JP2008038205A - Gold powder for gold clay, and gold clay comprising the gold powder - Google Patents
Gold powder for gold clay, and gold clay comprising the gold powder Download PDFInfo
- Publication number
- JP2008038205A JP2008038205A JP2006214598A JP2006214598A JP2008038205A JP 2008038205 A JP2008038205 A JP 2008038205A JP 2006214598 A JP2006214598 A JP 2006214598A JP 2006214598 A JP2006214598 A JP 2006214598A JP 2008038205 A JP2008038205 A JP 2008038205A
- Authority
- JP
- Japan
- Prior art keywords
- gold
- particles
- clay
- weight
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 244
- 239000010931 gold Substances 0.000 title claims abstract description 236
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 230
- 239000004927 clay Substances 0.000 title claims abstract description 107
- 239000002245 particle Substances 0.000 claims description 244
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000011230 binding agent Substances 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 16
- 239000004094 surface-active agent Substances 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 11
- 239000003925 fat Substances 0.000 claims description 8
- 239000003921 oil Substances 0.000 claims description 8
- 238000005498 polishing Methods 0.000 abstract description 11
- 239000000203 mixture Substances 0.000 abstract description 9
- 238000000465 moulding Methods 0.000 abstract description 3
- 150000002343 gold Chemical class 0.000 description 33
- 230000000052 comparative effect Effects 0.000 description 28
- 229920000609 methyl cellulose Polymers 0.000 description 13
- 239000001923 methylcellulose Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 238000010304 firing Methods 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 239000004006 olive oil Substances 0.000 description 7
- 235000008390 olive oil Nutrition 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 239000000084 colloidal system Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- -1 organic Acid ester Chemical class 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000004 low energy electron diffraction Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- NKJOXAZJBOMXID-UHFFFAOYSA-N 1,1'-Oxybisoctane Chemical compound CCCCCCCCOCCCCCCCC NKJOXAZJBOMXID-UHFFFAOYSA-N 0.000 description 1
- LTSWUFKUZPPYEG-UHFFFAOYSA-N 1-decoxydecane Chemical compound CCCCCCCCCCOCCCCCCCCCC LTSWUFKUZPPYEG-UHFFFAOYSA-N 0.000 description 1
- VXRUADVCBZMFSV-UHFFFAOYSA-N 2-acetyloxypropane-1,2,3-tricarboxylic acid Chemical compound CC(=O)OC(CC(O)=O)(CC(O)=O)C(O)=O VXRUADVCBZMFSV-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000010296 bead milling Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229940028820 didecyl ether Drugs 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
Landscapes
- Adornments (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、低収縮性及び収縮率安定性に優れた金粘土用金粉末と、この金粉末を含む金粘土に関するものである。 The present invention relates to a gold powder for gold clay having excellent low shrinkage and shrinkage rate stability, and a gold clay containing the gold powder.
従来、金の宝飾品や美術工芸品は鋳造又は鍛造により製造されるの一般的であったが、近年、金粉末を含んだ金粘土が市販されるようになってきた。この金粘土を造形・焼成することにより、所定の形状を有する金の宝飾品や美術工芸品が製造される。上記金粘土に含まれる金粉末として、99.9重量%以上の純度を有し、銀を50〜1000ppm含む純金粘土用高純度Au粉末が開示されている(例えば、特許文献1参照。)。このAu粉末80重量%に対して、エチルセルロース2.0重量%と界面活性剤0.4重量%と、フタル酸−n−ジブチル0.7重量%と、水16.9重量%とを混合して金粘土が調製される。
上記高純度Au粉末を含む純金粘土を用いて作製した純金焼結体サンプルは、従来の純金焼結体サンプルと比較して、破断強度及び破断伸びに優れる。また上記高純度Au粉末を含む純金粘土を用いて造形体を作製し、この造形体を1000℃の電気炉に入れたとき、この造形体が完全焼結状態になるまでの時間が短く、焼結性に優れている。
The pure gold sintered body sample prepared using the pure gold clay containing the high-purity Au powder is superior in breaking strength and breaking elongation as compared with the conventional pure gold sintered body sample. Moreover, when a modeling body is produced using the pure gold clay containing the high-purity Au powder and this modeling body is put in an electric furnace at 1000 ° C., the time until the modeling body becomes completely sintered is short, Excellent binding.
しかし、上記従来の特許文献1に示された純金粘土用高純度Au粉末では、500〜800℃と比較的低い温度で焼成した場合、焼結体の緻密度が低くなり焼結性が十分でないという不具合があった。
また、上記従来の特許文献1に示された純金粘土用高純度Au粉末では、焼成した焼結体表面に微細な凹凸が比較的多く形成されるため、表面に金属光沢が発現するまで焼結体の表面を研磨するのに多くの時間を要する問題点もあった。
本発明の目的は、比較的低い温度で焼成しても緻密な焼結体が得られ、また比較的短時間の研磨作業で、焼結体表面に金本来の光沢を発現させることができる、金粘土用金粉末及びこの金粉末を含む金粘土を提供することにある。
本発明の別の目的は、従来と同等の有機バインダの混合割合で、従来より造形性を向上できる、金粘土を提供することにある。
However, in the high-purity Au powder for pure gold clay shown in the above-mentioned conventional Patent Document 1, when sintered at a relatively low temperature of 500 to 800 ° C., the density of the sintered body becomes low and the sinterability is not sufficient. There was a problem that.
Further, in the high-purity Au powder for pure gold clay shown in the above-mentioned conventional patent document 1, since a relatively large amount of fine irregularities are formed on the surface of the sintered body, it is sintered until a metallic luster appears on the surface. There is also a problem that it takes a lot of time to polish the surface of the body.
The object of the present invention is to obtain a dense sintered body even when fired at a relatively low temperature, and to express the original gloss of gold on the surface of the sintered body in a relatively short polishing operation. The object is to provide a gold powder for gold clay and a gold clay containing the gold powder.
Another object of the present invention is to provide a gold clay that can improve the formability as compared with the conventional case with a mixing ratio of an organic binder equal to that of the conventional one.
請求項1に係る発明は、平均粒径が1〜30nmである第1金粒子1〜30重量%と、平均粒径が0.1〜30μmである第2金粒子99〜70重量%とを混合してなる金粘土用金粉末である。
この請求項1に記載された金粘土用金粉末では、この金粉末を含む金粘土を用いて造形体を作製した後、この造形体を比較的低い温度で焼成すると、第2金粒子が焼結せずに第1金粒子が焼結して、第1金粒子が第2金粒子を結合する。これにより収縮率の小さい緻密な焼結体が得られるので、この焼結体の表面は凹凸が少なく比較的滑らかになる。
請求項2に係る発明は、請求項1に係る発明であって、更に第2金粒子が、平均粒径0.1μm以上かつ2μm未満の小径粒子又は平均粒径2μm以上かつ30μm以下の大径粒子のいずれか一方又は双方からなることを特徴とする。
この請求項2に記載された金粘土用金粉末では、第2金粒子が平均粒径0.1μm以上かつ2μm未満の小径粒子を含むと、第2粒子もわずかに焼結するため、一層低温度で焼成することができる。また第2金粒子が平均粒径2μm以上かつ30μm以下の大径粒子を含むと、第2粒子は焼結に全く関与しないため、焼結体の収縮率を一層低減することができる。
The invention according to claim 1 includes 1 to 30% by weight of first gold particles having an average particle diameter of 1 to 30 nm and 99 to 70% by weight of second gold particles having an average particle diameter of 0.1 to 30 μm. It is a gold powder for gold clay formed by mixing.
In the gold powder for gold clay described in claim 1, when a shaped body is produced using the gold clay containing the gold powder, and then the shaped body is fired at a relatively low temperature, the second gold particles are fired. The first gold particles sinter without bonding, and the first gold particles bind the second gold particles. As a result, a dense sintered body having a small shrinkage rate is obtained, and the surface of the sintered body is relatively smooth with few irregularities.
The invention according to claim 2 is the invention according to claim 1, wherein the second gold particles are small particles having an average particle size of 0.1 μm or more and less than 2 μm, or large particles having an average particle size of 2 μm or more and 30 μm or less. It consists of either one or both of particles.
In the gold powder for gold clay described in claim 2, if the second gold particles contain small-diameter particles having an average particle diameter of 0.1 μm or more and less than 2 μm, the second particles are also slightly sintered, so that the It can be fired at temperature. Further, when the second gold particles include large-diameter particles having an average particle size of 2 μm or more and 30 μm or less, the second particles do not participate in the sintering at all, so that the shrinkage rate of the sintered body can be further reduced.
請求項3に係る発明は、請求項1又は2記載の金粘土用金粉末50〜95重量%と、有機系バインダ0.8〜8重量%と、残部の水とを混合してなる金粘土である。
この請求項3に記載された金粘土では、この金粘土を用いて造形体を作ると、微細な造形体の作製が可能となり、この造形体を焼成しても、殆ど収縮せず緻密な焼結体が得られる。
また水の一部を0.03〜3重量%の界面活性剤又は0.1〜3重量%の油脂のいずれか一方又は双方に置き換えることが好ましい。
The invention according to claim 3 is a gold clay obtained by mixing 50 to 95% by weight of the gold powder for gold clay according to claim 1 or 2, 0.8 to 8% by weight of an organic binder, and the remaining water. It is.
In the gold clay described in claim 3, if a shaped body is made using the gold clay, a fine shaped body can be produced. A knot is obtained.
Moreover, it is preferable to replace a part of water with either one or both of 0.03 to 3% by weight of surfactant or 0.1 to 3% by weight of fats and oils.
以上述べたように、本発明によれば、平均粒径が1〜30nmである第1金粒子1〜30重量%と、平均粒径が0.1〜30μmである第2金粒子99〜70重量%との混合物により金粘土用金粉末を構成したので、この金粉末を含む金粘土を用いて造形体を作製した後、この造形体を比較的低い温度で焼成すると、第2金粒子が焼結せずに第1金粒子が焼結して、第1金粒子が第2金粒子を結合する。この結果、収縮率の小さい焼結体、即ち緻密な焼結体を得ることができる。従って、焼結体の表面が凹凸が少なく比較的滑らかになるので、比較的短時間の研磨作業で焼結体表面に金本来の光沢を発現させることができる。
また第2金粒子が、平均粒径0.1μm以上かつ2μm未満の小径粒子又は平均粒径2μm以上かつ30μm以下の大径粒子のいずれか一方又は双方からなれば、造形体の焼成温度又は焼結体の収縮率のいずれか一方又は双方を一層低減することができる。
また上記金粘土用金粉末50〜95重量%と、有機系バインダ0.8〜8重量%と、残部の水とを混合することにより金粘土を調製すれば、この金粘土を用いて造形体を作製すると、微細な造形が可能となり、従来と同等の有機バインダの混合割合で、従来より造形性を向上できる。更にこの造形体を焼成しても、殆ど収縮せず緻密な焼結体が得られる。この結果、焼結体の表面が凹凸が少なく比較的滑らかになるので、比較的短時間の研磨作業で、焼結体表面に金本来の光沢を発現させることができる。従って、本発明の金粘土を使用して、誰でも簡単に美術工芸品や宝飾品などを作ることができる。
As described above, according to the present invention, 1 to 30% by weight of the first gold particles having an average particle diameter of 1 to 30 nm and the second gold particles 99 to 70 having an average particle diameter of 0.1 to 30 μm. Since the gold powder for gold clay was constituted by a mixture with the weight%, after producing a shaped body using the gold clay containing the gold powder, when the shaped body was fired at a relatively low temperature, the second gold particles were formed. The first gold particles sinter without sintering, and the first gold particles bind the second gold particles. As a result, a sintered body having a small shrinkage rate, that is, a dense sintered body can be obtained. Therefore, since the surface of the sintered body is relatively smooth with few irregularities, the original gloss of gold can be expressed on the surface of the sintered body by a relatively short polishing operation.
If the second gold particles consist of either one or both of small particles having an average particle size of 0.1 μm or more and less than 2 μm or large particles having an average particle size of 2 μm or more and 30 μm or less, Either or both of the shrinkage rates of the bonded body can be further reduced.
Moreover, if gold clay is prepared by mixing 50 to 95% by weight of the above gold powder for gold clay, 0.8 to 8% by weight of an organic binder, and the remaining water, a molded body using this gold clay. If it produces, fine shaping | molding will be attained and a moldability can be improved conventionally compared with the mixing ratio of the organic binder equivalent to the past. Furthermore, even if this shaped body is fired, a dense sintered body is obtained with little shrinkage. As a result, since the surface of the sintered body is relatively smooth with few irregularities, the original gloss of gold can be expressed on the surface of the sintered body in a relatively short polishing operation. Therefore, anyone can easily make arts and crafts and jewelry using the gold clay of the present invention.
次に本発明を実施するための最良の形態を図面に基づいて説明する。
本発明の金粘土用金粉末は、平均粒径が0.1〜30nm、好ましくは5〜20nmである第1金粒子と、平均粒径が0.1〜30μm、好ましくは0.5〜10μmである第2金粒子とを混合することにより構成される。また第1金粒子及び第2金粒子の混合割合は、第1金粒子が1〜30重量%、好ましくは1〜15重量%であり、第2金粒子が99〜70重量%、好ましくは99〜85重量%である。ここで、第1金粒子の平均粒径を0.1〜30nmの範囲に限定したのは、0.1nm未満では金粒子同士が凝集してしまい第2金粒子と均一に混合することが困難となり、30nmを越えると焼成温度の下限値が高くなるとともに焼結体表面に凹凸が多く形成されてしまうからである。また第2金粒子の平均粒径を0.1〜30μmの範囲に限定したのは、この範囲の平均粒径を有する金粉末は通常市販されている金粉末だからである。この第2金粉末は、平均粒径0.1μm以上かつ2μm未満、好ましくは平均粒径0.5μm以上かつ2μm未満の小径粒子、又は平均粒径2μm以上かつ30μm以下、好ましくは平均粒径2μm以上かつ10μm未満の大径粒子のいずれか一方又は双方からなる。第2金粒子の小径粒子の平均粒径を0.1μm以上かつ2μm未満の範囲に限定したのは、焼成温度を低減するためであり、第2金粒子の大径粒子の平均粒径を2μm以上かつ30μm未満の範囲に限定したのは、焼結体の収縮率を低減するためである。また第2金粒子の平均粒径を0.1〜30μmの範囲に限定したのは、0.1μm未満では造形性を得るためのバインダを多く必要とし収縮が大きくなって製造コストが増大してしまい、30μmを越えると焼結性に劣り500〜800℃と比較的低温で焼成したときに十分な強度が得られないからである。更に第1金粒子の混合割合を1〜30重量%の範囲に限定したのは、1重量%未満では500〜800℃と比較的低温で焼成するとその焼結体の強度が低下してしまい、30重量%を越えると金粉末の表面積が大きくなり過ぎてバインダが大量に必要となり焼結体の収縮率が大きくなり過ぎる一方、焼結体の収縮率を小さくすべくバインダ量を少なくすると粘土としての造形性が低下してしまうからである。第2金粉末が小径粒子及び大径粒子の双方からなる場合には、小径粒子と大径粒子の混合割合は、重量比で(30〜70):(70〜30)、好ましくは(40〜60):(60〜40)に設定される。ここで、小径粒子と大径粒子の混合割合を重量比で(30〜70):(70〜30)の範囲に限定したのは、小径粒子による焼成温度を低減する機能と、大径粒子による焼結体の収縮率を低減する機能とを確実に発揮させるためである。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The gold powder for gold clay of the present invention has a first gold particle having an average particle diameter of 0.1 to 30 nm, preferably 5 to 20 nm, and an average particle diameter of 0.1 to 30 μm, preferably 0.5 to 10 μm. It is comprised by mixing with the 2nd gold particle which is. The mixing ratio of the first gold particles and the second gold particles is 1-30 wt% for the first gold particles, preferably 1-15 wt%, and 99-70 wt% for the second gold particles, preferably 99 ~ 85% by weight. Here, the average particle diameter of the first gold particles is limited to the range of 0.1 to 30 nm because the gold particles are aggregated when the thickness is less than 0.1 nm, and it is difficult to uniformly mix with the second gold particles. This is because if the thickness exceeds 30 nm, the lower limit of the firing temperature is increased and many irregularities are formed on the surface of the sintered body. The reason why the average particle size of the second gold particles is limited to the range of 0.1 to 30 μm is that gold powder having an average particle size in this range is usually a commercially available gold powder. The second gold powder has an average particle size of 0.1 μm or more and less than 2 μm, preferably an average particle size of 0.5 μm or more and less than 2 μm, or an average particle size of 2 μm or more and 30 μm or less, preferably an average particle size of 2 μm. It consists of any one or both of the above-mentioned and large diameter particles of less than 10 μm. The reason why the average particle size of the small particles of the second gold particles is limited to the range of 0.1 μm or more and less than 2 μm is to reduce the firing temperature, and the average particle size of the large particles of the second gold particles is 2 μm. The reason why it is limited to the range of less than 30 μm is to reduce the shrinkage rate of the sintered body. Moreover, the reason why the average particle size of the second gold particles is limited to the range of 0.1 to 30 μm is that if it is less than 0.1 μm, a large amount of binder is required to obtain the formability, and the shrinkage increases and the manufacturing cost increases. If the thickness exceeds 30 μm, the sinterability is inferior, and sufficient strength cannot be obtained when firing at a relatively low temperature of 500 to 800 ° C. Further, the mixing ratio of the first gold particles is limited to the range of 1 to 30% by weight. If the firing rate is less than 1% by weight at a relatively low temperature of 500 to 800 ° C., the strength of the sintered body is reduced. If it exceeds 30% by weight, the surface area of the gold powder becomes too large and a large amount of binder is required, and the shrinkage rate of the sintered body becomes too large. On the other hand, if the binder amount is reduced to reduce the shrinkage rate of the sintered body, This is because the formability of the film is lowered. When the second gold powder is composed of both small and large particles, the mixing ratio of the small and large particles is (30 to 70) :( 70 to 30), preferably (40 to 60): It is set to (60-40). Here, the mixing ratio of the small diameter particles and the large diameter particles was limited to the range of (30 to 70) :( 70 to 30) in terms of the weight ratio because of the function of reducing the firing temperature by the small diameter particles and the large diameter particles. This is to reliably exhibit the function of reducing the shrinkage rate of the sintered body.
なお、第1金粒子は化学還元法、電解還元法、ビーズミル法などにより作製され、第2金粒子は水アトマイズ法、ガスアトマイズ法、回転ディスク法などにより作製される。また上記第1金粒子と第2金粒子とを所定の割合で混合した金粉末を調製するには、微細な第1金粒子を水、アルコール等の分散媒に分散させてコロイドを作り、このコロイドに比較的大きい第2金粒子を入れて撹拌・混合した後に、この混合物にアセトン、ヘキサン等の分散剤除去剤を入れて固液分離し、混合粉末(金粉末)を回収する方法を用いることが好ましい。更に上記第1金粒子や第2金粒子の粒度分布の測定には、MICROTRAC FRA型粒度分析計(LEED & NORTHRUP社製)が通常用いられる。このMICROTRAC FRA型粒度分析計では、ヘキサメタリン酸ナトリウムを分散剤として用い、金粉末を水中に分散させた状態で粒子の粒度分布を測定するようになっている。なお、MICROTRAC FRA型粒度分析計による粒度分析中に、粒子の凝集により粒度分布の極大ピークが複数個観測され、本来の平均粒径より大きな値が観測される場合がある。しかし、このような凝集状態を含めた粒子の平均粒径のデータに基づいて本発明の粒子の平均粒径と相違すると主張することはできない。なぜなら、粒度分布を測定する粒子が何も混合しない粉末状態であるときに凝集していても、この粒子をバインダと十分に混練して粘土状態としたものでは、混練による剪断力により凝集が解けるため、粒子の平均粒径は凝集のない平均粒径、即ち本発明の粒子の平均粒径の範囲内に入るからである。上記凝集状態を含む粒子では、必要に応じて超音波洗浄機により凝集した粒子の分散を促進するなどした後に粒子の粒度分布を測定することが好ましい。また上記処理を施しても凝集が解けない場合には、走査型電子顕微鏡にて無作為にサンプリングした粉末を5点以上観察し、粒子同士が焼結の初期段階である凝結の状態でないことを確認した上で、得られた画像を解析することにより粒度分布を決定してもよい。即ち、本発明において平均粒径と記述しているものは、凝集がないと仮定したときの平均粒子径若しくは1次粒子径と言い換えることができる。 The first gold particles are produced by a chemical reduction method, an electrolytic reduction method, a bead mill method, or the like, and the second gold particles are produced by a water atomization method, a gas atomization method, a rotating disk method, or the like. In order to prepare a gold powder in which the first gold particles and the second gold particles are mixed at a predetermined ratio, a fine colloid is made by dispersing fine first gold particles in a dispersion medium such as water or alcohol. A method is used in which relatively large second gold particles are placed in a colloid and stirred and mixed, and then a dispersant remover such as acetone and hexane is added to the mixture, followed by solid-liquid separation to recover a mixed powder (gold powder). It is preferable. Further, a MICROTRAC FRA particle size analyzer (manufactured by LEED & NORTHRUP) is usually used for measuring the particle size distribution of the first gold particles and the second gold particles. In this MICROTRAC FRA type particle size analyzer, sodium hexametaphosphate is used as a dispersant, and the particle size distribution of the particles is measured with gold powder dispersed in water. During particle size analysis using a MICROTRAC FRA type particle size analyzer, a plurality of maximum peaks in the particle size distribution are observed due to particle aggregation, and a value larger than the original average particle size may be observed. However, it cannot be argued that it is different from the average particle size of the particles of the present invention based on the data on the average particle size of the particles including such agglomerated state. This is because even if the particles whose particle size distribution is measured are in a powder state where nothing is mixed, if the particles are sufficiently kneaded with a binder to form a clay state, the agglomeration can be dissolved by the shearing force due to kneading. Therefore, the average particle size of the particles falls within the range of the average particle size without aggregation, that is, the average particle size of the particles of the present invention. In the case of the particles containing the aggregated state, it is preferable to measure the particle size distribution of the particles after promoting the dispersion of the aggregated particles with an ultrasonic cleaner as necessary. In addition, if the aggregation cannot be solved even after the above treatment, observe 5 or more powders randomly sampled with a scanning electron microscope, and confirm that the particles are not in a coagulation state, which is the initial stage of sintering. After confirmation, the particle size distribution may be determined by analyzing the obtained image. That is, what is described as an average particle diameter in the present invention can be paraphrased as an average particle diameter or a primary particle diameter when it is assumed that there is no aggregation.
上記金粉末を用いた金粘土は、上記金粉末50〜95重量%、好ましくは90〜94重量%と、有機系バインダ0.8〜8重量%、好ましくは0.8〜4重量%と、残部の水とを混合することにより構成される。ここで、金粉末の混合割合を50〜95重量%の範囲に限定したのは、50重量%未満では、金粉末の間にバインダや水が多く介在して金粉末同士が離れているため焼結開始に多くの時間を要するとともに、焼成時にバインダや水が蒸発して形成される空間を金粒子が埋める方向に移動するため焼結体の収縮率が大きくなって焼結体が大きく変形して歪みが増大し、更に焼結体の表面を研磨しても所望の金属光沢が得られないという不具合があり、95重量%を越えると粘土としての伸びおよび強度が低下するからである。有機系バインダとしては、セルロース系バインダ、ポリビニール系バインダ、アクリル系バインダ、ワックス系バインダ、樹脂系バインダ、澱粉、ゼラチン、小麦粉などのバインダを使用できるけれども、セルロース系バインダ、特に水溶性セルロースを用いることが最も好ましい。上記バインダは、加熱すると速やかにゲル化して造形体の形状保持を容易にするために添加される。また有機系バインダの混合割合を0.8〜8重量%の範囲に限定したのは、0.8重量%未満では金粉末を結合できず、8重量%を越えると金粘土の成形時に微細なひび割れが発生し、光沢も減少するからである。 The gold clay using the gold powder is 50 to 95% by weight of the gold powder, preferably 90 to 94% by weight, 0.8 to 8% by weight of an organic binder, preferably 0.8 to 4% by weight, It is constituted by mixing the remaining water. Here, the mixing ratio of the gold powder was limited to the range of 50 to 95% by weight. If it was less than 50% by weight, a lot of binder and water were interposed between the gold powders, and the gold powders were separated from each other. It takes a lot of time to start the sintering and moves in the direction in which the gold particles fill the space formed by the evaporation of the binder and water during firing, so the shrinkage of the sintered body increases and the sintered body deforms greatly. This is because the strain increases and the desired metallic luster cannot be obtained even if the surface of the sintered body is polished, and if it exceeds 95% by weight, the elongation and strength as clay decrease. As the organic binder, a binder such as a cellulose binder, a polyvinyl binder, an acrylic binder, a wax binder, a resin binder, starch, gelatin, and wheat flour can be used, but a cellulose binder, particularly a water-soluble cellulose is used. Most preferred. The binder is added in order to quickly gel when heated to facilitate the shape retention of the shaped body. Further, the mixing ratio of the organic binder is limited to the range of 0.8 to 8% by weight. If the amount is less than 0.8% by weight, the gold powder cannot be bonded. This is because cracks occur and gloss decreases.
なお、水の一部を0.03〜3重量%、好ましくは0.04〜1重量%の界面活性剤又は0.1〜3重量%、好ましくは0.2〜2重量%の油脂のいずれか一方又は双方に置き換えてもよい。ここで、界面活性剤の添加量を0.03〜3重量%の範囲に限定したのは、0.03重量%未満では金粒子の分散が得られず、3重量%を越えると粘土乾燥時の強度が得られないからである。また油脂の添加量を1〜3重量%の範囲に限定したのは、1重量%未満では手などへの付着防止効果が得られず、3重量%を越えると粘土乾燥に時間を要し、乾燥後に脆くなるからである。なお、界面活性剤の種類は特に限定されるものではなく、アニオン系、カチオン系、ノニオン系等の界面活性剤を使用することができる。また油脂としては、有機酸(オレイン酸、ステアリン酸、フタル酸、パルミチン酸、セパシン酸、アセチルクエン酸、ヒドロキシ安息香酸、ラウリン酸、ミリスチン酸、カプロン酸、エナント酸、酪酸、カプリン酸)、有機酸エステル(メチル基、エチル基、プロピル基、ブチル基、オクチル基、ヘキシル基、ジメチル基、ジエチル基、イソプロピル基、イソブチル基を有する有機酸エステル)、高級アルコール(オクタノール、ノナノール、デカノール)、多価アルコール(グリセリン、アラビット、ソルビタン、)、エーテル(ジオクチルエーテル、ジデシルエーテル)、或いは上記有機酸、有機酸エステル、高級アルコール、多価アルコール及びエーテルからなる群より選ばれた1種又は2種以上の混合物(例えば、オレイン酸を多く含むオリーブ油)などが挙げられる。 A part of water is either 0.03 to 3% by weight, preferably 0.04 to 1% by weight of surfactant or 0.1 to 3% by weight, preferably 0.2 to 2% by weight of fat or oil. Either or both may be replaced. Here, the addition amount of the surfactant is limited to the range of 0.03 to 3% by weight. If the amount is less than 0.03% by weight, the dispersion of gold particles cannot be obtained. This is because the above strength cannot be obtained. Moreover, the addition amount of fats and oils was limited to the range of 1 to 3% by weight. If the amount is less than 1% by weight, an effect of preventing adhesion to hands and the like cannot be obtained, and if it exceeds 3% by weight, it takes time to dry the clay. This is because it becomes brittle after drying. In addition, the kind of surfactant is not specifically limited, Surfactants, such as anionic, cationic, and nonionic, can be used. As fats and oils, organic acids (oleic acid, stearic acid, phthalic acid, palmitic acid, sepacic acid, acetylcitric acid, hydroxybenzoic acid, lauric acid, myristic acid, caproic acid, enanthic acid, butyric acid, capric acid), organic Acid ester (organic acid ester having methyl group, ethyl group, propyl group, butyl group, octyl group, hexyl group, dimethyl group, diethyl group, isopropyl group, isobutyl group), higher alcohol (octanol, nonanol, decanol), many 1 type or 2 types selected from the group consisting of a monohydric alcohol (glycerin, arabit, sorbitan), ether (dioctyl ether, didecyl ether), or the above organic acid, organic acid ester, higher alcohol, polyhydric alcohol and ether A mixture of the above (eg lots of oleic acid No olive oil), and the like.
上記方法で調製された金粘土を用いて造形体を作製すると、微細な造形が可能となり、従来と同等の有機バインダの混合割合で、従来より造形性を向上できる。またこの造形体を500〜650℃と比較的低い温度で焼成すると、第2金粒子が焼結せずに第1金粒子が焼結して、第1金粒子が第2金粒子を結合する。この結果、収縮率の小さい焼結体、即ち緻密な焼結体を得ることができる。従って、焼結体の表面が凹凸が少なく比較的滑らかになるので、比較的短時間の研磨作業で焼結体表面に金本来の光沢を発現させることができ、誰でも簡単に美術工芸品や宝飾品などを作ることができる。一方、上記金粉末を含む金粘土を用いて造形体を作製し、この造形体を650〜800℃と比較的高い温度で焼成すると、第1金粒子が焼結するとともに、第2金粒子が僅かに焼結し始めるけれども、第2金粒子の平均粒径が大径であるため焼結し難く、収縮率の小さい焼結体を得ることができる。この結果、500〜800℃と広い温度範囲で焼成しても焼結体の収縮率が殆ど変化せず、収縮率の小さい焼結体を得ることができる。 If a modeling body is produced using the gold clay prepared by the above method, fine modeling becomes possible, and the molding property can be improved as compared with the conventional case with a mixing ratio of the organic binder equivalent to the conventional one. Further, when this shaped body is fired at a relatively low temperature of 500 to 650 ° C., the first gold particles are sintered without the second gold particles being sintered, and the first gold particles are bonded to the second gold particles. . As a result, a sintered body having a small shrinkage rate, that is, a dense sintered body can be obtained. Therefore, since the surface of the sintered body is relatively smooth with few irregularities, the original gloss of gold can be expressed on the surface of the sintered body by a relatively short polishing operation, and anyone can easily perform arts and crafts. You can make jewelry. On the other hand, when a shaped body is produced using gold clay containing the gold powder, and the shaped body is fired at a relatively high temperature of 650 to 800 ° C., the first gold particles are sintered and the second gold particles are Although the sintering starts slightly, it is difficult to sinter because the average particle diameter of the second gold particles is large, and it is possible to obtain a sintered body having a small shrinkage rate. As a result, even when firing at a wide temperature range of 500 to 800 ° C., the shrinkage rate of the sintered body hardly changes, and a sintered body having a small shrinkage rate can be obtained.
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
平均粒径1nmの化学還元法により作製した第1金粒子を用意し、平均粒径5μmのアトマイズ法により作製した大径粒子からなる第2金粒子を用意した。また有機系バインダとしてメチルセルロースを、界面活性剤としてソルスパース20,000(アビシア株式会社製)を、油脂としてオリーブ油を用意し、更に水を用意した。先ず上記第1金粒子10重量%を水(分散媒)に分散させてコロイドを調製し、このコロイドに第2金粒子90重量%を入れて撹拌・混合した。次いでこの混合物にアセトン(分散剤除去剤)を入れて固液分離した。これにより所定の配合組成を有する金粉末が得られた。次にこの金粉末85重量%と、メチルセルロース45重量%と、ソルスパース20,000(界面活性剤)1.0重量%と、オリーブ油0.5重量%と、水9.0重量%とを混合して金粘土を得た。この金粘土を実施例1とした。なお、上記第1金粒子及び第2金粒子の平均粒径はMICROTRAC FRA型粒度分析計(LEED & NORTHRUP社製)を用いてそれぞれ測定した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First gold particles prepared by a chemical reduction method having an average particle diameter of 1 nm were prepared, and second gold particles made of large diameter particles prepared by an atomizing method having an average particle diameter of 5 μm were prepared. Further, methylcellulose was prepared as an organic binder, Solsperse 20,000 (manufactured by Avicia Co., Ltd.) as a surfactant, olive oil as an oil and fat, and water. First, 10% by weight of the first gold particles were dispersed in water (dispersion medium) to prepare a colloid, and 90% by weight of the second gold particles were put into this colloid and stirred and mixed. Subsequently, acetone (dispersing agent removing agent) was added to the mixture, and solid-liquid separation was performed. As a result, a gold powder having a predetermined composition was obtained. Next, 85% by weight of this gold powder, 45% by weight of methylcellulose, 1.0% by weight of Solsperse 20,000 (surfactant), 0.5% by weight of olive oil, and 9.0% by weight of water are mixed. I got gold clay. This gold clay was designated as Example 1. The average particle size of the first gold particles and the second gold particles was measured using a MICROTRAC FRA type particle size analyzer (manufactured by LEED & NORTHRUP).
<実施例2>
平均粒径5nmの第1金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例2とした。
<実施例3>
平均粒径20nmの第1金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例3とした。
<実施例4>
平均粒径30nmの第1金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例4とした。
<実施例5>
平均粒径10nmの第1金粒子を用い、平均粒径0.1μmの小径粒子からなる第2金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例5とした。
<実施例6>
平均粒径10nmの第1金粒子を用い、平均粒径0.5μmの小径粒子からなる第2金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例6とした。
<Example 2>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 5 nm were used. This gold clay was designated as Example 2.
<Example 3>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 20 nm were used. This gold clay was designated as Example 3.
<Example 4>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 30 nm were used. This gold clay was designated as Example 4.
<Example 5>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 10 nm were used and the second gold particles comprising small-diameter particles having an average particle diameter of 0.1 μm were used. This gold clay was determined as Example 5.
<Example 6>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 10 nm were used and the second gold particles comprising small-diameter particles having an average particle diameter of 0.5 μm were used. This gold clay was determined as Example 6.
<実施例7>
平均粒径10nmの第1金粒子を用い、平均粒径1μmの小径粒子からなる第2金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例7とした。
<実施例8>
平均粒径10nmの第1金粒子を用い、平均粒径2μmの小径粒子からなる第2金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例8とした。
<実施例9>
平均粒径10nmの第1金粒子を用い、平均粒径2.5μmの大径粒子からなる第2金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例9とした。
<実施例10>
平均粒径10nmの第1金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例10とした。
<実施例11>
平均粒径10nmの第1金粒子を用い、平均粒径10μmの大径粒子からなる第2金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例11とした。
<Example 7>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 10 nm were used and the second gold particles comprising small-diameter particles having an average particle diameter of 1 μm were used. This gold clay was designated as Example 7.
<Example 8>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 10 nm were used and the second gold particles comprising small-diameter particles having an average particle diameter of 2 μm were used. This gold clay was designated as Example 8.
<Example 9>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 10 nm were used and the second gold particles comprising large-diameter particles having an average particle diameter of 2.5 μm were used. This gold clay was determined as Example 9.
<Example 10>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 10 nm were used. This gold clay was taken as Example 10.
<Example 11>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 10 nm were used and the second gold particles comprising large-diameter particles having an average particle diameter of 10 μm were used. This gold clay was determined as Example 11.
<実施例12>
平均粒径10nmの第1金粒子を用い、平均粒径30μmの大径粒子からなる第2金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例12とした。
<実施例13>
平均粒径10nmの第1金粒子を用い、平均粒径1μmの小径粒子45重量%と平均粒径5μmの大径粒子45重量%との混合粒子からなる第2金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例13とした。
<実施例14>
平均粒径10nmの第1金粒子を用い、平均粒径5μmの大径粒子からなる第2金粒子を用い、更に第1金粒子及び第2金粒子の含有量をそれぞれ1重量%及び99重量%としたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例14とした。
<実施例15>
平均粒径10nmの第1金粒子を用い、平均粒径5μmの大径粒子からなる第2金粒子を用い、更に第1金粒子及び第2金粒子の含有量をそれぞれ5重量%及び95重量%としたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例15とした。
<実施例16>
平均粒径10nmの第1金粒子を用い、平均粒径5μmの大径粒子からなる第2金粒子を用い、更に第1金粒子及び第2金粒子の含有量をそれぞれ15重量%及び85重量%としたたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例16とした。
<実施例17>
平均粒径10nmの第1金粒子を用い、平均粒径5μmの大径粒子からなる第2金粒子を用い、更に第1金粒子及び第2金粒子の含有量をそれぞれ30重量%及び70重量%としたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を実施例17とした。
<Example 12>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 10 nm were used and the second gold particles composed of large-diameter particles having an average particle diameter of 30 μm were used. This gold clay was designated as Example 12.
<Example 13>
Except that the first gold particles having an average particle diameter of 10 nm were used, and the second gold particles comprising 45% by weight of small particles having an average particle diameter of 1 μm and 45% by weight of large particles having an average particle diameter of 5 μm were used. In the same manner as in Example 1, gold clay was prepared. This gold clay was determined as Example 13.
<Example 14>
First gold particles having an average particle diameter of 10 nm are used, second gold particles made of large-diameter particles having an average particle diameter of 5 μm are used, and the contents of the first gold particles and the second gold particles are 1% by weight and 99% by weight, respectively. A gold clay was prepared in the same manner as in Example 1 except that the content was%. This gold clay was determined as Example 14.
<Example 15>
First gold particles having an average particle diameter of 10 nm are used, second gold particles made of large particles having an average particle diameter of 5 μm are used, and the contents of the first gold particles and the second gold particles are 5 wt% and 95 wt%, respectively. A gold clay was prepared in the same manner as in Example 1 except that the content was%. This gold clay was determined as Example 15.
<Example 16>
First gold particles having an average particle diameter of 10 nm are used, second gold particles comprising large particles having an average particle diameter of 5 μm are used, and the contents of the first gold particles and the second gold particles are 15 wt% and 85 wt%, respectively. A gold clay was prepared in the same manner as in Example 1 except that the content was%. This gold clay was determined as Example 16.
<Example 17>
First gold particles having an average particle diameter of 10 nm are used, second gold particles comprising large particles having an average particle diameter of 5 μm are used, and the contents of the first gold particles and the second gold particles are 30% by weight and 70% by weight, respectively. A gold clay was prepared in the same manner as in Example 1 except that the content was%. This gold clay was determined as Example 17.
<比較例1>
平均粒径10nmの第1金粒子を用い、平均粒径5μmの大径粒子からなる第2金粒子を用い、更に第1金粒子及び第2金粒子の含有量をそれぞれ0.5重量%及び99.5重量%としたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を比較例1とした。
<比較例2>
平均粒径10nmの第1金粒子を用い、平均粒径5μmの大径粒子からなる第2金粒子を用い、更に第1金粒子及び第2金粒子の含有量をそれぞれ35重量%及び65重量%としたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を比較例2とした。
<比較例3>
平均粒径0.5nmの第1金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を比較例3とした。
<比較例4>
平均粒径35nmの第1金粒子を用いたことを除いて、実施例1と同様にして金粘土を調製した。この金粘土を比較例4とした。
<Comparative Example 1>
First gold particles having an average particle diameter of 10 nm are used, second gold particles made of large-diameter particles having an average particle diameter of 5 μm are used, and the content of the first gold particles and the second gold particles is 0.5% by weight and A gold clay was prepared in the same manner as in Example 1 except that the content was 99.5% by weight. This gold clay was designated as Comparative Example 1.
<Comparative example 2>
First gold particles having an average particle diameter of 10 nm are used, second gold particles made of large-diameter particles having an average particle diameter of 5 μm are used, and the contents of the first gold particles and the second gold particles are 35 wt% and 65 wt%, respectively. A gold clay was prepared in the same manner as in Example 1 except that the content was%. This gold clay was designated as Comparative Example 2.
<Comparative Example 3>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 0.5 nm were used. This gold clay was designated as Comparative Example 3.
<Comparative Example 4>
A gold clay was prepared in the same manner as in Example 1 except that the first gold particles having an average particle diameter of 35 nm were used. This gold clay was designated as Comparative Example 4.
<比較試験1及び評価>
上記実施例1〜17及び比較例1〜4の金粘土を所定の形状に造形し、得られた造形体を550℃の低温度で30分間焼結することにより、縦×横×長さがそれぞれ3mm×4mm×65mmである直方体状の焼結体を作製し、これらの焼結体の引張り強さ及びビッカース硬さをそれぞれ測定した。また上記焼結体を磁気研磨機にかけ、焼結体の表面を研磨して表面に形成された白い層を除去し、目視による同一光度を発現するまでの研磨時間を測定した。これらの結果を表1に示す。なお、磁気研磨機とは、非常に小さな研磨用の針を水などの溶液中で磁力にて撹拌することにより、焼結体の表面を研磨するものである。
<Comparative test 1 and evaluation>
By shaping the gold clay of Examples 1 to 17 and Comparative Examples 1 to 4 into a predetermined shape and sintering the obtained shaped body at a low temperature of 550 ° C. for 30 minutes, the length × width × length is A rectangular parallelepiped sintered body of 3 mm × 4 mm × 65 mm was prepared, and the tensile strength and Vickers hardness of these sintered bodies were measured. Moreover, the said sintered compact was applied to the magnetic polishing machine, the surface of the sintered compact was grind | polished, the white layer formed on the surface was removed, and the grinding | polishing time until it expressed the same luminous intensity visually was measured. These results are shown in Table 1. The magnetic polishing machine polishes the surface of the sintered body by stirring a very small polishing needle magnetically in a solution such as water.
表1から明らかなように、比較例1〜4の焼結体では、引張り強さが40〜60N/mm2と小さかったのに対し、実施例1〜17の焼結体では、引張り強さが60〜102N/mm2と大きくなった。また比較例1〜4の焼結体では、ビッカース硬さがHv20〜29と低かったのに対し、実施例1〜17の焼結体では、ビッカース硬さがHv30〜42と高くなった。更に比較例1〜4の焼結体では、研削時間が45〜60分と長かったのに対し、実施例1〜17の焼結体では、研削時間が5〜30分と短くなった。従って、実施例1〜17の焼結体では、低温焼結性に優れ、金製品としての強度を保つことができるとともに、比較的短時間で金本来の持つ光沢を得ることができることが判った。 As apparent from Table 1, in the sintered bodies of Comparative Examples 1 to 4, the tensile strength was as small as 40 to 60 N / mm 2 , whereas in the sintered bodies of Examples 1 to 17, the tensile strength was Increased to 60 to 102 N / mm 2 . In the sintered bodies of Comparative Examples 1 to 4, the Vickers hardness was as low as Hv20 to 29, whereas in the sintered bodies of Examples 1 to 17, the Vickers hardness was as high as Hv30 to 42. Furthermore, in the sintered bodies of Comparative Examples 1 to 4, the grinding time was as long as 45 to 60 minutes, whereas in the sintered bodies of Examples 1 to 17, the grinding time was shortened to 5 to 30 minutes. Therefore, it was found that the sintered bodies of Examples 1 to 17 were excellent in low-temperature sinterability, could maintain the strength as a gold product, and were able to obtain the gloss inherent in gold in a relatively short time. .
<実施例18>
平均粒径10nmの化学還元法により作製した第1金粒子を用意し、平均粒径5μmのアトマイズ法により作製した大径粒子からなる第2金粒子を用意した。また有機系バインダとしてメチルセルロースを用意し、更に水を用意した。先ず上記第1金粒子10重量%を水(分散媒)に分散させてコロイドを調製し、このコロイドに第2金粒子90重量%を入れて撹拌・混合した。次いでこの混合物にアセトン(分散剤除去剤)を入れて固液分離した。これにより所定の配合組成を有する金粉末が得られた。次にこの金粉末90重量%と、メチルセルロース7.5重量%と、水2.5重量%とを混合して金粘土を得た。この金粘土を実施例18とした。なお、上記第1金粒子及び第2金粒子の平均粒径はMICROTRAC FRA型粒度分析計(LEED & NORTHRUP社製)を用いてそれぞれ測定した。
<Example 18>
First gold particles prepared by a chemical reduction method having an average particle diameter of 10 nm were prepared, and second gold particles made of large diameter particles prepared by an atomizing method having an average particle diameter of 5 μm were prepared. Moreover, methylcellulose was prepared as an organic binder, and water was further prepared. First, 10% by weight of the first gold particles were dispersed in water (dispersion medium) to prepare a colloid, and 90% by weight of the second gold particles were put into this colloid and stirred and mixed. Subsequently, acetone (dispersing agent removing agent) was added to the mixture, and solid-liquid separation was performed. As a result, a gold powder having a predetermined composition was obtained. Next, 90% by weight of the gold powder, 7.5% by weight of methylcellulose, and 2.5% by weight of water were mixed to obtain a gold clay. This gold clay was determined as Example 18. The average particle size of the first gold particles and the second gold particles was measured using a MICROTRAC FRA type particle size analyzer (manufactured by LEED & NORTHRUP).
<実施例19>
金粉末90重量%と、メチルセルロース3.0重量%と、水7.0重量%とを混合したことを除いて、実施例18と同様にして金粘土を調製した。この金粘土を実施例19とした。
<実施例20>
界面活性剤としてソルスパース20,000(アビシア株式会社製)を更に用意し、金粉末90重量%と、メチルセルロース7.5重量%と、界面活性剤2.3重量%と、水0.2重量%とを混合したことを除いて、実施例18と同様にして金粘土を調製した。この金粘土を実施例20とした。
<実施例21>
界面活性剤としてソルスパース20,000(アビシア株式会社製)を更に用意し、金粉末90重量%と、メチルセルロース4.5重量%と、界面活性剤1.0重量%と、水4.5重量%とを混合したことを除いて、実施例18と同様にして金粘土を調製した。この金粘土を実施例21とした。
<実施例22>
油脂としてオリーブ油を更に用意し、金粉末90重量%と、メチルセルロース7.0重量%と、オリーブ油0.5重量%と、水2.5重量%とを混合したことを除いて、実施例18と同様にして金粘土を調製した。この金粘土を実施例22とした。
<実施例23>
油脂としてオリーブ油を更に用意し、金粉末90重量%と、メチルセルロース5.5重量%と、オリーブ油1.3重量%と、水3.2重量%とを混合したことを除いて、実施例18と同様にして金粘土を調製した。この金粘土を実施例23とした。
<Example 19>
A gold clay was prepared in the same manner as in Example 18 except that 90% by weight of gold powder, 3.0% by weight of methylcellulose, and 7.0% by weight of water were mixed. This gold clay was determined as Example 19.
<Example 20>
Further, Solsperse 20,000 (manufactured by Avicia Co., Ltd.) was prepared as a surfactant, and 90% by weight of gold powder, 7.5% by weight of methylcellulose, 2.3% by weight of surfactant, and 0.2% by weight of water. A gold clay was prepared in the same manner as in Example 18 except that was mixed. This gold clay was referred to as Example 20.
<Example 21>
Further, Solsperse 20,000 (manufactured by Avicia Co., Ltd.) was prepared as a surfactant, 90% by weight of gold powder, 4.5% by weight of methylcellulose, 1.0% by weight of surfactant, and 4.5% by weight of water. A gold clay was prepared in the same manner as in Example 18 except that was mixed. This gold clay was determined as Example 21.
<Example 22>
Example 18 except that olive oil was further prepared as an oil and fat, and 90% by weight of gold powder, 7.0% by weight of methylcellulose, 0.5% by weight of olive oil, and 2.5% by weight of water were mixed. Similarly, gold clay was prepared. This gold clay was determined as Example 22.
<Example 23>
Example 18 except that olive oil was further prepared as an oil and fat, and 90% by weight of gold powder, 5.5% by weight of methylcellulose, 1.3% by weight of olive oil, and 3.2% by weight of water were mixed. Similarly, gold clay was prepared. This gold clay was determined as Example 23.
<比較例5>
金粉末45重量%と、メチルセルロース7.5重量%と、水47.5重量%とを混合したことを除いて、実施例18と同様にして金粘土を調製した。この金粘土を比較例5とした。
<比較例6>
金粉末97重量%と、メチルセルロース2.5重量%と、水0.5重量%とを混合したことを除いて、実施例18と同様にして金粘土を調製した。この金粘土を比較例6とした。
<比較例7>
金粉末90重量%と、メチルセルロース0.5重量%と、水9.5重量%とを混合したことを除いて、実施例18と同様にして金粘土を調製した。この金粘土を比較例7とした。
<比較例8>
金粉末80重量%と、メチルセルロース10重量%と、水10重量%とを混合したことを除いて、実施例18と同様にして金粘土を調製した。この金粘土を比較例8とした。
<Comparative Example 5>
A gold clay was prepared in the same manner as in Example 18 except that 45% by weight of gold powder, 7.5% by weight of methylcellulose, and 47.5% by weight of water were mixed. This gold clay was designated as Comparative Example 5.
<Comparative Example 6>
A gold clay was prepared in the same manner as in Example 18 except that 97% by weight of gold powder, 2.5% by weight of methylcellulose, and 0.5% by weight of water were mixed. This gold clay was designated as Comparative Example 6.
<Comparative Example 7>
A gold clay was prepared in the same manner as in Example 18 except that 90% by weight of gold powder, 0.5% by weight of methylcellulose, and 9.5% by weight of water were mixed. This gold clay was designated as Comparative Example 7.
<Comparative Example 8>
A gold clay was prepared in the same manner as in Example 18 except that 80% by weight of gold powder, 10% by weight of methylcellulose, and 10% by weight of water were mixed. This gold clay was designated as Comparative Example 8.
<比較試験2及び評価>
上記実施例18〜23及び比較例5〜8の金粘土を所定の形状に造形し、得られた造形体を550℃の低温度で30分間焼結することにより、縦×横×長さがそれぞれ3mm×4mm×65mmである直方体状の焼結体を作製し、これらの焼結体の引張り強さ及びビッカース硬さをそれぞれ測定した。また上記焼結体を磁気研磨器にかけ、焼結体の表面を研磨して表面に形成された白い層を除去し、目視による同一光度を発現するまでの研磨時間を測定した。これらの結果を表2に示す。
<Comparative test 2 and evaluation>
By shaping the gold clays of Examples 18 to 23 and Comparative Examples 5 to 8 into a predetermined shape and sintering the obtained shaped body at a low temperature of 550 ° C. for 30 minutes, the length × width × length is A rectangular parallelepiped sintered body of 3 mm × 4 mm × 65 mm was prepared, and the tensile strength and Vickers hardness of these sintered bodies were measured. Further, the sintered body was subjected to a magnetic polishing machine, the surface of the sintered body was polished to remove the white layer formed on the surface, and the polishing time until the same luminous intensity was visually observed was measured. These results are shown in Table 2.
表2から明らかなように、比較例5〜8の焼結体では、引張り強さが39〜50N/mm2と小さかったのに対し、実施例18〜23の焼結体では、引張り強さが60〜85N/mm2と大きくなった。また比較例5〜8の焼結体では、ビッカース硬さがHv18〜30と低かったのに対し、実施例18〜23の焼結体では、ビッカース硬さがHv32〜38と高くなった。更に比較例5〜8の焼結体では、研削時間が40〜100分と長かったのに対し、実施例18〜23の焼結体では、研削時間が20〜30分と短くなった。従って、比較例5〜8の焼結体では、強度が不足し、貴金属としての質感を得るのに多くの時間を要したのに対し、実施例18〜23の焼結体では、強度を向上できるとともに、比較的短時間で貴金属としての質感が得られることが判った。 As apparent from Table 2, in the sintered bodies of Comparative Examples 5 to 8, the tensile strength was as small as 39 to 50 N / mm 2 , whereas in the sintered bodies of Examples 18 to 23, the tensile strength was Increased to 60 to 85 N / mm 2 . In the sintered bodies of Comparative Examples 5 to 8, the Vickers hardness was as low as Hv 18 to 30, whereas in the sintered bodies of Examples 18 to 23, the Vickers hardness was increased to Hv 32 to 38. Furthermore, in the sintered bodies of Comparative Examples 5 to 8, the grinding time was as long as 40 to 100 minutes, whereas in the sintered bodies of Examples 18 to 23, the grinding time was shortened to 20 to 30 minutes. Therefore, in the sintered bodies of Comparative Examples 5 to 8, the strength was insufficient, and it took much time to obtain a texture as a noble metal, whereas in the sintered bodies of Examples 18 to 23, the strength was improved. It was found that the texture as a noble metal can be obtained in a relatively short time.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006214598A JP2008038205A (en) | 2006-08-07 | 2006-08-07 | Gold powder for gold clay, and gold clay comprising the gold powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006214598A JP2008038205A (en) | 2006-08-07 | 2006-08-07 | Gold powder for gold clay, and gold clay comprising the gold powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008038205A true JP2008038205A (en) | 2008-02-21 |
Family
ID=39173579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006214598A Withdrawn JP2008038205A (en) | 2006-08-07 | 2006-08-07 | Gold powder for gold clay, and gold clay comprising the gold powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008038205A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115945692A (en) * | 2023-03-14 | 2023-04-11 | 长春黄金研究院有限公司 | Preparation method of water-soluble solid gold colloid |
-
2006
- 2006-08-07 JP JP2006214598A patent/JP2008038205A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115945692A (en) * | 2023-03-14 | 2023-04-11 | 长春黄金研究院有限公司 | Preparation method of water-soluble solid gold colloid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW584613B (en) | Silver powder for silver clay and silver clay containing this silver powder | |
KR100881306B1 (en) | Silver powder for silver clay and silver clay comprising the silver powder | |
JP2008038206A (en) | Platinum powder for platinum clay, and platinum clay comprising the platinum powder | |
JP4761407B1 (en) | Clay-like composition for forming silver-copper alloy sintered body, powder for clay-like composition for forming silver-copper alloy sintered body, method for producing clay-like composition for forming silver-copper alloy sintered body, | |
JP2008038205A (en) | Gold powder for gold clay, and gold clay comprising the gold powder | |
EP2979782B1 (en) | Clay-like composition for noble metal sintered compact | |
JP2006118042A (en) | Silver powder for silver clay and silver clay containing the silver powder | |
JP2005290498A (en) | Silver powder for silver clay excellent in low temperature sinterability and silver clay containing the silver powder | |
Santacruz et al. | Gel casting of aqueous suspensions of BaTiO3 nanopowders | |
JP2976707B2 (en) | Metal plastic composition | |
JP7171973B1 (en) | Method for producing silicon nitride powder, slurry, and silicon nitride sintered body | |
JP2004292894A (en) | Silver clay for forming porous sintered compact | |
JP4965696B2 (en) | Method for producing oxide dispersion strengthened platinum alloy | |
JP7480439B2 (en) | Oxide sintered body, its manufacturing method, and sputtering target material | |
JP2001003101A (en) | Silver powder for silver clay excellent in sinterability, and silver clay containing the same | |
KR102077280B1 (en) | Silver - ceramic composites for silver art clay and producing method of same | |
WO2012053640A1 (en) | Clay-like composition for forming sintered body, powder for clay-like composition for forming sintered body, method for producing clay-like composition for forming sintered body, gold sintered body, and method for producing gold sintered body | |
JP5672945B2 (en) | Clay-like composition for forming sintered body, powder for clay-like composition for forming sintered body, method for producing clay-like composition for forming sintered body, silver sintered body, and method for producing silver sintered body | |
JP2008069428A (en) | Die production method and die produced by the production method | |
JP3978727B2 (en) | Gold-coated silver powder for silver clay with excellent corrosion resistance and low temperature sinterability and silver clay with excellent low temperature sinterability without discoloration | |
JP2006315911A (en) | Ceramic granule | |
JP2001080971A (en) | Production of ceramic composite sintered compact | |
JP2001089145A (en) | Zirconia powder | |
KR20240114752A (en) | Dental oxide ceramic calcined body with excellent machinability and manufacturing method thereof | |
JP5459850B2 (en) | Silicon nitride sintered body and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090331 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20101110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101118 |