線が発散光線状態となるように、レンズ各面の曲率半径を定めることで、面積効果を低減することができる。   As described above, from the simulation result described above, the ghost image position of the reflected light beam between the surfaces of the objective lens 6 is more than a predetermined distance from the position of the field stop 8 which is the normal imaging position by the refracted light beam of the lens. Alternatively, the area effect can be reduced by determining the radius of curvature of each lens surface so that the reflected light beam is in a divergent light beam state.

以下、本例の放射温度計1について実施例により更に具体的に説明する。なお、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
(実施例1)
実施条件としては、焦点距離f=88mm、Fナンバー2.6、波長0.9μmとし、各レンズにおける面番号:S、曲率半径:R(mm)、次面までの面間隔:L(mm)、屈折率:nはそれぞれ表1に示す通りである。また、第1面及び第4面の硝種としてはガラスコード651562(S−LAL54)、第2面の硝材としてはガラスコード805254(S−TIH6)を使用する。
Hereinafter, the radiation thermometer 1 of this example will be described more specifically with reference to examples. It should be noted that the following examples are not intended to limit the present invention, and any design changes that fall within the spirit of the preceding and following descriptions are within the technical scope of the present invention.
(Example 1)
As the implementation conditions, the focal length f = 88 mm, F number 2.6, wavelength 0.9 μm, surface number: S, radius of curvature: R (mm) in each lens, surface distance to the next surface: L (mm) The refractive index: n is as shown in Table 1. Further, the glass cord 651562 (S-LAL54) is used as the glass type of the first surface and the fourth surface, and the glass cord 805254 (S-TIH6) is used as the glass material of the second surface.

Figure 2008045891
Figure 2008045891

図9は、上記実施例1で構成した対物レンズ6を具備した単色放射温度計と従来の対物レンズを用いた単色放射温度計の面積効果測定例である。図9に示すように、本発明による放射温度計1は従来型と比べて、面積効果が凡そ1/4に低減していることがわかる。   FIG. 9 is an example of area effect measurement of a monochromatic radiation thermometer equipped with the objective lens 6 configured in Example 1 and a monochromatic radiation thermometer using a conventional objective lens. As shown in FIG. 9, it can be seen that the radiation thermometer 1 according to the present invention has an area effect reduced to about ¼ compared to the conventional type.

以上のように、本発明による放射温度計1は、ダブレットレンズ6Aと単レンズ6Bにおける間隔dとレンズ焦点距離fとの間に80mm≦f≦100mm、0.7≦d/ f≦0.75の関係が成り立つ対物レンズ6を具備しているため、可視域から近赤外域(550〜1000nm)までの色収差や球面収差の補正を行い、明るさと結像性能を確保し、面積効果の原因であるところの、直接測定には関与しない余分な迷光成分の光学系内への進入を防ぎ、さらにレンズ表面での反射光の進行方向を制御することで、面積効果の影響を低減した高精度な放射温度計1を達成するものである。   As described above, the radiation thermometer 1 according to the present invention includes 80 mm ≦ f ≦ 100 mm and 0.7 ≦ d / f ≦ 0.75 between the distance d between the doublet lens 6A and the single lens 6B and the lens focal length f. Since the objective lens 6 satisfying the above relationship is included, chromatic aberration and spherical aberration are corrected from the visible region to the near infrared region (550 to 1000 nm), and brightness and imaging performance are ensured, resulting in the area effect. There is a high-precision that reduces the influence of the area effect by preventing the entry of extra stray light components that are not directly related to the measurement into the optical system and controlling the traveling direction of the reflected light on the lens surface. The radiation thermometer 1 is achieved.

また、対物レンズ6の各面間における反射光線のゴースト像位置が、レンズの屈折光線による正規の結像位置である視野絞り8の位置から所定距離以上離れるか、或いは反射光線が発散光線状態となるように、レンズ各面の曲率半径を定めることで、面積効果を低減する効果を奏する。   In addition, the ghost image position of the reflected light beam between each surface of the objective lens 6 is more than a predetermined distance from the position of the field stop 8 which is a normal imaging position by the refracted light beam of the lens, or the reflected light beam is in a divergent light beam state. Thus, by defining the radius of curvature of each surface of the lens, the effect of reducing the area effect is achieved.

以上、本願発明における最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術等はすべて本発明の範疇に含まれることは勿論である。   As mentioned above, although the best form in this invention was demonstrated, this invention is not limited with the description and drawing by this form. That is, it is a matter of course that all other forms, examples, operation techniques, and the like made by those skilled in the art based on this form are included in the scope of the present invention.

本発明に係る放射温度計の光学系のレイアウト図である。It is a layout figure of the optical system of the radiation thermometer which concerns on this invention. レンズ間距離dとFナンバーの関係を示すグラフ図である。It is a graph which shows the relationship between the distance d between lenses, and F number. 本発明に係る放射温度計の光学系の無限遠ピント位置における光路図である。It is an optical path figure in the infinity focus position of the optical system of the radiation thermometer which concerns on this invention. 本発明に係る放射温度計の光学系の近距離ピント位置における光路図である。It is an optical path figure in the short distance focus position of the optical system of the radiation thermometer which concerns on this invention. 本発明に係る放射温度計の対物レンズにおける各レンズ面を説明するための説明図である。It is explanatory drawing for demonstrating each lens surface in the objective lens of the radiation thermometer which concerns on this invention. 図5における第4面と第3面を反射面として各種光線を追跡した場合のシミュレーション図である。It is a simulation figure at the time of tracking various light rays by making the 4th surface and the 3rd surface in FIG. 5 into a reflective surface. 図5における第5面と第1面を反射面として各種光線を追跡した場合のシミュレーション図である。It is a simulation figure at the time of tracking various light rays by making the 5th surface and 1st surface in FIG. 5 into a reflective surface. 図7において視野絞り近くに集光した場合のシュミレーション図である。It is a simulation figure at the time of condensing near a field stop in FIG. 本発明の放射温度計と従来の放射温度計との面積効果測定結果の比較例を示すグラフ図である。It is a graph which shows the comparative example of the area effect measurement result of the radiation thermometer of this invention, and the conventional radiation thermometer. 従来の標準用単色放射温度計の概略説明図である。It is a schematic explanatory drawing of the conventional standard monochromatic radiation thermometer. 従来の放射温度計の光学系のレイアウト図である。It is a layout figure of the optical system of the conventional radiation thermometer. 従来の光学系の無限遠ピント位置における光路図である。It is an optical path diagram in the infinity focus position of the conventional optical system. 従来の光学系の近距離ピント位置における光路図である。It is an optical path figure in the short distance focus position of the conventional optical system.

符号の説明Explanation of symbols

1 放射温度計
2 接眼レンズ
3 減光フィルタ
4 リレーレンズ
5 偏向ミラー
6 対物レンズ
6A ダブレットレンズ
6Aa 低分散高屈折率硝子
6Ab 高分散低屈折率硝子
6B 単レンズ
7 開口絞り
8 視野絞り(アパチャミラー)
9 コンデンサレンズ
10 干渉フィルタ
11 シリコン検出素子
DESCRIPTION OF SYMBOLS 1 Radiation thermometer 2 Eyepiece lens 3 Neutral filter 4 Relay lens 5 Deflection mirror 6 Objective lens 6A Doublet lens 6Aa Low dispersion high refractive index glass 6Ab High dispersion low refractive index glass 6B Single lens 7 Aperture stop 8 Field stop (aperture mirror)
9 Condenser lens 10 Interference filter 11 Silicon detection element

Claims (4)

測定対象から出射された赤外線を集光するための対物レンズを有し、赤外線量から温度計測を行なう放射温度計において、
該対物レンズは接合型タブレットレンズと単レンズの計3枚のレンズで構成され、該タブレットレンズと該単レンズの間隔(dmm)と前記対物レンズの光学系焦点距離(fmm)とで以下の2つの関係式が成り立つ放射温度計。
80mm≦f≦100mm (関係式1)
0.7≦d/f≦0.75 (関係式2)
In a radiation thermometer that has an objective lens for condensing infrared rays emitted from a measurement object and performs temperature measurement from the amount of infrared rays,
The objective lens is composed of a total of three lenses, a cemented tablet lens and a single lens. The distance between the tablet lens and the single lens (dmm) and the optical system focal length (fmm) of the objective lens are as follows. Radiation thermometer with which two relational expressions hold.
80mm ≦ f ≦ 100mm (Relational formula 1)
0.7 ≦ d / f ≦ 0.75 (Relational formula 2)
前記対物レンズを構成する各レンズの各面間における反射光線のゴースト像位置が、各レンズの屈折光線による正規の結合位置に配置される視野絞りの位置から所定距離以上離れているか、或いは該反射光線が発散光線となるように、各レンズの各面の曲率半径を定めている請求項1記載の放射温度計。 The ghost image position of the reflected light beam between each surface of each lens constituting the objective lens is more than a predetermined distance from the position of the field stop arranged at the normal coupling position by the refracted light beam of each lens, or the reflection The radiation thermometer according to claim 1, wherein a radius of curvature of each surface of each lens is determined so that the light beam becomes a divergent light beam. 前記対物レンズを構成する各レンズにおいて、その硝種の屈折率(nd)とアッベ数(νd)が、前記ダブレットレンズではnd=1.65±0.3、νd=55±5とnd=1.80±0.5、νd=25±5である2枚の光学ガラスの貼り合わせであり、前記単レンズではnd=1.65±0.3、νd=55±5の光学ガラスで、且つ像側レンズ面の曲率半径が200mm≦R<400mmのメニスカス形状である請求項1または2記載の放射温度計。 In each lens constituting the objective lens, the refractive index (nd) and Abbe number (νd) of the glass type are nd = 1.65 ± 0.3, νd = 55 ± 5 and nd = 1. Two optical glasses having 80 ± 0.5 and νd = 25 ± 5 are bonded together, and the single lens is an optical glass having nd = 1.65 ± 0.3 and νd = 55 ± 5, and an image. 3. A radiation thermometer according to claim 1, wherein the side lens surface has a meniscus shape with a radius of curvature of 200 mm ≦ R <400 mm. 比較黒体炉を用いて放射温度計の目盛校正に使用される請求項1〜3の何れかに記載の標準用単色放射温度計。 The monochromatic radiation thermometer for standards according to any one of claims 1 to 3, which is used for calibration of a radiation thermometer using a comparative black body furnace.
JP2006219163A 2006-08-11 2006-08-11 Radiation thermometer Pending JP2008045891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219163A JP2008045891A (en) 2006-08-11 2006-08-11 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219163A JP2008045891A (en) 2006-08-11 2006-08-11 Radiation thermometer

Publications (1)

Publication Number Publication Date
JP2008045891A true JP2008045891A (en) 2008-02-28

Family

ID=39179791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219163A Pending JP2008045891A (en) 2006-08-11 2006-08-11 Radiation thermometer

Country Status (1)

Country Link
JP (1) JP2008045891A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143771A (en) * 2011-01-11 2012-08-02 Higashiyama Toru Femtosecond laser beam machine
JP2014004631A (en) * 2013-09-12 2014-01-16 Higashiyama Toru Femtosecond laser processing machine
KR101431105B1 (en) 2013-09-02 2014-08-18 주식회사 소모홀딩스엔테크놀러지 Lens for infrared image sensor in mobile phone
CN114152352A (en) * 2021-11-17 2022-03-08 北京理工大学 Stray radiation experimental measurement method and system for infrared optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339842A (en) * 1997-04-07 1998-12-22 Nikon Corp Aspherical optical system for infrared rays
JP2001033689A (en) * 1999-07-26 2001-02-09 Fuji Photo Optical Co Ltd Bright wide-angled infrared lens
JP2006010895A (en) * 2004-06-24 2006-01-12 Fujinon Corp Three-group zoom lens
JP2006145290A (en) * 2004-11-17 2006-06-08 Chino Corp Standard radiation thermometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339842A (en) * 1997-04-07 1998-12-22 Nikon Corp Aspherical optical system for infrared rays
JP2001033689A (en) * 1999-07-26 2001-02-09 Fuji Photo Optical Co Ltd Bright wide-angled infrared lens
JP2006010895A (en) * 2004-06-24 2006-01-12 Fujinon Corp Three-group zoom lens
JP2006145290A (en) * 2004-11-17 2006-06-08 Chino Corp Standard radiation thermometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143771A (en) * 2011-01-11 2012-08-02 Higashiyama Toru Femtosecond laser beam machine
KR101431105B1 (en) 2013-09-02 2014-08-18 주식회사 소모홀딩스엔테크놀러지 Lens for infrared image sensor in mobile phone
JP2014004631A (en) * 2013-09-12 2014-01-16 Higashiyama Toru Femtosecond laser processing machine
CN114152352A (en) * 2021-11-17 2022-03-08 北京理工大学 Stray radiation experimental measurement method and system for infrared optical system
CN114152352B (en) * 2021-11-17 2024-04-19 北京理工大学 Method and system for experimental measurement of stray radiation of infrared optical system

Similar Documents

Publication Publication Date Title
US7672049B2 (en) Telescope and panfocal telescope comprising planoconvex of planoconcave lens and deflecting means connected thereto
US9297987B2 (en) Wide field athermalized orthoscopic lens system
US5311611A (en) Imaging ball lens optically immersed with a fiber optic faceplate
WO2018142960A1 (en) Imaging lens system
JP2012088427A (en) Optical system and optical instrument
JP7285643B2 (en) Optical system and imaging device
WO2019169683A1 (en) Collimating lens assembly
CN107589518B (en) Optical lens and laser centering measurement device with same
US20130170021A1 (en) Microscope optical system and microscope system
JP2008045891A (en) Radiation thermometer
JP2008032991A (en) Reference lens for interferometer
JP5264847B2 (en) Ranging device, lens system, and imaging device
JP2020126108A (en) Image capturing lens
JP2003185919A (en) Infrared optical system and infrared optical device having the same
JP2701445B2 (en) Zoom optical system
RU2308005C1 (en) Sun attitude pickup
JP6238592B2 (en) Optical system eccentricity calculation method and optical system adjustment method using the same
US10782509B2 (en) Orthoscopic projection lens
JP7300703B2 (en) imaging lens
JPH10260350A (en) Infrared-ray image pickup device
GB2420632A (en) Wide angle infrared optical system with five lenses
CN209821496U (en) Endoscope and objective lens assembly
CN115097599B (en) Wide-angle infrared lens for boiler
RU200847U1 (en) Mid-IR projection lens
RU2281537C1 (en) Three-element telephoto lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016