JP2008041306A - Power generation cell, and solid electrolyte fuel cell with power generation cell incorporated therein - Google Patents

Power generation cell, and solid electrolyte fuel cell with power generation cell incorporated therein Download PDF

Info

Publication number
JP2008041306A
JP2008041306A JP2006210766A JP2006210766A JP2008041306A JP 2008041306 A JP2008041306 A JP 2008041306A JP 2006210766 A JP2006210766 A JP 2006210766A JP 2006210766 A JP2006210766 A JP 2006210766A JP 2008041306 A JP2008041306 A JP 2008041306A
Authority
JP
Japan
Prior art keywords
power generation
air electrode
current collector
generation cell
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006210766A
Other languages
Japanese (ja)
Other versions
JP4919480B2 (en
Inventor
Masaharu Yamada
雅治 山田
Kiichi Komada
紀一 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2006210766A priority Critical patent/JP4919480B2/en
Publication of JP2008041306A publication Critical patent/JP2008041306A/en
Application granted granted Critical
Publication of JP4919480B2 publication Critical patent/JP4919480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generation cell capable of further improving power generation performance, and a solid electrolyte fuel cell with the power generation cell incorporated therein. <P>SOLUTION: This power generation cell has a structure composed by stacking an air electrode formed of a cobaltite compound on one surface of a solid electrolyte, and by stacking, on the other surface of the solid electrolyte, a fuel electrode formed of a porous sintered body comprising Sm-doped ceria particles and nickel particles. Minute Ag particles having an average particle diameter of 0.05-2 μm are uniformly dispersedly attached to the surface of the air electrode of the power generation cell by 1-20 area%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、発電性能を一層向上させることができる発電セルおよびその発電セルを組み込んだ固体電解質形燃料電池に関するものである。   The present invention relates to a power generation cell capable of further improving power generation performance and a solid oxide fuel cell incorporating the power generation cell.

固体電解質形燃料電池は、酸化物からなる固体電解質の片面に空気極を積層し、固体電解質のもう一方の片面に燃料極を積層してなる構造を有している発電セルと、この発電セルの空気極の外側に空気極集電体を積層させ、一方、発電セルの燃料極の外側に燃料極集電体を積層させ、前記空気極集電体の外側に空気極集電体側セパレータを積層させ、前記燃料極集電体の外側に燃料極集電体側セパレータを積層させた基本構造を有している。

かかる基本構造を有する固体電解質形燃料電池は、酸化剤ガス(空気または酸素)を空気極集電体側セパレータに接続して設けられたパイプなどからなる空気供給通路を通して空気極集電体に供給し、同時に、燃料ガス(水素リッチガス)を燃料極集電体側セパレータに接続して設けられたパイプなどからなる燃料供給通路を通して燃料集電体に供給して運転する。
A solid electrolyte fuel cell includes a power generation cell having a structure in which an air electrode is stacked on one side of a solid electrolyte made of an oxide and a fuel electrode is stacked on the other side of the solid electrolyte, and the power generation cell An air electrode current collector is laminated outside the air electrode current collector, while a fuel electrode current collector is laminated outside the fuel electrode of the power generation cell, and an air electrode current collector side separator is arranged outside the air electrode current collector. It has a basic structure in which a fuel electrode current collector separator is stacked on the outside of the fuel electrode current collector.

A solid oxide fuel cell having such a basic structure supplies an oxidant gas (air or oxygen) to an air electrode current collector through an air supply passage formed of a pipe or the like provided by connecting to an air electrode current collector side separator. At the same time, fuel gas (hydrogen-rich gas) is supplied to the fuel current collector through a fuel supply passage made of a pipe or the like connected to the anode current collector separator.

前記固体電解質形燃料電池の発電セルを構成する固体電解質として、ランタンガレート系酸化物イオン伝導体を用いることが知られており、このランタンガレート系酸化物イオン伝導体は、一般式:La1-X SrX Ga1-Y-Z MgY Z 3(式中、A=Co、Fe、Ni、Cuの1種または2種以上、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体であることが知られている(特許文献1参照)。 It is known that a lanthanum gallate-based oxide ion conductor is used as a solid electrolyte constituting a power generation cell of the solid electrolyte fuel cell. The lanthanum gallate-based oxide ion conductor has a general formula: La 1− X Sr X Ga 1-YZ Mg Y a Z O 3 ( where, a = Co, Fe, Ni , Cu 1 or more kinds of, X = 0.05~0.3, Y = 0~0 . 29, Z = 0.01 to 0.3, Y + Z = 0.025 to 0.3) is known (see Patent Document 1).

また、前記燃料極は、一般式:Ce1-mm2、(式中、BはSm、La、Gd、Y、Caの1種または2種以上、mは0<m≦0.4)で表されるB(ただし、BはSm、La、Gd、Y、Caの1種または2種以上を示す。以下、同じ)ドープされたセリア粒とニッケル粒とで構成された多孔質焼結体からなることが知られており、この多孔質焼結体はニッケル粒が相互に焼結して骨格構造を形成し、その骨格構造を有する多孔質ニッケルの表面に0.1〜2μmの粒径を有するBドープされたセリア粒がネットワーク構造を形成して付着した構造を有していることも知られている。

さらに、空気極はコバルタイト化合物[例えば、(Ba、La)CoO3、(Sm、Sr)CoO3など]や酸化マンガン化合物[例えば、(La、Sr)MnO3など]のセラミックスで構成されている(特許文献2参照)。
The fuel electrode has a general formula: Ce 1-m B m O 2 , wherein B is one or more of Sm, La, Gd, Y, and Ca, and m is 0 <m ≦ 0. 4) B represented by B (where B represents one or more of Sm, La, Gd, Y, and Ca. The same applies hereinafter) Porous material composed of doped ceria grains and nickel grains This porous sintered body is known to be composed of a sintered body, and nickel particles are sintered together to form a skeleton structure, and the surface of the porous nickel having the skeleton structure has a thickness of 0.1 to 2 μm. It is also known that B-doped ceria grains having a grain size of 1 have a structure in which a network structure is formed and adhered.

Further, the air electrode is composed of a ceramic of a cobaltite compound [eg (Ba, La) CoO 3 , (Sm, Sr) CoO 3 etc.] or a manganese oxide compound [eg (La, Sr) MnO 3 etc.]. (See Patent Document 2).

一方、燃料極集電体は、一般に、Niメッシュ、Niフェルト、発泡Niを含むNiの多孔質体、さらに白金メッシュなどで構成されている。さらに空気極集電体は、一般に、Agメッシュ、Agフェルト、発泡AgなどのAg多孔質体、さらにAg以外の金属からなるメッシュ、フェルト、発泡金属の表面をAgで被覆したAg被覆多孔質金属体などが使用されるようになっている(特許文献3参照)。   On the other hand, the fuel electrode current collector is generally composed of Ni mesh, Ni felt, Ni porous material including foamed Ni, platinum mesh and the like. Further, the air electrode current collector is generally an Ag-coated porous metal in which the surface of an Ag porous body such as Ag mesh, Ag felt, or foamed Ag, and a mesh, felt, or foamed metal made of a metal other than Ag is coated with Ag. The body etc. are used (refer patent document 3).

さらに、前記固体電解質形燃料電池の空気極集電体側セパレータおよび燃料極集電体側セパレータは、通常、高温耐食性に優れたSUS430などのステンレス鋼で構成されているが、空気極集電体側セパレータの表面は特に酸化され易く、空気極集電体側セパレータの表面が酸化されて空気極集電体との接触抵抗が大きくなって起電力が大きく消耗し、それによって発電効率が大きく低下するところから、一般に、空気極集電体側セパレータの表面にはAgメッキ層が形成されるようになってきた(特許文献4参照)。   Furthermore, the air electrode current collector side separator and the fuel electrode current collector side separator of the solid electrolyte fuel cell are usually made of stainless steel such as SUS430 having excellent high temperature corrosion resistance. Since the surface is particularly easily oxidized, the surface of the air electrode current collector separator is oxidized, the contact resistance with the air electrode current collector is increased, the electromotive force is greatly consumed, and thereby the power generation efficiency is greatly reduced. In general, an Ag plating layer has been formed on the surface of the air electrode current collector separator (see Patent Document 4).


かかる構成を有する固体電解質形燃料電池は、空気極の表面上では、酸素分子から酸素原子への解離反応が起こり、空気極集電体より酸素原子が電子を受け取り、電子を受け取った酸素原子はイオン化された混合伝導体である空気極の極中あるいは電極上を移動し、電解質中へ移動していく。その際に、酸素分子から酸素原子への解離反応は、酸素分子が空気極との衝突により空気極の電極上全面で比較的起こりやすいが、イオン化反応は電子が供給されないと起こらないため、空気極集電体と空気極が接触している付近において頻繁に起こりやすいと言われている。したがって、空気極集電体と空気極との接触面積の大きい固体電解質形燃料電池であるほど発電性能を高めることができることから、空気極集電体と空気極との接触面積を高めるべくいろいろな工夫がなされており、その中でも空気極集電体の空気極に接する側の表面にAg粉末焼結層を形成することにより発電性能を向上させることが提案されている(特許文献5参照)。
特開平11−335164号公報 特開平11−297333号公報 特開2002−280026号公報 特開2002−289215号公報 特開2002−298878号公報

In the solid oxide fuel cell having such a configuration, on the surface of the air electrode, a dissociation reaction from oxygen molecules to oxygen atoms occurs, the oxygen atoms receive electrons from the air electrode current collector, and the oxygen atoms that have received the electrons are It moves in or on the air electrode, which is an ionized mixed conductor, and moves into the electrolyte. At this time, the dissociation reaction from oxygen molecules to oxygen atoms occurs relatively easily on the entire surface of the air electrode due to collision of the oxygen molecules with the air electrode, but the ionization reaction does not occur unless electrons are supplied. It is said that it is likely to occur frequently in the vicinity where the electrode current collector and the air electrode are in contact. Therefore, since the power generation performance can be improved as the solid electrolyte fuel cell has a larger contact area between the air electrode current collector and the air electrode, there are various ways to increase the contact area between the air electrode current collector and the air electrode. A device has been devised, and among them, it has been proposed to improve the power generation performance by forming an Ag powder sintered layer on the surface of the air electrode current collector that is in contact with the air electrode (see Patent Document 5).
Japanese Patent Laid-Open No. 11-335164 JP 11-297333 A JP 2002-280026 A JP 2002-289215 A JP 2002-298878 A

空気極集電体の空気極に接する側の表面にAg粉末焼結層を形成することにより発電性能は向上するものの、さらに一層の発電性能が優れた固体電解質形燃料電池が求められている。   Although the power generation performance is improved by forming an Ag powder sintered layer on the surface of the air electrode current collector that is in contact with the air electrode, there is a need for a solid oxide fuel cell with even greater power generation performance.


そこで、本発明者等は、上述のような観点から、さらに一層の発電性能が優れた固体電解質形燃料電池を開発すべく研究を行った。その結果、
(イ)La1-X SrX Ga1-Y-Z MgY CoZ 3(ただし、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体からなる固体電解質の片面に、コバルタイト化合物のセラミックスで構成されている空気極を積層し、前記固体電解質のもう一方の片面に一般式:Ce1-mSmm2、(mは0<m≦0.4)で表されるSmドープされたセリア粒とニッケル粒とで構成された多孔質焼結体からなる燃料極を積層してなる構造を有している発電セルと、この発電セルの空気極の外側にAg多孔質からなる空気極集電体を積層させ、一方、発電セルの燃料極の外側にNi多孔質からなる燃料極集電体を積層させ、前記空気極集電体の外側に空気極集電体側セパレータを積層させ、前記燃料極集電体の外側に燃料極集電体側セパレータを積層させた基本構造を有している従来の固体電解質形燃料電池において、前記発電セルの空気極の表面に、平均粒径:0.05〜2μmの微細Ag粒子が1〜20面積%均一分散して付着している固体酸化物形燃料電池は、従来の空気極集電体の空気極に接する側の表面にAg粉末焼結層を形成した複合層からなる空気極集電体を組み込んだ引用文献5記載の従来の固体電解質形燃料電池よりも発電性能が一層向上する、
(ロ)前記発電セルを構成する空気極は、コバルタイト化合物で構成されていることが好ましく、コバルタイト化合物の中でも(Ba、La)CoO3または(Sm、Sr)CoO3であることが一層好ましい、などのという研究結果が得られたのである。

In view of the above, the present inventors have conducted research to develop a solid oxide fuel cell with further excellent power generation performance. as a result,
(B) La 1-X Sr X Ga 1-YZ Mg Y Co Z O 3 ( provided that, X = 0.05~0.3, Y = 0~0.29 , Z = 0.01~0.3, Y + Z = 0.025-0.3) is laminated on one side of a solid electrolyte made of an oxide ion conductor, and the other side of the solid electrolyte is laminated with an air electrode made of a ceramic of a cobaltite compound. A fuel comprising a porous sintered body composed of Sm-doped ceria grains and nickel grains represented by the general formula: Ce 1-m Sm m O 2 (m is 0 <m ≦ 0.4) A power generation cell having a structure in which electrodes are stacked, and an air electrode current collector made of Ag porous are stacked outside the air electrode of the power generation cell, while Ni is formed outside the fuel electrode of the power generation cell. A porous fuel electrode current collector is laminated and an air electrode current collector separator is stacked outside the air electrode current collector. In a conventional solid oxide fuel cell having a basic structure in which a fuel electrode current collector-side separator is laminated on the outside of the fuel electrode current collector, average particles are formed on the air electrode surface of the power generation cell. A solid oxide fuel cell in which fine Ag particles having a diameter of 0.05 to 2 μm are uniformly dispersed and adhered is 1 to 20 area%. The Ag is formed on the surface of the conventional air electrode current collector in contact with the air electrode. The power generation performance is further improved than the conventional solid oxide fuel cell described in Citation 5, which incorporates an air electrode current collector composed of a composite layer in which a powder sintered layer is formed.
(B) The air electrode constituting the power generation cell is preferably composed of a cobaltite compound, and among the cobaltite compounds, (Ba, La) CoO 3 or (Sm, Sr) CoO 3 is more preferable. The results of the research were obtained.

この発明は、かかる研究結果に基づいてなされたものであって、

(1)一般式:La1-X SrX Ga1-Y-Z MgY CoZ 3(ただし、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体からなる固体電解質の片面に、コバルタイト化合物からなる空気極を積層し、前記固体電解質のもう一方の片面に一般式:Ce1-mSmm2、(mは0<m≦0.4)で表されるSmドープされたセリア粒とニッケル粒とで構成された多孔質焼結体からなる燃料極を積層してなる構造を有する発電セルであって、前記発電セルの空気極は、その表面に平均粒径:0.05〜2μmの微細Ag粒子が1〜20面積%均一分散して付着している微細Ag粒子付着空気極である固体酸化物形燃料電池の発電セル、
(2)前記コバルタイト化合物のセラミックスで構成されている空気極は、(Ba、La)CoO3または(Sm、Sr)CoO3である前記(1)記載の固体酸化物型燃料電池の発電セル、

(3)前記(1)または(2)記載の固体酸化物形燃料電池の発電セルにおける微細Ag粒子付着空気極の外側にAg多孔質からなる空気極集電体を積層させ、一方、前記発電セルの燃料極の外側にNi多孔質からなる燃料極集電体を積層させ、前記空気極集電体の外側に空気極集電体側セパレータを積層させ、前記燃料極集電体の外側に燃料極集電体側セパレータを積層させてなる固体酸化物形燃料電池、に特徴を有するものである。
The present invention has been made based on the results of such research,

(1) General formula: La 1-X Sr X Ga 1-YZ Mg Y Co Z O 3 ( provided that, X = 0.05~0.3, Y = 0~0.29 , Z = 0.01~0 .3, Y + Z = 0.025 to 0.3), an air electrode made of a cobaltite compound is laminated on one side of a solid electrolyte made of an oxide ion conductor, and the other side of the solid electrolyte is generally used. A fuel electrode comprising a porous sintered body composed of Sm-doped ceria grains and nickel grains represented by the formula: Ce 1-m Sm m O 2 (m is 0 <m ≦ 0.4). A power generation cell having a laminated structure, wherein the air electrode of the power generation cell has fine Ag particles with an average particle size of 0.05 to 2 μm uniformly dispersed and adhered to the surface thereof. A solid oxide fuel cell power generation cell, which is an air electrode with fine Ag particles attached,
(2) The power generation cell of the solid oxide fuel cell according to (1), wherein the air electrode made of the ceramic of the cobaltite compound is (Ba, La) CoO 3 or (Sm, Sr) CoO 3 .

(3) The air electrode current collector made of Ag porous is laminated outside the air electrode attached with fine Ag particles in the power generation cell of the solid oxide fuel cell according to (1) or (2), while the power generation A fuel electrode current collector made of porous Ni is laminated outside the fuel electrode of the cell, an air electrode current collector separator is laminated outside the air electrode current collector, and a fuel is formed outside the fuel electrode current collector. The present invention is characterized by a solid oxide fuel cell formed by laminating a pole current collector side separator.


この発明の発電セルを構成する微細Ag粒子付着空気極の表面に均一分散して付着している微細Ag粒子の平均粒径は0.05μm未満ではAg粒子が微細すぎて空気極内部にAg粒子が入り込み、空気極集電体との接触点が減少するので好ましくなく、一方、微細Ag粒子の平均粒径は2μmを越えると、Ag粒子が粗すぎて空気極集電体との接触点が減少するので好ましくない。したがって、微細Ag粒子付着空気極の表面に均一分散して付着している微細Ag粒子の平均粒径を0.05〜2μmに定めた。

さらに、前記微細Ag粒子付着空気極の表面に付着して均一分散している微細Ag粒子の分散率は1面積%未満では、空気極集電体との接触点が少なく、したがって抵抗が大きくなるので好ましくなく、一方、前記微細Ag粒子付着空気極の表面に付着して均一分散している微細Ag粒子の分散率が20面積%を越えると、Ag粒子同士が結合し、空気極の表面積が小さくなるために電極としての活性が劣るのでので好ましくない。したがって、微細Ag粒子の空気極の表面に付着して均一分散している分散率を1〜20面積%に定めた。一層好ましい範囲は5〜10面積%である。

If the average particle size of the fine Ag particles adhering to the fine Ag particle adhering air electrode constituting the power generation cell of this invention is less than 0.05 μm, the Ag particles are too fine and the Ag particles are inside the air electrode. And the contact point with the air electrode current collector decreases, which is not preferable. On the other hand, if the average particle size of the fine Ag particles exceeds 2 μm, the Ag particles are too coarse and the contact point with the air electrode current collector is not good. Since it decreases, it is not preferable. Therefore, the average particle diameter of the fine Ag particles uniformly dispersed on the surface of the fine Ag particle-attached air electrode is set to 0.05 to 2 μm.

Further, when the dispersion ratio of the fine Ag particles adhering to and uniformly dispersed on the surface of the fine Ag particle-attached air electrode is less than 1 area%, the number of contact points with the air electrode current collector is small, and thus the resistance increases. On the other hand, if the dispersion ratio of the fine Ag particles adhering to the surface of the fine Ag particle adhering air electrode and uniformly dispersed exceeds 20 area%, the Ag particles are bonded to each other, and the surface area of the air electrode is reduced. Since it becomes small and the activity as an electrode is inferior, it is not preferable. Therefore, the dispersion ratio at which fine Ag particles adhere to the surface of the air electrode and are uniformly dispersed is set to 1 to 20 area%. A more preferable range is 5 to 10 area%.

この発明の発電セルを構成する表面に平均粒径:0.05〜2μmの微細Ag粒子が1〜20面積%均一分散して付着させた微細Ag粒子付着空気極を作製するには、通常の空気極の表面に平均粒径:5〜15nmの超微細Ag粉末をエタノールに懸濁させたAgコロイドを塗布し、乾燥させたのち温度:300〜800℃で焼成することにより製造することができる。
In order to produce a fine Ag particle-attached air electrode in which fine Ag particles having an average particle diameter of 0.05 to 2 μm are uniformly dispersed and adhered to the surface constituting the power generation cell of this invention, It can be produced by applying Ag colloid obtained by suspending ultrafine Ag powder having an average particle diameter of 5 to 15 nm in ethanol on the surface of the air electrode, drying the powder, and then baking at a temperature of 300 to 800 ° C. .

この発明の固体電解質形燃料電池を構成する空気極集電体はAg多孔質からなり、このAg多孔質は、Ag繊維を圧縮して形成したAgフェルト、Agよりも高温強度に優れた金属または合金からなる金属繊維の表面にAgメッキしたAgメッキ繊維を圧縮して形成したAgメッキフェルト、Ag細線からなるAgメッシュ層、Agよりも高温強度に優れた金属または合金からなる金属細線の表面にAgメッキしたAgメッキ細線からなるAgメッキメッシュ、発泡Agなどを含むものである。 The air electrode current collector constituting the solid oxide fuel cell of the present invention is composed of Ag porous, which is Ag felt formed by compressing Ag fibers, metal superior in high-temperature strength than Ag, or Ag plating felt formed by compressing Ag-plated Ag-plated fiber on the surface of metal fiber made of alloy, Ag mesh layer made of Ag fine wire, surface of metal fine wire made of metal or alloy having higher temperature strength than Ag It includes an Ag-plated mesh made of Ag-plated Ag-plated fine wires, foamed Ag, and the like.

この発明の固体電解質形燃料電池を構成する燃料極集電体はNi多孔質体からなり、このNi多孔質体は、Ni繊維を圧縮して形成したNiフェルト、Niよりも高温強度に優れた金属または合金からなる金属繊維の表面にNiメッキしたNiメッキ繊維を圧縮して形成したNiメッキフェルト、Ni細線からなるNiメッシュ層、Niよりも高温強度に優れた金属または合金からなる金属細線の表面にNiメッキしたNiメッキ細線からなるNiメッキメッシュ、発泡Niなどを含むものである。
The anode current collector constituting the solid oxide fuel cell of the present invention is composed of a Ni porous body, and this Ni porous body is superior to Ni felt formed by compressing Ni fibers, and high temperature strength than Ni. Ni-plated felt formed by compressing Ni-plated Ni-plated fiber on the surface of metal fiber made of metal or alloy, Ni mesh layer made of Ni fine wire, metal fine wire made of metal or alloy superior in strength at high temperature than Ni It includes Ni-plated mesh made of Ni-plated fine wires plated with Ni, foamed Ni, and the like.

この発明の微細Ag粒子付着空気極を有する発電セルを組み込んだ固体酸化物形燃料電池は、発電性能を一層高めることができ、固体酸化物形燃料電池産業の発展におおいに貢献しうるものである。 The solid oxide fuel cell incorporating the power generation cell having the fine Ag particle-attached air electrode according to the present invention can further improve the power generation performance, and can greatly contribute to the development of the solid oxide fuel cell industry. .

実施例1
原料粉末として、La23、SrCO3、Ga23、MgO、CoOの各粉末を用意し、これら原料粉末を(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oとなるように秤量し、良く混合した後、1100℃で予備焼成し、得られた仮焼体を粉砕し、通常のバインダー、溶剤などを加えてボールミルで粉砕することによりスラリーを作製し、このスラリーをドクターブレード法によりグリーンシートに成形した。この成形したグリーンシートを空気中で十分に乾燥させ、所定の寸法に切り出してこれを1450℃で燒結し、直径:120mm、厚さ:0.2mmの寸法を有する燒結体からなる固体電解質を作製した。
Example 1
As raw material powders, La 2 O 3 , SrCO 3 , Ga 2 O 3 , MgO, and CoO powders were prepared, and these raw material powders were (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3 , weighed and mixed well, pre-fired at 1100 ° C., pulverized calcined body, added normal binder, solvent, etc. and pulverized with a ball mill A slurry was prepared by the above method, and this slurry was formed into a green sheet by the doctor blade method. The green sheet thus formed is sufficiently dried in the air, cut into predetermined dimensions, and sintered at 1450 ° C. to produce a solid electrolyte comprising a sintered body having a diameter of 120 mm and a thickness of 0.2 mm. did.

このようにして得られた固体電解質の片面にNiと(Ce0.8Sm0.2)O2の体積比が6:4になるように混合したNiOと(Ce0.8Sm0.2)O2の混合粉末を1100℃で焼付けることにより厚さ:0.03mmの燃料極を形成し、さらに前記固体電解質の反対側の片面に厚さ:0.03mmの(Ba、La)CoO3を1000℃で焼付け、空気極を形成することにより発電セルを作製した。
さらに、平均粒径:10nmのAg超微粉末をエタノールに添加して懸濁させたAgコロイドを用意し、これを発電セルの空気極の表面に塗布し乾燥させたのち、得られたAgコロイド塗布層を表1に示される温度で焼成することにより表1に示される平均粒径の微細Ag粒子が表1に示される面積率で空気極の表面に均一分散して付着した微細Ag粒子付着空気極を有する発電セルを作製した。
A mixed powder of NiO and (Ce 0.8 Sm 0.2 ) O 2 mixed so that the volume ratio of Ni and (Ce 0.8 Sm 0.2 ) O 2 is 6: 4 is 1100 on one side of the solid electrolyte thus obtained. A fuel electrode having a thickness of 0.03 mm is formed by baking at a temperature of 0.03 mm, and (Ba, La) CoO 3 having a thickness of 0.03 mm is baked at 1000 ° C. on one side opposite to the solid electrolyte. A power generation cell was fabricated by forming a pole.
Further, an Ag colloid in which Ag ultrafine powder having an average particle size of 10 nm is added and suspended in ethanol is prepared, and this is applied to the surface of the air electrode of the power generation cell and dried, and then the obtained Ag colloid is obtained. By depositing the coating layer at the temperature shown in Table 1, the fine Ag particles having the average particle size shown in Table 1 are uniformly dispersed and adhered to the surface of the air electrode at the area ratio shown in Table 1. A power generation cell having an air electrode was produced.


さらに、燃料極集電体として市販のNiフェルトを用意し、さらに空気極集電体として市販の純Agフェルトを用意し、さらに厚さ:3mmのSUS304ステンレス鋼板に機械加工を施して溝を形成し、燃料極側セパレータおよび空気極側セパレータを作製し用意した。

Furthermore, a commercially available Ni felt is prepared as a fuel electrode current collector, a commercially available pure Ag felt is prepared as an air electrode current collector, and a groove is formed by machining a SUS304 stainless steel plate having a thickness of 3 mm. A fuel electrode side separator and an air electrode side separator were prepared and prepared.

このようにして作製した微細Ag粒子付着発電セルにおける燃料極側に燃料極集電体であるNiフェルトを積層し、さらに微細Ag粒子が表面に均一に付着した微細Ag粒子付着空気極側に前記純Agフェルトからなる空気極集電体を積層させ、さらに、これら燃料極集電体および空気極集電体の上に先に用意したセパレータを積層させて本発明固体電解質燃料電池1〜11、比較固体電解質燃料電池1〜4を作製した。   In the thus produced fine Ag particle-attached power generation cell, Ni felt as a fuel electrode current collector is laminated on the fuel electrode side, and the fine Ag particle-attached air electrode side on which fine Ag particles are uniformly attached to the surface. The present invention solid electrolyte fuel cells 1 to 11 are laminated by laminating an air electrode current collector made of pure Ag felt, and further laminating the separator prepared previously on the fuel electrode current collector and the air electrode current collector. Comparative solid electrolyte fuel cells 1 to 4 were produced.

このようにして得られた本発明固体電解質燃料電池1〜11、比較固体電解質燃料電池1〜4を750℃に保持しながら燃料ガスとして乾燥水素ガスを5cc/min/cmの流量で流し、酸化剤ガスとして空気を流し運転し、本発明固体電解質燃料電池1〜11、比較固体電解質燃料電池1〜4について電流密度:500mA/cmにおける電圧および起電力を測定し、その結果を表1に示すことにより発電性能を評価した。 While maintaining the solid electrolyte fuel cells 1 to 11 of the present invention and the comparative solid electrolyte fuel cells 1 to 4 thus obtained at 750 ° C., dry hydrogen gas was allowed to flow at a flow rate of 5 cc / min / cm 2 as a fuel gas, It was operated by flowing air as an oxidant gas, and the voltage and electromotive force at a current density of 500 mA / cm 2 were measured for the solid electrolyte fuel cells 1 to 11 of the present invention and the comparative solid electrolyte fuel cells 1 to 4, and the results are shown in Table 1. The power generation performance was evaluated by showing.


従来例1

市販の純銀フェルトを910℃に加熱したのち純銀超微粉末層の上に載置することにより純銀フェルトの片面に純銀超微粉末燒結層を形成し、純銀フェルトおよび純銀超微粉末燒結層の複合層からなる空気極集電体を作製し用意した。この空気極集電体を実施例1で作製した発電セルにおける(Ba、La)CoO3からなる空気極側に積層し、さらにこの発電セルのNiと(Ce0.8Sm0.2)O2からなる燃料極側に市販のNiフェルトからなる燃料極集電体を積層させ、さらにセパレータを前記空気極集電体および燃料極集電体の上に積層させることにより従来固体電解質燃料電池1を作製した。

このようにして得られた従来固体電解質燃料電池1を750℃に保持しながら実施例1と同じ条件で燃料ガスとして乾燥水素ガスを流し、酸化剤ガスとして空気を流し、従来固体電解質燃料電池1について電流密度:500mA/cmにおける電圧および起電力を測定し、その結果を表1に示すことにより発電性能を評価した。

Conventional Example 1

A commercially available pure silver felt is heated to 910 ° C. and then placed on the pure silver ultrafine powder layer to form a pure silver ultrafine powder sintered layer on one side of the pure silver felt, and a composite of pure silver felt and pure silver ultrafine powder sintered layer A cathode current collector made of layers was prepared and prepared. This air electrode current collector is laminated on the air electrode side made of (Ba, La) CoO 3 in the power generation cell produced in Example 1, and further the fuel made of Ni and (Ce 0.8 Sm 0.2 ) O 2 of this power generation cell. A conventional solid electrolyte fuel cell 1 was manufactured by laminating a fuel electrode current collector made of a commercially available Ni felt on the electrode side and further laminating a separator on the air electrode current collector and the fuel electrode current collector.

While maintaining the conventional solid electrolyte fuel cell 1 thus obtained at 750 ° C., dry hydrogen gas was allowed to flow as the fuel gas under the same conditions as in Example 1, and air was allowed to flow as the oxidant gas. About the current density: The voltage and electromotive force in 500 mA / cm < 2 > were measured, and the electric power generation performance was evaluated by showing the result in Table 1.

Figure 2008041306
Figure 2008041306


実施例2
実施例1で作製した固体電解質の片面にNiと(Ce0.8Sm0.2)O2の体積比が6:4になるように混合したNiOと(Ce0.8Sm0.2)O2の混合粉末を1100℃で焼付けることにより厚さ:0.03mmの燃料極を形成し、さらに前記固体電解質の反対側の片面に厚さ:0.03mmの(Sm、Sr)CoO3を1000℃で焼付け、空気極を形成することにより発電セルを作製した。
さらに、実施例1で用意したAgコロイドを発電セルの空気極の表面に塗布し乾燥させたのち、得られたAgコロイド塗布層を表2に示される温度で焼成することにより表2に示される平均粒径の微細Ag粒子が表2に示される面積率で空気極の表面に均一分散して付着した微細Ag粒子付着空気極を有する微細Ag粒子付着発電セルを作製した。

Example 2
A mixed powder of NiO and (Ce 0.8 Sm 0.2 ) O 2 mixed so that the volume ratio of Ni and (Ce 0.8 Sm 0.2 ) O 2 was 6: 4 on one side of the solid electrolyte prepared in Example 1 was 1100 ° C. A fuel electrode having a thickness of 0.03 mm is formed by baking at a temperature of 0.03 mm, and (Sm, Sr) CoO 3 having a thickness of 0.03 mm is baked at 1000 ° C. on one side opposite to the solid electrolyte. A power generation cell was fabricated by forming
Furthermore, after the Ag colloid prepared in Example 1 is applied to the surface of the air electrode of the power generation cell and dried, the obtained Ag colloid coating layer is baked at the temperature shown in Table 2 and shown in Table 2. A fine Ag particle-attached power generation cell having a fine Ag particle-attached air electrode in which fine Ag particles having an average particle diameter were uniformly dispersed and attached to the surface of the air electrode at an area ratio shown in Table 2 was produced.

さらに、実施例1で用意した市販のNiフェルトを先に作製した微細Ag粒子付着発電セルの燃料極側に燃料極集電体として積層し、実施例1で用意した市販の純Agフェルトを微細Ag粒子付着空気極に空気極集電体として積層させ、さらに、実施例1で用意した燃料極側セパレータおよび空気極側セパレータをそれぞれ燃料極集電体および空気極集電体の上に積層させて本発明固体電解質燃料電池12〜22、比較固体電解質燃料電池5〜8を作製した。   Further, the commercially available Ni felt prepared in Example 1 was laminated as a fuel electrode current collector on the fuel electrode side of the fine Ag particle-attached power generation cell prepared earlier, and the commercially available pure Ag felt prepared in Example 1 was finely formed. The air electrode current collector is laminated on the Ag particle-attached air electrode, and the fuel electrode side separator and the air electrode side separator prepared in Example 1 are laminated on the fuel electrode current collector and the air electrode current collector, respectively. The present solid electrolyte fuel cells 12 to 22 and comparative solid electrolyte fuel cells 5 to 8 were produced.


このようにして得られた本発明固体電解質燃料電池12〜22、比較固体電解質燃料電池5〜8を750℃に保持しながら燃料ガスとして乾燥水素ガスを5cc/min/cmの流量で流し、酸化剤ガスとして空気を流して作動し、本発明固体電解質燃料電池12〜22、比較固体電解質燃料電池5〜8について電流密度:500mA/cmにおける電圧および起電力を測定し、その結果を表2に示すことにより発電性能を評価した。

While maintaining the solid electrolyte fuel cells 12 to 22 of the present invention and the comparative solid electrolyte fuel cells 5 to 8 thus obtained at 750 ° C., a dry hydrogen gas was allowed to flow as a fuel gas at a flow rate of 5 cc / min / cm 2 , It was operated by flowing air as an oxidant gas, and the voltage and electromotive force at a current density of 500 mA / cm 2 were measured for the solid electrolyte fuel cells 12 to 22 of the present invention and the comparative solid electrolyte fuel cells 5 to 8, and the results are shown. The power generation performance was evaluated by showing in 2.

従来例2

従来例1で作製し用意した純銀フェルトおよび純銀超微粉末燒結層の複合層からなる空気極集電体を実施例2で作製した発電セルにおける(Sm、Sr)CoO3からなる空気極側に積層した。さらに発電セルのNiと(Ce0.8Sm0.2)O2からなる燃料極側に市販のNiフェルトからなる燃料極集電体を積層した。

さらにセパレータを前記空気極集電体および燃料極集電体の上に積層させることにより従来固体電解質燃料電池2を作製した。

このようにして得られた従来固体電解質燃料電池2を750℃に保持しながら実施例1と同じ条件で燃料ガスとして乾燥水素ガスを流し、酸化剤ガスとして空気を流し、従来固体電解質燃料電池2について電流密度:500mA/cmにおける電圧および起電力を測定し、その結果を表2に示すことにより発電性能を評価した。
Conventional example 2

The air electrode current collector composed of a composite layer of pure silver felt and pure silver ultrafine powder sintered layer prepared and prepared in Conventional Example 1 is placed on the air electrode side made of (Sm, Sr) CoO 3 in the power generation cell prepared in Example 2. Laminated. Further, a fuel electrode current collector made of a commercially available Ni felt was laminated on the fuel electrode side made of Ni and (Ce 0.8 Sm 0.2 ) O 2 of the power generation cell.

Further, a conventional solid electrolyte fuel cell 2 was produced by laminating a separator on the air electrode current collector and the fuel electrode current collector.

While maintaining the conventional solid electrolyte fuel cell 2 thus obtained at 750 ° C., dry hydrogen gas was allowed to flow as a fuel gas under the same conditions as in Example 1, air was allowed to flow as an oxidant gas, and the conventional solid electrolyte fuel cell 2 was Current density: The voltage and electromotive force at 500 mA / cm 2 were measured, and the results are shown in Table 2. The power generation performance was evaluated.

Figure 2008041306
Figure 2008041306


表1〜2に示される結果から、微細Ag粒子付着発電セルを組み込んだ本発明固体電解質燃料電池1〜22は、従来固体電解質形燃料電池1〜2に比べて電流密度:500mA/cmにおける電圧および起電力の測定値が優れていることから、本発明固体電解質形燃料電池1〜22はいずれも従来固体電解質形燃料電池1〜2に比べて優れた発電性能を有することが分かる。しかし、この発明の条件から外れた構成を有する比較固体電解質形燃料電池1〜4は発電性能が十分ではないことが分かる。

From the results shown in Tables 1 and 2, the solid electrolyte fuel cells 1 to 22 of the present invention incorporating the fine Ag particle-attached power generation cell are compared with the conventional solid electrolyte fuel cells 1 and 2 at a current density of 500 mA / cm 2 . Since the measured values of voltage and electromotive force are excellent, it can be seen that all of the solid electrolyte fuel cells 1 to 22 of the present invention have a power generation performance superior to that of the conventional solid electrolyte fuel cells 1 and 2. However, it can be seen that the comparative solid oxide fuel cells 1 to 4 having a configuration deviating from the conditions of the present invention do not have sufficient power generation performance.

Claims (3)

一般式:La1-X SrX Ga1-Y-Z MgY CoZ 3(ただし、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体からなる固体電解質の片面に、コバルタイト化合物からなる空気極を積層し、前記固体電解質のもう一方の片面に一般式:Ce1-mSmm2、(mは0<m≦0.4)で表されるSmドープされたセリア粒とニッケル粒とで構成された多孔質焼結体からなる燃料極を積層してなる構造を有する発電セルであって、
前記発電セルの空気極は、その表面に平均粒径:0.05〜2μmの微細Ag粒子が1〜20面積%均一分散して付着している微細Ag粒子付着空気極であることを特徴とする固体酸化物形燃料電池の発電セル。
General formula: La 1-X Sr X Ga 1-YZ Mg Y Co Z O 3 ( provided that, X = 0.05~0.3, Y = 0~0.29 , Z = 0.01~0.3, An air electrode made of a cobaltite compound is laminated on one side of a solid electrolyte made of an oxide ion conductor represented by Y + Z = 0.025 to 0.3), and the general formula Ce is formed on the other side of the solid electrolyte. 1-m Sm m O 2 , a fuel electrode made of a porous sintered body composed of Sm-doped ceria grains and nickel grains (m is 0 <m ≦ 0.4) is laminated. A power generation cell having the structure
The air electrode of the power generation cell is a fine Ag particle-attached air electrode in which fine Ag particles having an average particle diameter of 0.05 to 2 μm are uniformly dispersed and adhered on the surface thereof. A solid oxide fuel cell power generation cell.
前記コバルタイト化合物からなる空気極は、(Ba、La)CoO3または(Sm、Sr)CoO3であることを特徴とする請求項1記載の固体酸化物型燃料電池の発電セル。 The power generation cell of a solid oxide fuel cell according to claim 1, wherein the air electrode made of the cobaltite compound is (Ba, La) CoO 3 or (Sm, Sr) CoO 3 . 請求項1または2記載の固体酸化物形燃料電池の発電セルにおける微細Ag粒子付着空気極の外側にAg多孔質からなる空気極集電体を積層させ、一方、前記発電セルの燃料極の外側にNi多孔質からなる燃料極集電体を積層させ、前記空気極集電体の外側に空気極集電体側セパレータを積層させ、前記燃料極集電体の外側に燃料極集電体側セパレータを積層させてなることを特徴とする固体酸化物形燃料電池。 An air electrode current collector made of Ag porous is laminated outside the air electrode on which fine Ag particles are adhered in the power generation cell of the solid oxide fuel cell according to claim 1 or 2, while the outside of the fuel electrode of the power generation cell. A fuel electrode current collector made of porous Ni is laminated, an air electrode current collector side separator is laminated outside the air electrode current collector, and a fuel electrode current collector side separator is arranged outside the fuel electrode current collector. A solid oxide fuel cell characterized by being laminated.
JP2006210766A 2006-08-02 2006-08-02 Power generation cell and solid oxide fuel cell incorporating the power generation cell Expired - Fee Related JP4919480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210766A JP4919480B2 (en) 2006-08-02 2006-08-02 Power generation cell and solid oxide fuel cell incorporating the power generation cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210766A JP4919480B2 (en) 2006-08-02 2006-08-02 Power generation cell and solid oxide fuel cell incorporating the power generation cell

Publications (2)

Publication Number Publication Date
JP2008041306A true JP2008041306A (en) 2008-02-21
JP4919480B2 JP4919480B2 (en) 2012-04-18

Family

ID=39176108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210766A Expired - Fee Related JP4919480B2 (en) 2006-08-02 2006-08-02 Power generation cell and solid oxide fuel cell incorporating the power generation cell

Country Status (1)

Country Link
JP (1) JP4919480B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015807A (en) * 2008-07-03 2010-01-21 Toto Ltd Solid oxide fuel cell, solid oxide fuel cell unit, and fuel cell module equipped with the same
WO2013125457A1 (en) * 2012-02-22 2013-08-29 日産自動車株式会社 Solid oxide fuel cell and method for producing same
JP2020149796A (en) * 2019-03-11 2020-09-17 住友電気工業株式会社 Method for manufacturing hydrogen electrode-solid electrolyte layer composite, method for manufacturing cell structure, and method for manufacturing fuel battery

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259346A (en) * 1995-03-28 1996-10-08 Ngk Insulators Ltd Porous sintered compact and its production
JPH11297333A (en) * 1998-04-03 1999-10-29 Kansai Electric Power Co Inc:The Fuel electrode and solid electrolyte fuel cell using the same
JPH11335164A (en) * 1997-08-29 1999-12-07 Yusaku Takita Oxide ionic conductor and use thereof
JP2001522518A (en) * 1997-04-30 2001-11-13 ザ ダウ ケミカル カンパニー Electrode structure for solid-state electrochemical devices
JP2002280026A (en) * 2001-01-09 2002-09-27 Mitsubishi Materials Corp Air electrode current collector for solid electrolyte fuel cell
JP2002289215A (en) * 2001-03-23 2002-10-04 Mitsubishi Materials Corp Separator for solid electrolyte fuel cell with excellent conductivity
JP2002289248A (en) * 2001-01-17 2002-10-04 Nissan Motor Co Ltd Unit cell for fuel cell and solid electrolytic fuel cell
JP2002298878A (en) * 2001-03-30 2002-10-11 Mitsubishi Materials Corp Air electrode collector and solid electrolyte fuel cell with the air electrode collector integrated therein
JP2002313406A (en) * 2001-04-17 2002-10-25 Nissan Motor Co Ltd Solid electrolytic type fuel cell and method of manufacturing electrode for solid electrolytic type fuel cell
JP2002333428A (en) * 2001-05-08 2002-11-22 Toyota Central Res & Dev Lab Inc Electrode including rare earth element and electrochemical cell equipped with electrode
JP2003511834A (en) * 1999-10-08 2003-03-25 グローバル サーモエレクトリック インコーポレイテッド Composite electrodes for solid-state electrochemical devices
JP2003123773A (en) * 2001-10-16 2003-04-25 Nissan Motor Co Ltd Air electrode for solid electrolyte fuel cell and fuel cell using the same
JP2003123788A (en) * 2001-10-11 2003-04-25 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte fuel cell
JP2003288904A (en) * 2002-03-27 2003-10-10 Ngk Spark Plug Co Ltd Electrochemical element, oxygen concentrator, and fuel cell
JP2004355814A (en) * 2003-05-27 2004-12-16 Nissan Motor Co Ltd Solid oxide fuel battery cell and its manufacturing method
JP2005116225A (en) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd Electrode for solid oxide fuel cell, and its manufacturing method
JP2005322547A (en) * 2004-05-11 2005-11-17 Toho Gas Co Ltd Low-temperature operation type solid oxide fuel cell unit battery cell
JP2006100007A (en) * 2004-09-28 2006-04-13 Kyocera Corp Fuel cell cell, fuel cell cell stack, and fuel cell
JP2006518919A (en) * 2003-02-21 2006-08-17 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア Porous electrode, solid oxide fuel cell, and manufacturing method thereof

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259346A (en) * 1995-03-28 1996-10-08 Ngk Insulators Ltd Porous sintered compact and its production
JP2001522518A (en) * 1997-04-30 2001-11-13 ザ ダウ ケミカル カンパニー Electrode structure for solid-state electrochemical devices
JPH11335164A (en) * 1997-08-29 1999-12-07 Yusaku Takita Oxide ionic conductor and use thereof
JPH11297333A (en) * 1998-04-03 1999-10-29 Kansai Electric Power Co Inc:The Fuel electrode and solid electrolyte fuel cell using the same
JP2003511834A (en) * 1999-10-08 2003-03-25 グローバル サーモエレクトリック インコーポレイテッド Composite electrodes for solid-state electrochemical devices
JP2002280026A (en) * 2001-01-09 2002-09-27 Mitsubishi Materials Corp Air electrode current collector for solid electrolyte fuel cell
JP2002289248A (en) * 2001-01-17 2002-10-04 Nissan Motor Co Ltd Unit cell for fuel cell and solid electrolytic fuel cell
JP2002289215A (en) * 2001-03-23 2002-10-04 Mitsubishi Materials Corp Separator for solid electrolyte fuel cell with excellent conductivity
JP2002298878A (en) * 2001-03-30 2002-10-11 Mitsubishi Materials Corp Air electrode collector and solid electrolyte fuel cell with the air electrode collector integrated therein
JP2002313406A (en) * 2001-04-17 2002-10-25 Nissan Motor Co Ltd Solid electrolytic type fuel cell and method of manufacturing electrode for solid electrolytic type fuel cell
JP2002333428A (en) * 2001-05-08 2002-11-22 Toyota Central Res & Dev Lab Inc Electrode including rare earth element and electrochemical cell equipped with electrode
JP2003123788A (en) * 2001-10-11 2003-04-25 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte fuel cell
JP2003123773A (en) * 2001-10-16 2003-04-25 Nissan Motor Co Ltd Air electrode for solid electrolyte fuel cell and fuel cell using the same
JP2003288904A (en) * 2002-03-27 2003-10-10 Ngk Spark Plug Co Ltd Electrochemical element, oxygen concentrator, and fuel cell
JP2006518919A (en) * 2003-02-21 2006-08-17 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア Porous electrode, solid oxide fuel cell, and manufacturing method thereof
JP2004355814A (en) * 2003-05-27 2004-12-16 Nissan Motor Co Ltd Solid oxide fuel battery cell and its manufacturing method
JP2005116225A (en) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd Electrode for solid oxide fuel cell, and its manufacturing method
JP2005322547A (en) * 2004-05-11 2005-11-17 Toho Gas Co Ltd Low-temperature operation type solid oxide fuel cell unit battery cell
JP2006100007A (en) * 2004-09-28 2006-04-13 Kyocera Corp Fuel cell cell, fuel cell cell stack, and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015807A (en) * 2008-07-03 2010-01-21 Toto Ltd Solid oxide fuel cell, solid oxide fuel cell unit, and fuel cell module equipped with the same
WO2013125457A1 (en) * 2012-02-22 2013-08-29 日産自動車株式会社 Solid oxide fuel cell and method for producing same
JP2020149796A (en) * 2019-03-11 2020-09-17 住友電気工業株式会社 Method for manufacturing hydrogen electrode-solid electrolyte layer composite, method for manufacturing cell structure, and method for manufacturing fuel battery

Also Published As

Publication number Publication date
JP4919480B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP6018639B2 (en) Solid oxide fuel cell half-cell and solid oxide fuel cell
WO2007061043A1 (en) Solid oxide fuel cell
JPWO2004102704A1 (en) Solid oxide fuel cell and manufacturing method thereof
JP2009211830A (en) Solid oxide electrochemical cell and processes for producing the same
JP2011119178A (en) Solid oxide fuel cell
JP5079991B2 (en) Fuel cell and fuel cell
JP3924772B2 (en) Air electrode current collector of solid oxide fuel cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
JP2015088284A (en) Solid oxide fuel cell
JP4399698B2 (en) Air electrode current collector and solid electrolyte fuel cell incorporating the air electrode current collector
JP4442747B2 (en) Contact material for air electrode and solid oxide fuel cell using the same
JP4919480B2 (en) Power generation cell and solid oxide fuel cell incorporating the power generation cell
JP2010238431A (en) Power generation cell of fuel battery
JP2002280026A (en) Air electrode current collector for solid electrolyte fuel cell
KR102111859B1 (en) Solid oxide fuel cell and a battery module comprising the same
US7981564B2 (en) Solid electrolyte fuel cell and operating method thereof
JP5077633B2 (en) Electrode for solid oxide fuel cell and solid oxide fuel cell
JP7208764B2 (en) SOLID OXIDE FUEL CELL AND CURRENT COLLECTOR-FORMING MATERIAL
JP3894103B2 (en) Current collector material for solid oxide fuel cells
WO2019167437A1 (en) Fuel cell
JP2005019261A (en) Fuel electrode material for solid oxide fuel cell and fuel electrode for solid oxide fuel cell using the fuel electrode material
JP5093741B2 (en) Power generation cell for solid oxide fuel cell and manufacturing method thereof
JP4426267B2 (en) SOFC fuel electrode resistant to carbon deposition and method for producing the same
JP5211533B2 (en) Current collector for fuel electrode and solid oxide fuel cell using the same
JP2005005025A (en) Electrode for fuel cell, solid oxide fuel cell using this, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees