JP2008038745A - 原動機 - Google Patents

原動機 Download PDF

Info

Publication number
JP2008038745A
JP2008038745A JP2006213941A JP2006213941A JP2008038745A JP 2008038745 A JP2008038745 A JP 2008038745A JP 2006213941 A JP2006213941 A JP 2006213941A JP 2006213941 A JP2006213941 A JP 2006213941A JP 2008038745 A JP2008038745 A JP 2008038745A
Authority
JP
Japan
Prior art keywords
rotor
housing
carbon dioxide
dioxide gas
inner chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006213941A
Other languages
English (en)
Inventor
Takayoshi Fukuyama
孝喜 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN KAGAKU KAIHATSU KENKYUSHO
SHIN KAGAKU KAIHATSU KENKYUSHO KK
Original Assignee
SHIN KAGAKU KAIHATSU KENKYUSHO
SHIN KAGAKU KAIHATSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN KAGAKU KAIHATSU KENKYUSHO, SHIN KAGAKU KAIHATSU KENKYUSHO KK filed Critical SHIN KAGAKU KAIHATSU KENKYUSHO
Priority to JP2006213941A priority Critical patent/JP2008038745A/ja
Priority to PCT/JP2007/057845 priority patent/WO2008015819A1/ja
Publication of JP2008038745A publication Critical patent/JP2008038745A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/22Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/222Carbon dioxide (CO2)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】燃料資源に起因する問題を起こさずに、従来の内燃機関によるのと同等程度以上のエネルギを取り出すこと
【解決手段】密閉に形成されるハウジング101と、ハウジング内に断面円形に形成される内室103と、内室にロータ軸を中心として回転可能に設けられるロータ105とからなる。ロータの回転の際内室が1次作動室111、2次作動室112及び3次作動室113に区画・形成される。ハウジングに給気口107及び排気口109が対向して開口される。炭酸ガス35aは1次作動室内に供給されると1気圧の常圧下に曝されるから一気にその体積を膨張させる。この体積膨張による力によりロータは作動面aが2次作動室に位置し膨張排出行程となりさらに回転すると給気口と排気口とがともに「閉」となる大気圧保持行程となる。かくして炭酸ガスの体積膨張力と慣性力によりハウジング内をロータが連続的に回転する。
【選択図】図1

Description

本願発明は原動機に関し、とくに炭酸ガスの物理的性状を最大限に活用した、燃料の燃焼を伴わずにエネルギを取り出す原動機、いわば「内圧機関」とでもいうべきものに関する。
内燃機関は機関の内部で燃料を燃焼させてその熱エネルギを利用する。使用する燃料のちがいによりガソリン機関、ガス機関、石油機関等種々のものがあり、世界中で広く普及し使用されている。
しかしながら、石油資源の枯渇が懸念されており、また燃焼の結果排出される排気ガスによる公害問題を惹起している。
外燃機関も燃料を燃焼させるという点で、上記した問題、即ち、資源の枯渇や排気ガスによる公害問題を惹起する。
これらを解消すべく、クリーンエネルギとして水素の利用が注目されているが、取扱いが至難のため、開発に行き詰まっているのが現状である。また原子力利用は公害乃至環境問題や安全性の点で懸念がある。
本願発明に関し、先行技術文献の調査をしたが、有効な特許文献を発見することができなかった。
本願発明は燃料の燃焼を伴わずにエネルギを取り出すことにより上記欠点を解消する全く新しい画期的な原動機を提案する。
つまり本願発明の目的は、燃料資源に起因する問題を起こさずに、従来の内燃機関によるのと同等程度以上のエネルギを取り出すことができる原動機を供することである。
また他の目的は、内燃機関使用による炭酸ガスの増加を防止することであり、ひいては温暖化現象の防止に寄与することである。
上記目的達成のため、本願発明による原動機は、密閉に形成されるハウジングと、該ハウジング内に断面円形に形成される内室と、該内室にロータ軸を中心として回転可能に設けられるロータとからなり、上記ロータの回転の際上記内室が1次作動室、2次作動室及び3次作動室に区画・形成され、上記ハウジングに給気口及び排気口が対向して開口され、上記給気口より高圧状態の炭酸ガスが上記1次作動室に供給され、該炭酸ガスの常圧になるときの体積膨張による力により上記ロータが一方向に回転されることを特徴とする。
また、本願発明による原動機は、中央部が少し凹んだ長円形状に形成された密閉のハウジングと、該ハウジング内に断面楕円形に形成される内室と、該内室に設けられるロータとからなり、上記ロータは上記ハウジング内を中心を移動しながら回転し、上記ロータの回転の際上記内室が1次作動室、2次作動室及び3次作動室に区画・形成され、上記ハウジングに給気口及び排気口が対向して開口され、上記給気口より高圧状態の炭酸ガスが上記1次作動室に供給され、該炭酸ガスの常圧になるときの体積膨張による力により上記ロータが一方向に回転されることを特徴とする。
また、請求項1記載の原動機において、上記ハウジングの外側に加熱部を設けることを特徴とする。
また、請求項1記載の原動機において、上記排気口が単一であることを特徴とする。
また、請求項1記載の原動機において、上記排気口が複数であることを特徴とする。
本願発明は炭酸ガスの有する3つの優れた物理的性状、即ち、ガスの不活性、常温液化性及び高度の体積膨張性を利用し、高圧状態でガス室に供給された炭酸ガスが常圧になるときの体積膨張による力によりロータを回転させ、これにより発生するエネルギを取り出す。よって、燃料の燃焼を伴わずにエネルギを取り出すから、燃料資源に起因する問題、即ち、資源の枯渇や排気ガスによる公害問題を惹起することがない。よって完全なクリーンエネルギである。
また、炭酸ガスを用いるものの炭酸ガスを生じることがないので、現在以上の炭酸ガスの増加を防止することができ、温暖化現象の防止に寄与することができる。
しかも取り出されるエネルギは後述するようにガソリンエンジンと同等程度以上であるから、エネルギの実行性の点でも問題はない。
次に、実施の形態を示す図面に基づき本願発明による原動機をさらに詳しく説明する。なお、便宜上同一の機能を奏する部分には同一の符号を付してその説明を省略する。
原動機1を構成するハウジング101はアルミニウム合金製の密閉された円筒と、該ハウジング101の内室103に回転可能に設けられるアルミニウム合金製のロータ105とからなる。上記ハウジング101は密閉に形成された円筒が横設され、内部に断面円形に形成される内室103を有する。また上記ハウジング101は周壁に給気口107を設け、対向する側の周壁に排気口109を開口する。該排気口109は上記給気口107より下方に位置するように設けるのが望ましい。なお、本願発明において「対向」とは給気口107と排気口109のこのような段差のある設置も含むものとする。
上記ロータ105は丸みを帯びた正三角形状の板体からなり、上記ハウジング101の内室103の中央部に回転可能に設けたロータ軸106に複数個固設される。上記ロータ105の輪郭には、図3に示すように、圧力保持のための圧力シール105aを設ける。該圧力シール105aはオイルシールも兼ねる。
上記内室103には気化後の高圧状態の炭酸ガス35aが供給され、該炭酸ガス35aが常圧になるときの体積膨張による力により上記ロータ105がロータ軸106を中心にして矢示する一方向に回転する。上記内室103は上記ロータ105の回転に伴ない、1次作動室111、2次作動室112及び3次作動室113に区画・形成される。上記各作動室111、112、113は上記ロータ105の作動面a,b,cとの関係で、吸入膨張行程、膨張排出行程又は大気圧保持行程のいずれかを担う。
吸入膨張行程は炭酸ガス35aが1次作動室111内に供給され、上記ロータ105のいずれかの作動面を押圧する。膨張排出行程はロータ105の回転に与り常圧状態となった炭酸ガス35bが排気口109より外部に排出される。大気圧保持行程は、給気口107及び排気口109が上記ロータ105の他の作動面によりブロックされるため、常圧状態の炭酸ガス35bと空気Aとからなる混合気体を保持する行程であり、これによりロータ105の回転に円滑性を付与する。
31は液体炭酸ガスを貯溜するタンクであり、該液体炭酸ガスはパイプ33を通って開弁された給気口13よりガス室9内に高圧状態35aで供給される。炭酸ガス35につき、高圧状態の炭酸ガスを「35a」で表わし、常圧状態のものを「35b」で表わす。
ここで炭酸ガス35について詳しく説明する。炭酸ガス(二酸化炭素 CO2)は次のような物理的性状を有する。
空気との比重 1.529
毒性 無
臭 無臭
性状 不燃性
分子量 44.01
三重点(0.53MPa) −56.6℃
沸点(昇華) −78.5℃
臨界温度 31.1℃
臨界圧 7.38MPa
熱力学的性質 図5の通り
また炭酸ガスは物の燃焼や動物の呼吸、有機物の腐敗、発酵等に伴って発生し、空気中に普通に存在する。一方で植物は炭酸ガスを吸収し炭素同化作用を営む。
本願発明はこのような物理的性状を有する炭酸ガスの不活性、常温液化性及び高度の体積膨張性に着目し、これを最大限に活用する。
次に本願発明による作動原理を説明する。
図1(A)に示すように、ロータ105の作動面aが吸入膨張行程をする位置にあるとき、気化後の高圧状態(例えば70気圧)の炭酸ガス35a(気体)が給気口107より1次作動室111内に供給される。上記炭酸ガス35aは1次作動室111内に供給されると、1気圧の常圧下に曝されるから、一気にその体積を膨張させる。
この体積膨張による力によりロータ105は押圧されて図1(B)に示す位置に回転する。これにより作動面aは2次作動室112に位置し、排気口109が「開」となるため膨張排出行程となり、ロータ105の回転に与り常圧状態となった炭酸ガス35bはこの排出口より外部に排出される。正確には、膨張排出行程のとき2次作動室112内に空気Aが混入してくるので、常圧となった炭酸ガス35bはこの空気Aとともに外部に排出されることになる。
さらにロータ105が図1(C)に示す位置に回転すると、給気口107と排気口109とがともに「閉」となるので大気圧保持行程となり、上記混合気体を常圧状態で保持する。
ロータ105はさらに回転し図1(A)に示す位置となる。
上記一連のロータ105の回転において、作動面aが2次作動室112に位置するとき、作動面bは吸入膨張行程の状態にある(図1(B))。よってこの状態において高圧状態の炭酸ガス35aが供給されると、作動面bは上記炭酸ガス35aの体積膨張による力により押圧されてロータ105が回転する。
同様に、作動面bが2次作動室112に位置するとき作動面cは吸入膨張行程の状態にある。よってこの状態において高圧状態の炭酸ガス35aが供給されると、作動面cが上記炭酸ガス35aの体積膨張による力により押圧されてロータ105が回転する(図1(C))。
このようにロータ105の各作動面a,b,cには給気口107より高圧状態の炭酸ガス35aが連続的に供給されるから、ロータ105は連続回転することになる。
かくして炭酸ガス35aの体積膨張力と慣性力によりハウジング内をロータが連続的に回転するから、これによるエネルギを適宜手段により取り出す。
ここで炭酸ガス35aの膨張率、即ち炭酸ガス35aにより取り出されるエネルギの大きさについてみる。密室たる内室103内に供給される炭酸ガス35aが常温(25℃)の場合、該炭酸ガス35aの圧力は図5より6.432MPa(64.32気圧)であるから、常圧(1気圧)の内室103内にあるロータ105には64.32倍の圧力がかかる。よって理論上約64倍の運動エネルギを取り出すことが可能となる。
このエネルギと従来の内燃機関の代表としてガソリンエンジンから取り出されるエネルギとを比較する。
(オープン条件化でのガソリン燃焼)
ガソリンの分子表記は難しいため、ガソリンの平均分子量に比較的近い炭化水素であるオクタン(C818)をガソリンの組成と見なして計算する。オクタンの物理的性状は次の通りである。
化学式 C818
比重 d=0.7
分子量 M=114.0
燃焼熱 10200kcal/kg=10200×114/1000×4.186≒4868kJ/mol
オクタンの燃焼反応式は(1)式の通りである。
Figure 2008038745
(1)式よりオクタン1molが燃焼すると空気中の酸素を取り込みながら17molのガスが発生する。
(ガス比容V0の計算)
生成ガスを理想気体として仮定しているので、標準状態で1molの占める容積は22.4lとなる。従って、ガス比容V0は(1)式から
Figure 2008038745
となる。
(燃焼温度T1の計算)
爆発温度T1を求めるには、生成ガスのモル数、発熱量、生成ガスの定容比熱が必要となる。ここでは、定容比熱のみ不明であるが、TNTのような火薬類と同じとしてみる。
爆発温度T1は(2)式によって求めることができる。
Figure 2008038745
なお、生成ガスの平均定容比熱が約40J/℃として知られていることについては、日本火薬工業会、「一般火薬学新改訂第2版」、P18(2005)参照。
(2)式より爆発温度T1
Figure 2008038745
従って
Figure 2008038745
つまり、1kgのオクタンは、爆発すると7430(K)(約7100℃)で、90900(l)を占める。反応前の容積は1000/0.7=1430(ml)であるから、反応前の温度を0℃とした場合の膨張率は
Figure 2008038745
となる。
しかしながら上記値は、火薬と同じ爆発状態を想定しているため現実以上に爆発温度が高くなっている。現実的には、爆発温度が1500K程度であり、また燃焼に空気が十分ないと反応が進まない。よって、現実には酸素が不足するためTNT火薬のようには反応が起きないのである。
(空気を考慮したガス比容)
そこで空気を考慮したオクタンの燃焼反応式を考える。(1)式で必要な酸素は12.5molであり、空気の組成を酸素21%、窒素79%とすると、それに伴う窒素は
12.5mol×(79/21)=47.0mol
となる。したがって、燃焼反応式は
Figure 2008038745
となる。
オクタン1molが燃焼すると空気中の酸素を取り込みながら合計17molのガスが発生し、燃焼に与らない窒素47.0molが存在する。
生成ガスを理想気体と仮定しているので、標準状態で1molの占める容積は22.4lとなる。したがって、ガス比容V0は(3)式から、
Figure 2008038745
となる。
(空気を考慮した燃焼温度T1の計算)
燃焼温度T1を求めるには、生成ガスのモル数、発熱量、生成ガスの定容比熱が必要となる。ここでは、定容比熱のみ不明であるが、TNTのような火薬類と同じとしてみる。燃焼温度T1は次式によって求めることができる。
Figure 2008038745
(4)式より爆発温度T1
Figure 2008038745
従って、
Figure 2008038745
つまり1kgのオクタンは空気の初期体積を考慮すると、瞬間的に燃焼したとして、2175(K)(約1900℃)で100185(l)を占める。反応前の容積は
(12.5+47)×22.4+1/0.7=1334(l)であるから、反応前の温度を0℃とした場合の膨張率は100185/1334≒75倍となる。ただし上記値は実際上は燃焼中に熱が周囲に逸散するので、燃焼温度はさらに低くなる筈である。
(ガソリンエンジン内の燃焼)
燃費10km/l、排気量2000cc、平均速度40km/h、平均回転数2000rpm/minの自動車のガソリンエンジンを考える。上記ガソリンエンジンは1時間あたりでは4(l)のガソリンを消費する。また、上記ガソリンエンジンは2000rpm/minであるので、2000×2×60(ストローク/h)となる。また、上記エンジンのボアストロークが直径86mm、ストローク86mmよりシリンダ室内の容積は
S=(8.6)×(4.3)2×π=500(cm3
となる。
これは1ストロークあたりでは
4000(ml)/(2000×2×60)=1/60(ml)
のガソリンを消費し、そのときの燃焼ガスは500(cm3)になる。
次に、圧縮比からこのエンジンの行程を解析してみる。
圧縮比は一般的な乗用車エンジンでは「9」前後である。燃焼室容積をVb(ml)とすると、圧縮比=(Vb+500)/Vbであるので、9Vb=Vb+500となり、これを解くと
Vb=62.5(ml)となる。
以上を詳細を省いて簡単にまとめると、
62.5(ml)の燃焼室と500(ml)のシリンダ室に1/60(ml)(=16.7×10-3(ml)=1.025×10-4(mol)のガソリンが空気約560(ml)(酸素5.25×10-3(mol)と窒素19.75×10-3(mol))と一緒に吸い込まれ(1気圧)、9倍に圧縮されたガソリンと空気(9気圧)に点火される。(3)式から消費される酸素は
1.025×10-4×12.5=1.281×10-3
である。したがって、残りの酸素と窒素は、それぞれ
(5.25−1.28)×10-3=1.97×10-3(mol)、19.75×10-3(mol)
となる。
また、発生するガスと熱量は、
2O:1.025×10-4×9=9.225×10-4(mol)
CO2:1.025×10-4×8=8.200×10-4(mol)
Q=1.025×10-4×4868=0.499kJ
である。
燃焼温度T1を求めるには、前記のように生成ガスのモル数、発熱量、生成ガスの定容比熱が必要となる。ここでは、定容比熱のみ不明であるが、TNTのような火薬類と同じとしてみる。燃焼温度T1は前記のように次式によって求めることができる。
Figure 2008038745
(4’)より燃焼温度T1
Figure 2008038745
つまり、2000ccのエンジンでは瞬間的に燃焼したとして、805(K)(約532℃)で23.5×10-3(mol)(=9.225×10-4+8.200×10-4+19.7×10-4+197.5×10-4)のガスが、62.5(ml)を占める。
このときの、圧力P1を計算してみると、理想気体として状態方程式から
Figure 2008038745
である。
最後に、この高温高圧のガスがシリンダを押し下げる膨張行程で9倍に膨張すると、
10=一定であるから、9倍に膨張したときの圧力P2
2=P1/9=24.8/9=2.7(atm)
となる。
このように従来のガソリンエンジンより取り出すエネルギの大きさは、この場合約25倍程度である。
よって本願発明による原動機から取り出されるエネルギは従来の内燃機関から取り出されるエネルギと比較し、同程度以上である。とくに、上記実施例(25℃のとき64倍の例)及び上記比較例(25倍の例)に限って言えば、従来に比し2.5倍のエネルギを得ることができる。
このように本願発明によるエネルギの発生は燃料の燃焼を伴わないから、燃料資源に起因する資源の枯渇や排気ガスによる公害問題を惹起することがなく安全であり、完全なクリーンエネルギを得ることができる。また、炭酸ガスを生じることがないので、炭酸ガスの増加を防止することができ、温暖化現象の防止に寄与することができる。しかも取り出されるエネルギは上記のようにガソリンエンジンと同等程度以上であるから、エネルギの実行性も担保される。
本願発明による原動機によれば、密室(内室103)の圧縮比に影響されず、供給される炭酸ガス35aの圧力は一定(例えば常温(25℃)の場合約64倍)である。またタンク乃至ボンベに収納される炭酸ガス35aは最後の1molまで有効に使用可能である。よって、エネルギの取出効率が大変よい。
また、炭酸ガス35aの常温液化性及び高度の体積膨張性により、密室(内室103)の設計が容易となる。さらに炭酸ガス35aの不活性により、例えば水素ガスや酸素ガスより遙かに扱い易く、制御性が大である。よって高度の実用性を有する。
図2はエネルギの取出効率を向上せしめるために改良した他の実施の形態を示す。この実施の形態では、ハウジング101をアルミニウム合金製のハウジングカバー139にて一体に被覆し、シリンダ本体5の側壁の外側に中空体からなる加熱部137を設ける。上記ハウジングカバー139の側壁には熱風供給口141が開口され、該熱風供給口141に熱風供給パイプ45が連結される。上記熱風供給口141の下方には熱風排出口143が開口され、該熱風排出口143に熱風排出パイプ47が連結される。上記熱風供給パイプ45、上記熱風排出パイプ47は圧縮機49に循環可能に連結される。
上記加熱部137を加熱するための炭酸ガス40a、40b(以下総称するときは「炭酸ガス40」という)は空気との混合気体からなり、ロータ105を駆動せしめる炭酸ガス35とは別系統にて供給される。即ち、この炭酸ガス40aは図示しないタンクに貯溜され、上記圧縮機49により上記熱風供給パイプ45を経て上記熱風供給口141より上記加熱部137に供給される。上記加熱部137への加熱を終了した炭酸ガス40bは上記熱風排出口143より排出され熱風排出パイプ47を通って圧縮機49に戻される。このように上記炭酸ガス40は上記炭酸ガス35とは別系統循環供給される。
炭酸ガス35の体積膨張率と温度とは相関関係にあり、1次作動室111内に供給されている高圧状態の炭酸ガス35aは上記加熱部137による加熱により一層体積が膨張するから、原動機の仕事率は一層向上する。
図5及びボイル・シャルルの法則により内室103内に供給される炭酸ガス35aの圧力を具体的に算出してみる。
ボイル・シャルルの法則は一定量の気体ではPV/Tは常に一定の値となるという法則で、
Figure 2008038745
の式により表わす。炭酸ガス35aは初期タンク31からパイプ33を経由して常圧(25℃)・気体状態にて上記内室103に供給されるから、内室103の内圧は内室103が50℃に加熱される場合次の如く算出される。ただし、内室103の容量を20ccとする。
Figure 2008038745
また内室103が100℃に加熱される場合、内室103の内圧は次の算出値となる。
Figure 2008038745
よって内室103が加熱部37により加熱されると原動機1の仕事率は一層向上する。
本願発明は上記した実施の形態に限定されない。例えば、図4に示すように、原動機1は、中央部が少し凹んだ長円形状に形成されたハウジング121と、該ハウジング121の内室123に設けられるロータ125とからなる。該ロータ125は丸みを帯びた正三角形状の板体からなり、上記内室123内を中心を移動させながら回転する。上記ロータ125の中央部には、円形のロータ孔126が設けられ、ここにロータ軸127が挿通される。該ロータ軸127は外周にギヤ(図示省略)を設け、ロータ孔126の内周に設けるギヤ(図示省略)と噛合する。123aは1次作動室、123bは2次作動室、123cは3次作動室である。エネルギは上記ロータ軸127より適宜手段を介して取り出す。なお、上記ロータ125の輪郭にも、図3と同様、オイルシール兼用の圧力シール125a(図4(A)に示す)を設けてある。
また、排気口109は複数個設けることができ、このように構成すれば排気効率が良好となるので、出力の増大に一層寄与し、また高速回転域及び低速回転域の安定化に一層寄与する。
原動機1を構成する素材は鉄その他適宜に選択することができる。
供給系のパイプの中を流れる炭酸ガスは、気体と粉体としてのドライアイスの混合又は液体の状態での送給もあり得る。どの相をとるかは現場の気圧、温度等の条件による。
取り出したエネルギの適用は任意であり、例えば自動車、航空機、船舶等の駆動、モータの駆動、発電機の駆動をすることができる。
本願発明において「高圧」とは、原動機を作動せしめるに十分な圧力の程度を指称し、例えば40気圧とか70気圧である。
本願発明は例えば自動車、航空機、船舶等の駆動、モータの駆動、発電機の駆動に活用することができる。
本願発明による原動機の実施の形態を示す概略正面断面図で、(A)は吸入膨張行程を、(B)は膨張排出行程を、(C)は大気圧保持行程を各示す。 本願発明による原動機の他の実施の形態を示す概略正面断面図で、(A)は吸入膨張行程を、(B)は膨張排出行程を、(C)は大気圧保持行程を各示す。 ロータの実施例を示す概略斜視図である。 本願発明による原動機のさらに他の実施の形態を示す概略正面断面図で、(A)は吸入膨張行程を、(B)は膨張排出行程を、(C)は大気圧保持行程を各示す。 炭酸ガスの熱力学的性質を示す表である。
符号の説明
1 原動機
31 初期タンク
33 パイプ
35 炭酸ガス
35a 炭酸ガス
35b 炭酸ガス
40 熱風
45 熱風供給パイプ
47 熱風排出パイプ
49 圧縮機
101 ハウジング
103 内室
105 ロータ
105a オイルシール兼用圧力シール
106 ロータ軸
107 給気口
109 排気口
111 1次作動室
112 2次作動室
113 3次作動室
121 ハウジング
123 内室
123a 1次作動室
123b 2次作動室
123c 3次作動室
125 ロータ
125a オイルシール兼用圧力シール
126 ロータ孔
127 ロータ軸
137 加熱部
139 ハウジングカバー
141 熱風供給口
143 熱風排出口
a 作動面
b 作動面
c 作動面
A 空気
31は液体炭酸ガスを貯溜するタンクであり、該液体炭酸ガスはパイプ33を通って開弁された給気口107よりガス室9内に高圧状態35aで供給される。炭酸ガス35につき、高圧状態の炭酸ガスを「35a」で表わし、常圧状態のものを「35b」で表わす。
本願発明は上記した実施の形態に限定されない。例えば、図4は原動機1が、中央部が少し凹んだ長円形状に形成されたハウジング121と、該ハウジング121の内室123に設けられるロータ125とからなる。該ロータ125は丸みを帯びた正三角形状の板体からなり、上記内室123内を中心を移動させながら回転する。上記ロータ125の中央部には、円形のロータ孔126が設けられ、ここにロータ軸127が挿通される。該ロータ軸127は外周にギヤ(図示省略)を設け、ロータ孔126の内周に設けるギヤ(図示省略)と噛合する。123aは1次作動室、123bは2次作動室、123cは3次作動室である。エネルギは上記ロータ軸127より適宜手段を介して取り出す。なお、上記ロータ125の輪郭にも、図3と同様、オイルシール兼用の圧力シール125a(図4(A)に示す)を設けてある。
上記目的達成のため、本願発明による原動機は、密閉に形成されるハウジングと、該ハウジング内に断面円形に形成される内室と、該内室にロータ軸を中心として回転可能に設けられるロータとからなり、上記ロータの回転の際上記内室が1次作動室、2次作動室及び3次作動室に区画・形成され、上記ハウジングに給気口及び排気口が対向して開口され、上記給気口より高圧状態の炭酸ガスが上記1次作動室に供給され、該炭酸ガスの常圧になるときの体積膨張による力により上記ロータが一方向に回転されることを特徴とする。
また、請求項1記載の原動機において、上記内室が断面正円に形成されることを特徴とする。
また、請求項1記載の原動機において、上記内室が断面楕円に形成されることを特徴とする。
また、請求項3記載の原動機において、上記ハウジングは中央部が少し凹んだ長円形状に形成されることを特徴とする。
また、請求項1記載の原動機において、上記ハウジングの外側に加熱部を設けることを特徴とする。
また、請求項1記載の原動機において、上記排気口が単一であることを特徴とする。
また、請求項1記載の原動機において、上記排気口が複数であることを特徴とする。
上記目的達成のため、本願発明による原動機は、密閉に形成されるハウジングと、該ハウジング内に断面円形に形成される内室と、該内室にロータ軸を中心として回転可能に設けられるロータとからなり、上記ロータの回転の際上記内室が吸入膨張行程を担う1次作動室、膨張排出行程を担う2次作動室及び大気圧保持行程を担う3次作動室に区画・形成され、上記ハウジングの1次作動室に給気口を設けるとともに2次作動室に排気口を開口し、上記給気口より高圧状態の炭酸ガスが上記1次作動室に供給され、該炭酸ガスの常圧になるときの体積膨張による力により上記ロータが一方向に回転されることを特徴とする。
また、請求項1記載の原動機において、上記内室が断面正円に形成されることを特徴とする。
また、請求項1記載の原動機において、上記内室が断面楕円に形成されることを特徴とする。
また、請求項1記載の原動機において、上記ハウジングの外側に加熱部を設けることを特徴とする。
また、請求項1記載の原動機において、上記排気口が単一であることを特徴とする。
また、請求項1記載の原動機において、上記排気口が複数であることを特徴とする。

Claims (5)

  1. 密閉に形成されるハウジングと、該ハウジング内に断面円形に形成される内室と、該内室にロータ軸を中心として回転可能に設けられるロータとからなり、上記ロータの回転の際上記内室が1次作動室、2次作動室及び3次作動室に区画・形成され、上記ハウジングに給気口及び排気口が対向して開口され、上記給気口より高圧状態の炭酸ガスが上記1次作動室に供給され、該炭酸ガスの常圧になるときの体積膨張による力により上記ロータが一方向に回転されることを特徴とする原動機。
  2. 中央部が少し凹んだ長円形状に形成された密閉のハウジングと、該ハウジング内に断面略楕円形に形成される内室と、該内室に設けられるロータとからなり、上記ロータは上記ハウジング内を中心を移動しながら回転し、上記ロータの回転の際上記内室が1次作動室、2次作動室及び3次作動室に区画・形成され、上記ハウジングに給気口及び排気口が対向して開口され、上記給気口より高圧状態の炭酸ガスが上記1次作動室に供給され、該炭酸ガスの常圧になるときの体積膨張による力により上記ロータが一方向に回転されることを特徴とする原動機。
  3. 請求項1記載の原動機において、上記ハウジングの外側に加熱部を設けることを特徴とする原動機。
  4. 請求項1記載の原動機において、上記排気口が単一であることを特徴とする原動機。
  5. 請求項1記載の原動機において、上記排気口が複数であることを特徴とする原動機。
JP2006213941A 2006-08-04 2006-08-04 原動機 Pending JP2008038745A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006213941A JP2008038745A (ja) 2006-08-04 2006-08-04 原動機
PCT/JP2007/057845 WO2008015819A1 (fr) 2006-08-04 2007-04-09 Moteur à dioxyde de carbone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006213941A JP2008038745A (ja) 2006-08-04 2006-08-04 原動機

Publications (1)

Publication Number Publication Date
JP2008038745A true JP2008038745A (ja) 2008-02-21

Family

ID=38997004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006213941A Pending JP2008038745A (ja) 2006-08-04 2006-08-04 原動機

Country Status (2)

Country Link
JP (1) JP2008038745A (ja)
WO (1) WO2008015819A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517655A (en) * 1978-07-22 1980-02-07 Tetsushige Ito Flon gas vaporizer by use of rotary frictional heat
JPS5668477A (en) * 1979-11-06 1981-06-09 Tomy Kogyo Co Engine for toy and model
JP2511176B2 (ja) * 1990-06-13 1996-06-26 アイシン精機株式会社 蒸気原動機
JP2002339858A (ja) * 2001-05-14 2002-11-27 Yutaka Maeda 新規熱圧動力変換システムおよびその装置
JP2005113901A (ja) * 2003-10-10 2005-04-28 Soichiro Hayashi 圧縮空気ボンベ蓄電地発電装置

Also Published As

Publication number Publication date
WO2008015819A1 (fr) 2008-02-07

Similar Documents

Publication Publication Date Title
EP3255266B1 (en) Hybrid compressed air energy storage system and process
JP4147562B1 (ja) 発電システム
JP3929477B1 (ja) 循環式内圧機関
US20200182148A1 (en) Hybrid compressed air energy storage system
JP4016291B1 (ja) 循環式内圧機関及び発電システム
JP2008038745A (ja) 原動機
JP4042824B1 (ja) 発電システム
JP2008038747A (ja) 原動機
JP4042822B1 (ja) 発電システム
JP4042823B1 (ja) 循環式内圧機関及び発電システム
WO2008015818A1 (fr) Moteur à dioxyde de carbone
JP4147561B1 (ja) 循環式内圧機関及び発電システム
US8117826B1 (en) External combustion engine with rotary piston controlled valve
JP4016292B1 (ja) 循環式内圧機関及び発電システム
JP2009257265A (ja) 炭酸ガスエンジン
JP2006258087A (ja) ロータリー式外燃エンジン
JP4096321B1 (ja) 循環式内圧機関及び発電システム
JP2008297955A (ja) 複式炭酸ガスエンジン
RU2263799C2 (ru) Способ работы теплового двигателя внутреннего сгорания мазеина и устройство для его осуществления
JP4147563B1 (ja) 循環式内圧機関及び発電システム
JP6093966B2 (ja) 水蒸気爆発併用複葉定積ロータリーエンジン
KR101220468B1 (ko) 유체의 자체 순환을 이용한 동력 시스템
JP4389236B2 (ja) ロータリーエンジン
AU2011200942B2 (en) Rotary Engine
JP2024513091A (ja) ロータリーエンジンおよび内燃タービン用の供給システム