JP2008045700A - 連結部材、水素発生装置及び燃料電池システム - Google Patents

連結部材、水素発生装置及び燃料電池システム Download PDF

Info

Publication number
JP2008045700A
JP2008045700A JP2006223827A JP2006223827A JP2008045700A JP 2008045700 A JP2008045700 A JP 2008045700A JP 2006223827 A JP2006223827 A JP 2006223827A JP 2006223827 A JP2006223827 A JP 2006223827A JP 2008045700 A JP2008045700 A JP 2008045700A
Authority
JP
Japan
Prior art keywords
hydrogen
unit
connecting member
carbon monoxide
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006223827A
Other languages
English (en)
Inventor
Fuminobu Tezuka
史展 手塚
Hiroaki Hirasawa
博明 平澤
Hideo Kitamura
英夫 北村
Akihiko Ono
昭彦 小野
Yoshiyuki Isozaki
義之 五十崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006223827A priority Critical patent/JP2008045700A/ja
Priority to US11/841,278 priority patent/US20080044701A1/en
Publication of JP2008045700A publication Critical patent/JP2008045700A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • Y10T428/1393Multilayer [continuous layer]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract


【課題】 システム全体の小型化が可能で、信頼性が高く、水素発生装置に好適な連結部材、水素発生装置及び燃料電池システムを提供する。
【解決手段】 流体が流通する流路100を囲む金属製の内管101と、内管101の外周を覆うポリイミド樹脂製の外管103と、内管101と外管103との間に配置されたポリイミド樹脂製の中間層102とを備える。
【選択図】 図1

Description

本発明は、連結部材、水素発生装置及び水素発生装置を用いた燃料電池システムに関する。
化学反応システムにおいては、反応器と反応器との間を配管等の連結部材で繋ぎ合わせ、各反応器をそれぞれ好適な温度条件に設定して化学反応を進行させている。温度条件は、目的や用途に応じて室温程度の場合もあるが、数百℃という高温の場合もある。中でも、水素発生装置や燃料電池システムは、反応性の高い水素含有流体を、数百℃程度の高温で流通させるため、腐食に強く、高温環境に耐え得る反応器及び連結部材の選定が重要である。
近年、水素発生装置や燃料電池システムをモバイル機器等の小型電源に利用するために、反応器等や連結部材の小型化要求が高まってきている。しかし、小型化が進むにつれて反応器間を接続する連結部材の熱伝導性の問題が無視できなくなってきている。
一般に、異なる温度条件で化学反応を進める反応器同士を接続する場合は、反応器間の距離を一定距離以上離間させて、反応器間の熱伝導量を可能な限り小さくする必要がある。しかし、小型化に伴い反応器間の距離が短くなると、連結部材が熱伝導媒体として働く場合があるため、低温側の反応器の温度制御が困難になる。低温側の反応器の温度制御が困難になると、結果的に、高温側の反応器の熱効率も低下するため、システム全体の熱効率及び反応効率が低下する。
水素発生装置や燃料電池システムに用いられる連結部材としては、例えば、燃料電池用直接接触式熱交換器システムに用いられるステンレス製の管が知られている(例えば、特許文献1参照。)。また、エンジンルームのような高温環境下でも利用可能な連結部材として、熱可塑性エラストマ(TPE)樹脂を用いた燃料配管用樹脂チューブが知られている(例えば、特許文献2参照)。更に、水素含有流体に対してバリア性を有する樹脂層の間に金属を挟み込んだ多層配管も知られている(例えば、特許文献3参照。)。
しかしながら、特許文献1に開示されたステンレス管は熱伝導度が高いため、高温側の反応器の温度条件が低温側の反応器の温度条件に影響を及ぼさないように装置を組み立てようとすると、連結部材の長さを大きくしなければならない。その結果、連結部材の占有空間が大きくなり、システム全体が大型化する。
また、特許文献2の熱可塑性樹脂チューブは、材料として用いられるTPE樹脂の融点が250℃以下であるため、水素発生装置等のように、有機物原料の改質に200〜300℃もの高温を必要とする環境下では、内壁の熱可塑性チューブやTPE樹脂が熱に侵される。熱に侵された樹脂等が分解等して流路内に混入することにより、システムの不具合の原因となる。更に、熱可塑性樹脂チューブ内を流通する流体が、ジメチルエーテル、メタノール、水等の浸透性の高い混合溶液である場合は、内壁の熱可塑性樹脂チューブ内に浸透物質が浸透する、或いは、浸透性物質と反応した樹脂が劣化する等により、システム全体の信頼性が低下する。
更に、特許文献3に記載された発明は、特許文献2と同様に、内管材である樹脂が熱に侵されて軟化する、或いは、流通媒体が内壁内に膨潤するため、例えば250℃以上の高温条件で運転されるような水素発生装置等には利用できない。
特開平8−49996号公報 特開2005−265102号公報 特開2005−214387号公報
本発明は、システム全体の小型化が可能で、信頼性が高く、水素発生装置に好適な連結部材、水素発生装置及び燃料電池システムを提供する。
本願発明の態様によれば、流体が流通する流路を囲む金属製の内管と、内管の外周を覆うポリイミド樹脂製の外管と、内管と外管との間に配置されたポリイミド樹脂製の中間層とを備える連結部材が提供される。
本願発明の他の態様によれば、有機物原料または水の少なくとも一方を気化して有機物含有ガスを生成する気化部と、有機物含有ガスから水素含有流体を発生させる水素発生部と、水素含有流体から一酸化炭素を除去する一酸化炭素除去部と、気化部、水素発生部及び一酸化炭素除去部の少なくともいずれかの間を連結する連結部材とを備え、連結部材が、水素含有流体が流通する流路を囲む金属製の内管と、内管の外周を覆うポリイミド樹脂製の外管と、内管と外管との間に配置されたポリイミド樹脂製の中間層を有する水素発生装置が提供される。
本願発明の他の態様によれば、有機物原料または水の少なくとも一方を気化して有機物含有ガスを生成する気化部と、有機物含有ガスから水素含有流体を発生させる水素発生部と、水素発生部に接続され、水素含有流体中の一酸化炭素を二酸化炭素及び水素へシフトさせる一酸化炭素シフト部と、一酸化炭素シフト部の出口側に接続され、水素含有流体中の一酸化炭素を、メタン及び水へ転化するメタネーション部と、一酸化炭素シフト部とメタネーション部との間を連結する連結部材とを備え、連結部材が、水素含有流体が流通する流路を囲む金属製の内管と、内管の外周を覆うポリイミド樹脂製の外管と、内管と外管との間に配置されたポリイミド樹脂製の中間層を有する水素発生装置が提供される。
本願発明の他の態様によれば、有機物原料を収容する容器と、有機物原料または水の少なくとも一方を気化して有機物含有ガスを生成する気化部と、有機物含有ガスを水素含有流体に改質する改質部と、水素含有流体から一酸化炭素を除去する一酸化炭素除去部と、一酸化炭素が除去された水素含有流体を酸素と反応させて発電する発電部と、発電部から排出された排ガスを燃焼させる燃焼部と、気化部、改質部、一酸化炭素除去部、発電部、及び燃焼部の少なくともいずれかの間を連結する連結部材とを備え、連結部材が、水素含有流体が流通する流路を囲む金属製の内管と、内管の外周を覆うポリイミド樹脂製の外管と、内管と外管との間に配置されたポリイミド樹脂製の中間層とを備える燃料電池システムが提供される。
本発明によれば、システム全体の小型化が可能で、信頼性が高く、水素発生装置に好適な連結部材、水素発生装置及び燃料電池システムが提供できる。
次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載においては、同一又は類似の部分には同一又は類似の符号を付している。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において種々の変更を加えることができる。
(連結部材)
本発明の実施の形態に係る連結部材は、図1及び図2に示すように、水素含有流体が流通する流路100を囲む金属製の内管101と、内管101の外周を覆うポリイミド樹脂製の外管103と、内管101と外管103との間に配置されたポリイミド樹脂製の中間層102とを備える。連結部材の両端には、それぞれ異なる温度の反応器(図示省略)を接合するための連結部104a,104bが設けられている。
図2は、図1のA−A方向からみた場合の断面図の一例を示している。内管101の外周には、リブ105が配置されている。リブ105は、中間層102が、内管101と外管103との間で動かないように固定している。
内管101の材料としては、高温環境に耐え、接合等の加工が容易なアルミニウム、銅、鋼鉄、ステンレス等の金属が利用可能であるが、水素含有流体等を流通させるための小型反応システムに利用する場合は、アルミニウム及び銅等より熱伝導率の小さいステンレス製が好ましい。また、熱伝導率の大きい部材の断面積は、可能な限り小さくすることが好ましいため、適用するシステムの信頼性、安全性等の観点を含めた上で、内管101の肉厚(図2の厚さd2)を、可能な限り薄くすることが好ましい。
例えば、携帯機器用途であれば、落下などの衝撃に耐え得るだけの構造が要求されるため、要求に耐え得る重みを有する程度に厚みを大きく形成する必要がある。一方、定置型のシステムに用いる場合は、落下等の衝撃を考慮せずにすむので、厚みを加減してもよい。また、内管101の内側を流れる流体と外管103の外部の環境との差圧に耐え得る程度の肉厚を有することも必要であるため、使用するシステムに応じて肉厚を最適化するのが好ましい。
内管101の材料は、連結する反応器等との接合の難易度に応じて選択することができる。例えば、反応器等がSUS316L(JIS規格)製である場合は、内管101の材料としてSUS316Lを選択することにより、線膨張率の特性を同一にできるため、連結の信頼性が向上する。
後述する水素発生装置に好適な内管101の例としては、例えば、内圧が5.88×10Pa(6kgf/cm2)、長さ(図1の長さla)が10〜100mm、連結部104a,104bの長さ(図1の長さlb)が1〜5mm、外径(図2の直径d1)が1.0〜2.5mm、肉厚(図2の厚さd2)0.05〜0.15mmのステンレス製の管等が利用可能であり、例えば、SUS316L、或いはSUS304L(JIS規格)製の薄肉特殊管等が利用可能である。
外管103としては、金属等に比べて熱伝導率が低く、加工性に富む材料、即ち、フッ素系樹脂、エポキシ樹脂、ポリイミド樹脂等が利用可能である。ここで、フッ素系樹脂は180℃程度、エポキシ樹脂は250℃程度がそれぞれ使用温度の上限と解されている。水素含有流体等を発生させる小型反応システム等に利用する場合は、250℃以上の高温環境下でも使用可能なポリイミド樹脂を採用する必要がある。
ポリイミドの熱伝導率λは、例えば300Kにおいて、0.29W/(m・K)程度であるので、例えば、熱伝導率λが、300Kにおいて1.38W/(m・K)の石英ガラス、熱伝導率λが300Kにおいて36.0W/(m・K)のアルミナ、或いは、熱伝導率λが300Kにおいて16.0W/(m・K)のステンレス(SUS304(JIS規格))等に比べて熱伝導を抑制する効果がある。なお、後述する水素発生装置に好適な外管103としては、外径(図2の直径D1)が2.00〜5.00mm、肉厚(図2の厚さD2)0.5〜2.0mmのポリイミド樹脂製の管等が利用可能である。
中間層102としては、熱伝導率が内管101より低く外管103より高いポリイミド樹脂、例えば、ポリイミド発泡樹脂及びポリイミド接着剤等を用いるのが好ましい。熱伝導率の高い内管101と熱伝導率の低い外管103の界面においては、温度勾配による線膨張率の差に起因して熱応力が生ずる。中間層102として中間的な熱伝導率を有するポリイミド樹脂を用いることにより、線膨張率の差に起因する熱応力を緩和でき、信頼性の高い連結部材が提供できる。また、中間層102により、図2に示す連結部材の径方向への熱の伝導が抑制されるため、連結部材の熱効率が高くなる。
中間層102の熱伝導率を内管101の熱伝導率より低く外管103の熱伝導率より高くするためには、中間層102に複数の気泡を持たせればよい。例えば、中間層102を、複数の独立気泡を有するポリイミド樹脂製とし、独立気泡の内部に乾燥空気よりも熱伝導率が低い気体を充填する。これにより、独立気泡内部に空気が充填された場合に比べて、管径方向への熱の伝導を抑制できるため、熱効率がより高くなる。なお、独立気泡型の発泡樹脂の代わりに連続気泡型の発泡樹脂も利用してもよいことは勿論である。
気泡中に充填する気体としては、例えば、アルゴン、二酸化炭素、窒素、クリプトン等の不活性ガスが好適である。中間層102への不活性ガスの充填方法としては、ポリイミド発泡樹脂を液状の状態でポリイミド接着剤と混合して昇温加熱し、ポリイミド発泡樹脂中から炭酸ガスや窒素等を発生、保持させることにより可能である。また、積極的にポリイミド接着剤中にアルゴン等の不活性ガスを注入して分散させた後、硬化させてもよい。
中間層102の気泡中に不活性ガスを充填することにより、万が一、内管101が破損した場合においても、不活性ガスが内管101の内側の流路100を流れる流体と反応しないため、安全性が保たれる。また、中間層102に充填された不活性ガスが、内管101内の流路100に流れ込んだとしても、各反応器で生じる化学反応に大きな影響を及ぼさないため、システム全体の信頼性を高く保つことができる。
連結部104a,104bは、内管101と同様、ステンレス製で形成可能である。連結部104a,104bの長さlb(図1参照)は、反応器の種類と溶接の仕方等に応じて接合可能な程度の大きさを確保できればよい。連結部104a,104bの形状は、接合する反応器の仕様や溶接方式に応じて成形可能である。
例えば、レーザ溶接を利用する場合は、図3に示すように、外形を角柱状に成形した連結部234,244をそれぞれ有する連結部材23,24と、連結部234,244を嵌め込むための嵌め込み部51,52を有する反応器50を用意する。そして、連結部234と嵌め込み部51に嵌め込み、連結部244を嵌め込み部52に嵌め込んで、反応器50と連結部234,244の外側面とをレーザ溶接して接合する。溶接時に光源又はワークを移動させる関係上、連結部234,244の外形が円柱状か角柱状であれば、溶接をより容易に行うことができる。溶接方式としてレーザ溶接を用いることにより、反応器50中に既に触媒が配置されている場合でもシンタリングを回避できる。
一方、TIG(Tungsten inert gas)溶接により連結部材23,24を接合する場合は、連結部234,244をテーパー状(図示省略)とすることにより溶接が容易になる。また、半田付けやロウ付けの場合は、半田やロウ材が、連結部234,244と嵌め込み部51,52の間に回り込みやすい形状に加工することが好ましい。
図4に示すように、それぞれ異なる温度で運転される複数の反応器50,60と接合する場合は、連結部材24の端部と、反応器60の入口側に設置された嵌め込み部61とを嵌め込み、反応器60の出口側に形成された嵌め込み部62に連結部材26の連結部(図示省略)を嵌め込むようにすればよい。図5に示すように、複数の反応器(反応器50,60)が積層されたシステムに、図1に示す連結部材23〜25を応用することもできる。
図1及び図2に示す連結部材を作製する場合は、例えば、薄肉特殊管の外周にポリイミド発泡樹脂をポリイミド接着剤で固定する。更に、薄肉特殊管をポリイミド樹脂で挟み込み、300℃の炉中に入れてポリイミド接着剤を硬化することにより作製できる。なお、図1に示す中間層102に、ポリイミドフィルムを入れてもよい。
連結部材の軸方向の熱伝導を抑制するには、伝熱工学の基礎知識から、
(1)異なる温度条件の小型反応器等の間の距離を大きくする
(2)連結部材の熱伝導率を小さくする
(3)連結部材の断面積を小さくする
のいずれかの方策をとり得る。
システムの小型化を鑑みると、(1)の方法は採用できないため、(2)及び(3)を考慮した連結部材を検討する必要がある。図1及び図2に示す連結部材によれば、中間層102及び外管103がポリイミド樹脂製であるため、ガラス部材、セラミクス、金属等を用いる場合に比べて熱伝導率を小さくできる。また、ポリイミド樹脂は、フッ素系樹脂やポリイミド樹脂に比べて熱に強いため、250℃以上の高温に耐え得る。
しかし、ポリイミド樹脂は、水蒸気や水を含む組成に対して耐久性に乏しいことから、連結部材として単独で用いることは好ましくない。図1に示す連結部材によれば、流体と接触する内管101をステンレス製としているため、例えば、水素のような反応性の高い気体を流通させる場合においても、ポリイミド樹脂製のみの連結部材に比べて高い耐久性を示す。また、内管101の肉厚(図2の幅d2)を可能な限り薄くすることにより、金属部分の断面積を小さくできるので、熱の伝導も抑制できる。例えば、ステンレス製の1/8インチ管(外径3.16mm、肉厚0.89mm)の肉厚を半分にすることにより、管の断面積を約6.34mm2から2.55mm2に縮小できるので、小型化に寄与でき、特に、携帯用電子機器への応用が可能である。
更に、図1に示す連結部材においては、中間層102にポリイミド発泡樹脂を使用することにより、連結部材の中心部から外側方向への径方向の熱伝導を抑制でき、熱効率が向上する。また、複数の気泡を有する中間層102が、外部からの緩衝材として機能するととともに、内管101と外管103との熱膨張率の違いを吸収できる。中間層102を気泡を有さない構成とし、外管103を気泡を有する構成とすることも可能であるが、その場合、外管103としては、独立気泡を有する発泡樹脂を用いるのが好ましい。独立気泡とすることにより、気泡内部に充填するガスを密封できるため、熱の伝導が抑制される。
このように、実施の形態に係る連結部材によれば、異なる反応温度条件を有する反応器間の距離を短くしながらも、反応器間の温度差を確保し、温度制御を容易に行うことが可能となる。更に、熱の伝導量が小さくなることから、各反応器における熱の散逸を抑制でき、個々の反応器等の単位での熱効率が向上する。
(変形例)
実施の形態の変形例に係る連結部材は、図6に示すように、外管103a,103bを備え、中間層102にポリイミドフィルム106が配置されている点が、図2に示す連結部材と異なる。外管103a,103bとしては、例えば、ベスペル(登録商標)を軸方向に2分割し、互いに対向させて嵌め合わせたものが利用可能である。
図6に示す連結部材を作製する際は、まず、内管101の外側に外管103としてポリイミド樹脂を配置する。この場合、高温側の反応器の運転温度に耐え得る種々のポリイミド樹脂の中から選択可能である。外管3としてのポリイミド樹脂を軸方向に2分割し、嵌め合わせる。嵌め合わせた後、内管101と外管103の間の中間層102に市販のポリイミド接着剤を流し込み、全体を硬化温度に昇温し、ポリイミド接着剤を硬化させる。
中間層102には、ポリイミド接着剤にポリイミドフィルム106やポリイミド発泡樹脂(図示省略)を混ぜたものを使用してもよい。即ち、市販されているポリイミド発泡樹脂や発泡ポリイミドフィルムを内管101の外側に巻き、外側から外管103a,103bを嵌め合わせて、内管101と外管103a,103bとの間に液状のポリイミド接着剤を流し込み、所定の温度で硬化させる方式にしてもよい。また、中間層102にポリイミド発泡樹脂やポリイミドフィルムを配置した後、ポリイミド接着剤は外管103のみを接合してもよい。
(連結部材の熱的特性)
実施の形態に係る連結部材の熱的特性を評価した場合の例を、図7(a)〜図7(d)及び図8(a)〜図8(d)に示す。図7(a)は、比較例としての連結部材を示し、1/8インチのSUS配管を使用したものである。図7(b)は、実施の形態に係る連結部材の長さを40mm、図7(c)は、長さを20mm、図7(d)は、長さを10mmとした例を示す。各連結部材の長さ方向に対し、10mmの間隔を空けて配置した複数の熱電対(TC)により温度を測定した。ただし、図7(d)は、連結部材の中心部分と連結部分の両端にTCを設置して温度測定した。そして、図7(a)〜図7(d)に示す連結部材の片側に、アルミブロックヒータを取り付け、所定の温度に加熱することにより、それぞれの場所における温度変化を測定した。
それぞれ同一の管径を有する図8(a)及び図8(b)の表から分かるように、本発明の実施の形態に係る連結部材によれば、従来のSUS配管に比べて管の軸方向への熱の伝導を大幅に抑制できることが分かる。また、図8(c)及び図8(d)に示すように、軸方向の長さを短くしても、図8(a)の比較例に比べて熱伝導を抑制でき、小型化に寄与できることが分かる。
(水素発生装置)
図9に、本発明の実施の形態に係る連結部材に好適な水素発生装置(燃料電池システム)を示す。本発明の実施の形態に係る水素発生装置は、有機物原料と水を収容する容器1と、有機物原料を気化して有機物含有ガスを生成する気化部3と、有機物含有ガスから水素含有流体を発生させる水素発生部(改質部)4と、水素含有流体から一酸化炭素を除去する一酸化炭素除去部9とを備える。
容器1には、燃料として有機物原料と水が収容されている。有機物原料としては、メタノール、エタノール等のアルコール類、エタン、プロパン、ガソリン、灯油等の化石燃料、或いはジメチルエーテル等のエーテル等、水素原子を含有する液体原料が使用可能である。有機物原料としてメタノールを使用する場合は、気化器3へ送給する流体中のメタノールと水のモル比が1:1から1:2の間が好ましい。一方、ジメチルエーテル等の液化ガスを用いる場合は、ジメチルエーテルと水の混合物に対し、メタノールを重量比で5〜10%の割合で添加したものを利用するのが望ましい。有機物原料と水は、容器1内で混合せずに、気化部3へ通じる連結部材21a,21b又は気化部3内において混合させてもよいし、容器1内において予め混合させてもよい。
容器1は、配管21aを介して流量制御部2に接続されている。流量制御部2としては、例えば、ダイヤフラムポンプ、プランジャーポンプ、ギヤポンプ、チューブポンプ、オリフィス、ニードルバルブ、ベローズバルブ、ダイヤフラムバルブ、バタフライバルブ等を用いることができる。流量制御部2としては、他にも、互いに異なる形状の複数のオリフィスを組合わせたものや、温度調整により流体の粘性を変化させて流量調節する温度可変型オリフィス等を用いることもできる。
流量制御部2を通過した液体状の有機物原料は、連結部材21bを介して気化部3に送給される。気化部3は、有機物原料または水の少なくとも一方を150〜200℃程度に加熱することにより気化して有機物含有ガスを生成する。気化部3で生成された有機物含有ガスは、連結部材22を介して改質部4に送給され、例えば約350℃程度に加熱される。改質部4の内部には、有機物含有ガスが通過するための流路が設けられている。流路の内壁面には、有機物原料の改質反応を促進するための改質触媒が設けられており、有機物含有ガスが水素含有流体(改質ガス)に改質される。
改質部4で生成された水素含有流体は、配管23を介して一酸化炭素シフト部(COシフト部)5へ送給される。COシフト部5の内部には、水素含有流体が通過するための流路が設けられている。流路の内壁面には、水素含有流体に含まれる一酸化炭素のシフト反応を促進するためのシフト触媒が設けられている。COシフト部5は、例えば、約275℃程度に加熱されており、水素含有流体に含まれる一酸化炭素が水と反応して二酸化炭素と水素へシフト反応することにより水素含有流体中の一酸化炭素量を低減させる。
COシフト部5において一酸化炭素が低減された水素含有流体は、連結部材24を介してメタネーション部6へ送給される。COシフト部5から送給された水素含有流体の中は、未だ1%程度の一酸化炭素が含まれている。このため、メタネーション部6においては、水素含有流体中に残存する一酸化炭素を水素と反応させてメタン及び水へ転化するためのメタン化反応を、例えば約250℃において進行させて、一酸化炭素を除去する。メタネーション部6の内部には、水素含有流体が通過する流路が設けられており、流路の内壁面には、水素含有流体に含まれる一酸化炭素のメタン化反応を促進するためのメタネーション触媒が設けられている。
メタネーション部6から排出された水素含有流体は、連結部材25を介して発電部7に送給される。発電部7は、燃料極(アノード)7aと、空気極(カソード)7bと、燃料極7a及び空気極7bにより挟み込まれたイオン交換性高分子膜(Polymer Electrolyte Membrane;PEM)7cとを備える。燃料極7aにおいては、水素含有流体中の水素と大気中の酸素とが反応し、水が生成されるとともに発電が行われる。燃料極7aから排出された未使用の水素を含むガスは、連結部材26を介して燃焼部8に供給され、触媒燃焼される。触媒燃焼によって発生した熱は、改質部4における燃料の改質反応熱に使用される。改質反応に必要な熱は、後述する図10に示すようにヒータ35を設けてヒータ35から供給してもよい。燃焼部8の出口側に接続された連結部材27は、熱交換器13に接続されており、燃焼部8から排出した排ガス等から水分を凝縮して水回収部15に供給可能になっている。水回収部15の水分は、発電部7におけるイオン交換性高分子膜7cの保湿性を維持するために利用可能してもよい。
発電部7の空気極7bへ空気を送給するために、空気極7bの上流側には連結部材29が接続されている。ポンプ14から送給された空気は、ポンプ14に接続された連結部材28を介して空気を加熱するための熱交換器13に送給され、熱交換器13に接続された連結部材29を介して空気極7bへ送給される。空気極7bの出口側には連結部材30が接続されている。空気極7bから排出された流体は、連結部材30を通って、連結部材30に接続された熱交換器13へ導入され、熱交換器13において流体中の水分が凝縮され、水分が水回収部15に貯留され、その他は外部へ排出される。イオン交換性高分子膜7cとしては、例えば、フッ素系イオン交換膜、ポリベンゾイミダゾル多孔質膜(PBI)、ポリイミド多孔質膜(PI)等を用いることができる。
実施の形態に係る水素発生装置(燃料電池システム)によれば、図9に示す配管21a,21b,22〜30として、図1〜図3に例示する連結部材を用いることにより、ステンレス製等の連結部材を用いる場合に比べて連結部材の長さを小さくできる。そのため、連結部材の占有空間を小さくでき、コンパクト化が実現できる。また、図1〜図3に示す連結部材が、250℃以上の高温に耐性を有するポリイミド樹脂製で形成されているため、100℃〜350℃もの比較的高温条件で運転される水素発生装置への応用に好適である。
特に、図9に示す水素発生装置においては、COシフト部5及びメタネーション部6におけるシフト反応及びメタネーション反応が温度の影響を受けやすい。例えば、約5℃〜20℃程度の反応温度の変化により、CO除去部9全体における一酸化炭素除去率が変化し、その結果、発電部7の発電を阻害する場合がある。実施の形態に係る連結部材を用いれば、熱伝導率を低く抑えることができるため、COシフト部5及びメタネーション部6の反応温度を好適な条件に保持できると共に、小型化が可能となる。更に、発電効率も、小型電源としては十分な程度の電力が得られる。例えば、図9において、燃料としてメタノールを0.011mol/分、水を0.016mol/分それぞれ流し、改質部4を300℃、一酸化炭素除去部9を約250℃で稼働する場合、連結部材25の出口側で、約0.020mol/分の水素を得ることができる。また、得られた水素を、発電部7に導入して発電すると、40W以上の電力が得られる。
(水素発生装置の具体的構成例)
図10に、図9に示す水素発生装置の構成例を示す。断熱部11は、例えば、アルミニウム製であり、加熱の効率、温度の均一化および周囲の電子回路等の耐熱性の低い部品を保護すると同時に、種々の反応器を収容する筐体として機能する。断熱部11の内部には、燃焼部8が配置されている。燃焼部8の上には、改質部4が配置されている。COシフト部5は、燃焼部8及び改質部4から離間して配置されている。メタネーション部6は、COシフト部5から一定距離離間して配置されている。改質部4、COシフト部5及びメタネーション部6の上部には、改質部4,COシフト部5及びメタネーション部6を加熱するためのヒータ35が配置されている。
図10に示す水素発生装置に実施の形態に係る連結部材を用いることにより、異なる反応温度で駆動する装置間を接続する配管22〜24の長さを短くすることができるので、小型化が容易となる。
(実施例)
−第1の実施例−
第1の実施例における内管101としてのSUS316Lの薄肉特殊管(外径1.5mm、肉厚0.10mm、内径1.3mm、長さ20mm、両端5mmが連結する反応器との溶接箇所)の周囲を、中間層102としてのポリイミド接着剤(京セラケミカル:CT4150)で固定した。ポリイミド接着剤で固定した特殊薄肉管を、外管103としての外径3.06mm、内径1.8mmのベスペル(登録商標)(デュポン製:SP1、長さ20mm))で挟み込んだ。ベスペル(登録商標)で挟み込んだ薄肉特殊管を300℃の炉の中に入れ、ポリイミド接着剤を硬化して、第1の実施例に係る連結部材を作製した。
第1の実施例に係る連結部材の一端に、300℃の反応器を接続し、連結部材の他端の温度を測定したところ、他端の温度は40℃以下(約27〜32℃)程度であった。一方、第1の実施の形態に係る連結部材と外径及び内径が等しい従来のSUS316L製の連結部材を用いて同様の測定を行ったところ、他端の温度は約80℃(78〜87℃)であった。第1の実施例によれば、従来に比べて高温側の反応器の熱効率が向上可能であることが分かる。
第1の実施例に係る連結部材を、反応温度約300℃の高温反応器と反応温度約200℃の反応器との間に接続し、水素発生装置を運転させたところ、連結部材の長さは、約 2.5cmで、それぞれ所定の温度で運転することができた。一方、第1の実施例に係る連結部材と外径及び内径が等しい従来のSUS316Lの連結部材を用いて同様の測定を行った場合は、高温側の反応温度を約300℃、低温側の反応温度を約200℃で運転させるために、連結部材の長さを80mmにする必要が生じ、第1の実施例に係るシステムに比べて大型化した。更に、第1の実施例に係る連結部材を図9に示す水素発生装置に利用したところ40W以上の電力が得られた。
−第2の実施例−
第2の実施例における内管101としてのSUS316Lの薄肉特殊管(外径1.5mm、肉厚0.10mm、内径1.3mm、長さ20mm、両端5mmが連結する反応器との溶接箇所)の周囲を、中間層102としてのポリイミド接着剤(京セラケミカル:CT4150)で固定した。ポリイミド接着剤で固定した特殊薄肉管を、アルゴンガス雰囲気中において、外管103としての外径3.06mm、内径1.8mmのベスペル(登録商標)(デュポン製:SP1、長さ20mm))で挟み込んだ。ポリイミド樹脂で挟み込んだ特殊薄肉管を、300℃の炉の中に入れ、アルゴン雰囲気中においてポリイミド接着剤を硬化した。
第2の実施例に係る連結部材の一端に250℃の反応器(図9の一酸化炭素除去部9)をレーザ溶接により接合し、連結部材の他端を120℃の反応器(図9の熱交換器13)をレーザ溶接により接合して水素発生装置を運転させたところ、それぞれ所定の温度で運転することができた。連結部材の長さは、3.0cmであった。一方、第2の実施例に係る連結部材と外径及び内径が等しい従来のSUS316L製の連結部材を用いて同様の測定を行った場合、連結部材の長さを100mmにする必要が生じ、第2の実施例に係るシステムに比べて大型化した。第2の実施例に係る連結部材を図9に示す水素発生装置に利用したところ、40W以上の電力が得られた。
−第3の実施例−
第3の実施例における内管101としてのSUS316Lの薄肉特殊管(外径1.5mm、肉厚0.10mm、内径1.3mm、長さ20mm、両端5mmが連結する反応器との溶接箇所)の周囲を、外管103としてのベスペル(登録商標)(デュポン社製、外径3.16mm、肉厚0.80mm、内径1.56mm、長さ20mm)を軸方向に2分割したもので挟み込んだ。その後、薄肉特殊管とベスペル(登録商標)との間に、中間層102としての市販のポリイミド接着剤を流し込み、全体を硬化温度に昇温し、ポリイミド接着剤を硬化させることで第3の実施の形態に係る連結部材を作製した。
作製した連結部材の一端に300℃の反応器を接続し、連結部材の他端の温度を測定したところ、他端の温度は40℃以下(約27〜32℃)程度であった。また、第3の実施例に係る連結部材を、高温側は300℃程度の改質部、低温側を100℃程度の熱交換器に接続して50W出力相当の水素を発生させたところ、それぞれの反応器を所定の温度で稼働させることができた。
−第4の実施例−
第1〜第3の実施例に係る連結部材を、図9に示す水素発生装置の改質部4と一酸化炭素除去部9との間の配管23として利用した。改質部4及び一酸化炭素除去部9の容量はそれぞれ10×10-63(10cc)ずつとし、改質部4及び一酸化炭素横部9の内部の流路には、板状触媒を充填した。改質部4には、Cu/ZnO担持触媒、一酸化炭素除去部9にはPtReCeO2/Al23を用いた。改質部4の反応温度は約300℃、一酸化炭素除去部9は約250℃とした。連結部材23の長さは約10mmとし、レーザ溶接により改質部4及び一酸化炭素除去部9と連結した。図9の水素発生装置にメタノールを45W相当の水素が得られるように調製して注入したところ、改質部4及び一酸化炭素除去部9のいずれも所定の温度で効率的に運転できた。また、40W相当の発電に相当する水素が得られた。
(その他の実施の形態)
本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
本実施の形態においては、反応器間を連結するための連結部材を例として説明したが、同様の構成を反応器側にも設けることにより、各反応器自体の熱容量も小さくすることが可能である。このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の実施の形態に係る連結部材の一例を示す断面図である。 本発明の実施の形態に係る連結部材の一例であり、図1のA−A断面からみた断面図である。 本発明の実施の形態に係る連結部材を反応器に連結する場合の一例を示す斜視図である。 本発明の実施の形態に係る連結部材を複数の反応器に連結する場合の一例を示す斜視図である。 本発明の実施の形態に係る連結部材を積層型の反応器に連結する場合の一例を示す斜視図である。 本発明の実施の形態の変形例に係る連結部材の一例を示す断面図である。 本発明の実施の形態に係る連結部材の熱的特性を説明する概略図である。 図7に示す連結部材を用いた場合の熱的特性の評価結果の一例を示す表である。 本発明の実施の形態に係る連結部材に好適な水素発生装置(燃料電池システム)の全体構成を示す概略図である。 図9の水素発生装置(燃料電池システム)の具体的構成例を示す斜視図である。
符号の説明
1…容器
2…流量制御部
3…気化部
4…改質部
4…水素発生部
5…COシフト部
6…メタネーション部
7…発電部
7a…燃料極
7b…空気極
7c…イオン交換性高分子膜
8…燃焼部
9…一酸化炭素除去部
11…断熱部
13…熱交換器
14…ポンプ
15…水回収部
21a,21b,22〜30…連結部材
35…ヒータ
50,60…反応器
51,52,61,62…嵌め込み部
100…流路
101…内管
102…中間層
103,103a,103b…外管
105…リブ
106…ポリイミドフィルム
234…連結部
234,235…連結部

Claims (7)

  1. 流体が流通する流路を囲む金属製の内管と、
    前記内管の外周を覆うポリイミド樹脂製の外管と、
    前記内管と前記外管との間に配置されたポリイミド樹脂製の中間層
    とを備えることを特徴とする連結部材。
  2. 有機物原料または水の少なくとも一方を気化して有機物含有ガスを生成する気化部と、
    前記有機物含有ガスから水素含有流体を発生させる水素発生部と、
    前記水素含有流体から一酸化炭素を除去する一酸化炭素除去部と、
    前記気化部、前記水素発生部及び前記一酸化炭素除去部の少なくともいずれかの間を連結する連結部材
    とを備え、前記連結部材が、
    前記水素含有流体が流通する流路を囲む金属製の内管と、
    前記内管の外周を覆うポリイミド樹脂製の外管と、
    前記内管と前記外管との間に配置されたポリイミド樹脂製の中間層
    を有することを特徴とする水素発生装置。
  3. 前記中間層が、ポリイミド発泡樹脂、ポリイミド接着剤、及びポリイミドフィルムの少なくともいずれかを含むことを特徴とする請求項2に記載の水素発生装置。
  4. 前記中間層が、複数の気泡を含み、前記気泡の中に、熱伝導率が空気より低い気体が充填されていることを特徴とする請求項2又は3に記載の水素発生装置。
  5. 前記気体が不活性ガスであることを特徴とする請求項4に記載の水素発生装置。
  6. 有機物原料または水の少なくとも一方を気化して有機物含有ガスを生成する気化部と、
    前記有機物含有ガスから水素含有流体を発生させる水素発生部と、
    前記水素発生部に接続され、前記水素含有流体中の一酸化炭素を二酸化炭素及び水素へシフトさせる一酸化炭素シフト部と、
    前記一酸化炭素シフト部の出口側に接続され、前記水素含有流体中の一酸化炭素を、メタン及び水へ転化するメタネーション部と、
    前記一酸化炭素シフト部と前記メタネーション部との間を連結する連結部材
    とを備え、前記連結部材が、
    前記水素含有流体が流通する流路を囲む金属製の内管と、
    前記内管の外周を覆うポリイミド樹脂製の外管と、
    前記内管と前記外管との間に配置されたポリイミド樹脂製の中間層
    を有することを特徴とする水素発生装置。
  7. 有機物原料を収容する容器と、
    前記有機物原料または水の少なくとも一方を気化して有機物含有ガスを生成する気化部と、
    前記有機物含有ガスを水素含有流体に改質する改質部と、
    前記水素含有流体から一酸化炭素を除去する一酸化炭素除去部と、
    一酸化炭素が除去された前記水素含有流体を酸素と反応させて発電する発電部と、
    前記発電部から排出された排ガスを燃焼させる燃焼部と、
    前記気化部、前記改質部、前記一酸化炭素除去部、前記発電部、及び前記燃焼部の少なくともいずれかの間を連結する連結部材
    とを備え、前記連結部材が、
    前記水素含有流体が流通する流路を囲む金属製の内管と、
    前記内管の外周を覆うポリイミド樹脂製の外管と、
    前記内管と前記外管との間に配置されたポリイミド樹脂製の中間層
    とを備えることを特徴とする燃料電池システム。
JP2006223827A 2006-08-21 2006-08-21 連結部材、水素発生装置及び燃料電池システム Pending JP2008045700A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006223827A JP2008045700A (ja) 2006-08-21 2006-08-21 連結部材、水素発生装置及び燃料電池システム
US11/841,278 US20080044701A1 (en) 2006-08-21 2007-08-20 Connecting member, a hydrogen generation apparatus and a fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223827A JP2008045700A (ja) 2006-08-21 2006-08-21 連結部材、水素発生装置及び燃料電池システム

Publications (1)

Publication Number Publication Date
JP2008045700A true JP2008045700A (ja) 2008-02-28

Family

ID=39101743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223827A Pending JP2008045700A (ja) 2006-08-21 2006-08-21 連結部材、水素発生装置及び燃料電池システム

Country Status (2)

Country Link
US (1) US20080044701A1 (ja)
JP (1) JP2008045700A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111308A1 (ja) * 2011-02-14 2012-08-23 パナソニック株式会社 熱交換器及びその製造方法
JP2016070493A (ja) * 2014-09-26 2016-05-09 Jfeスチール株式会社 配管の保温方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872430B2 (en) * 2005-11-18 2011-01-18 Cree, Inc. Solid state lighting panels with variable voltage boost current sources
JP2008091095A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 化学反応システムおよび燃料電池システム
EP2815879A3 (de) * 2014-09-02 2015-04-29 Mondi Consumer Packaging Technologies GmbH Polyethylen-Coextrusionsfolie

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4202993B2 (ja) * 2004-09-30 2008-12-24 株式会社東芝 燃料改質システム及び燃料電池システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111308A1 (ja) * 2011-02-14 2012-08-23 パナソニック株式会社 熱交換器及びその製造方法
JP5923756B2 (ja) * 2011-02-14 2016-05-25 パナソニックIpマネジメント株式会社 熱交換器及びその製造方法
JP2016070493A (ja) * 2014-09-26 2016-05-09 Jfeスチール株式会社 配管の保温方法

Also Published As

Publication number Publication date
US20080044701A1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP6174085B2 (ja) 水素発生アセンブリおよび水素純化デバイス
US6569553B1 (en) Fuel processor with integrated fuel cell utilizing ceramic technology
JP3556638B2 (ja) 燃料電池装置
JP4346575B2 (ja) 燃料改質装置及び燃料電池システム
US8257668B2 (en) Hydrogen generator and fuel cell system
US8137421B2 (en) Hydrogen generation device, a fuel cell system, and an analysis system
JP2006351293A (ja) 固体酸化物形燃料電池システム
JP2009099437A (ja) 燃料電池モジュール
KR100948995B1 (ko) 반응장치
JP2008045700A (ja) 連結部材、水素発生装置及び燃料電池システム
JP4437766B2 (ja) 燃料電池用蒸発装置及び蒸気生成方法
JP4271245B2 (ja) 燃料電池システム
JP2008194689A (ja) 小型化学反応装置
JP2007070182A (ja) 反応装置
JP2011136868A (ja) 改質ユニットおよび燃料電池システム
JP2004299939A (ja) 燃料改質器および燃料電池発電装置
JP2009059657A (ja) 間接内部改質型固体酸化物形燃料電池
US7887605B2 (en) Reformer for fuel cell
JP5940470B2 (ja) 燃料電池モジュール、及びこれを備えている燃料電池システム
JP2003123806A (ja) 燃料電池の熱交換構造
JP2008147087A (ja) 燃料電池発電システムの液体燃料処理装置
JP2008204662A (ja) 燃料電池発電システム
JP4821235B2 (ja) 反応装置
JP2007091499A (ja) 反応装置
JP4586700B2 (ja) 反応装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728