JP2006118042A - Silver powder for silver clay and silver clay containing the silver powder - Google Patents

Silver powder for silver clay and silver clay containing the silver powder Download PDF

Info

Publication number
JP2006118042A
JP2006118042A JP2005272364A JP2005272364A JP2006118042A JP 2006118042 A JP2006118042 A JP 2006118042A JP 2005272364 A JP2005272364 A JP 2005272364A JP 2005272364 A JP2005272364 A JP 2005272364A JP 2006118042 A JP2006118042 A JP 2006118042A
Authority
JP
Japan
Prior art keywords
silver
silver particles
clay
particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005272364A
Other languages
Japanese (ja)
Inventor
Akihiro Higami
晃裕 樋上
Yusuke Watarai
祐介 渡会
Reiko Ogawa
怜子 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005272364A priority Critical patent/JP2006118042A/en
Publication of JP2006118042A publication Critical patent/JP2006118042A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the shrinkage percentage of a sintered compact obtained by firing silver clay containing silver powder, and to allow the shrinkage percentage of the sintered compact to be hardly changed even if it is fired in a wide temperature range of 600 to 900°C. <P>SOLUTION: The silver powder for silver clay is obtained by mixing first silver particles with a mean particle diameter of 0.1 to 0.5 μm in 20 to 50 wt.% and second silver particles with a mean particle diameter of 30 to 60 μm in 80 to 50 wt.%. The sphericity of the second silver particles is ≤10%, and the specific surface area of the second silver particles is ≤0.1 m<SP>2</SP>/g. Further, the half width H<SB>1</SB>of the particle size distribution in the first silver particles is 0.2 to 0.8 μm, and the half width H<SB>2</SB>of the particle size distribution in the second silver particles is 20 to 80 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低収縮性及び収縮率安定性に優れた銀粘土用銀粉末と、この銀粉末を含む銀粘土に関するものである。   The present invention relates to a silver clay silver powder excellent in low shrinkage and shrinkage rate stability, and a silver clay containing the silver powder.

従来、銀の宝飾品や美術工芸品は鋳造又は鍛造により製造されるの一般的であったが、近年、銀粉末を含んだ銀粘土が市販されるようになってきた。この銀粘土を成形・焼成することにより、所定の形状を有する銀の宝飾品や美術工芸品が製造される。上記銀粘土に含まれる銀粉末として、平均粒径が2μm以下、好ましくは0.5〜1.5μm、更に好ましくは0.6〜1.2μmである小径の銀粒子を15〜50重量%と、平均粒径が2μmを越え100μm以下、好ましくは3〜20μm、更に好ましくは3〜8μmである大径の銀粒子とを混合することにより構成された銀粘土用銀粉末が開示されている(例えば、特許文献1参照。)。この銀粘土用銀粉末では、銀粉末50〜95重量%と、有機系バインダ0.5〜8重量%と、残部の水とを混合して銀粘土が作製される。
このように作製された銀粘土では、純銀の融点よりも250〜410℃低い温度、即ち550〜710℃未満の温度で焼成しても、十分に焼成でき、所望の引っ張り強度及び密度が得られるようになっている。
特開2002−241802号公報(請求項1、明細書[0005])
Conventionally, silver jewelry and arts and crafts are generally manufactured by casting or forging, but in recent years, silver clay containing silver powder has come to be marketed. By molding and baking this silver clay, silver jewelry and arts and crafts having a predetermined shape are manufactured. As the silver powder contained in the silver clay, the average particle size is 2 μm or less, preferably 0.5 to 1.5 μm, more preferably 0.6 to 1.2 μm, and small particles of 15 to 50% by weight. In addition, silver powder for silver clay is disclosed which is constituted by mixing large-sized silver particles having an average particle size of more than 2 μm and not more than 100 μm, preferably 3 to 20 μm, more preferably 3 to 8 μm ( For example, see Patent Document 1.) In this silver powder for silver clay, silver clay is prepared by mixing 50 to 95% by weight of silver powder, 0.5 to 8% by weight of an organic binder, and the remaining water.
The silver clay thus produced can be sufficiently fired even at a temperature lower than the melting point of pure silver by 250 to 410 ° C., that is, a temperature of less than 550 to 710 ° C., and desired tensile strength and density can be obtained. It is like that.
Japanese Patent Laying-Open No. 2002-241802 (Claim 1, Specification [0005])

上記従来の特許文献1に示された銀粘土では、600℃程度と比較的低い温度で焼成すると、大径の銀粒子が焼結せずに、小径の銀粒子が焼結することにより、小径の銀粒子が大径の銀粒子を結合するため、かさ密度が殆ど変わることなく収縮率の小さい焼結体が得られる。
しかし、特許文献1に示された銀粘土では、大径の銀粒子の平均粒径の範囲が広すぎるため、焼成温度を800〜900℃まで高くすると、焼結体の収縮率が大きくなる場合があった。具体的には、大径の銀粒子の平均粒径が好ましい範囲の3〜20μmにおいて、焼結体の収縮率が大きくなる問題点があった。このため、収縮率の小さい焼結体を得るには、焼結温度を550〜710℃と低い温度に制御しなければならなかった。
本発明の目的は、焼結体の収縮率が小さく、かつ600〜900℃と広い温度範囲で焼成しても焼結体の収縮率が殆ど変化しない、銀粘土用銀粉末及びこの銀粉末を含む銀粘土を提供することにある。
本発明の別の目的は、従来と同等の有機バインダの混合割合、で従来より造形性を向上できる、銀粘土を提供することにある。
In the silver clay shown in the above-mentioned conventional Patent Document 1, when sintered at a relatively low temperature of about 600 ° C., the large diameter silver particles are not sintered, but the small diameter silver particles are sintered. Since the silver particles bind to the large-diameter silver particles, a sintered body having a small shrinkage can be obtained with almost no change in bulk density.
However, in the silver clay shown in Patent Document 1, since the range of the average particle diameter of the large-diameter silver particles is too wide, when the firing temperature is increased to 800 to 900 ° C., the shrinkage ratio of the sintered body increases. was there. Specifically, there is a problem that the shrinkage ratio of the sintered body increases when the average particle diameter of the large-diameter silver particles is 3 to 20 μm in the preferable range. For this reason, in order to obtain a sintered body having a small shrinkage rate, the sintering temperature had to be controlled to a low temperature of 550 to 710 ° C.
An object of the present invention is to provide a silver powder for silver clay and a silver powder, in which the shrinkage rate of the sintered body is small and the shrinkage rate of the sintered body hardly changes even when fired in a wide temperature range of 600 to 900 ° C. It is to provide silver clay containing.
Another object of the present invention is to provide a silver clay that can improve the formability as compared with a conventional organic binder having a mixing ratio of an organic binder.

請求項1に係る発明は、平均粒径が0.1〜0.5μmである第1銀粒子20〜50重量%と、平均粒径が30〜60μmである第2銀粒子80〜50重量%とを混合してなる銀粘土用銀粉末である。
この請求項1に記載された銀粘土用銀粉末では、この銀粉末を用いて作製した銀粘土を600℃程度と比較的低い温度で焼成すると、第2銀粒子が焼結せずに第1銀粒子が焼結して、第1銀粒子が第2銀粒子を結合するため、収縮率の小さい焼結体が得られる。一方、この銀粉末を用いて作製した銀粘土を900℃程度と比較的高い温度で焼成すると、第1銀粒子が焼結するとともに、第2銀粒子が僅かに焼結し始めるけれども、第2銀粒子の平均粒径が大径であるため焼結し難く、収縮率の小さい焼結体を得ることができる。
In the invention according to claim 1, the first silver particles having an average particle diameter of 0.1 to 0.5 μm are 20 to 50% by weight, and the second silver particles having an average particle diameter of 30 to 60 μm are 80 to 50% by weight. Is a silver powder for silver clay.
In the silver powder for silver clay described in claim 1, when silver clay produced using this silver powder is fired at a relatively low temperature of about 600 ° C., the second silver particles are not sintered and the first Since the silver particles are sintered and the first silver particles are bonded to the second silver particles, a sintered body having a small shrinkage is obtained. On the other hand, when the silver clay produced using this silver powder is fired at a relatively high temperature of about 900 ° C., the first silver particles are sintered and the second silver particles begin to be slightly sintered. Since the average particle diameter of the silver particles is large, it is difficult to sinter and a sintered body having a small shrinkage rate can be obtained.

請求項2に係る発明は、請求項1に係る発明であって、更に第2銀粒子の真球度が10%以下であり、第2銀粒子の比表面積が0.1m2/g以下であることを特徴とする。
この請求項2に記載された銀粘土用銀粉末では、第2銀粒子を真球に近い形状にするとともにその比表面積を小さくし、この第2銀粒子と第1銀粒子を混合してなる銀粉末を含む銀粘土の有機バインダの混合割合を少なくすることにより、第2銀粒子同士が互いに密に接触するとともに、これらの第2銀粒子の僅かな隙間に第1銀粒子が侵入した状態で焼成することができる。なお、上記銀粉末に混合される有機バインダの混合割合を従来と同等にすると、上記銀粉末を含む銀粘土は従来の銀粘土より造形性を向上できる。
The invention according to claim 2 is the invention according to claim 1, wherein the sphericity of the second silver particles is 10% or less, and the specific surface area of the second silver particles is 0.1 m 2 / g or less. It is characterized by being.
In the silver powder for silver clay described in claim 2, the second silver particles are formed in a shape close to a true sphere, the specific surface area is reduced, and the second silver particles and the first silver particles are mixed. By reducing the mixing ratio of the organic binder of silver clay containing silver powder, the second silver particles are in intimate contact with each other, and the first silver particles have entered the slight gap between these second silver particles. Can be fired. In addition, if the mixing ratio of the organic binder mixed with the said silver powder is made equivalent to the past, the silver clay containing the said silver powder can improve a moldability rather than the conventional silver clay.

請求項3に係る発明は、請求項1に係る発明であって、更に第1銀粒子の粒度分布の半値幅H1が0.2〜0.8μmであり、第2銀粒子の粒度分布の半値幅H2が20〜80μmであることを特徴とする。
この請求項3に記載された銀粘土用銀粉末では、第2銀粒子の粒度分布の半値幅H2が20〜80μmと狭いため、大径の第2銀粒子の粒径が揃うため、銀粉末を含む銀粘土を900℃程度と高い温度で焼成しても、第2銀粒子が更に焼結し難くなる。
The invention according to claim 3 is the invention according to claim 1, wherein the half-value width H 1 of the particle size distribution of the first silver particles is 0.2 to 0.8 μm, and the particle size distribution of the second silver particles is The half width H 2 is 20 to 80 μm.
In the silver powder for silver clay described in claim 3, since the half-value width H 2 of the particle size distribution of the second silver particles is as narrow as 20 to 80 μm, the particle diameters of the large second silver particles are uniform. Even if the silver clay containing the powder is fired at a high temperature of about 900 ° C., the second silver particles are more difficult to sinter.

請求項4に係る発明は、請求項1ないし3いずれか1項に記載の銀粘土用銀粉末50〜95重量%と、有機系バインダ0.5〜8重量%と、残部の水とを混合してなる銀粘土である。
この請求項4に記載された銀粘土では、この銀粘土を600℃程度と比較的低い温度で焼成すると、第2銀粒子が焼結せずに第1銀粒子が焼結して、第1銀粒子が第2銀粒子を結合するため、収縮率の小さい焼結体が得られる。一方、この銀粘土を900℃程度と比較的高い温度で焼成すると、第1銀粒子が焼結するとともに、第2銀粒子が僅かに焼結し始めるけれども、第2銀粒子の平均粒径が大径であるため焼結し難く、収縮率の小さい焼結体を得ることができる。
また水の一部を0.03〜3重量%の界面活性剤又は0.1〜3重量%の油脂のいずれか一方又は双方に置き換えることが好ましい。
The invention according to claim 4 is a mixture of 50 to 95% by weight of silver powder for silver clay according to any one of claims 1 to 3, 0.5 to 8% by weight of an organic binder, and the remaining water. It is made of silver clay.
In the silver clay described in claim 4, when the silver clay is fired at a relatively low temperature of about 600 ° C., the first silver particles are sintered without the second silver particles being sintered. Since the silver particles bind the second silver particles, a sintered body having a small shrinkage rate is obtained. On the other hand, when this silver clay is fired at a relatively high temperature of about 900 ° C., the first silver particles are sintered and the second silver particles begin to sinter slightly. Since it has a large diameter, it is difficult to sinter and a sintered body having a small shrinkage rate can be obtained.
Moreover, it is preferable to replace a part of water with either one or both of 0.03 to 3% by weight of surfactant or 0.1 to 3% by weight of fats and oils.

以上述べたように、本発明によれば、平均粒径0.1〜0.5μmの第1銀粒子20〜50重量%と、平均粒径30〜60μmの第2銀粒子80〜50重量%との混合物により銀粉末を構成したので、この銀粉末を用いて作製した銀粘土を、600℃程度と比較的低い温度で焼成すると、焼結しない第2銀粒子を第1銀粒子の焼結により結合した状態で焼結体が作製され、900℃程度と比較的高い温度で焼成しても、殆ど焼結しない第2銀粉末を第1銀粉末の焼結により結合した状態で焼結体が作製される。この結果、焼結体の収縮率が小さく、かつ600〜900℃と広い温度範囲で焼成しても焼結体の収縮率が殆ど変化せず、収縮率の小さい焼結体を得ることができる。   As described above, according to the present invention, the first silver particles having an average particle diameter of 0.1 to 0.5 μm are 20 to 50% by weight and the second silver particles having an average particle diameter of 30 to 60 μm are 80 to 50% by weight. Since the silver powder was composed of a mixture of the silver powder, when the silver clay produced using the silver powder was fired at a relatively low temperature of about 600 ° C., the second silver particles that were not sintered were sintered to the first silver particles. The sintered body is produced in a state where the second silver powder, which is hardly sintered even when fired at a relatively high temperature of about 900 ° C., is joined by sintering the first silver powder. Is produced. As a result, the shrinkage rate of the sintered body is small, and even when sintered in a wide temperature range of 600 to 900 ° C., the shrinkage rate of the sintered body hardly changes and a sintered body having a small shrinkage rate can be obtained. .

また第2銀粒子の真球度を10%以下にし、第2銀粒子の比表面積を0.1m2/g以下にすれば、第2銀粒子が真球に近い形状になるとともにその比表面積が小さくなる。この結果、銀粉末を含む銀粘土の有機バインダの混合割合を少なくすることにより、第2銀粒子同士が互いに密に接触するとともに、これらの第2銀粒子の僅かな隙間に第1銀粒子が侵入した状態で焼成することができるので、焼結体の収縮率を更に小さくすることができる。なお、上記銀粉末に混合される有機バインダの混合割合を従来と同等にすれば、上記銀粉末を含む銀粘土は従来の銀粘土より造形性を向上できる。
また第1銀粒子の粒度分布の半値幅H1を0.2〜0.8μmとし、第2銀粒子の粒度分布の半値幅H2を20〜80μmとすれば、大径の第2銀粒子の粒径が揃うため、銀粉末を含む銀粘土を900℃程度と高い温度で焼成しても、第2銀粒子が更に焼結し難くなる。この結果、焼結体の収縮率を更に小さくすることができる。
Further, if the sphericity of the second silver particles is 10% or less and the specific surface area of the second silver particles is 0.1 m 2 / g or less, the second silver particles have a shape close to a true sphere and its specific surface area. Becomes smaller. As a result, by reducing the mixing ratio of the organic binder of silver clay containing silver powder, the second silver particles are in intimate contact with each other, and the first silver particles are in a slight gap between these second silver particles. Since it can be fired in the invading state, the shrinkage rate of the sintered body can be further reduced. In addition, if the mixing ratio of the organic binder mixed with the said silver powder is made equivalent to the past, the silver clay containing the said silver powder can improve a moldability rather than the conventional silver clay.
If the half-value width H 1 of the particle size distribution of the first silver particles is 0.2 to 0.8 μm and the half-value width H 2 of the particle size distribution of the second silver particles is 20 to 80 μm, the second silver particles having a large diameter Therefore, even if silver clay containing silver powder is fired at a high temperature of about 900 ° C., the second silver particles are more difficult to sinter. As a result, the shrinkage rate of the sintered body can be further reduced.

更に上記銀粘土用銀粉末5〜95重量%と、有機系バインダ0.5〜8重量%と、残部の水とを混合物により銀粘土を構成すれば、この銀粘土を、600℃程度と比較的低い温度で焼成すると、焼結しない第2銀粒子を第1銀粒子の焼結により結合した状態で焼結体が作製され、900℃程度と比較的高い温度で焼成しても、殆ど焼結しない第2銀粉末を第1銀粉末の焼結により結合した状態で焼結体が作製される。この結果、上記と同様に焼結体の収縮率が小さく、かつ600〜900℃と広い温度範囲で焼成しても焼結体の収縮率が殆ど変化せず、収縮率の小さい焼結体を得ることができる。   Furthermore, if the silver clay is composed of a mixture of 5 to 95% by weight of the silver powder for silver clay, 0.5 to 8% by weight of the organic binder, and the remaining water, the silver clay is compared with about 600 ° C. When sintered at a relatively low temperature, a sintered body is produced in a state where the second silver particles that are not sintered are combined by sintering the first silver particles. A sintered body is produced in a state in which the second silver powder not to be bonded is bonded by sintering the first silver powder. As a result, similarly to the above, the sintered body has a small shrinkage rate, and even when sintered in a wide temperature range of 600 to 900 ° C., the sintered body shrinkage rate hardly changes, and a sintered body having a small shrinkage rate is obtained. Obtainable.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
本発明の銀粘土用銀粉末は、平均粒径が0.1〜0.5μm、好ましくは0.2〜0.4μmである第1銀粒子と、平均粒径が30〜60μm、好ましくは35〜50μmである第2銀粒子とを混合することにより構成される。また第1銀粒子及び第2銀粒子の混合割合は、第1銀粒子が20〜50重量%、好ましくは25〜40重量%であり、第2銀粒子が80〜50重量%、好ましくは60〜75重量%である。ここで、小径の第1銀粒子の平均粒径を0.1〜0.5μmの範囲に限定したのは、0.1μm未満では銀粒子同士が凝集してしまい、0.5μmを越えると焼成温度の下限値が高くなってしまうからである。また大径の第2銀粒子の平均粒径を30〜60μmの範囲に限定したのは、30μm未満では900℃での焼成時に第2銀粒子が焼結して焼結体の収縮率が大きくなり、60μmを越えると粘土としての造形性が悪くなるからである。上記小径の第1銀粒子の混合割合を20〜50重量%の範囲に限定し、大径の第2銀粒子の混合割合を80〜50重量%の範囲に限定したのは、第1銀粒子が20重量%未満であって第2銀粒子が80重量%を越えると、焼結体の機械的強度が弱くなり、第1銀粒子が50重量%を越え第2銀粒子が50%未満では、粘土状にするために添加する有機系バインダの量が増加するとともに焼結体の収縮率が大きくなるからである。なお、小径の第1銀粒子は化学還元法、電解還元法、ビーズミル法などにより作製され、大径の第2銀粒子は水アトマイズ法、ガスアトマイズ法、回転ディスク法などにより作製される。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The silver powder for silver clay of the present invention has first silver particles having an average particle diameter of 0.1 to 0.5 μm, preferably 0.2 to 0.4 μm, and an average particle diameter of 30 to 60 μm, preferably 35. It is comprised by mixing with the 2nd silver particle which is -50 micrometers. The mixing ratio of the first silver particles and the second silver particles is such that the first silver particles are 20 to 50% by weight, preferably 25 to 40% by weight, and the second silver particles are 80 to 50% by weight, preferably 60%. ~ 75 wt%. Here, the average particle size of the first silver particles having a small diameter is limited to the range of 0.1 to 0.5 μm because the silver particles are aggregated when the particle diameter is less than 0.1 μm, and the firing is performed when the particle diameter exceeds 0.5 μm. This is because the lower limit value of the temperature becomes high. Moreover, the reason why the average particle diameter of the large-diameter second silver particles is limited to the range of 30 to 60 μm is that if it is less than 30 μm, the second silver particles are sintered during firing at 900 ° C. and the shrinkage ratio of the sintered body is large. When the thickness exceeds 60 μm, the formability as clay becomes worse. The reason why the mixing ratio of the first silver particles having a small diameter is limited to a range of 20 to 50% by weight and the mixing ratio of the second silver particles having a large diameter is limited to a range of 80 to 50% by weight is the first silver particles. Is less than 20% by weight and the second silver particles exceed 80% by weight, the mechanical strength of the sintered body becomes weak, and the first silver particles exceeds 50% by weight and the second silver particles are less than 50%. This is because the shrinkage rate of the sintered body increases as the amount of the organic binder added to make the clay increases. The first silver particles having a small diameter are produced by a chemical reduction method, an electrolytic reduction method, a bead mill method or the like, and the second silver particles having a large diameter are produced by a water atomizing method, a gas atomizing method, a rotating disk method or the like.

なお、上記第1銀粒子や第2銀粒子の粒度分布の測定には、MICROTRAC FRA型粒度分析計(LEED & NORTHRUP社製)が通常用いられる。このMICROTRAC FRA型粒度分析計では、ヘキサメタリン酸ナトリウムを分散剤として用い、銀粉末を水中に分散させた状態で粒子の粒度分布を測定するようになっている。なお、MICROTRAC FRA型粒度分析計による粒度分析中に、粒子の凝集により粒度分布の極大ピークが複数個観測され、本来の平均粒径より大きな値が観測される場合がある。しかし、このような凝集状態を含めた粒子の平均粒径のデータに基づいて本発明の粒子の平均粒径と相違すると主張することはできない。なぜなら、粒度分布を測定する粒子が何も混合しない粉末状態であるときに凝集していても、この粒子をバインダと十分に混練して粘土状態としたものでは、混練による剪断力により凝集が解けるため、粒子の平均粒径は凝集のない平均粒径、即ち本発明の粒子の平均粒径の範囲内に入るからである。上記凝集状態を含む粒子では、必要に応じて超音波洗浄機により凝集した粒子の分散を促進するなどした後に粒子の粒度分布を測定することが好ましい。また上記処理を施しても凝集が解けない場合には、走査型電子顕微鏡にて無作為にサンプリングした粉末を5点以上観察し、粒子同士が焼結の初期段階である凝結の状態でないことを確認した上で、得られた画像を解析することにより粒度分布を決定してもよい。即ち、本発明において平均粒径と記述しているものは、凝集がないと仮定したときの平均粒子径若しくは1次粒子径と言い換えることができる。   A MICROTRAC FRA particle size analyzer (manufactured by LEED & NORTHRUP) is usually used to measure the particle size distribution of the first silver particles and the second silver particles. In this MICROTRAC FRA type particle size analyzer, the particle size distribution of particles is measured with silver powder dispersed in water using sodium hexametaphosphate as a dispersant. During particle size analysis using a MICROTRAC FRA type particle size analyzer, a plurality of maximum peaks in the particle size distribution are observed due to particle aggregation, and a value larger than the original average particle size may be observed. However, it cannot be argued that it is different from the average particle size of the particles of the present invention based on the data on the average particle size of the particles including such agglomerated state. This is because even if the particles whose particle size distribution is measured are in a powder state where nothing is mixed, if the particles are sufficiently kneaded with a binder to form a clay state, the agglomeration can be dissolved by the shearing force due to kneading. Therefore, the average particle size of the particles falls within the range of the average particle size without aggregation, that is, the average particle size of the particles of the present invention. In the case of the particles containing the aggregated state, it is preferable to measure the particle size distribution of the particles after promoting the dispersion of the aggregated particles with an ultrasonic cleaner as necessary. In addition, if the aggregation cannot be solved even after the above treatment, observe 5 or more powders randomly sampled with a scanning electron microscope, and confirm that the particles are not in a coagulation state, which is the initial stage of sintering. After confirmation, the particle size distribution may be determined by analyzing the obtained image. That is, what is described as an average particle diameter in the present invention can be paraphrased as an average particle diameter or a primary particle diameter when it is assumed that there is no aggregation.

また大径の第2銀粒子の真球度は10%以下、好ましくは8%以下であり、第2銀粒子の比表面積は0.1m2/g以下、好ましくは0.02〜0.09m2/gである。本明細書及び特許請求の範囲において、第2銀粒子の真球度とは、1つの第2銀粒子の最大直径と最小直径との差を、その第2銀粒子の平均直径で除した値をいう。具体的には、先ず第2銀粒子を電子顕微鏡により撮影し、その写真に写った第2銀粒子の直径を角度を変えて複数箇所で測定する。次いで第2銀粒子の最大直径、最小直径及び平均直径を求める。次に第2銀粒子の最大直径と最小直径との差を平均直径で除してその第2銀粒子の真球度を算出する。上記操作を複数の第2銀粒子について行って複数の第2銀粒子の真球度を算出し、その最大値を真球度の下限値とする。ここで、第2銀粒子の真球度を10%以下に限定し、第2銀粒子の比表面積を0.1m2/g以下に限定したのは、真球度が10%を越え比表面積が0.1m2/gを越えると第2銀粒子同士が密に接触できないからである。なお、上記真球度が10%以下の大径の第2銀粒子は水アトマイズ法で作製される。 The sphericity of the large-diameter second silver particles is 10% or less, preferably 8% or less, and the specific surface area of the second silver particles is 0.1 m 2 / g or less, preferably 0.02 to 0.09 m. 2 / g. In the present specification and claims, the sphericity of the second silver particle is a value obtained by dividing the difference between the maximum diameter and the minimum diameter of one second silver particle by the average diameter of the second silver particle. Say. Specifically, first, the second silver particles are photographed with an electron microscope, and the diameters of the second silver particles appearing in the photograph are measured at a plurality of locations at different angles. Next, the maximum diameter, minimum diameter, and average diameter of the second silver particles are determined. Next, the sphericity of the second silver particle is calculated by dividing the difference between the maximum diameter and the minimum diameter of the second silver particle by the average diameter. The above operation is performed on the plurality of second silver particles to calculate the sphericity of the plurality of second silver particles, and the maximum value is set as the lower limit of the sphericity. Here, the sphericity of the second silver particles is limited to 10% or less, and the specific surface area of the second silver particles is limited to 0.1 m 2 / g or less. This is because the second silver particles cannot be in intimate contact with each other when the particle size exceeds 0.1 m 2 / g. The large-diameter second silver particles having a sphericity of 10% or less are produced by a water atomization method.

更に第1銀粒子の粒度分布の半値幅H1(図1)は0.2〜0.8μm、好ましくは0.3〜0.6μmであり、第2銀粒子の粒度分布の半値幅H2(図1)は20〜80μm、好ましくは30〜50μmである。本明細書及び特許請求の範囲において、半値幅とは、第1及び第2銀粒子の山形の粒度分布曲線において、銀粒子の個数が最大値の1/2の値における銀粒子の平均粒径の幅をいう。ここで、第1銀粒子の粒度分布の半値幅H1を0.2〜0.8μmの範囲に限定したのは、0.2μm未満では分級が難しく、0.8μmを越えると焼結体の収縮率を大きくする粒径の銀粒子を含んでしまうからである。また第2銀粒子の粒度分布の半値幅H2を20〜80μmの範囲に限定したのは、20μm未満では分級が難しく、80μmを越えると焼結体の収縮率を大きくする粒径の銀粒子を含んでしまうからである。なお、上記粒度分布の半値幅H1が0.2〜0.8μmである第1銀粒子は化学還元法で作製され、粒度分布の半値幅H2が20〜80μmの第2銀粒子は水アトマイズ法で作製される。 Further, the half width H 1 (FIG. 1) of the particle size distribution of the first silver particles is 0.2 to 0.8 μm, preferably 0.3 to 0.6 μm, and the half width H 2 of the particle size distribution of the second silver particles. (FIG. 1) is 20-80 micrometers, Preferably it is 30-50 micrometers. In the present specification and claims, the half width is the average particle diameter of silver particles when the number of silver particles is ½ of the maximum value in the mountain-shaped particle size distribution curve of the first and second silver particles. The width of Here, the reason why the half width H 1 of the particle size distribution of the first silver particles is limited to the range of 0.2 to 0.8 μm is that classification is difficult if it is less than 0.2 μm, and if it exceeds 0.8 μm, This is because silver particles having a particle size that increases the shrinkage rate are included. Further, the half-value width H 2 of the particle size distribution of the second silver particles is limited to the range of 20 to 80 μm. If the particle size is less than 20 μm, classification is difficult. It is because it will be included. Note that the first silver particles half width H 1 of the particle size distribution is 0.2~0.8μm is produced by a chemical reduction method, a second silver particles of the half-value width H 2 is 20~80μm water of the particle size distribution It is produced by the atomizing method.

このように構成された銀粘土用銀粉末では、この銀粉末を用いて作製した銀粘土を600℃程度と比較的低い温度で焼成すると、第2銀粒子が焼結せずに第1銀粒子が焼結して、第1銀粒子が第2銀粒子を結合するため、収縮率の小さい焼結体が得られる。一方、この銀粉末を用いて作製した銀粘土を900℃程度と比較的高い温度で焼成すると、第1銀粒子が焼結するとともに、第2銀粒子が僅かに焼結し始めるけれども、第2銀粒子の平均粒径が大径であるため焼結し難く、収縮率の小さい焼結体を得ることができる。この結果、焼結体の収縮率が小さく、かつ600〜900℃と広い温度範囲で焼成しても焼結体の収縮率が殆ど変化せず、収縮率の小さい焼結体を得ることができる。   In the silver powder for silver clay constructed as described above, when the silver clay produced using this silver powder is fired at a relatively low temperature of about 600 ° C., the second silver particles are not sintered and the first silver particles Since the first silver particles are bonded to the second silver particles, a sintered body having a small shrinkage rate is obtained. On the other hand, when the silver clay produced using this silver powder is fired at a relatively high temperature of about 900 ° C., the first silver particles are sintered and the second silver particles begin to be slightly sintered. Since the average particle diameter of the silver particles is large, it is difficult to sinter and a sintered body having a small shrinkage rate can be obtained. As a result, the shrinkage rate of the sintered body is small, and even when sintered in a wide temperature range of 600 to 900 ° C., the shrinkage rate of the sintered body hardly changes and a sintered body having a small shrinkage rate can be obtained. .

また第2銀粒子を真球に近い形状にするとともにその比表面積を小さくしたので、この第2銀粒子と第1銀粒子を混合してなる銀粉末を含む銀粘土の有機バインダの混合割合を少なくすれば、第2銀粒子同士が互いに密に接触するとともに、これらの第2銀粒子の僅かな隙間に第1銀粒子が侵入した状態で焼成することができる。この結果、焼結体の収縮率を更に小さくすることができる。なお、上記銀粉末に混合される有機バインダの混合割合を従来と同等にすれば、上記銀粉末を含む銀粘土は従来の銀粘土より造形性を向上できる。
更に第2銀粒子の粒度分布の半値幅H2が20〜80μmと狭いため、大径の第2銀粒子の粒径が揃うため、銀粉末を含む銀粘土を900℃程度と高い温度で焼成しても、第2銀粒子が更に焼結し難くなる。この結果、焼結体の収縮率を更に小さくすることができる。
In addition, since the second silver particles have a shape close to a true sphere and the specific surface area is reduced, the mixing ratio of the organic binder of silver clay containing silver powder obtained by mixing the second silver particles and the first silver particles is If the number is reduced, the second silver particles can be in close contact with each other, and firing can be performed in a state where the first silver particles have entered into the slight gap between the second silver particles. As a result, the shrinkage rate of the sintered body can be further reduced. In addition, if the mixing ratio of the organic binder mixed with the said silver powder is made equivalent to the past, the silver clay containing the said silver powder can improve a moldability rather than the conventional silver clay.
Furthermore, since the half-value width H 2 of the particle size distribution of the second silver particles is as narrow as 20 to 80 μm, the particle size of the second silver particles having large diameters is uniform, so that silver clay containing silver powder is fired at a high temperature of about 900 ° C. Even so, the second silver particles are more difficult to sinter. As a result, the shrinkage rate of the sintered body can be further reduced.

上記銀粉末を用いた銀粘土は、上記銀粉末50〜95重量%、好ましくは90〜94重量%と、有機系バインダ0.5〜8重量%、好ましくは0.8〜4重量%と、残部の水とを混合することにより構成される。ここで、銀粉末の混合割合を50〜95重量%の範囲に限定したのは、50重量%未満では銀粘土を焼成して得られた焼結体が十分に金属光沢を示さず、95重量%を越えると粘土としての伸びおよび強度が低下するからである。有機系バインダとしては、セルロース系バインダ、ポリビニール系バインダ、アクリル系バインダ、ワックス系バインダ、樹脂系バインダ、澱粉、ゼラチン、小麦粉などのバインダを使用できるけれども、セルロース系バインダ、特に水溶性セルロースを用いることが最も好ましい。上記バインダは、加熱すると速やかにゲル化して造形体の形状保持を容易にするために添加される。また有機系バインダの混合割合を0.5〜8重量%の範囲に限定したのは、0.5重量%未満では銀粉末を結合できず、8重量%を越えると銀粘土の成形時に微細なひび割れが発生し、光沢も減少するからである。   The silver clay using the silver powder is 50 to 95% by weight, preferably 90 to 94% by weight, 0.5 to 8% by weight of an organic binder, preferably 0.8 to 4% by weight, It is constituted by mixing the remaining water. Here, the mixing ratio of the silver powder was limited to the range of 50 to 95% by weight. When the amount was less than 50% by weight, the sintered body obtained by firing silver clay did not exhibit a sufficient metallic luster, and 95% by weight. This is because if the content exceeds 50%, the elongation and strength of the clay decrease. As the organic binder, a binder such as a cellulose binder, a polyvinyl binder, an acrylic binder, a wax binder, a resin binder, starch, gelatin, and wheat flour can be used, but a cellulose binder, particularly a water-soluble cellulose is used. Most preferred. The binder is added in order to quickly gel when heated to facilitate the shape maintenance of the shaped body. Further, the mixing ratio of the organic binder is limited to the range of 0.5 to 8% by weight. If the amount is less than 0.5% by weight, the silver powder cannot be bonded. This is because cracks occur and gloss decreases.

なお、水の一部を0.03〜3重量%、好ましくは0.04〜1重量%の界面活性剤又は0.1〜3重量%、好ましくは0.2〜2重量%の油脂のいずれか一方又は双方に置き換えてもよい。ここで、界面活性剤の添加量を0.03〜3重量%の範囲に限定したのは、0.03重量%未満では銀粒子の分散が得られず、3重量%を越えると粘土乾燥時の強度が得られないからである。また油脂の添加量を1〜3重量%の範囲に限定したのは、1重量%未満では手などへの付着防止効果が得られず、3重量%を越えると粘土乾燥に時間を要し、乾燥後に脆くなるからである。なお、界面活性剤の種類は特に限定されるものではなく、アニオン系、カチオン系、ノニオン系等の界面活性剤を使用することができる。また油脂としては、有機酸(オレイン酸、ステアリン酸、フタル酸、パルミチン酸、セパシン酸、アセチルクエン酸、ヒドロキシ安息香酸、ラウリン酸、ミリスチン酸、カプロン酸、エナント酸、酪酸、カプリン酸)、有機酸エステル(メチル基、エチル基、プロピル基、ブチル基、オクチル基、ヘキシル基、ジメチル基、ジエチル基、イソプロピル基、イソブチル基を有する有機酸エステル)、高級アルコール(オクタノール、ノナノール、デカノール)、多価アルコール(グリセリン、アラビット、ソルビタン、)、エーテル(ジオクチルエーテル、ジデシルエーテル)、或いは上記有機酸、有機酸エステル、高級アルコール、多価アルコール及びエーテルからなる群より選ばれた1種又は2種以上の混合物(例えば、オレイン酸を多く含むオリーブ油)などが挙げられる。   A part of water is either 0.03 to 3% by weight, preferably 0.04 to 1% by weight of surfactant or 0.1 to 3% by weight, preferably 0.2 to 2% by weight of fat or oil. Either or both may be replaced. Here, the addition amount of the surfactant is limited to the range of 0.03 to 3% by weight. If the amount is less than 0.03% by weight, the dispersion of silver particles cannot be obtained. This is because the above strength cannot be obtained. Moreover, the addition amount of fats and oils was limited to the range of 1 to 3% by weight. If the amount is less than 1% by weight, an effect of preventing adhesion to hands and the like cannot be obtained, and if it exceeds 3% by weight, it takes time to dry the clay. This is because it becomes brittle after drying. In addition, the kind of surfactant is not specifically limited, Surfactants, such as anionic, cationic, and nonionic, can be used. As fats and oils, organic acids (oleic acid, stearic acid, phthalic acid, palmitic acid, sepacic acid, acetylcitric acid, hydroxybenzoic acid, lauric acid, myristic acid, caproic acid, enanthic acid, butyric acid, capric acid), organic Acid ester (organic acid ester having methyl group, ethyl group, propyl group, butyl group, octyl group, hexyl group, dimethyl group, diethyl group, isopropyl group, isobutyl group), higher alcohol (octanol, nonanol, decanol), many 1 type or 2 types selected from the group consisting of a monohydric alcohol (glycerin, arabit, sorbitan), ether (dioctyl ether, didecyl ether), or the above organic acid, organic acid ester, higher alcohol, polyhydric alcohol and ether A mixture of the above (for example, oleic acid No olive oil), and the like.

上記銀粉末を含む銀粘土では、この銀粘土を600℃程度と比較的低い温度で焼成すると、第2銀粒子が焼結せずに第1銀粒子が焼結して、第1銀粒子が第2銀粒子を結合するため、収縮率の小さい焼結体が得られる。一方、この銀粘土を900℃程度と比較的高い温度で焼成すると、第1銀粒子が焼結するとともに、第2銀粒子が僅かに焼結し始めるけれども、第2銀粒子の平均粒径が大径であるため焼結し難く、収縮率の小さい焼結体を得ることができる。この結果、上記と同様に、焼結体の収縮率が小さく、かつ600〜900℃と広い温度範囲で焼成しても焼結体の収縮率が殆ど変化せず、収縮率の小さい焼結体を得ることができる。   In the silver clay containing the silver powder, when the silver clay is fired at a relatively low temperature of about 600 ° C., the first silver particles are sintered without the second silver particles being sintered. Since the second silver particles are bonded, a sintered body having a small shrinkage rate is obtained. On the other hand, when this silver clay is fired at a relatively high temperature of about 900 ° C., the first silver particles are sintered and the second silver particles begin to sinter slightly. Since it has a large diameter, it is difficult to sinter and a sintered body having a small shrinkage rate can be obtained. As a result, similar to the above, the shrinkage of the sintered body is small, and even when fired in a wide temperature range of 600 to 900 ° C., the shrinkage of the sintered body hardly changes, and the sintered body has a small shrinkage rate. Can be obtained.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず平均粒径0.1μmで半値幅0.30μmの化学還元法により作製した第1銀粒子を用意し、平均粒径40μm、半値幅30μm、比表面積0.07m2/gのアトマイズ法により作製した第2銀粒子を用意した。また有機系バインダとしてメチルセルロースを、界面活性剤としてソルスパース20,000(アビシア株式会社製)を、油脂としてオリーブ油を用意し、更に水を用意した。次に第1銀粒子40重量%と第2銀粒子60重量%とを混合して銀粉末を作製した。更にこの銀粉末90重量%と、メチルセルロース1.2重量%と、ソルスパース20,000(界面活性剤)0.05重量%と、オリーブ油0.5重量%と、水8.25重量%とを混合して銀粘土を得た。この銀粘土を実施例1とした。なお、上記第1銀粒子及び第2銀粒子の平均粒径はMICROTRAC FRA型粒度分析計(LEED & NORTHRUP社製)を用いてそれぞれ測定し、第1銀粒子及び第2銀粒子の半値幅はMICROTRAC FRA型粒度分析計(LEED & NORTHRUP社製)を用いて測定した粒度分布に基づいてそれぞれ算出した。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, first silver particles prepared by a chemical reduction method having an average particle size of 0.1 μm and a half width of 0.30 μm are prepared, and prepared by an atomizing method having an average particle size of 40 μm, a half width of 30 μm, and a specific surface area of 0.07 m 2 / g. Second silver particles prepared were prepared. Further, methylcellulose was prepared as an organic binder, Solsperse 20,000 (manufactured by Avicia Co., Ltd.) as a surfactant, olive oil as an oil and fat, and water. Next, 40% by weight of the first silver particles and 60% by weight of the second silver particles were mixed to prepare a silver powder. Furthermore, 90% by weight of this silver powder, 1.2% by weight of methylcellulose, 0.05% by weight of Solsperse 20,000 (surfactant), 0.5% by weight of olive oil, and 8.25% by weight of water are mixed. To obtain silver clay. This silver clay was designated as Example 1. The average particle size of the first silver particles and the second silver particles was measured using a MICROTRAC FRA particle size analyzer (manufactured by LEED & NORTHRUP). The half width of the first silver particles and the second silver particles was Each was calculated based on the particle size distribution measured using a MICROTRAC FRA type particle size analyzer (manufactured by LEED & NORTHRUP).

<実施例2>
第1銀粒子の平均粒径を0.2μmとし、第1銀粒子の半値幅を0.35μmとしたことを除いて、実施例1と同様にして銀粘土を作製した。この銀粘土を実施例2とした。
<実施例3>
第1銀粒子の平均粒径を0.4μmとし、第1銀粒子の半値幅を0.6μmとしたことを除いて、実施例1と同様にして銀粘土を作製した。この銀粘土を実施例3とした。
<実施例4>
第1銀粒子の平均粒径を0.5μmとし、第1銀粒子の半値幅を0.8μmとしたことを除いて、実施例1と同様にして銀粘土を作製した。この銀粘土を実施例4とした。
<Example 2>
A silver clay was prepared in the same manner as in Example 1 except that the average particle diameter of the first silver particles was 0.2 μm and the half width of the first silver particles was 0.35 μm. This silver clay was designated as Example 2.
<Example 3>
A silver clay was produced in the same manner as in Example 1 except that the average particle diameter of the first silver particles was 0.4 μm and the half width of the first silver particles was 0.6 μm. This silver clay was designated as Example 3.
<Example 4>
A silver clay was produced in the same manner as in Example 1 except that the average particle diameter of the first silver particles was 0.5 μm and the half width of the first silver particles was 0.8 μm. This silver clay was designated as Example 4.

<実施例5>
第1銀粒子の平均粒径を0.3μmとし、第1銀粒子の半値幅を0.45μmとし、第2銀粒子の平均粒径を30μmとし、第2銀粒子の半値幅を0.20μmとし、第2銀粒子の比表面積を0.09m2/gとしたことを除いて、実施例1と同様にして銀粘土を作製した。この銀粘土を実施例5とした。
<実施例6>
第2銀粒子の平均粒径を30μmとし、第2銀粒子の半値幅を30μmとし、第2銀粒子の比表面積を0.07m2/gとしたことを除いて、実施例5と同様にして銀粘土を作製した。この銀粘土を実施例6とした。
<実施例7>
第2銀粒子の平均粒径を50μmとし、第2銀粒子の半値幅を60μmとし、第2銀粒子の比表面積を0.45m2/gとしたことを除いて、実施例5と同様にして銀粘土を作製した。この銀粘土を実施例7とした。
<実施例8>
第2銀粒子の平均粒径を60μmとし、第2銀粒子の半値幅を80μmとし、第2銀粒子の比表面積を0.02m2/gとしたことを除いて、実施例5と同様にして銀粘土を作製した。この銀粘土を実施例8とした。
<Example 5>
The average particle size of the first silver particles is 0.3 μm, the half width of the first silver particles is 0.45 μm, the average particle size of the second silver particles is 30 μm, and the half width of the second silver particles is 0.20 μm. A silver clay was prepared in the same manner as in Example 1 except that the specific surface area of the second silver particles was 0.09 m 2 / g. This silver clay was designated as Example 5.
<Example 6>
The same as Example 5 except that the average particle size of the second silver particles was 30 μm, the half width of the second silver particles was 30 μm, and the specific surface area of the second silver particles was 0.07 m 2 / g. To make silver clay. This silver clay was taken as Example 6.
<Example 7>
The same as Example 5 except that the average particle size of the second silver particles was 50 μm, the half width of the second silver particles was 60 μm, and the specific surface area of the second silver particles was 0.45 m 2 / g. To make silver clay. This silver clay was designated as Example 7.
<Example 8>
The same as Example 5 except that the average particle size of the second silver particles was 60 μm, the half width of the second silver particles was 80 μm, and the specific surface area of the second silver particles was 0.02 m 2 / g. To make silver clay. This silver clay was designated as Example 8.

<実施例9>
第2銀粒子の平均粒径を40μmとし、第2銀粒子の半値幅を30μmとし、第2銀粒子の比表面積を0.07m2/gとし、第1銀粒子30重量%と第2銀粒子70重量%とを混合して銀粉末を作製したたことを除いて、実施例5と同様にして銀粘土を作製した。この銀粘土を実施例9とした。
<実施例10>
第1銀粒子35重量%と第2銀粒子65重量%とを混合して銀粉末を作製したたことを除いて、実施例9と同様にして銀粘土を作製した。この銀粘土を実施例10とした。
<実施例11>
第1銀粒子45重量%と第2銀粒子55重量%とを混合して銀粉末を作製したたことを除いて、実施例9と同様にして銀粘土を作製した。この銀粘土を実施例11とした。
<実施例12>
第1銀粒子50重量%と第2銀粒子50重量%とを混合して銀粉末を作製したたことを除いて、実施例9と同様にして銀粘土を作製した。この銀粘土を実施例12とした。
<Example 9>
The average particle size of the second silver particles is 40 μm, the half-value width of the second silver particles is 30 μm, the specific surface area of the second silver particles is 0.07 m 2 / g, 30% by weight of the first silver particles and the second silver A silver clay was prepared in the same manner as in Example 5 except that a silver powder was prepared by mixing 70% by weight of the particles. This silver clay was designated as Example 9.
<Example 10>
A silver clay was prepared in the same manner as in Example 9 except that 35% by weight of the first silver particles and 65% by weight of the second silver particles were mixed to prepare a silver powder. This silver clay was taken as Example 10.
<Example 11>
A silver clay was prepared in the same manner as in Example 9 except that 45% by weight of the first silver particles and 55% by weight of the second silver particles were mixed to prepare a silver powder. This silver clay was designated as Example 11.
<Example 12>
A silver clay was prepared in the same manner as in Example 9 except that 50% by weight of the first silver particles and 50% by weight of the second silver particles were mixed to prepare a silver powder. This silver clay was designated as Example 12.

<比較例1>
第1銀粒子の平均粒径を0.05μmとし、第1銀粒子の半値幅を0.25μmとしたことを除いて、実施例1と同様にして銀粘土を作製した。この銀粘土を比較例1とした。
<比較例2>
第1銀粒子の平均粒径を0.8μmとし、第1銀粒子の半値幅を1.3μmとしたことを除いて、実施例1と同様にして銀粘土を作製した。この銀粘土を比較例2とした。
<比較例3>
第1銀粒子の平均粒径を0.3μmとし、第1銀粒子の半値幅を0.45μmとし、第2銀粒子の平均粒径を20μmとし、第2銀粒子の半値幅を15μmとし、第2銀粒子の比表面積を0.09m2/gとしたことを除いて、実施例1と同様にして銀粘土を作製した。この銀粘土を比較例3とした。
<比較例4>
第2粒子の平均粒径を70μmとし、第2銀粒子の半値幅を150μmとし、第2銀粒子の比表面積を0.02m2/gとしたことを除いて、比較例3と同様にして銀粘土を作製した。この銀粘土を比較例4とした。
<比較例5>
第2銀粒子の平均粒径を40μmとし、第2銀粒子の半値幅を30μmとし、第2銀粒子の比表面積を0.07m2/gとし、第1銀粒子20重量%と第2銀粒子80重量%とを混合して銀粉末を作製したたことを除いて、比較例3と同様にして銀粘土を作製した。この銀粘土を比較例5とした。
<比較例6>
第1銀粒子60重量%と第2銀粒子40重量%とを混合して銀粉末を作製したたことを除いて、比較例5と同様にして銀粘土を作製した。この銀粘土を比較例6とした。
<Comparative Example 1>
A silver clay was produced in the same manner as in Example 1 except that the average particle diameter of the first silver particles was 0.05 μm and the half width of the first silver particles was 0.25 μm. This silver clay was designated as Comparative Example 1.
<Comparative example 2>
A silver clay was produced in the same manner as in Example 1 except that the average particle diameter of the first silver particles was 0.8 μm and the half width of the first silver particles was 1.3 μm. This silver clay was designated as Comparative Example 2.
<Comparative Example 3>
The average particle size of the first silver particles is 0.3 μm, the half width of the first silver particles is 0.45 μm, the average particle size of the second silver particles is 20 μm, and the half width of the second silver particles is 15 μm, A silver clay was prepared in the same manner as in Example 1 except that the specific surface area of the second silver particles was 0.09 m 2 / g. This silver clay was designated as Comparative Example 3.
<Comparative example 4>
The same as Comparative Example 3, except that the average particle size of the second particles was 70 μm, the half width of the second silver particles was 150 μm, and the specific surface area of the second silver particles was 0.02 m 2 / g. Silver clay was prepared. This silver clay was designated as Comparative Example 4.
<Comparative Example 5>
The average particle size of the second silver particles is 40 μm, the half-value width of the second silver particles is 30 μm, the specific surface area of the second silver particles is 0.07 m 2 / g, 20% by weight of the first silver particles and the second silver A silver clay was prepared in the same manner as in Comparative Example 3 except that 80% by weight of the particles were mixed to prepare a silver powder. This silver clay was designated as Comparative Example 5.
<Comparative Example 6>
A silver clay was prepared in the same manner as in Comparative Example 5, except that 60% by weight of the first silver particles and 40% by weight of the second silver particles were mixed to prepare a silver powder. This silver clay was designated as Comparative Example 6.

<比較試験1及び評価>
実施例1〜12及び比較例1〜6の銀粘土を所定の形状に造形し、得られた造形体を600℃の低温度で30分間燒結することにより、縦×横×長さがそれぞれ3mm×4mm×65mmである直方体状の焼結体を作製し、これらの焼結体の線収縮率を測定した。また上記実施例1〜12及び比較例1〜6の銀粘土を所定の形状に造形し、得られた造形体を900℃の低温度で10分間燒結することにより、縦×横×長さがそれぞれ3mm×4mm×65mmである直方体状の焼結体を作製し、これらの焼結体の線収縮率を測定した。これらの結果を表1に示す。
<Comparative test 1 and evaluation>
The silver clays of Examples 1 to 12 and Comparative Examples 1 to 6 are shaped into a predetermined shape, and the obtained shaped bodies are sintered at a low temperature of 600 ° C. for 30 minutes, whereby the length × width × length is 3 mm each. A rectangular parallelepiped sintered body having a size of 4 mm × 65 mm was produced, and the linear shrinkage rate of these sintered bodies was measured. Further, the silver clays of Examples 1 to 12 and Comparative Examples 1 to 6 are shaped into a predetermined shape, and the obtained shaped body is sintered at a low temperature of 900 ° C. for 10 minutes, whereby the length × width × length is A rectangular parallelepiped sintered body of 3 mm × 4 mm × 65 mm was prepared, and the linear shrinkage rate of these sintered bodies was measured. These results are shown in Table 1.

Figure 2006118042
Figure 2006118042

表1から明らかなように、比較例2及び3では900℃10分の焼成条件における線収縮率が600℃30分焼成時における線収縮率に対して5.8%及び7.3%と大きくなった。また比較例1及び比較例3〜5では、線収縮率の変化は比較的小さいけれども、比較例1及び6では膨れが発生し、比較例4及び5では焼結強度が不十分であった。これに対し、実施例1〜12では、平均粒径が0.1〜0.5μmである第1銀粒子を20〜50重量%と、平均粒径が30〜60μmである第2銀粒子を80〜50重量%としたので、600℃30分の焼成条件においても十分な焼結強度が得られ、900℃10分の焼成条件においても膨れの問題も起きない上、線収縮率の増加が600℃30分焼成時と比べて4%以内に収まり、広い温度範囲で低収縮であってかつその線収縮率が安定していることが判った。   As is clear from Table 1, in Comparative Examples 2 and 3, the linear shrinkage rate at 900 ° C. for 10 minutes and the linear shrinkage rate at 600 ° C. for 30 minutes was as large as 5.8% and 7.3%, respectively. became. In Comparative Example 1 and Comparative Examples 3 to 5, although the change in the linear shrinkage rate was relatively small, in Comparative Examples 1 and 6, swelling occurred, and in Comparative Examples 4 and 5, the sintering strength was insufficient. On the other hand, in Examples 1-12, 20-50 weight% of the 1st silver particle whose average particle diameter is 0.1-0.5 micrometer, and the 2nd silver particle whose average particle diameter is 30-60 micrometers are used. Since 80 to 50% by weight, sufficient sintering strength can be obtained even under firing conditions of 600 ° C. for 30 minutes, and there is no problem of swelling even under firing conditions of 900 ° C. for 10 minutes, and the linear shrinkage rate is increased. It was found that it was within 4% of that at 600 ° C. for 30 minutes, low shrinkage over a wide temperature range, and stable linear shrinkage.

<実施例13>
先ず、平均粒径0.4μmで半値幅0.5μmの化学還元法により作製した第1銀粒子を用意し、平均粒径40μm、半値幅が50μm、真球度が8%、比表面積が0.07m2/gの水アトマイズ法により作製した第2銀粒子を用意した。また有機バインダとしてメチルセルロースを、界面活性剤としてソルスパース20,000(アビシア株式会社製)を、油脂としてオリーブ油を用意し、更に水を用意した。次に第1銀粒子40重量%と混合して銀粉末を作製した。更にこの銀粉末90重量%と、メチルセルロース1.2重量%と、ソルスパース20,000を0.5重量%と、オリーブ油0.5重量%と、水8.25重量%とを混合して銀粘土を得た。この銀粘土を実施例13とした。
<Example 13>
First, first silver particles prepared by a chemical reduction method having an average particle diameter of 0.4 μm and a half width of 0.5 μm are prepared. The average particle diameter is 40 μm, the half width is 50 μm, the sphericity is 8%, and the specific surface area is 0. Second silver particles prepared by a water atomization method of 0.07 m 2 / g were prepared. Further, methylcellulose was prepared as an organic binder, Solsperse 20,000 (manufactured by Avicia Co., Ltd.) as a surfactant, olive oil as an oil and fat, and water. Next, it mixed with 40 weight% of 1st silver particles, and produced silver powder. Further, 90% by weight of this silver powder, 1.2% by weight of methylcellulose, 0.5% by weight of Solsperse 20,000, 0.5% by weight of olive oil and 8.25% by weight of water were mixed to give silver clay. Got. This silver clay was designated as Example 13.

<実施例14>
第1銀粒子の半値幅を0.4μmとしたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を実施例14とした。
<実施例15>
第1銀粒子の半値幅を0.6μmとしたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を実施例15とした。
<実施例16>
第1銀粒子の半値幅を0.8μmとしたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を実施例16とした。
<Example 14>
Silver clay was produced in the same manner as in Example 13 except that the half width of the first silver particles was 0.4 μm. This silver clay was designated as Example 14.
<Example 15>
A silver clay was produced in the same manner as in Example 13 except that the half width of the first silver particles was 0.6 μm. This silver clay was determined as Example 15.
<Example 16>
A silver clay was produced in the same manner as in Example 13 except that the half width of the first silver particles was 0.8 μm. This silver clay was determined as Example 16.

<実施例17>
第1銀粒子の半値幅を0.5μmとし、第2銀粒子の半値幅を20μmとし、第2銀粒子の比表面積を0.04としたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を実施例17とした。
<実施例18>
第1銀粒子の半値幅を0.5μmとし、第2銀粒子の半値幅を40μmとし、第2銀粒子の比表面積を0.06としたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を実施例18とした。
<実施例19>
第1銀粒子の半値幅を0.5μmとし、第2銀粒子の半値幅を60μmとし、第2銀粒子の比表面積を0.08m2/gとしたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を実施例19とした。
<Example 17>
In the same manner as in Example 13, except that the half width of the first silver particles was 0.5 μm, the half width of the second silver particles was 20 μm, and the specific surface area of the second silver particles was 0.04. Clay was made. This silver clay was designated as Example 17.
<Example 18>
Silver as in Example 13 except that the half width of the first silver particles was 0.5 μm, the half width of the second silver particles was 40 μm, and the specific surface area of the second silver particles was 0.06. Clay was made. This silver clay was designated as Example 18.
<Example 19>
Same as Example 13 except that the half width of the first silver particles was 0.5 μm, the half width of the second silver particles was 60 μm, and the specific surface area of the second silver particles was 0.08 m 2 / g. A silver clay was prepared. This silver clay was determined as Example 19.

<実施例20>
第1銀粒子の半値幅を0.5μmとし、第2銀粒子の半値幅を80μmとし、第2銀粒子の比表面積を0.10m2/gとしたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を実施例20とした。
<実施例21>
第1銀粒子の半値幅を0.5μmとし、第2銀粒子の真球度を5.0%とし、第2銀粒子の比表面積を0.06m2/gとしたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を実施例21とした。
<実施例22>
第1銀粒子の半値幅を0.5μmとし、第2銀粒子の真球度を10.0%とし、第2銀粒子の比表面積を0.08m2/gとしたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を実施例22とした。
<Example 20>
Same as Example 13 except that the half width of the first silver particles was 0.5 μm, the half width of the second silver particles was 80 μm, and the specific surface area of the second silver particles was 0.10 m 2 / g. A silver clay was prepared. This silver clay was referred to as Example 20.
<Example 21>
Except that the half width of the first silver particles was 0.5 μm, the sphericity of the second silver particles was 5.0%, and the specific surface area of the second silver particles was 0.06 m 2 / g. A silver clay was prepared in the same manner as in Example 13. This silver clay was taken as Example 21.
<Example 22>
Except that the half width of the first silver particles was 0.5 μm, the sphericity of the second silver particles was 10.0%, and the specific surface area of the second silver particles was 0.08 m 2 / g. A silver clay was prepared in the same manner as in Example 13. This silver clay was determined as Example 22.

<比較例7>
第1銀粒子の半値幅を1.0μmとしたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を比較例7とした。
<比較例8>
第1銀粒子の半値幅を0.5μmとし、第2銀粒子の半値幅を90μmとし、第2銀粒子の比表面積を0.09m2/gとしたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を比較例8とした。
<比較例9>
第1銀粒子の半値幅を0.5μmとし、第2銀粒子の真球度12.0%とし、第2銀粒子の比表面積を1.10m2/gとしたことを除いて、実施例13と同様にして銀粘土を作製した。この銀粘土を比較例9とした。
<Comparative Example 7>
A silver clay was prepared in the same manner as in Example 13 except that the half width of the first silver particles was 1.0 μm. This silver clay was designated as Comparative Example 7.
<Comparative Example 8>
Same as Example 13 except that the half width of the first silver particles was 0.5 μm, the half width of the second silver particles was 90 μm, and the specific surface area of the second silver particles was 0.09 m 2 / g. A silver clay was prepared. This silver clay was designated as Comparative Example 8.
<Comparative Example 9>
Example, except that the half width of the first silver particles was 0.5 μm, the sphericity of the second silver particles was 12.0%, and the specific surface area of the second silver particles was 1.10 m 2 / g. In the same manner as in Example 13, silver clay was prepared. This silver clay was designated as Comparative Example 9.

<比較試験2及び評価>
実施例1〜12及び比較例1〜6の銀粘土を所定の形状に造形し、得られた造形体を600℃の低温度で30分間燒結することにより、縦×横×長さがそれぞれ3mm×4mm×65mmである直方体状の焼結体を作製し、これらの焼結体の線収縮率を測定した。また上記実施例13〜22及び比較例7〜9の銀粘土を所定の形状に造形し、得られた造形体を900℃の低温度で10分間燒結することにより、縦×横×長さがそれぞれ3mm×4mm×65mmである直方体状の焼結体を作製し、これらの焼結体の線収縮率を測定した。これらの結果を表2に示す。
<Comparative test 2 and evaluation>
The silver clays of Examples 1 to 12 and Comparative Examples 1 to 6 are shaped into a predetermined shape, and the obtained shaped bodies are sintered at a low temperature of 600 ° C. for 30 minutes, whereby the length × width × length is 3 mm each. A rectangular parallelepiped sintered body having a size of 4 mm × 65 mm was produced, and the linear shrinkage rate of these sintered bodies was measured. In addition, the silver clays of Examples 13 to 22 and Comparative Examples 7 to 9 were formed into a predetermined shape, and the obtained shaped body was sintered at a low temperature of 900 ° C. for 10 minutes, whereby the length × width × length was A rectangular parallelepiped sintered body of 3 mm × 4 mm × 65 mm was prepared, and the linear shrinkage rate of these sintered bodies was measured. These results are shown in Table 2.

Figure 2006118042
Figure 2006118042

表2から明らかなように、実施例13〜22では、半値幅が0.2〜0.8μmである第1銀粒子を20〜50重量%と、半値幅が20〜80μmであり、なおかつその真球度が10.0%以下である第2銀粒子を80〜50重量%としたので、600℃30分の焼成条件においても十分な焼結強度が得られ、900℃10分の焼成条件においても膨れの問題も起きない上、線収縮率の増加が600℃30分焼成時と比べて4%以内に収まり、広い温度範囲で低収縮であってかつその線収縮率が安定していることが判った。   As apparent from Table 2, in Examples 13 to 22, the first silver particles having a half-value width of 0.2 to 0.8 μm are 20 to 50% by weight, and the half-value width is 20 to 80 μm. Since the second silver particles having a sphericity of 10.0% or less were 80 to 50% by weight, sufficient sintering strength was obtained even under firing conditions of 600 ° C. for 30 minutes, and firing conditions of 900 ° C. for 10 minutes. In addition, the problem of blistering does not occur, and the increase in the linear shrinkage rate is within 4% compared to the case of baking at 600 ° C. for 30 minutes, and the linear shrinkage rate is stable over a wide temperature range with low shrinkage. I found out.

本発明の実施の形態及び実施例の銀粉末の粒度分布を、比較例の銀粉末の粒度分布とともに示す図である。It is a figure which shows the particle size distribution of the silver powder of embodiment and Example of this invention with the particle size distribution of the silver powder of a comparative example.

Claims (5)

平均粒径が0.1〜0.5μmである第1銀粒子20〜50重量%と、平均粒径が30〜60μmである第2銀粒子80〜50重量%とを混合してなる銀粘土用銀粉末。   Silver clay obtained by mixing 20 to 50% by weight of first silver particles having an average particle diameter of 0.1 to 0.5 μm and 80 to 50% by weight of second silver particles having an average particle diameter of 30 to 60 μm. Silver powder for use. 第2銀粒子の真球度が10%以下であり、前記第2銀粒子の比表面積が0.1m2/g以下である請求項1記載の銀粘土用銀粉末。 The silver powder for silver clay according to claim 1, wherein the sphericity of the second silver particles is 10% or less, and the specific surface area of the second silver particles is 0.1 m 2 / g or less. 第1銀粒子の粒度分布の半値幅H1が0.2〜0.8μmであり、第2銀粒子の粒度分布の半値幅H2が20〜80μmである請求項1記載の銀粘土用銀粉末。 2. The silver clay silver according to claim 1, wherein the half width H 1 of the particle size distribution of the first silver particles is 0.2 to 0.8 μm, and the half width H 2 of the particle size distribution of the second silver particles is 20 to 80 μm. Powder. 請求項1ないし3いずれか1項に記載の銀粘土用銀粉末50〜95重量%と、有機系バインダ0.5〜8重量%と、残部の水とを混合してなる銀粘土。   A silver clay obtained by mixing 50 to 95% by weight of silver powder for silver clay according to any one of claims 1 to 3, 0.5 to 8% by weight of an organic binder, and the remaining water. 水の一部が0.03〜3重量%の界面活性剤又は0.1〜3重量%の油脂のいずれか一方又は双方に置き換えられた請求項4記載の銀粘土。   The silver clay according to claim 4, wherein a part of water is replaced with either one or both of 0.03 to 3% by weight of a surfactant and 0.1 to 3% by weight of fats and oils.
JP2005272364A 2004-09-27 2005-09-20 Silver powder for silver clay and silver clay containing the silver powder Withdrawn JP2006118042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272364A JP2006118042A (en) 2004-09-27 2005-09-20 Silver powder for silver clay and silver clay containing the silver powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004279353 2004-09-27
JP2005272364A JP2006118042A (en) 2004-09-27 2005-09-20 Silver powder for silver clay and silver clay containing the silver powder

Publications (1)

Publication Number Publication Date
JP2006118042A true JP2006118042A (en) 2006-05-11

Family

ID=36536188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272364A Withdrawn JP2006118042A (en) 2004-09-27 2005-09-20 Silver powder for silver clay and silver clay containing the silver powder

Country Status (1)

Country Link
JP (1) JP2006118042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180675A (en) * 2015-05-05 2016-12-07 光洋应用材料科技股份有限公司 Silver clay
CN107052327A (en) * 2017-04-06 2017-08-18 广州市尤特新材料有限公司 A kind of silver-colored clay silver powder and the silver-colored clay comprising the silver powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180675A (en) * 2015-05-05 2016-12-07 光洋应用材料科技股份有限公司 Silver clay
CN107052327A (en) * 2017-04-06 2017-08-18 广州市尤特新材料有限公司 A kind of silver-colored clay silver powder and the silver-colored clay comprising the silver powder
CN107052327B (en) * 2017-04-06 2019-07-05 广州市尤特新材料有限公司 A kind of silver clay silver powder and the silver-colored clay comprising the silver powder

Similar Documents

Publication Publication Date Title
JP4613362B2 (en) Metal powder for conductive paste and conductive paste
JP5522885B2 (en) Nickel powder, method for producing the same, and conductive paste
JP2009203543A (en) Copper based metal powder
TW584613B (en) Silver powder for silver clay and silver clay containing this silver powder
KR100881306B1 (en) Silver powder for silver clay and silver clay comprising the silver powder
Hernández et al. Forming of nickel compacts by a colloidal filtration route
EP3043935A1 (en) Lubricant for powder metallurgy and metal powder compositions containing said lubricant
JP2006118042A (en) Silver powder for silver clay and silver clay containing the silver powder
EP2857124A1 (en) Aqueous slurry for making a powder of hard material
JP2008038206A (en) Platinum powder for platinum clay, and platinum clay comprising the platinum powder
KR101911450B1 (en) Sliding member
JP2011052300A (en) Flaky silver powder, method for producing the same, and conductive paste
AU2010350288B2 (en) Clay-like composition for forming a sintered silver alloy object, powder for a clay-like composition for forming a sintered silver alloy object, method for manufacturing a clay-like composition for forming a sintered silver alloy object, sintered silver alloy object, and method for manufacturing a sintered silver alloy object
EP2979782B1 (en) Clay-like composition for noble metal sintered compact
KR20190012036A (en) Method for preparing CNT-coated copper particle using stirred ball mill
BR112018069230B1 (en) IRON-BASED POWDERS, PRODUCTION PROCESS, IRON-BASED POWDER COMPOSITION, SINTERED COMPONENT AND ITS PRODUCTION PROCESS
JP6139855B2 (en) Method for producing porous titanium thin film
JP2008038205A (en) Gold powder for gold clay, and gold clay comprising the gold powder
JP2006131928A (en) Flaky nickel powder, production method therefor and electroconductive paste
Rishmawi et al. Binder jetting additive manufacturing of water-atomized iron
JP2005290498A (en) Silver powder for silver clay excellent in low temperature sinterability and silver clay containing the silver powder
JP2004292894A (en) Silver clay for forming porous sintered compact
JP3978727B2 (en) Gold-coated silver powder for silver clay with excellent corrosion resistance and low temperature sinterability and silver clay with excellent low temperature sinterability without discoloration
JP2006315911A (en) Ceramic granule
JP6539098B2 (en) Molded heating element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202