JPH10339842A - Aspherical optical system for infrared rays - Google Patents

Aspherical optical system for infrared rays

Info

Publication number
JPH10339842A
JPH10339842A JP10091637A JP9163798A JPH10339842A JP H10339842 A JPH10339842 A JP H10339842A JP 10091637 A JP10091637 A JP 10091637A JP 9163798 A JP9163798 A JP 9163798A JP H10339842 A JPH10339842 A JP H10339842A
Authority
JP
Japan
Prior art keywords
lens
optical system
positive meniscus
aspherical
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10091637A
Other languages
Japanese (ja)
Inventor
Motoo Koyama
元夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10091637A priority Critical patent/JPH10339842A/en
Publication of JPH10339842A publication Critical patent/JPH10339842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical system excellently compensating for aberration on the entire sereen in spite of the optical system is constituted of a small number of lenses such as two lenses by optimizing the parameters of a positive meniscus lens and a planoconcave lens according to specified conditions. SOLUTION: This system is constituted of two lenses, that is, the positive meniscus lens L1 constituted of germanium and the planoconcave lens L2 constituted of zinc selenid, and the aspherical surface is introduced to the respective lenses L1 and L2 in order to balancedly compensate the aberration. Then, the lenses L1 and L3 are optimized by five conditions, that is, 0.955<f1/f<0.975, -3.35<f2/f<-3.20, 0.68<d/f<0.80, 0.065<t1/f<0.080 and 0.19<t2/f<0.05. In the expressions, (f) means the focal distance of the entire aspherical optical system for infrared, and f1 and f2 mean the focal distances of the lenses L1 and L2, respectively. (d) means a spacing from the lens L1 to the lens L2, and t1 and t2 mean the axial rise of the lenses L1 and L2, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、7〜13μm程度
の波長帯を使用する赤外用結像光学系に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared imaging optical system using a wavelength band of about 7 to 13 .mu.m.

【0002】[0002]

【従来の技術】従来、この種の赤外光学系としては、例
えば特開昭52−86344号や特開昭57−2000
10号に開示されているものが知られている。これらの
公報に開示されている赤外光学系は、3枚程度の構成で
いずれも球面のみが使われているものであった。
2. Description of the Related Art Conventionally, as this kind of infrared optical system, for example, JP-A-52-86344 and JP-A-57-2000
No. 10 is known. Each of the infrared optical systems disclosed in these publications has a configuration of about three sheets and uses only a spherical surface.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術に示さ
れる3枚構成の光学系は、比較的少ない構成枚数ではあ
るが、赤外システムの軽量化とコストダウンのため、光
学系に於いてもより一層の軽量化とコストダウンが求め
られていた。本発明はかかる点に鑑みてなされたもので
あり、2枚構成という極めて少ない構成枚数にもかかわ
らず、画面全体について良好に収差補正がなされた光学
系を提供することを目的とする。
Although the three-element optical system shown in the above-mentioned prior art has a relatively small number of components, it is necessary to reduce the weight and cost of the infrared system. However, further weight reduction and cost reduction have been demanded. The present invention has been made in view of such a point, and an object of the present invention is to provide an optical system in which aberrations are favorably corrected over the entire screen despite the extremely small number of components such as two.

【0004】[0004]

【課題を解決するための手段】上述の目的を達成するた
め、本発明にかかる赤外用非球面光学系は、物体側から
順に、物体側に凸面を向けた球面状のレンズ面と像面側
に凹面を向けた非球面形状のレンズ面を有し、ゲルマニ
ウムで構成された正メニスカスレンズと;物体側のレン
ズ面が平面であり、かつ像面側のレンズ面が像面側に凹
面を向けた非球面形状であり、セレン化亜鉛で構成され
た平凹レンズと;の2枚構成であり、以下の条件を満た
すものである。
In order to achieve the above object, an infrared aspherical optical system according to the present invention comprises, in order from the object side, a spherical lens surface having a convex surface facing the object side and an image surface side. A positive meniscus lens having an aspheric lens surface with a concave surface facing the lens and made of germanium; the lens surface on the object side is flat, and the lens surface on the image side is concave on the image side And a plano-concave lens made of zinc selenide, which satisfies the following conditions.

【0005】 (1) 0.955<f1/f<0.975 (2) −3.35<f2/f<−3.20 (3) 0.68< d/f<0.80 (4) 0.065<t1/f<0.080 (5) 0.19<t2/f<0.05 但し、 f :赤外用非球面光学系全体の焦点距離、 f1:正メニスカスレンズの焦点距離、 f2:平凹レンズの焦点距離、 d :正メニスカスレンズの像側レンズ面から平凹レン
ズの像側レンズ面までの間隔、 t1:正メニスカスレンズレンズの軸上厚、 t2:平凹レンズの軸上厚、 である。
(1) 0.955 <f1 / f <0.975 (2) −3.35 <f2 / f <−3.20 (3) 0.68 <d / f <0.80 (4) 0.065 <t1 / f <0.080 (5) 0.19 <t2 / f <0.05, where f: focal length of the entire infrared aspherical optical system, f1: focal length of the positive meniscus lens, f2 : The focal length of the plano-concave lens, d: the distance from the image-side lens surface of the positive meniscus lens to the image-side lens surface of the plano-concave lens, t1: the axial thickness of the positive meniscus lens lens, t2: the axial thickness of the plano-concave lens is there.

【0006】[0006]

【発明の実施の形態】本発明は、上述の如く、ゲルマニ
ウムで構成された正メニスカスレンズと、セレン化亜鉛
で構成された平凹レンズとの2枚構成を基本とし、諸収
差をバランス良く補正するために、各レンズに非球面を
導入し、かつ各レンズのパラメータを上記条件(1)〜
(5)により最適化している。また、第2レンズとして
平凹形状としているため、製造および調整が容易となり
生産性を上げることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the present invention is based on a two-element structure of a positive meniscus lens made of germanium and a plano-concave lens made of zinc selenide, and corrects various aberrations in a well-balanced manner. For this purpose, an aspherical surface is introduced into each lens, and the parameters of each lens are set in the above conditions (1) to
It is optimized by (5). In addition, since the second lens has a plano-concave shape, manufacturing and adjustment are easy, and productivity can be increased.

【0007】さて、本発明の光学系では、都合2面の非
球面を所定の間隔を隔てて導入しているため、軸上の単
色収差および軸外の単色収差の双方を良好に補正するこ
とが可能である。そして、本発明では、上記条件(1)
〜(3)により、第1レンズとしての正メニスカスレン
ズと第2レンズとしての平凹レンズとの屈折力配分と、
間隔とを規定している。この条件(1)〜(3)は、非
球面では補正できない軸上色収差および倍率色収差をバ
ランス良く補正するための条件であり、これらの条件
(1)〜(3)を同時に満足しない場合には、これら軸
上および倍率色収差の良好な補正の両立が不可能であ
る。
In the optical system of the present invention, two aspherical surfaces are conveniently introduced at a predetermined interval, so that both on-axis monochromatic aberration and off-axis monochromatic aberration can be corrected well. Is possible. In the present invention, the above condition (1)
According to (3), the refractive power distribution between the positive meniscus lens as the first lens and the plano-concave lens as the second lens,
The interval is specified. These conditions (1) to (3) are conditions for correcting axial chromatic aberration and lateral chromatic aberration that cannot be corrected by an aspheric surface in a well-balanced manner. If these conditions (1) to (3) are not satisfied at the same time, However, it is impossible to achieve satisfactory correction of the axial and lateral chromatic aberrations.

【0008】また、条件(4)は、第1レンズとしての
正メニスカスレンズの厚みを規定するためのものであ
り、この上限を超えると、正メニスカスレンズが厚くな
り過ぎて硝材費の上昇を招く。一方、下限を超えると、
正メニスカスレンズのコバ厚がとれなくなるなどの製造
上の困難を招く。条件(5)は、第2レンズとしての平
凹レンズの厚みを規定するものであり、この条件(5)
を満足しない場合には、たとえ上記条件(1)〜(3)
を同時に満足する構成であっても、軸上色収差の補正と
倍率色収差の補正とを両立させることができない。
The condition (4) is for defining the thickness of the positive meniscus lens as the first lens. If the upper limit of the condition (4) is exceeded, the positive meniscus lens becomes too thick and the cost of the glass material increases. . On the other hand, if the lower limit is exceeded,
Manufacturing difficulties such as the edge thickness of the positive meniscus lens being unable to be obtained are caused. The condition (5) defines the thickness of the plano-concave lens as the second lens, and the condition (5)
If the condition is not satisfied, even if the above conditions (1) to (3)
However, it is not possible to achieve both the correction of axial chromatic aberration and the correction of lateral chromatic aberration at the same time.

【0009】さて、本発明においては、上記条件(1)
〜(5)に加えて、以下の条件(6)を満足することが
好ましい。 (6) 0.98<TL/f<1.11 ただし、TL:正メニスカスレンズの物体側レンズ面か
ら像面までの距離(全長)である。
In the present invention, the above condition (1)
In addition to (5), it is preferable that the following condition (6) is satisfied. (6) 0.98 <TL / f <1.11 where TL is the distance (total length) from the object side lens surface of the positive meniscus lens to the image plane.

【0010】この条件(6)は、光学系全体のコンパク
ト化の達成と良好なコマ収差の補正とを両立させるもの
である。条件(6)の上限を超えると、光学系全体のコ
ンパクト化を図ることができず、下限を超えると、コマ
収差の発生を招くため、ともに好ましくない。
The condition (6) satisfies both achievement of compactness of the entire optical system and satisfactory correction of coma. If the value exceeds the upper limit of the condition (6), it is not possible to reduce the size of the entire optical system. If the value exceeds the lower limit, coma aberration occurs, which is not preferable.

【0011】[0011]

【実施例】以下、図面を参照して本発明にかかる数値実
施例を説明する。図1〜図4は、それぞれ第1〜第4実
施例の赤外用非球面光学系のレンズ断面図である。各実
施例はともに、最も物体側に配置されて物体側に凸面を
向けた正メニスカスレンズL1と、最も像側に配置され
て像側に凹面を向けた平凹レンズL2との2枚のレンズ
を有している。そして、正メニスカスレンズL1は、ゲ
ルマニウムで構成されており、その像側に非球面を有す
る。また、平凹レンズL2は、セレン化亜鉛で構成され
ており、その像側に非球面を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A numerical embodiment according to the present invention will be described below with reference to the drawings. FIGS. 1 to 4 are lens cross-sectional views of the aspherical optical system for infrared light of the first to fourth embodiments. Each of the embodiments includes two lenses: a positive meniscus lens L1 disposed closest to the object side and having a convex surface facing the object side, and a plano-concave lens L2 disposed closest to the image side and having a concave surface facing the image side. Have. The positive meniscus lens L1 is made of germanium, and has an aspheric surface on the image side. The plano-concave lens L2 is made of zinc selenide, and has an aspheric surface on the image side.

【0012】各実施例では、第1レンズとしての正メニ
スカスレンズL1の物体側レンズ面が絞り位置となって
いる。これより、正メニスカスレンズL1に設けられた
非球面が主に軸上収差を補正し、平凹レンズL2に設け
られた非球面が主に軸外収差を補正している。以下の表
1〜表4に第1〜第4実施例の諸元の値を示す。各表に
おいて、FナンバーFNOと、焦点距離fと、絞りの直
径φとを併せて示す。なお、各実施例における非球面形
状は下記(1)式により与えられ、各表には非球面デー
タを併せて示している。
In each of the embodiments, the object side lens surface of the positive meniscus lens L1 as the first lens is at the stop position. Thus, the aspherical surface provided on the positive meniscus lens L1 mainly corrects axial aberration, and the aspherical surface provided on the plano-concave lens L2 corrects mainly off-axis aberration. The following Tables 1 to 4 show values of specifications of the first to fourth embodiments. In each table, the F-number FNO, the focal length f, and the diameter φ of the stop are shown together. The aspheric shape in each embodiment is given by the following equation (1), and each table also shows aspheric data.

【0013】[0013]

【数1】 (Equation 1)

【0014】ただし、 X(y):レンズ頂点における接平面から非球面までの
光軸に沿った距離 y :非球面における光軸からの高さ k :円錐定数 AN :非球面係数 C :曲率 r :レンズ頂点における曲率半径 である。
Where X (y): distance along the optical axis from the tangent plane at the lens vertex to the aspherical surface y: height from the optical axis of the aspherical surface k: conical constant AN: aspherical coefficient C: curvature r : Radius of curvature at the vertex of the lens.

【0015】なお、各表において、「×10M」とは、1
0のM乗であることを示している。また、下記の各実施
例において、Geはゲルマニウムを示しており、ZnS
eはセレン化亜鉛を示している。これらの材料の屈折率
は以下の通りである。
In each table, “× 10M” means 1
It indicates that it is 0 to the power of M. In each of the following examples, Ge indicates germanium, and ZnS
e shows zinc selenide. The refractive indices of these materials are as follows.

【0016】[0016]

【表1】 [第1実施例] FNO = 1.2 f =100mm 面番号 曲率半径 面間隔 材料 焦点距離 1 80.86203 7.24209 Ge 96.39099 絞り:φ=83.2mm 2 104.63748 70.43518 3 0.00000 18.00000 ZnSe -332.46273 4 467.60884 12.44784 5 像面 第2面(非球面) 円錐定数 k=0.5140 非球面係数 A4 = 6.70015×10−8 ,A6 = 3.99709×10−12 A8 = 4.79220×10−16 ,A10=-1.76498×10−20 第4面(非球面) 円錐定数 k=1.0000 非球面係数 A4 = 1.16628×10−5 ,A6 =-3.80794×10−8 A8 = 4.35607×10−10 ,A10=-1.48847×10−12[Table 1] [Example 1] FNO = 1.2 f = 100 mm Surface number Radius of curvature Surface spacing Material Focal length 1 80.86203 7.24209 Ge 96.39099 Aperture: φ = 83.2 mm 2 104.63748 70.43518 3 0.00000 18.00000 ZnSe -332.46273 4 467.60884 12.44784 5 Image surface Second surface (aspheric surface) Conic constant k = 0.5140 Aspherical surface coefficient A4 = 6.70015 × 10−8, A6 = 3.999709 × 10−12 A8 = 4.79220 × 10−16, A10 = −1.76498 × 10−20 Four surfaces (aspherical surface) Conical constant k = 1.0000 Aspherical surface coefficient A4 = 1.16628 × 10−5, A6 = −3.80794 × 10−8 A8 = 4.335607 × 10−10, A10 = −1.48847 × 10−12

【0017】[0017]

【表2】 FNO = 1.2 f =100mm 面番号 曲率半径 面間隔 材料 焦点距離 1 80.87277 7.23695 Ge 96.45147 絞り:φ=83.2mm 2 104.63769 71.46534 3 0.00000 16.13301 ZnSe -332.70378 4 467.94787 12.24049 5 像面 第2面(非球面) 円錐定数 k=0.5163 非球面係数 A4 = 6.73140×10−8 ,A6 = 3.90288×10−12 A8 = 5.94916×10−16 ,A10=-4.47129×10−20 第4面(非球面) 円錐定数 k=1.0000 非球面係数 A4 = 1.18028×10−5 ,A6 =-3.25787×10−8 A8 = 3.79162×10−10 ,A10=-1.31465×10−12Table 2 FNO = 1.2 f = 100 mm Surface number Curvature radius Surface spacing Material Focal length 1 80.87277 7.23695 Ge 96.45147 Aperture: φ = 83.2 mm 2 104.63769 71.46534 3 0.00000 16.13301 ZnSe -332.70378 4 467.94787 12.24049 5 Image surface (Aspherical surface) Conical constant k = 0.5163 Aspherical surface coefficient A4 = 6.73140 × 10−8, A6 = 3.990288 × 10−12 A8 = 5.94916 × 10−16, A10 = -4.47129 × 10−20 4th surface (aspherical surface) Conic constant k = 1.0000 Aspheric coefficient A4 = 1.18028 × 10−5, A6 = −3.257787 × 10−8, A8 = 3.79162 × 10−10, A10 = −1.31465 × 10−12

【0018】[0018]

【表3】 FNO = 1.2 f =100mm 面番号 曲率半径 面間隔 材料 焦点距離 1 80.86086 7.22998 Ge 96.65311 絞り:φ=83.2mm 2 104.53809 75.09480 3 0.00000 10.00000 ZnSe -326.23035 4 458.84299 11.29667 5 像面 第2面(非球面) 円錐定数 k=0.5231 非球面係数 A4 = 6.80298×10−8 ,A6 = 4.18990×10−12 A8 = 7.29610×10−16 ,A10=-9.33235×10−20 第4面(非球面) 円錐定数 k=1.0000 非球面係数 A4 = 1.51001×10−5 ,A6 =-6.64819×10−8 A8 = 7.09024×10−10 ,A10=-2.45163×10−12Table 3 FNO = 1.2 f = 100 mm Surface number Radius of curvature Surface spacing Material Focal length 1 80.86086 7.22998 Ge 96.65311 Aperture: φ = 83.2 mm 2 104.53809 75.09480 3 0.00000 10.00000 ZnSe -326.23035 4 458.84299 11.29667 5 Image surface Second surface (Aspherical surface) Conic constant k = 0.5231 Aspherical surface coefficient A4 = 6.80298 x 10-8, A6 = 4.18990 x 10-12 A8 = 7.29610 x 10-16, A10 = -9.33235 x 10-20 Fourth surface (aspheric surface) Conic constant k = 1.0000 Aspheric coefficient A4 = 1.51001 × 10−5, A6 = −6.664819 × 10−8, A8 = 7.09024 × 10−10, A10 = −2.445163 × 10−12

【0019】[0019]

【表4】 FNO = 1.2 f =100mm 面番号 曲率半径 面間隔 材料 焦点距離 1 80.83887 7.22531 Ge 96.81269 絞り:φ=83.2mm 2 104.43512 77.51188 3 0.00000 6.00000 ZnSe -323.62660 4 455.18082 10.65457 5 像面 第2面(非球面) 円錐定数 k=0.5284 非球面係数 A4 = 6.87912×10−8 ,A6 = 3.41145×10−12 A8 = 1.59746×10−15 ,A10=-3.26418×10−19 第4面(非球面) 円錐定数 k=1.0000 非球面係数 A4 = 1.85913×10−5 ,A6 =-1.16936×10−7 A8 = 1.24314×10−9 ,A10=-4.38997×10−12 図5〜図8に上記表1〜表4に示した第1〜第4実施例
の諸収差図を示す。ここで、図5〜8(A)は第1〜第
4実施例における球面収差図、図5〜8(B)は第1〜
第4実施例における非点収差図、図5〜8(C)は第1
〜第4実施例における歪曲収差図、図5〜8(D)は第
1〜第4実施例における倍率色収差図、図5〜8(E)
は第1〜第4実施例における画角ω=−4.45のコマ
収差図、図5〜8(F)は第1〜第4実施例における画
角ω=−3.38のコマ収差図、図5〜8(G)は第1
〜第4実施例における画角ω=−2.27のコマ収差
図、図5〜8(H)は第1〜第4実施例における画角ω
=0の横収差図である。
Table 4 FNO = 1.2 f = 100 mm Surface number Curvature radius Surface distance Material Focal length 1 80.83887 7.22531 Ge 96.81269 Aperture: φ = 83.2 mm 2 104.43512 77.51188 3 0.00000 6.00000 ZnSe -323.62660 4 455.18082 10.65457 5 Image surface Second surface (Aspherical surface) Conical constant k = 0.5284 Aspherical surface coefficient A4 = 6.887912 × 10−8, A6 = 3.41145 × 10−12 A8 = 1.59746 × 10−15, A10 = −3.26418 × 10−19 Fourth surface (aspherical surface) Conic constant k = 1.0000 Aspherical surface coefficient A4 = 1.85913 × 10−5, A6 = −1.16936 × 10−7 A8 = 1.24314 × 10−9, A10 = −4.38997 × 10−12 Tables 1 to 4 in FIGS. FIG. 10 shows various aberration diagrams of the first to fourth examples shown in Table 4. Here, FIGS. 5 to 8A are spherical aberration diagrams in the first to fourth examples, and FIGS.
FIGS. 5 to 8C show the astigmatism diagrams of the fourth embodiment.
FIGS. 5 to 8D show chromatic aberration of magnification in the first to fourth examples, and FIGS. 5 to 8E.
Is a coma aberration diagram at an angle of view ω = −4.45 in the first to fourth embodiments, and FIGS. 5 to 8F are a coma aberration diagrams at an angle of view ω = −3.38 in the first to fourth embodiments. , And FIGS.
FIGS. 5 to 8H show the angle of view ω in the first to fourth embodiments. FIGS.
= 0 is a lateral aberration diagram.

【0020】なお、各収差図において、FNOはFナン
バー、Yは像高、ωは画角、Xは12μmの収差曲線、
Yは10μmの収差曲線、Zは8μmの収差曲線をそれ
ぞれ表している。また、図5〜図8(B)の非点収差図
において、破線はメリジオナル像面、実線はサジタル像
面をそれぞれ表している。これら図5〜図8の諸収差図
からも明らかな通り、本発明の各数値実施例による赤外
用非球面光学系では、簡素な構成にもかかわらず優れた
結像性能を実現できていることが理解される。
In each aberration diagram, FNO is the F-number, Y is the image height, ω is the angle of view, X is the aberration curve of 12 μm,
Y represents an aberration curve of 10 μm, and Z represents an aberration curve of 8 μm. In addition, in the astigmatism diagrams of FIGS. 5 to 8B, a broken line represents a meridional image plane, and a solid line represents a sagittal image plane. As is clear from the aberration diagrams of FIGS. 5 to 8, the infrared aspherical optical system according to each numerical example of the present invention can achieve excellent imaging performance despite its simple configuration. Is understood.

【0021】[0021]

【発明の効果】このように本発明によれば、7〜13μ
m程度の波長帯を使用する赤外用結像光学系において、
2枚構成という極めて少ない構成枚数にもかかわらず、
画面全体について良好な収差補正を達成することができ
る。
As described above, according to the present invention, 7 to 13 μm
In an infrared imaging optical system using a wavelength band of about m,
Despite the extremely small number of components of two,
Good aberration correction can be achieved for the entire screen.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる第1実施例のレンズ断面図であ
る。
FIG. 1 is a sectional view of a lens according to a first embodiment of the present invention.

【図2】本発明にかかる第2実施例のレンズ断面図であ
る。
FIG. 2 is a sectional view of a lens according to a second embodiment of the present invention.

【図3】本発明にかかる第3実施例のレンズ断面図であ
る。
FIG. 3 is a sectional view of a lens according to a third embodiment of the present invention.

【図4】本発明にかかる第4実施例のレンズ断面図であ
る。
FIG. 4 is a sectional view of a lens according to a fourth embodiment of the present invention.

【図5】第1実施例の諸収差図である。FIG. 5 is a diagram illustrating various aberrations of the first example.

【図6】第2実施例の諸収差図である。FIG. 6 is a diagram illustrating various aberrations of the second example.

【図7】第3実施例の諸収差図である。FIG. 7 is a diagram illustrating various aberrations of the third example.

【図8】第4実施例の諸収差図である。FIG. 8 is a diagram illustrating various aberrations of the fourth example.

【符号の説明】[Explanation of symbols]

L1‥‥第1レンズ L2‥‥第2レンズ S ‥‥絞り I ‥‥像面 L1 ‥‥ first lens L2 ‥‥ second lens S ‥‥ stop I ‥‥ image plane

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】物体側から順に、物体側に凸面を向けた球
面状のレンズ面と像面側に凹面を向けた非球面形状のレ
ンズ面を有し、ゲルマニウムで構成された正メニスカス
レンズと;物体側のレンズ面が平面であり、かつ像面側
のレンズ面が像面側に凹面を向けた非球面形状であり、
セレン化亜鉛で構成された平凹レンズと;の2枚構成で
あり、 以下の条件を満たすことを特徴とする赤外用非球面光学
系。 (1) 0.955<f1/f<0.975 (2) −3.35<f2/f<−3.20 (3) 0.68< d/f<0.80 (4) 0.065<t1/f<0.080 (5) 0.19<t2/f<0.05 但し、 f :前記赤外用非球面光学系全体の焦点距離、 f1:前記正メニスカスレンズの焦点距離、 f2:前記平凹レンズの焦点距離、 d :前記正メニスカスレンズの像側レンズ面から前記
平凹レンズの像側レンズ面までの間隔、 t1:前記正メニスカスレンズレンズの軸上厚、 t2:前記平凹レンズの軸上厚、 である。
1. A positive meniscus lens comprising, in order from the object side, a spherical lens surface with a convex surface facing the object side and an aspherical lens surface with a concave surface facing the image surface side, and made of germanium. A lens surface on the object side is a flat surface, and a lens surface on the image side is an aspherical surface with a concave surface facing the image side;
And a plano-concave lens made of zinc selenide; and an aspheric optical system for infrared rays, characterized by satisfying the following conditions. (1) 0.955 <f1 / f <0.975 (2) -3.35 <f2 / f <-3.20 (3) 0.68 <d / f <0.80 (4) 0.065 <T1 / f <0.080 (5) 0.19 <t2 / f <0.05, where f: focal length of the entire infrared aspherical optical system, f1: focal length of the positive meniscus lens, f2: Focal length of the plano-concave lens, d: interval from the image side lens surface of the positive meniscus lens to the image side lens surface of the plano-concave lens, t1: axial thickness of the positive meniscus lens lens, t2: axis of the plano-concave lens Upper thickness.
【請求項2】以下の条件を満たすことを特徴とする請求
項1記載の赤外用非球面光学系。 (6) 0.98<TL/f<1.11 ただし、 TL:前記正メニスカスレンズの物体側レンズ面から像
面までの距離(全長) である。
2. The infrared aspherical optical system according to claim 1, wherein the following condition is satisfied. (6) 0.98 <TL / f <1.11 where TL is the distance (total length) from the object side lens surface of the positive meniscus lens to the image plane.
JP10091637A 1997-04-07 1998-04-03 Aspherical optical system for infrared rays Pending JPH10339842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10091637A JPH10339842A (en) 1997-04-07 1998-04-03 Aspherical optical system for infrared rays

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-88542 1997-04-07
JP8854297 1997-04-07
JP10091637A JPH10339842A (en) 1997-04-07 1998-04-03 Aspherical optical system for infrared rays

Publications (1)

Publication Number Publication Date
JPH10339842A true JPH10339842A (en) 1998-12-22

Family

ID=26429912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10091637A Pending JPH10339842A (en) 1997-04-07 1998-04-03 Aspherical optical system for infrared rays

Country Status (1)

Country Link
JP (1) JPH10339842A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896382B2 (en) 1999-02-10 2005-05-24 Matsushita Electric Industrial Co., Ltd. Reflective optical device, and reflective solid-state optical device, and imaging device, multi-wavelength imaging device, video camera device, and vehicle-mounted monitor utilizing the same
US6929373B2 (en) 2001-04-11 2005-08-16 Matsushita Electric Industrial Co., Ltd. Reflection optical device and imaging apparatus comprising it, multi-wavelength imaging apparatus, and vehicle mounted monitor
KR100704403B1 (en) * 2005-09-15 2007-04-06 현동훈 Lens optical system for thermal sensing device of compact using aspherical
JP2007520108A (en) * 2003-12-18 2007-07-19 アバゴ・テクノロジーズ・ジェネラル・アイピー(シンガポール)プライベート・リミテッド Color image sensor having an image sensor array for forming an image on each area of the sensor element
JP2008045891A (en) * 2006-08-11 2008-02-28 Chino Corp Radiation thermometer
JP2008216765A (en) * 2007-03-06 2008-09-18 Technical Research & Development Institute Ministry Of Defence Infrared optical system and device
KR101290518B1 (en) * 2011-11-16 2013-07-26 삼성테크윈 주식회사 Infrared optical lens system
CN105324701A (en) * 2013-06-27 2016-02-10 尤米科尔公司 Compact achromatic and passive optically-only athermalized telephoto lens
CN109407257A (en) * 2018-12-28 2019-03-01 福建福光天瞳光学有限公司 A kind of f100mm non-refrigeration type LONG WAVE INFRARED camera lens and its assembly method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896382B2 (en) 1999-02-10 2005-05-24 Matsushita Electric Industrial Co., Ltd. Reflective optical device, and reflective solid-state optical device, and imaging device, multi-wavelength imaging device, video camera device, and vehicle-mounted monitor utilizing the same
US6908200B1 (en) 1999-02-10 2005-06-21 Matsushita Electric Industrial Co., Ltd. Reflection optical device, and reflection solid-state optical device, imaging device comprising this, multiwavelength imaging device, video camera, and monitoring device mounted on vehicle
US6929373B2 (en) 2001-04-11 2005-08-16 Matsushita Electric Industrial Co., Ltd. Reflection optical device and imaging apparatus comprising it, multi-wavelength imaging apparatus, and vehicle mounted monitor
JP2007520108A (en) * 2003-12-18 2007-07-19 アバゴ・テクノロジーズ・ジェネラル・アイピー(シンガポール)プライベート・リミテッド Color image sensor having an image sensor array for forming an image on each area of the sensor element
KR100704403B1 (en) * 2005-09-15 2007-04-06 현동훈 Lens optical system for thermal sensing device of compact using aspherical
JP2008045891A (en) * 2006-08-11 2008-02-28 Chino Corp Radiation thermometer
JP2008216765A (en) * 2007-03-06 2008-09-18 Technical Research & Development Institute Ministry Of Defence Infrared optical system and device
KR101290518B1 (en) * 2011-11-16 2013-07-26 삼성테크윈 주식회사 Infrared optical lens system
US8908268B2 (en) 2011-11-16 2014-12-09 Samsung Techwin Co., Ltd. Infrared optical lens system
CN105324701A (en) * 2013-06-27 2016-02-10 尤米科尔公司 Compact achromatic and passive optically-only athermalized telephoto lens
CN109407257A (en) * 2018-12-28 2019-03-01 福建福光天瞳光学有限公司 A kind of f100mm non-refrigeration type LONG WAVE INFRARED camera lens and its assembly method

Similar Documents

Publication Publication Date Title
US20210356700A1 (en) Imaging lens
US12007535B2 (en) Imaging lens comprising seven lenses of +−+−−+− or +++−−+− refractive powers
US11733495B2 (en) Imaging lens including seven lenses of +−−+0+−, +−−+−+−, +−−−−+− or +−−−++− refractive powers
JP2599312B2 (en) Super wide angle lens
JP6490115B2 (en) Imaging lens
JP3769373B2 (en) Bright wide-angle lens
US8000035B2 (en) Wide-angle lens, optical apparatus, and method for focusing
US11982874B2 (en) Imaging lens including six lenses of +−−−−+, +−−+−+ or +−−−+− refractive powers
JP7319049B2 (en) imaging lens
CN113640953B (en) Image pickup lens
US20210191079A1 (en) Imaging lens
JP3853889B2 (en) Zoom lens
JP2021001993A (en) Wide-angle lens
JPH10339842A (en) Aspherical optical system for infrared rays
JP2582446B2 (en) Wide-angle lens for film-integrated camera
US20240053586A1 (en) Small lens system
CN116256875B (en) optical lens
JP2975696B2 (en) Ultra-compact ultra-wide-angle lens
JP7409859B2 (en) imaging lens
JP2599311B2 (en) Super wide angle lens
JP3005905B2 (en) Shooting lens
JPH1130743A (en) Retrofocus type lens
JP4076334B2 (en) Projection lens
US11567294B2 (en) Imaging lens and imaging apparatus
WO2020262488A1 (en) Wide-angle lens