JP2008045152A - High temperature water vapor electrolyzer, method therefor and cell for fuel cell - Google Patents

High temperature water vapor electrolyzer, method therefor and cell for fuel cell Download PDF

Info

Publication number
JP2008045152A
JP2008045152A JP2006219230A JP2006219230A JP2008045152A JP 2008045152 A JP2008045152 A JP 2008045152A JP 2006219230 A JP2006219230 A JP 2006219230A JP 2006219230 A JP2006219230 A JP 2006219230A JP 2008045152 A JP2008045152 A JP 2008045152A
Authority
JP
Japan
Prior art keywords
oxygen
electrode
hydrogen
oxygen electrode
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006219230A
Other languages
Japanese (ja)
Other versions
JP4829035B2 (en
Inventor
Kentaro Matsunaga
健太郎 松永
Masato Yoshino
正人 吉野
Hakaru Ogawa
斗 小川
Kiyoshi Ono
清 小野
Seiji Fujiwara
斉二 藤原
Hiroyuki Yamauchi
博之 山内
Shinichi Makino
新一 牧野
Shigeo Kasai
重夫 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006219230A priority Critical patent/JP4829035B2/en
Publication of JP2008045152A publication Critical patent/JP2008045152A/en
Application granted granted Critical
Publication of JP4829035B2 publication Critical patent/JP4829035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow electrolytic current to be uniformly fed to an oxygen electrode particularly among cell electrodes under high temperature conditions. <P>SOLUTION: The high temperature water vapor electrolyzer comprises: an electrolytic membrane 2 having electronic insulation properties and oxygen ion conductivity; a hydrogen electrode 3 provided on either face of the electrolytic membrane 2, and decomposing water vapor, so as to produce hydrogen ions and oxygen ions; an oxygen electrode 4 provided on the other face of the electrolytic membrane 2, and exhausting the oxygen ions passed through the electrolytic membrane 2 as oxygen gas; a hydrogen electrode current feeder 5 for feeding electric current to the hydrogen electrode 3; an oxygen electrode current feeder 5a whose one part is buried inside the oxygen electrode 4 and feeding electric current; and a feeder line for feeding electric current to the hydrogen electrode current feeder 5 and the oxygen electrode current feeder 5a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高温水蒸気を電気分解して水素を生成し又は化学エネルギを直接電気エネルギに変換する高温水蒸気電解装置、その方法及び燃料電池セルに関する。   The present invention relates to a high-temperature steam electrolysis apparatus that electrolyzes high-temperature steam to generate hydrogen or directly converts chemical energy into electrical energy, a method thereof, and a fuel cell.

この種の高温水蒸気電解法として、高温の水蒸気を電気分解し水素ガスと酸素ガスとを得る方法が知られている。その動作原理は固体電解質燃料電池(SOFC:Solid Oxide Fuel Cell)の逆反応を利用するものである。   As this type of high-temperature steam electrolysis, a method is known in which high-temperature steam is electrolyzed to obtain hydrogen gas and oxygen gas. The principle of operation uses the reverse reaction of a solid oxide fuel cell (SOFC).

この高温水蒸気電解を行うには、一般には、固体酸化物電解質材料を挟んで、水素極と酸素極とが設けられている電気化学セルが使用される。この電気化学セルの電解によって得られる水素と酸素とを隔てる構造が必要となる。通常、水素極側雰囲気は、燃料となる水蒸気と水素が主成分となり、一方、酸素極側雰囲気は、供給ガスを空気としたときは、窒素と酸素が主な成分となり、供給ガスを酸素としたときは、酸素が主な成分となる。   In order to perform this high-temperature steam electrolysis, an electrochemical cell in which a hydrogen electrode and an oxygen electrode are provided with a solid oxide electrolyte material in between is generally used. A structure for separating hydrogen and oxygen obtained by electrolysis of the electrochemical cell is required. Normally, the hydrogen electrode side atmosphere is mainly composed of water vapor and hydrogen as fuel, while the oxygen electrode side atmosphere is mainly composed of nitrogen and oxygen when the supply gas is air, and the supply gas is oxygen. When it does, oxygen becomes the main component.

上述のように高温水蒸気電解法において水蒸気を電気分解し水素ガスと酸素ガスとを得るに際しては、約900℃の作動温度及び酸化/還元雰囲気という動作条件下で電解を行う必要がある。このために、セル電極に均一に電解電流を供給する必要がある。   As described above, when electrolysis of water vapor to obtain hydrogen gas and oxygen gas in the high-temperature steam electrolysis method, it is necessary to perform electrolysis under an operating temperature of about 900 ° C. and an oxidizing / reducing atmosphere. For this reason, it is necessary to supply an electrolytic current uniformly to a cell electrode.

従来のセル電極に電解電流を供給するセル及び給電構造について図2を用いて、以下に説明する。ここで、水蒸気電解反応について説明を行うが、本発明の燃料電池への適用を妨げるものではない。   A conventional cell for supplying an electrolytic current to a cell electrode and a power supply structure will be described below with reference to FIG. Here, the steam electrolysis reaction will be described, but this does not hinder the application of the present invention to the fuel cell.

一般に、水蒸気電解セル11は、電子に対しては絶縁性及び酸素イオンに対しては導電性を有する電解質膜12を介して行う。この電解質膜12の片側に設けられた水素極13において、供給された水蒸気分子と電子とを水素分子と酸素イオンに変化させている。上記電解質膜12の酸素極24において、この電解質膜12を通って供給される酸素イオンを酸素分子と電子とに変化させている。この水蒸気は、水素極13外側から供給される。一方、酸素は酸素極24表面から外部へ放出される。また、両極への電子の授受は、両電極にそれぞれ接続する給電体15と給電体に接する給電線16を介して行われる。   In general, the water vapor electrolysis cell 11 is performed through an electrolyte membrane 12 that is insulative to electrons and conductive to oxygen ions. In the hydrogen electrode 13 provided on one side of the electrolyte membrane 12, the supplied water vapor molecules and electrons are changed into hydrogen molecules and oxygen ions. In the oxygen electrode 24 of the electrolyte membrane 12, oxygen ions supplied through the electrolyte membrane 12 are changed into oxygen molecules and electrons. This water vapor is supplied from the outside of the hydrogen electrode 13. On the other hand, oxygen is released from the surface of the oxygen electrode 24 to the outside. In addition, transfer of electrons to both electrodes is performed via a power feeder 15 connected to both electrodes and a power supply line 16 in contact with the power feeder.

この酸素極24と酸素極側の給電体15との接触構造は、酸素極24の外側から給電体15を機械的に圧着させることにより形成されることが多い。特に運転条件である高温条件下では、両者をセル外側から圧着させる材料の弾性が失われる、酸素極24と給電体15とを構成する各材料の熱膨張率の差により両者が乖離して接触が失われる等の理由で密着性が失われる。このために、酸素極24と酸素極側の給電体15との接触状態を機械的に圧着させることを長期間にわたって持続することが困難である。   The contact structure between the oxygen electrode 24 and the power supply 15 on the oxygen electrode side is often formed by mechanically pressing the power supply 15 from the outside of the oxygen electrode 24. In particular, under the high temperature conditions that are operating conditions, the elasticity of the material that press-bonds both from the outside of the cell is lost, and the two are separated from each other due to the difference in the thermal expansion coefficient between the materials constituting the oxygen electrode 24 and the power feeding body 15. Adhesion is lost due to the loss of For this reason, it is difficult to maintain the contact state between the oxygen electrode 24 and the power supply body 15 on the oxygen electrode side for a long period of time.

上記酸素極と酸素極側給電体との接触を改善する構造として、酸素極に厚さ200um以下の耐酸化性金属シートを含む構造が知られている(例えば、特許文献1参照)。この構造の場合は、給電体と電極との熱膨張率の差により、給電体(耐酸化性金属シート)と電極が接する部分が良好な接触状態を喪失し、甚だしいときには電極を中から崩壊してしまう恐れがあった。
特開2003−123788号公報
As a structure for improving the contact between the oxygen electrode and the oxygen electrode-side power feeder, a structure including an oxygen-resistant metal sheet having a thickness of 200 μm or less in the oxygen electrode is known (for example, see Patent Document 1). In this structure, due to the difference in thermal expansion coefficient between the power feeder and the electrode, the contact portion between the power feeder (oxidation resistant metal sheet) and the electrode loses a good contact state, and when it is severe, the electrode collapses from the inside. There was a fear.
JP 2003-123788 A

上述した従来の水蒸気電解セル11は、電子に対しては絶縁性、酸素イオンに対しては導電性を有する電解質膜12を介して行う。この電解質膜12の片側に設けられた水素極13において、供給された水蒸気分子と電子とを水素分子と酸素イオンに変化させている。上記電解質膜12の酸素極24において、この電解質膜12を通って供給される酸素イオンを酸素分子と電子とに変化させている。   The conventional steam electrolysis cell 11 described above is performed through an electrolyte membrane 12 that is insulative to electrons and conductive to oxygen ions. In the hydrogen electrode 13 provided on one side of the electrolyte membrane 12, the supplied water vapor molecules and electrons are changed into hydrogen molecules and oxygen ions. In the oxygen electrode 24 of the electrolyte membrane 12, oxygen ions supplied through the electrolyte membrane 12 are changed into oxygen molecules and electrons.

この両極への電子の授受は、両電極にそれぞれ接続する給電体15と給電体に接する給電線16を介して行われる。この酸素極24と酸素極側の給電体15との接触構造は、酸素極24の外側から給電体15を機械的に圧着させることにより形成されることが多い。   Transfer of electrons to both electrodes is performed via a power supply 15 connected to both electrodes and a power supply line 16 connected to the power supply. The contact structure between the oxygen electrode 24 and the power supply 15 on the oxygen electrode side is often formed by mechanically pressing the power supply 15 from the outside of the oxygen electrode 24.

しかし、特に高温の運転条件下では、セル外側から両者を圧着させる材料の弾性が失われる、酸素極24と給電体15とを構成する各材料の熱膨張率の差により両者が乖離して接触が失われる等の理由で密着性が失われることがある。このために、両者を機械的に圧着させることを長期間にわたって持続させることが困難である、という課題があった。   However, particularly under high-temperature operating conditions, the elasticity of the material that press-bonds both from the outside of the cell is lost, and due to the difference in thermal expansion coefficient between the materials constituting the oxygen electrode 24 and the power feeder 15, the two are separated and contacted. Adhesion may be lost for reasons such as losing. For this reason, there existed a subject that it was difficult to maintain over both the mechanical crimping | compression-bonding for a long period of time.

また酸素極材料には一般にランタン系の酸化物が用いられることが多い。このランタン系の酸化物は、水素極(一般にはニッケルと電解質材料とのサーメット)や給電体材料と比較して導電性が良好でない。このため酸素極側では、電極と給電体との密着性劣化による接触抵抗の増大の影響が、水素極に対して大きい、という課題があった。   In general, a lanthanum oxide is often used as the oxygen electrode material. This lanthanum-based oxide has poor conductivity as compared with a hydrogen electrode (generally a cermet of nickel and an electrolyte material) and a power supply material. For this reason, on the oxygen electrode side, there has been a problem that the influence of the increase in contact resistance due to the deterioration of the adhesion between the electrode and the power supply body is large with respect to the hydrogen electrode.

上述のように、特に、高温条件下でセル電極のうち酸素極に均一に電解電流を供給することが困難である、という課題があった。   As described above, there is a problem that it is difficult to supply an electrolytic current uniformly to the oxygen electrode among the cell electrodes, particularly under high temperature conditions.

本発明は上記課題を解決するためになされたもので、水蒸気電解又は燃料電池の反応条件の下でセル電極に均一に電解電流を供給し、接触抵抗の増大を抑制することができる高温水蒸気電解装置、その方法及び燃料電池を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a high-temperature steam electrolysis that can uniformly supply an electrolytic current to a cell electrode under the reaction conditions of steam electrolysis or a fuel cell and suppress an increase in contact resistance. An object is to provide an apparatus, a method thereof, and a fuel cell.

上記目的を達成するため、本発明の高温水蒸気電解装置においては、電子絶縁性及び酸素イオン導電性を有する電解質膜と、この電解質膜の一方の面に設けられ水蒸気を分解して水素イオン及び酸素イオンを生成させる水素極と、前記電解質膜の他方の面に設けられ前記電解質膜を通過した酸素イオンを酸素ガスとして排出する酸素極と、前記水素極に電流を供給する水素極給電体と、前記酸素極の内部に一部が埋設して設けられ電流を供給する酸素極給電体と、前記水素極給電体及び酸素極給電体に電流を供給する給電線と、を有することを特徴とするものである。   In order to achieve the above object, in the high-temperature steam electrolysis apparatus of the present invention, an electrolyte membrane having electronic insulating properties and oxygen ion conductivity, and hydrogen ions and oxygen provided on one surface of the electrolyte membrane by decomposing water vapor A hydrogen electrode that generates ions; an oxygen electrode that is provided on the other surface of the electrolyte membrane and discharges oxygen ions that have passed through the electrolyte membrane as oxygen gas; and a hydrogen electrode feeder that supplies current to the hydrogen electrode; An oxygen electrode feeder that is partially embedded in the oxygen electrode and supplies current; and a feeder that supplies current to the hydrogen electrode feeder and oxygen electrode feeder. Is.

また、上記目的を達成するため、本発明の高温水蒸気電解装置方法においては、電子絶縁性及び酸素イオン導電性を有する電解質膜の一方の面に設けられた水素極に水素極給電体を介して電流を供給する水素極給電ステップと、前記電解質膜の他方の面に設けられた酸素極の内部の少なくとも一部に設けられた酸素極給電体を介してこの酸素極に電流を供給する酸素極給電ステップと、前記水素極を用いて水蒸気を分解して水素イオン及び酸素イオンを生成して水素ガスとして排出する水素ガス排出ステップと、前記酸素極を用いて前記電解質を通過した酸素イオンを酸素ガスとして排出する酸素ガス排出ステップと、を有することを特徴とするものである。   In order to achieve the above object, in the high-temperature steam electrolysis apparatus method of the present invention, a hydrogen electrode provided on one surface of an electrolyte film having electronic insulation properties and oxygen ion conductivity is connected via a hydrogen electrode power feeder. A hydrogen electrode feeding step for supplying current, and an oxygen electrode for supplying current to the oxygen electrode via an oxygen electrode feeding body provided at least in part of the oxygen electrode provided on the other surface of the electrolyte membrane. A power supply step, a hydrogen gas discharge step of decomposing water vapor using the hydrogen electrode to generate hydrogen ions and oxygen ions and discharging them as hydrogen gas, and oxygen ions passing through the electrolyte using the oxygen electrode And an oxygen gas discharge step for discharging as gas.

上記目的を達成するため、本発明の燃料電池セルにおいては、電子絶縁性及び酸素イオン導電性を有する電解質膜と、この電解質膜の一方の面に設けられた水素極と、前記電解質膜の他方の面に設けられた酸素極と、前記水素極に電流を供給する水素極給電体と、前記酸素極の内部に一部が埋設して設けられ電流を供給する酸素極給電体と、前記水素極給電体及び酸素極給電体に電流を供給する給電線と、を有することを特徴とするものである。   In order to achieve the above object, in the fuel cell of the present invention, an electrolyte membrane having electronic insulating properties and oxygen ion conductivity, a hydrogen electrode provided on one surface of the electrolyte membrane, and the other of the electrolyte membranes An oxygen electrode provided on the surface of the electrode, a hydrogen electrode power supply that supplies current to the hydrogen electrode, an oxygen electrode power supply that is partially embedded in the oxygen electrode and supplies current, and the hydrogen And a feeder for supplying current to the electrode feeder and the oxygen electrode feeder.

本発明の高温水蒸気電解装置、その方法及び燃料電池セルによれば、酸素極給電体の少なくとも一部を酸素極の内部に埋設して設けることにより、酸素極給電体と酸素極との密着性を長期間にわたって持続することができる。かくして、酸素極に均一に電解電流を供給し、接触抵抗の増大を抑制することができる。   According to the high-temperature steam electrolyzer of the present invention, the method thereof, and the fuel cell, at least part of the oxygen electrode power feeder is embedded in the oxygen electrode, thereby providing adhesion between the oxygen electrode power feeder and the oxygen electrode. Can last for a long time. Thus, an electrolytic current can be supplied uniformly to the oxygen electrode, and an increase in contact resistance can be suppressed.

以下、本発明に係る高温水蒸気電解装置、その方法及び燃料電池セルの実施の形態について、図面を参照して説明する。   Embodiments of a high-temperature steam electrolysis apparatus, a method thereof, and a fuel cell according to the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態の高温水蒸気電解装置の概略構成を示す構成図である。ここでは、水蒸気電解反応について説明を行うが、本発明の燃料電池セルへの適用を妨げるものではない。   FIG. 1 is a configuration diagram showing a schematic configuration of a high-temperature steam electrolysis apparatus according to an embodiment of the present invention. Here, the steam electrolysis reaction will be described, but this does not hinder the application of the present invention to the fuel cell.

本図に示すように、高温水蒸気電解装置は水蒸気電解セル1を備えている。この水蒸気電解セル1は、電子に対しては絶縁性及び酸素イオンに対しては導電性を有する電解質膜2を有する。   As shown in the figure, the high-temperature steam electrolysis apparatus includes a steam electrolysis cell 1. This water vapor electrolysis cell 1 has an electrolyte membrane 2 that is insulative to electrons and conductive to oxygen ions.

この電解質膜2の一方の側面には水素極3が設けられている。この水素極3の外側に水蒸気が供給される。このようにして、水素極3において供給された水蒸気分子と電子とを化学的に分解して水素分子と酸素イオンとに変化させている。また、この電解質膜2の他方の側面には酸素極4が設けられている。この酸素極4において、上記電解質膜2を経由して供給される酸素イオンを酸素分子と電子とに変化させている。   A hydrogen electrode 3 is provided on one side surface of the electrolyte membrane 2. Water vapor is supplied to the outside of the hydrogen electrode 3. In this way, water vapor molecules and electrons supplied at the hydrogen electrode 3 are chemically decomposed to change into hydrogen molecules and oxygen ions. An oxygen electrode 4 is provided on the other side surface of the electrolyte membrane 2. In the oxygen electrode 4, oxygen ions supplied via the electrolyte membrane 2 are changed into oxygen molecules and electrons.

上記電解質膜2として、一般に、固体電解質燃料電池(SOFC:Solid Oxide Fuel Cell)に使用されているイオン導電性酸化物等が用いられる。SOFCは、この固体電解質を使用して約900℃付近の高温で運転される。かくして、水蒸気(HO)は電気分解されて水素ガス(H)と酸素ガス(O)が生成される。このようにして生成された酸素は、上記酸素極4の表面から外部へ放出される。 As the electrolyte membrane 2, generally used is an ion conductive oxide or the like used in a solid oxide fuel cell (SOFC). The SOFC is operated at a high temperature around 900 ° C. using this solid electrolyte. Thus, water vapor (H 2 O) is electrolyzed to generate hydrogen gas (H 2 ) and oxygen gas (O 2 ). The oxygen thus generated is released from the surface of the oxygen electrode 4 to the outside.

上記水素極3への電子の授受は、この水素極3に接続する水素極給電体5と、この水素極給電体5に接続する給電線6を介して行われる。この水素極3は、一般にはニッケルと電解質材料とのサーメットにより作製されているので、比較的導電性が良好である。   Transfer of electrons to the hydrogen electrode 3 is performed through a hydrogen electrode power supply 5 connected to the hydrogen electrode 3 and a power supply line 6 connected to the hydrogen electrode power supply 5. Since the hydrogen electrode 3 is generally made of cermet of nickel and an electrolyte material, it has a relatively good conductivity.

上記酸素極4への電子の授受は、この酸素極4に接続する酸素極給電体5aと、この酸素極給電体5aに接続する給電線6を介して行われる。この酸素極4は、一般にはランタン系の酸化物より作製されているので、比較的導電性が良好でない。また、上記酸素極4と酸素極給電体5aとを構成する各材料の熱膨張率の差により両者が乖離して密着性が失われる恐れがある。   Transfer of electrons to the oxygen electrode 4 is performed through an oxygen electrode power supply 5a connected to the oxygen electrode 4 and a power supply line 6 connected to the oxygen electrode power supply 5a. Since the oxygen electrode 4 is generally made of a lanthanum oxide, its conductivity is relatively poor. In addition, there is a risk that the adhesiveness may be lost due to the difference between the thermal expansion coefficients of the materials constituting the oxygen electrode 4 and the oxygen electrode power supply 5a.

このように構成された本実施の形態において、上記酸素極4側の酸素極給電体5aの少なくとも一部を酸素極4の内部に設けて構成されている。また、この酸素極給電体5aは、上記電解質膜2の面に対して水平方向に配置するだけでなく、本図に示すように屈曲させる等して鉛直方向に伸縮自在な構造とすることができる。さらに、この酸素極給電体5aを電解質膜2の電解質面に対して鉛直方向に伸縮可能な構成としてもよい。   In the present embodiment thus configured, at least a part of the oxygen electrode power supply 5 a on the oxygen electrode 4 side is provided inside the oxygen electrode 4. Further, the oxygen electrode power supply 5a is not only arranged in the horizontal direction with respect to the surface of the electrolyte membrane 2, but also has a structure that can be expanded and contracted in the vertical direction by bending it as shown in the figure. it can. Further, the oxygen electrode power supply 5 a may be configured to be able to expand and contract in the vertical direction with respect to the electrolyte surface of the electrolyte membrane 2.

本実施の形態によれば、酸素極給電体の少なくとも一部を酸素極の内部に埋設して設けることにより、酸素極給電体と酸素極との密着性を長期間にわたって持続することができる。かくして、酸素極に均一に電解電流を供給し、接触抵抗の増大を抑制することができる。   According to the present embodiment, it is possible to maintain the adhesion between the oxygen electrode power feeder and the oxygen electrode over a long period of time by providing at least a part of the oxygen electrode power feeder embedded in the oxygen electrode. Thus, an electrolytic current can be supplied uniformly to the oxygen electrode, and an increase in contact resistance can be suppressed.

また、この酸素極給電体5aは、上記酸素極4の内部に埋設して設けられた給電体の外表面の少なくとも一部は、粗加工、溝加工、枝状の分岐加工、多孔質化加工、メッシュ化加工から選択された少なくとも1種の加工を施して、任意の形状で形成することができる。   The oxygen electrode power supply 5a has at least a part of the outer surface of the power supply provided embedded in the oxygen electrode 4 for roughing, grooving, branch-like branching, and porous processing. It can be formed in an arbitrary shape by applying at least one type of processing selected from meshing processing.

本実施の形態によれば、上記酸素極4の内部に埋設して設けられる酸素極給電体5aの外表面を加工することにより、上記酸素極4と酸素極給電体5aとの密着性をさらに高めることができる。   According to the present embodiment, the adhesion between the oxygen electrode 4 and the oxygen electrode power supply 5a is further improved by processing the outer surface of the oxygen electrode power supply 5a embedded in the oxygen electrode 4. Can be increased.

また、酸素極給電体5aの表面の少なくとも一部が、予め酸素極4の材料に固定する加工を施して、さらに酸素極4と酸素極給電体5aとの親和性を高めてもよい。このとき、酸素極4の下面に酸素極下地14を設けてもよい。この酸素極下地14を設けることにより、電解質膜2に与える影響を軽減して、この酸素極給電体5aを予め酸素極4の材料に固定してもよい。   Further, at least a part of the surface of the oxygen electrode power supply 5a may be processed in advance to be fixed to the material of the oxygen electrode 4 to further increase the affinity between the oxygen electrode 4 and the oxygen electrode power supply 5a. At this time, an oxygen electrode base 14 may be provided on the lower surface of the oxygen electrode 4. By providing the oxygen electrode base 14, the influence on the electrolyte membrane 2 may be reduced, and the oxygen electrode power supply 5a may be fixed to the material of the oxygen electrode 4 in advance.

本実施の形態によれば、予め給電体の表面の一部または全体に酸素極材料を固定することなどにより、酸素極と給電体との接触を良好なものとする。また、この酸素極下地14を設けることにより、電解質膜2に与える影響を軽減して、酸素極4と酸素極給電体5aとの密着性の向上をさらに図ることができる。   According to the present embodiment, the contact between the oxygen electrode and the power feeding body is improved by fixing the oxygen electrode material on a part or the whole of the surface of the power feeding body in advance. Further, by providing the oxygen electrode base 14, the influence on the electrolyte membrane 2 can be reduced, and the adhesion between the oxygen electrode 4 and the oxygen electrode power supply 5a can be further improved.

上記酸素極4や水素極3と電解質膜2との境界には、中間層10が設けられることがある。ここでは、上記酸素極4と電解質膜2との間に中間層10が設けられている。   An intermediate layer 10 may be provided at the boundary between the oxygen electrode 4 or the hydrogen electrode 3 and the electrolyte membrane 2. Here, an intermediate layer 10 is provided between the oxygen electrode 4 and the electrolyte membrane 2.

本実施の形態によれば、この中間層10を設けることにより、この境界における密着性の向上を図り、両者の材料が接触することにより水蒸気電解反応に好ましくない副生成物が生じることを防止することができる。   According to the present embodiment, by providing the intermediate layer 10, the adhesion at the boundary is improved, and the by-product that is not preferable for the water vapor electrolysis reaction is prevented by the contact of both materials. be able to.

さらに設置された酸素極給電体5aの上から酸素極4をスプレーやディップにより形成して構成することができる。かくして、上記セル電極のうち特に酸素極4を保護することにより、上記酸素極4に均一に電解電流を供給し、接触抵抗の増大を抑制することができる。   Furthermore, the oxygen electrode 4 can be formed by spraying or dipping on the oxygen electrode power supply 5a installed. Thus, by protecting especially the oxygen electrode 4 among the cell electrodes, an electrolytic current can be supplied uniformly to the oxygen electrode 4 and an increase in contact resistance can be suppressed.

次に、本実施の形態の燃料電池セルについて説明する。この燃料電池セルとして、固体電解質燃料電池(SOFC:Solid Oxide Fuel Cell)が用いられる。この固体電解質燃料電池の電解質膜として、一般に、イオン導電性酸化物等が用いられる。この固体電解質を使用して高温で運転される。   Next, the fuel battery cell according to the present embodiment will be described. As the fuel cell, a solid oxide fuel cell (SOFC) is used. Generally, an ion conductive oxide or the like is used as the electrolyte membrane of the solid electrolyte fuel cell. It is operated at a high temperature using this solid electrolyte.

この電解質膜の一方の側面には酸素極が設けられている。この酸素極の外側に酸素又は空気が供給される。また、この電解質膜の他方の側面には水素極が設けられている。この水素極の外側に水素、メタノール、炭化水素等が供給される。これらの反応物を外部から補給し、生成物(HO)を逐次外部に除去して、連続して化学エネルギを直接電気エネルギに変換している。 An oxygen electrode is provided on one side surface of the electrolyte membrane. Oxygen or air is supplied outside the oxygen electrode. In addition, a hydrogen electrode is provided on the other side surface of the electrolyte membrane. Hydrogen, methanol, hydrocarbons and the like are supplied to the outside of the hydrogen electrode. These reactants are replenished from the outside, and the product (H 2 O) is sequentially removed outside to continuously convert chemical energy directly into electrical energy.

このように構成された本実施の形態において、上記酸素極側の酸素極給電体の少なくとも一部を酸素極の内部に設けて構成されている。   In this embodiment configured as described above, at least a part of the oxygen electrode power feeder on the oxygen electrode side is provided inside the oxygen electrode.

本実施の形態によれば、酸素極給電体の少なくとも一部を酸素極の内部に埋設して設けることにより、酸素極給電体と酸素極との密着性を長期間にわたって持続することができる。かくして、酸素極に均一に電解電流を供給し、接触抵抗の増大を抑制することができる。   According to the present embodiment, it is possible to maintain the adhesion between the oxygen electrode power feeder and the oxygen electrode over a long period of time by providing at least a part of the oxygen electrode power feeder embedded in the oxygen electrode. Thus, an electrolytic current can be supplied uniformly to the oxygen electrode, and an increase in contact resistance can be suppressed.

さらに、本発明は、上述したような各実施の形態に何ら限定されるものではなく、本発明の各実施例を組み合わせて、本発明の主旨を逸脱しない範囲で種々変形して実施することができる。   Furthermore, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention by combining the embodiments of the present invention. it can.

本発明の実施の形態の高温水蒸気電解装置の概略構成を示す構成図。The block diagram which shows schematic structure of the high temperature steam electrolysis apparatus of embodiment of this invention. 従来の高温水蒸気電解装置の概略構成を示す構成図。The block diagram which shows schematic structure of the conventional high temperature steam electrolysis apparatus.

符号の説明Explanation of symbols

1…水蒸気電解セル、2…電解質膜、3…水素極、4…酸素極、5…水素極給電体、5a…酸素極給電体、6…給電線、10…中間層、14…酸素極下地。   DESCRIPTION OF SYMBOLS 1 ... Steam electrolysis cell, 2 ... Electrolyte membrane, 3 ... Hydrogen electrode, 4 ... Oxygen electrode, 5 ... Hydrogen electrode feeder, 5a ... Oxygen electrode feeder, 6 ... Feed line, 10 ... Intermediate layer, 14 ... Oxygen electrode base .

Claims (7)

電子絶縁性及び酸素イオン導電性を有する電解質膜と、
この電解質膜の一方の面に設けられ水蒸気を分解して水素イオン及び酸素イオンを生成させる水素極と、
前記電解質膜の他方の面に設けられ前記電解質膜を通過した酸素イオンを酸素ガスとして排出する酸素極と、
前記水素極に電流を供給する水素極給電体と、
前記酸素極の内部に少なくとも一部が埋設して設けられ電流を供給する酸素極給電体と、
前記水素極給電体及び酸素極給電体に電流を供給する給電線と、
を有することを特徴とする高温水蒸気電解装置。
An electrolyte membrane having electronic insulation and oxygen ion conductivity;
A hydrogen electrode provided on one surface of the electrolyte membrane to decompose water vapor to generate hydrogen ions and oxygen ions;
An oxygen electrode that is provided on the other surface of the electrolyte membrane and discharges oxygen ions that have passed through the electrolyte membrane as oxygen gas;
A hydrogen electrode feeder for supplying a current to the hydrogen electrode;
An oxygen electrode feeder that supplies a current provided at least partially embedded in the oxygen electrode; and
A power supply line for supplying current to the hydrogen electrode power supply and the oxygen electrode power supply;
A high temperature steam electrolyzer characterized by comprising:
前記水素極給電体及び酸素極給電体から選択された少なくとも1個の給電体は、前記電解質膜の電解質面に対して鉛直方向に伸縮自在に配置されていること、を特徴とする請求項1記載の高温水蒸気電解装置。   The at least one power feeding body selected from the hydrogen electrode power feeding body and the oxygen electrode power feeding body is disposed so as to be stretchable in a vertical direction with respect to an electrolyte surface of the electrolyte membrane. The high temperature steam electrolyzer described. 前記酸素極給電体は、前記酸素極の内部に埋設して設けられた給電体の外表面の少なくとも一部は、粗加工、溝加工、枝状の分岐加工、多孔質化加工、メッシュ化加工から選択された少なくとも1種の加工を施して形成されていること、を特徴とする請求項1又は2記載の高温水蒸気電解装置。   In the oxygen electrode power supply body, at least a part of the outer surface of the power supply body embedded and provided in the oxygen electrode is roughened, grooved, branch-shaped branched, made porous, and meshed. The high-temperature steam electrolysis apparatus according to claim 1, wherein the high-temperature steam electrolysis apparatus is formed by performing at least one kind of processing selected from the above. 前記酸素極給電体の外表面の少なくとも一部に前記酸素極の少なくとも一部が予め固定されて形成されていること、を特徴とする請求項1乃至3のいずれかに記載の高温水蒸気電解装置。   4. The high-temperature steam electrolysis apparatus according to claim 1, wherein at least a part of the oxygen electrode is fixed in advance to at least a part of an outer surface of the oxygen electrode power feeder. 5. . 前記電解質膜と前記酸素極層との間に中間層が設けられて構成されていること、を特徴とする請求項1乃至4のいずれかに記載の高温水蒸気電解装置。   The high temperature steam electrolysis apparatus according to any one of claims 1 to 4, wherein an intermediate layer is provided between the electrolyte membrane and the oxygen electrode layer. 電子絶縁性及び酸素イオン導電性を有する電解質膜の一方の面に設けられた水素極に水素極給電体を介して電流を供給する水素極給電ステップと、
前記電解質膜の他方の面に設けられた酸素極の内部の少なくとも一部に設けられた酸素極給電体を介してこの酸素極に電流を供給する酸素極給電ステップと、
前記水素極を用いて水蒸気を分解して水素イオン及び酸素イオンを生成して水素ガスとして排出する水素ガス排出ステップと、
前記酸素極を用いて前記電解質を通過した酸素イオンを酸素ガスとして排出する酸素ガス排出ステップと、
を有することを特徴とする高温水蒸気電解方法。
A hydrogen electrode feeding step of supplying a current to the hydrogen electrode provided on one surface of the electrolyte membrane having electronic insulation and oxygen ion conductivity via a hydrogen electrode feeder;
An oxygen electrode power supply step for supplying current to the oxygen electrode via an oxygen electrode power supply provided on at least a part of the inside of the oxygen electrode provided on the other surface of the electrolyte membrane;
A hydrogen gas discharge step of decomposing water vapor using the hydrogen electrode to generate hydrogen ions and oxygen ions and discharging them as hydrogen gas;
An oxygen gas discharging step of discharging oxygen ions that have passed through the electrolyte using the oxygen electrode as oxygen gas;
A high-temperature steam electrolysis method characterized by comprising:
電子絶縁性及び酸素イオン導電性を有する電解質膜と、
この電解質膜の一方の面に設けられた水素極と、
前記電解質膜の他方の面に設けられた酸素極と、
前記水素極に電流を供給する水素極給電体と、
前記酸素極の内部に少なくとも一部が埋設して設けられ電流を供給する酸素極給電体と、
前記水素極給電体及び酸素極給電体に電流を供給する給電線と、
を有することを特徴とする燃料電池セル。
An electrolyte membrane having electronic insulation and oxygen ion conductivity;
A hydrogen electrode provided on one surface of the electrolyte membrane;
An oxygen electrode provided on the other surface of the electrolyte membrane;
A hydrogen electrode feeder for supplying a current to the hydrogen electrode;
An oxygen electrode feeder that supplies current by being embedded at least in part inside the oxygen electrode;
A power supply line for supplying current to the hydrogen electrode power supply and the oxygen electrode power supply;
A fuel battery cell comprising:
JP2006219230A 2006-08-11 2006-08-11 High temperature steam electrolysis apparatus and method Active JP4829035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219230A JP4829035B2 (en) 2006-08-11 2006-08-11 High temperature steam electrolysis apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219230A JP4829035B2 (en) 2006-08-11 2006-08-11 High temperature steam electrolysis apparatus and method

Publications (2)

Publication Number Publication Date
JP2008045152A true JP2008045152A (en) 2008-02-28
JP4829035B2 JP4829035B2 (en) 2011-11-30

Family

ID=39179180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219230A Active JP4829035B2 (en) 2006-08-11 2006-08-11 High temperature steam electrolysis apparatus and method

Country Status (1)

Country Link
JP (1) JP4829035B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092831A1 (en) * 2009-02-16 2010-08-19 株式会社 東芝 Hydrogen energy storage system and hydrogen energy storage method
JP2016115592A (en) * 2014-12-16 2016-06-23 日本特殊陶業株式会社 Solid oxide electrochemical cell, solid oxide fuel cell, high temperature steam electrolysis apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070282A (en) * 2004-08-31 2006-03-16 Toshiba Corp High temperature steam electrolyzer and tubular steam electrolytic cell
JP2006083428A (en) * 2004-09-16 2006-03-30 Toshiba Corp High temperature steam electrolyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070282A (en) * 2004-08-31 2006-03-16 Toshiba Corp High temperature steam electrolyzer and tubular steam electrolytic cell
JP2006083428A (en) * 2004-09-16 2006-03-30 Toshiba Corp High temperature steam electrolyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092831A1 (en) * 2009-02-16 2010-08-19 株式会社 東芝 Hydrogen energy storage system and hydrogen energy storage method
JP2010232165A (en) * 2009-02-16 2010-10-14 Toshiba Corp Hydrogen power storage system and hydrogen power storage method
US8394543B2 (en) 2009-02-16 2013-03-12 Kabushiki Kaisha Toshiba Electrical power storage system using hydrogen and method for storing electrical power using hydrogen
US9362576B2 (en) 2009-02-16 2016-06-07 Kabushiki Kaisha Toshiba Electrical power storage system using hydrogen and method for storing electrical power using hydrogen
JP2016115592A (en) * 2014-12-16 2016-06-23 日本特殊陶業株式会社 Solid oxide electrochemical cell, solid oxide fuel cell, high temperature steam electrolysis apparatus

Also Published As

Publication number Publication date
JP4829035B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4165655B2 (en) Electrolytic device, electrochemical reaction membrane device, and porous conductor
CA2783916C (en) Battery and method for operating a battery
JP5232271B2 (en) High pressure water electrolyzer
US8071252B2 (en) Interconnector for high-temperature fuel cells
US20110275006A1 (en) Solid oxide fuel cell having metal support with a compliant porous nickel layer
JP2006104578A (en) Interconnect supported electrolyzer assembly, preform and method for fabrication
JP4829035B2 (en) High temperature steam electrolysis apparatus and method
US10505205B2 (en) Titanium product, separator, and proton exchange membrane fuel cell, and method for producing titanium product
US8153327B2 (en) Interconnector for high temperature fuel cells
JP2010189708A (en) Electrolyzer
US7691770B2 (en) Electrode structure and methods of making same
JP2004134362A (en) Interconnection supported fuel cell assembly, preform and method of fabrication
JP5095670B2 (en) Electrolyzer
JP2003263996A (en) Solid oxide fuel cell
JP2007157639A (en) Metal separator for fuel cell and its manufacturing method
JP4984518B2 (en) Manufacturing method of fuel cell
AU3246899A (en) High-temperature fuel cell and stack of high-temperature fuel cells
JP5415100B2 (en) Electrolyzer
JP2009170175A (en) Membrane electrode structure, and fuel cell
JPH07249412A (en) Electrochemical cell
KR20140133301A (en) The membrane electrdoe assembly for an electrochemical cell
JP5525195B2 (en) High-pressure water electrolyzer and method for manufacturing anode-side power feeder for high-pressure water electrolyzer
KR100318206B1 (en) A heat treatment method for separator of molten carbonate fuel cell
KR102082942B1 (en) Hybrid electric generating system with fuel cell stack using solid oxide electrolyzer cell (SOEC) and solid oxide fuel cell (SOFC)
JP2006127922A (en) Metal member for fuel cell, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4829035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3