JP4965696B2 - Method for producing oxide dispersion strengthened platinum alloy - Google Patents

Method for producing oxide dispersion strengthened platinum alloy Download PDF

Info

Publication number
JP4965696B2
JP4965696B2 JP2010236345A JP2010236345A JP4965696B2 JP 4965696 B2 JP4965696 B2 JP 4965696B2 JP 2010236345 A JP2010236345 A JP 2010236345A JP 2010236345 A JP2010236345 A JP 2010236345A JP 4965696 B2 JP4965696 B2 JP 4965696B2
Authority
JP
Japan
Prior art keywords
platinum alloy
platinum
pulverization
dispersion strengthened
oxide dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010236345A
Other languages
Japanese (ja)
Other versions
JP2012087385A (en
Inventor
春樹 山嵜
浩 柳原
英和 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2010236345A priority Critical patent/JP4965696B2/en
Priority to PCT/JP2011/073912 priority patent/WO2012053506A1/en
Priority to KR1020137010926A priority patent/KR101818794B1/en
Priority to CN201180050597.5A priority patent/CN103180071B/en
Priority to SG2013020250A priority patent/SG188599A1/en
Priority to TW100137835A priority patent/TWI441925B/en
Publication of JP2012087385A publication Critical patent/JP2012087385A/en
Application granted granted Critical
Publication of JP4965696B2 publication Critical patent/JP4965696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • C03B5/1675Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、白金又は白金合金中に酸化物が分散する酸化物分散強化型の白金合金の製造方法に関する。特に、製造過程で混入し得る汚染の少ない方法に関する。   The present invention relates to a method for producing an oxide dispersion strengthened platinum alloy in which an oxide is dispersed in platinum or a platinum alloy. In particular, the present invention relates to a method with less contamination that can be mixed in the manufacturing process.

白金又は白金合金中に酸化ジルコニウム(ジルコニア)、酸化イットリウム(イットリア)等の酸化物が微細に分散された酸化物分散型の白金材料は、強化白金とも称され、高温強度特性、特にクリープ強度に優れることから、高温環境で使用されるガラス製造装置用の構造材料として利用されている。この酸化物分散強化型白金合金については、高温強度の向上等を目的としてこれまで種々の改良がなされており、その製造工程の改善等により分散酸化物を効果的に分散させたものが多く報告されている(特許文献1、2)   An oxide-dispersed platinum material in which an oxide such as zirconium oxide (zirconia) or yttrium oxide (yttria) is finely dispersed in platinum or a platinum alloy is also called reinforced platinum. Since it is excellent, it is utilized as a structural material for a glass manufacturing apparatus used in a high temperature environment. For this oxide dispersion strengthened platinum alloy, various improvements have been made so far for the purpose of improving the high-temperature strength, etc., and many reports of effectively dispersing the dispersed oxide by improving the manufacturing process, etc. have been reported. (Patent Documents 1 and 2)

特許第4094959号明細書Patent No. 4094959 特許第4280215号明細書Japanese Patent No. 4280215

ここで、酸化物分散強化型白金合金の製造方法としては、粉末冶金法が一般的に用いられている。この方法では、まず、白金とジルコニウムとの合金粉末を製造し、これを酸化処理して合金粉末中のジルコニウムを内部酸化させて酸化ジルコニウムとし、酸化ジルコニウムが微細分散した白金粉末を得る。そして、これをアトライタ、ボールミル等の粉砕手段により微粉末化し、これを焼結、加工処理を行って白金材料とする。上記特許文献1記載の発明では、この製造方法を基本としつつ、製造条件を調整するものである。また、上記特許文献2においては、白金とジルコニウムとの合金粉末を製造した後、これを酸化処理することなく、アトライタにて水中で粉砕し、水によりジルコニウムを酸化させることで、酸化物形成と粉末の粉砕を同時に行い、その後焼結等するものであるが、粉末冶金法を基礎としている点では共通する。   Here, a powder metallurgy method is generally used as a method for producing an oxide dispersion strengthened platinum alloy. In this method, first, an alloy powder of platinum and zirconium is manufactured, and this is subjected to an oxidation treatment to internally oxidize zirconium in the alloy powder to obtain zirconium oxide, thereby obtaining platinum powder in which zirconium oxide is finely dispersed. Then, this is pulverized by a pulverizing means such as an attritor or a ball mill, and this is sintered and processed to obtain a platinum material. In the invention described in Patent Document 1, the manufacturing conditions are adjusted based on this manufacturing method. Moreover, in the said patent document 2, after manufacturing the alloy powder of platinum and zirconium, without oxidizing this, it grind | pulverizes in water with an attritor and oxidizes zirconium with water, oxide formation and Powders are pulverized at the same time and then sintered, but they are common in that they are based on powder metallurgy.

これまでの酸化物分散強化型白金合金の製造方法は、酸化物粒子を好適な状態で分散させることを意図し、その観点でいずれも有用なものといえる。しかし、いずれの方法においても、製造された白金合金に不具合が生じる場合があった。この不具合とは、単に合金の強度に不足が生じるというものだけではなく、合金の硬度が予想(設計)以上に高くなり加工に支障をきたす場合が生じる。この硬度上昇による加工の問題とは、例えば、成形のための面削加工時に被加工材の硬度が高すぎて加工面が鱗状なるといった点が指摘されている。   The conventional methods for producing an oxide dispersion strengthened platinum alloy are intended to disperse oxide particles in a suitable state, and can all be said to be useful in that respect. However, in any of the methods, a defect may occur in the manufactured platinum alloy. This defect is not limited to the fact that the strength of the alloy is insufficient, but the hardness of the alloy is higher than expected (design) and may hinder processing. The problem of processing due to the increase in hardness is pointed out that, for example, the surface of the workpiece is too high during the chamfering process for forming and the processed surface becomes scaly.

以上のような不良品の発生は、製造方法そのものの問題というわけでもなく、また、原材料の品質管理等の管理を安定的に行っても生じる突発的なものである。本発明は、この問題に対し、その原因の究明と共に、高品質の酸化物分散強化型白金合金を安定的に製造することのできる方法を提供するものである。   The occurrence of defective products as described above is not a problem of the manufacturing method itself, and is a sudden occurrence even if the management of the quality of raw materials is performed stably. The present invention provides a method capable of stably producing a high quality oxide dispersion strengthened platinum alloy together with investigation of the cause of this problem.

本発明者等は、上記課題解決のため、従来の酸化物分散強化型白金合金の製造方法における各工程を精査すると共に、問題の生じた白金合金の性状を調査した。そしてその結果、問題があるとされる白金合金においては、比較的粒径が大きいばらつきのあるジルコニウム酸化物が分散していることが確認された。そこで、かかる大粒径のジルコニア混入の要因について検討し、粉砕工程における粉砕装置の構成材料に着目した。   In order to solve the above-mentioned problems, the present inventors examined each step in the conventional method for producing an oxide dispersion strengthened platinum alloy and investigated the properties of the platinum alloy in which the problem occurred. As a result, it was confirmed that in the platinum alloy that is considered to be problematic, zirconium oxide having a relatively large variation in particle size is dispersed. Then, the factor of such a large particle size zirconia mixture was examined, and it paid attention to the constituent material of the crushing apparatus in a crushing process.

アトライタ、ボールミル等の粉砕装置は、被粉砕物を収容する容器(ポット)、粉砕媒体(ボール、ビーズ)、攪拌棒(アジテータ)を備える。そして、酸化物分散強化型白金合金を製造する際の粉砕装置は、粉砕媒体として硬度面からジルコニアを適用することが多い。ここで、酸化物分散強化型白金合金は、ジルコニア等の酸化物が分散されたものであり、粉砕媒体のジルコニアが混入するとしても、組成上、それを汚染物質として捉える必要もないことから、これまでその混入は問題視されることはなかった。   A grinding device such as an attritor or a ball mill includes a container (pot) for storing a material to be ground, a grinding medium (ball, beads), and a stirring rod (agitator). And the grinding | pulverization apparatus at the time of manufacturing an oxide dispersion strengthened platinum alloy often applies a zirconia from a hardness surface as a grinding | pulverization medium. Here, the oxide dispersion strengthened platinum alloy is a dispersion of oxide such as zirconia, and even if zirconia of the grinding medium is mixed, it is not necessary to regard it as a contaminant on the composition. Until now, the contamination has not been regarded as a problem.

これに対し、本願発明者等は、これまで無視されてきた粉砕時のジルコニア混入にこそ問題があると考えた。これは、確かにジルコニアは酸化物分散強化型白金合金の分散強化材として作用し得るものの、分散強化の原理上、もともとの分散材よりも粒径の大きな酸化物を不規則に分散させることは、設計値とは相違する材料強度の要因となり得る。そして、粉砕作業時の粉砕媒体の運動は、完全に予測できるものではなく、その磨耗量や磨耗して剥離する小片のサイズをコントロールすることはできない。そのため、ときとして好ましくないジルコニアの混入が生じると考えられる。そこで、本発明者等は、粉砕工程時のジルコニア混入を抑制しつつ粉砕作業を行うため、本発明を見出した。   On the other hand, the inventors of the present application thought that there was a problem with zirconia contamination during pulverization, which had been ignored so far. This is because although zirconia can act as a dispersion strengthening material for oxide dispersion strengthened platinum alloys, it is not possible to disperse oxides with a larger particle size than the original dispersion material irregularly due to the principle of dispersion strengthening. The material strength may be different from the design value. The movement of the grinding medium during the grinding operation is not completely predictable, and the amount of wear and the size of the small pieces that are worn away and cannot be controlled. Therefore, it is considered that sometimes undesirable zirconia is mixed. Therefore, the present inventors have found the present invention in order to perform the pulverization operation while suppressing zirconia contamination during the pulverization step.

即ち、本発明は、容器、粉砕媒体、攪拌棒を備える粉砕装置により、溶媒中で白金合金からなる被粉砕物を粉砕処理する工程を含む酸化物分散強化型白金合金の製造方法において、前記容器、粉砕媒体、攪拌棒の少なくとも被粉砕物との接触面を白金又は白金合金で構成し、前記溶媒に過酸化水素溶液を投入して粉砕を行うものであることを特徴とする酸化物分散強化型白金合金の製造方法である。   That is, the present invention relates to a method for producing an oxide dispersion strengthened platinum alloy comprising a step of pulverizing an object to be crushed comprising a platinum alloy in a solvent by a pulverizer comprising a container, a pulverizing medium, and a stirring rod. The dispersion of the oxide is characterized in that the contact surface of the grinding medium and the stirring bar at least with the material to be ground is composed of platinum or a platinum alloy, and the hydrogen peroxide solution is added to the solvent for grinding. It is a manufacturing method of a type platinum alloy.

本発明に係る方法は、粉砕工程における粉砕装置の構成材料である容器、粉砕媒体、攪拌棒について、被粉砕物と接触する面の全てを白金又は白金合金(以下、これらを白金系材料と称する場合がある)で構成するものである。このように、被粉砕物との接触面を白金系材料とすることで、必然的にジルコニアの混入は回避できる。   In the method according to the present invention, the container, the grinding medium, and the stirring rod, which are constituent materials of the grinding device in the grinding process, are all made of platinum or a platinum alloy (hereinafter referred to as a platinum-based material). In some cases). Thus, by using a platinum-based material for the contact surface with the object to be crushed, zirconia can be inevitably avoided.

そして、本発明は、単に粉砕装置の構成材料の材質変更に止まるものではない。本発明のように、被粉砕物及び粉砕装置を白金系材料で構成すると、被粉砕物の攪拌棒、容器壁面への凝着、接合が生じ粉砕が進行しない可能性が高くなる。特に、アトライタのような高エネルギーボールミルにおいては、このような現象が生じ易い。本発明では、この点を考慮して、容器内の溶媒に過酸化水素を添加する。過酸化水素添加により溶媒内に発泡が生じ、この泡が緩衝材となって白金同士の凝着等を抑制し、スムーズな粉砕作業を可能とする。   The present invention is not limited to simply changing the material of the constituent material of the pulverizer. When the object to be pulverized and the pulverizing apparatus are made of a platinum-based material as in the present invention, there is a high possibility that the object to be pulverized adheres to the stirring rod and the wall surface of the container and joins and the pulverization does not proceed. In particular, such a phenomenon is likely to occur in a high energy ball mill such as an attritor. In the present invention, in consideration of this point, hydrogen peroxide is added to the solvent in the container. Addition of hydrogen peroxide causes foaming in the solvent, and the foam acts as a buffer material to suppress adhesion between platinum and the like, thereby enabling a smooth grinding operation.

以下、本発明についてより詳細に説明する。本発明に係る方法では、基本的に白金合金粉末の粉砕工程の前後の工程は、従来の酸化物分散強化型白金合金の製造方法に準じる。粉砕工程前の白金合金粉末の調整も従来法に従い、例えば上記特許文献1のように白金合金粉末を内部酸化してジルコニア等を分散させた白金合金粉末を調整する、或いは特許文献2のように酸化処理は行わず酸化物を含まない白金合金粉末を調整する等、いずれの工程を経ても良い。   Hereinafter, the present invention will be described in more detail. In the method according to the present invention, the steps before and after the pulverizing step of the platinum alloy powder basically conform to the conventional method for producing an oxide dispersion strengthened platinum alloy. The adjustment of the platinum alloy powder before the pulverization process is also performed in accordance with the conventional method. For example, as in Patent Document 1, the platinum alloy powder is internally oxidized to adjust the platinum alloy powder in which zirconia or the like is dispersed, or as in Patent Document 2. Any step may be performed such as adjusting the platinum alloy powder not containing oxide without performing oxidation treatment.

粉砕工程について、本発明では、容器、粉砕媒体、攪拌棒の被粉砕物との接触面を白金又は白金合金で構成する粉砕装置を適用する。ここで、白金又は白金合金を適用するのは、少なくとも被粉砕物との接触面であれば良いことから、各構成部材の全体が白金等で製造されたものの他、部分的に白金等が使用されたものでも良い。例えば、容器については、内面を白金でクラッドしたものや、白金製の小径容器をステンレス等の容器に挿入したものが使用できる。また、攪拌棒についても、白金等のムク材で製造しても良いが、白金でクラッドされた棒材を利用しても良い。ここで、被粉砕物との接触面を構成する白金又は白金合金としては、純白金、白金合金(白金−ロジウム合金、白金−金合金等)の他、強化白金(酸化物分散強化型白金合金)が適用できる。尚、強化白金は、ジルコニア等の酸化物を含むが、その絶対量は過少であること、品質上問題のない強化白金の酸化物であれば、それが多少被粉砕物へ混入してもさほど問題とならないことから、強化白金の使用も可能である。   For the pulverization step, the present invention applies a pulverization apparatus in which the contact surface of the container, the pulverization medium, and the stirring rod with the object to be crushed is composed of platinum or a platinum alloy. Here, platinum or a platinum alloy may be applied at least as long as it is a contact surface with the object to be pulverized. It may be what was done. For example, as the container, a container whose inner surface is clad with platinum or a small-sized container made of platinum inserted into a container such as stainless steel can be used. Also, the stirring rod may be manufactured from a bulk material such as platinum, but a rod clad with platinum may be used. Here, as platinum or a platinum alloy constituting the contact surface with the object to be crushed, reinforced platinum (oxide dispersion strengthened platinum alloy) as well as pure platinum, platinum alloy (platinum-rhodium alloy, platinum-gold alloy, etc.) ) Is applicable. Note that reinforced platinum contains oxides such as zirconia, but its absolute amount is too small. Since there is no problem, it is possible to use reinforced platinum.

粉砕工程は、溶媒を使用する湿式粉砕である。被粉砕物を適切に分散させるためである。この溶媒としては、純水の他、ヘプタン、アルコール等の有機溶媒、又はこれらの混合溶液が適用できる。但し、特許文献2のように、酸化処理がなされていない白金合金粉末を、粉砕工程で酸化処理する場合においては、水(純水)の使用が好ましい。   The pulverization step is wet pulverization using a solvent. This is for appropriately dispersing the material to be crushed. As this solvent, in addition to pure water, organic solvents such as heptane and alcohol, or a mixed solution thereof can be applied. However, when a platinum alloy powder that has not been oxidized as in Patent Document 2 is oxidized in the pulverization step, it is preferable to use water (pure water).

溶媒に投入する過酸化水素については、使用する溶媒に対して過酸化水素濃度が0.2〜1%となるように投入するのが好ましい。0.2%未満では発泡が少なく効果に乏しいからであり、1%を超えると逆に発泡が激しくなり、その制御が困難となるからである。尚、過酸化水素溶液は、水溶液の状態で添加するのが好ましいが、前記溶媒に対する濃度を考慮して水溶液の濃度、添加量を調整する。また、過酸化水素投入のタイミングは、粉砕開始時に1回で総量を投入しても良いが、粉砕中に分割して複数回投入しても良い。   The hydrogen peroxide charged into the solvent is preferably added so that the hydrogen peroxide concentration is 0.2 to 1% with respect to the solvent used. If the content is less than 0.2%, foaming is small and the effect is poor. If the content exceeds 1%, foaming becomes conversely difficult to control. The hydrogen peroxide solution is preferably added in the form of an aqueous solution, but the concentration and addition amount of the aqueous solution are adjusted in consideration of the concentration with respect to the solvent. In addition, the total amount of hydrogen peroxide may be input once at the start of pulverization, but may be divided and added multiple times during pulverization.

粉砕工程の粉砕条件(時間、温度)については、従来の方法と同様に設定できる。攪拌棒の回転数についても同様である。   About the grinding | pulverization conditions (time, temperature) of a grinding | pulverization process, it can set similarly to the conventional method. The same applies to the rotation speed of the stirring rod.

粉砕工程後の合金粉末は、従来法と同様、成形固化処理を行いバルク状の合金とすることができる。この成形固化処理は、ホットプレスのように加圧しながら焼結する方法が好ましい。また、成形固化処理後の合金については、鍛造加工により緻密度を向上させることができる。更に、所定の形状に成形加工するために圧延加工、押出加工、引き抜き加工等の塑性加工を行なうことができる。   The alloy powder after the pulverization step can be formed and solidified to form a bulk alloy as in the conventional method. This molding and solidification treatment is preferably a method of sintering while applying pressure as in a hot press. Moreover, about the alloy after a shaping | molding solidification process, a compactness can be improved by a forge process. Furthermore, plastic working such as rolling, extruding, and drawing can be performed in order to form into a predetermined shape.

本発明によれば、従来、粉砕工程で生じていた被粉砕物へのジルコニア混入を抑制することができ、製造される酸化物分散強化型白金合金を粗大なジルコニアを含まないものとすることができる。これにより、不測の強度変動のない、加工性の良好な強化白金合金を得ることができる。   According to the present invention, it is possible to prevent zirconia from being mixed into a material to be crushed, which has conventionally occurred in the pulverization step, and to make the manufactured oxide dispersion strengthened platinum alloy free of coarse zirconia. it can. As a result, it is possible to obtain a reinforced platinum alloy with good workability and no unexpected strength fluctuation.

また、本発明は、白金系材料を粉砕媒体とすることで、分散させる酸化物の微細化・高分散化を図ることができる。これは、分散媒体である白金系材料は、従来使用されているジルコニアよりも重い(高比重)ことから、粉砕時の運動エネルギーが従来より大きなものとり、粉砕能力が向上することによる。本発明は、この点からも白金合金の品質向上につながる。   Further, according to the present invention, by using a platinum-based material as a grinding medium, it is possible to achieve a finer and highly dispersed oxide to be dispersed. This is because a platinum-based material that is a dispersion medium is heavier (high specific gravity) than conventionally used zirconia, and therefore has a larger kinetic energy at the time of pulverization than that of the prior art, thereby improving the pulverization ability. The present invention also leads to an improvement in the quality of the platinum alloy from this point.

本実施形態で使用した粉砕装置(アトライタ)の構成を説明する図The figure explaining the structure of the crusher (attritor) used by this embodiment

以下、本発明の好適な実施形態を説明する。本実施形態では、まず、白金合金(白金−0.1重量%ジルコニウム合金)粉末を製造した。白金合金粉末の製造は、白金−0.1重量%ジルコニウム合金のインゴットを真空溶解にて製造し、これを電極として回転電極ガスアトマイズ法(EIGA法)により白金合金粉末とした。この白金合金粉末は、平均粒径80μm(粒径幅1〜300μm)であった。   Hereinafter, preferred embodiments of the present invention will be described. In this embodiment, first, a platinum alloy (platinum-0.1 wt% zirconium alloy) powder was manufactured. The platinum alloy powder was produced by vacuum melting an ingot of platinum-0.1 wt% zirconium alloy, and using this as an electrode, a platinum alloy powder was obtained by a rotating electrode gas atomization method (EIGA method). This platinum alloy powder had an average particle size of 80 μm (particle size width of 1 to 300 μm).

次に、上記合金粉末4000gを、図1に示すアトライタに投入した。本実施形態で使用するアトライタは、特許文献1の方法で製造される強化白金(商品名:GTH,田中貴金属工業株式会社製)からなるポット(内径φ195×高さ175mm×厚さ2mm、重量5.8kg)をステンレス製ポットに挿入してなる容器と、強化白金(GTH)製の攪拌棒(攪拌翼φ16×160mm×4本、重量14kg)、粉砕媒体として強化白金製ボール(φ5mm、計14kg)を備える。   Next, 4000 g of the alloy powder was put into an attritor shown in FIG. The attritor used in this embodiment is a pot (inner diameter φ195 × height 175 mm × thickness 2 mm, weight 5) made of reinforced platinum (trade name: GTH, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) manufactured by the method of Patent Document 1. .8 kg) inserted into a stainless steel pot, a stirrer bar made of reinforced platinum (GTH) (stirring blade φ16 × 160 mm × 4, weight 14 kg), a reinforced platinum ball (φ5 mm, total 14 kg as a grinding medium) ).

そして、アトライタに純水2Lを入れ、更に、過酸化水素水溶液を純水に対して0.5%となるように調整して投入した。   Then, 2 L of pure water was added to the attritor, and the hydrogen peroxide aqueous solution was further adjusted to 0.5% with respect to the pure water.

粉砕工程は、上記の準備後、アトライタの攪拌棒を340rpmで5時間回転して白金合金粉末を粉砕処理した。尚、この実施例は純水により白金合金粉末の酸化処理も同時に行っている。   In the pulverization step, the platinum alloy powder was pulverized by rotating the stirring bar of the attritor at 340 rpm for 5 hours after the above preparation. In this embodiment, the platinum alloy powder is oxidized simultaneously with pure water.

粉砕工程後、篩選別で白金合金粉末を分離、乾燥した。乾燥後の白金合金粉末を秤量したところ、4002.7gであり、粉砕前より2.7gの重量増があった。また、粉砕工程後のアトライタの各構成部材の重量を測定したところ、ボール、攪拌棒、ポットの重量減がそれぞれ、1.5g、1.0g、0.2gみられた。白金合金粉末の重量増加分は、粉砕により白金合金粉末に白金合金が混入したためである。   After the pulverization step, the platinum alloy powder was separated and dried by sieve selection. When the platinum alloy powder after drying was weighed, it was 4002.7 g, which was 2.7 g higher than before pulverization. Moreover, when the weight of each component of the attritor after the pulverization step was measured, 1.5 g, 1.0 g, and 0.2 g of weight loss of the ball, the stirring rod, and the pot were found, respectively. The increase in the weight of the platinum alloy powder is because the platinum alloy was mixed into the platinum alloy powder by pulverization.

粉砕工程後の白金合金粉末をカーボン製の型(寸法:70×70×100(mm))に入れ、真空炉中で脱ガス処理(1200℃×3時間)を行った後、1100℃、20MPaで加圧焼結した。焼結後の白金合金の寸法は、約70mm×70mm×48.4mmで密度16.9g/cmであった。次に、この白金合金インゴットについて、熱間鍛造(1300℃)を複数回行い、密度21.4g/cm(緻密度100%)とした。このときの寸法は、約75mm×100mm×25mmであった。そして、この白金合金インゴットの両面をシェーパーで面削加工し、冷間圧延し(100mm×310mm×6mm)、焼鈍(1250℃、30分)後、圧延方向を90度変えて再度冷間圧延して600mm×300mm×1mmの板材とした。この板材から、後述するクリープ試験のための試験片を打ち抜いた。 The platinum alloy powder after the pulverization step is placed in a carbon mold (dimensions: 70 × 70 × 100 (mm)), degassed in a vacuum furnace (1200 ° C. × 3 hours), and then 1100 ° C., 20 MPa. And pressure sintering. The dimensions of the sintered platinum alloy were about 70 mm × 70 mm × 48.4 mm and a density of 16.9 g / cm 3 . Next, this platinum alloy ingot was hot forged (1300 ° C.) a plurality of times to obtain a density of 21.4 g / cm 3 (dense density 100%). The dimension at this time was about 75 mm × 100 mm × 25 mm. Then, both sides of this platinum alloy ingot are chamfered with a shaper, cold-rolled (100 mm × 310 mm × 6 mm), annealed (1250 ° C., 30 minutes), cold-rolled again by changing the rolling direction by 90 degrees. The plate material was 600 mm × 300 mm × 1 mm. A test piece for a creep test described later was punched out from the plate material.

比較例:比較のため、従来法の粉砕工程を適用して、白金合金を製造した。使用する白金合金粉末は本実施形態と同様のものである。粉砕工程で使用するアトライタは、ジルコニアからなるポット(内径φ200×高さ165mm、容量5L)と、ステンレス製の攪拌棒(攪拌翼先端にジルコニアキャップ接続、寸法及び形状は実施形態と同様)、粉砕媒体としてYZTジルコニア製ボール(φ5mm、計7kg)を備えるものを使用した。そして、粉砕工程においては、白金合金粉末4000g及び純水2Lをアトライタに投入し、本実施形態と同様の条件で粉砕した。 Comparative Example : For comparison, a platinum alloy was manufactured by applying a conventional grinding process. The platinum alloy powder used is the same as in this embodiment. The attritor used in the pulverization process is a pot made of zirconia (inner diameter φ200 × height 165 mm, capacity 5 L), a stainless steel stirring rod (a zirconia cap connected to the tip of the stirring blade, dimensions and shape are the same as in the embodiment), pulverization A medium equipped with a YZT zirconia ball (φ5 mm, 7 kg in total) was used. In the pulverization step, 4000 g of platinum alloy powder and 2 L of pure water were put into an attritor and pulverized under the same conditions as in this embodiment.

粉砕、乾燥後の白金合金粉末を秤量したところ、4005.7gであり、粉砕前より5.7gの重量増があった。また、粉砕工程後のアトライタのジルコニアボールの重量減を測定したところ5.7gの重量減がみられた。   When the platinum alloy powder after pulverization and drying was weighed, it was 4005.7 g, which was 5.7 g more than before pulverization. Moreover, when the weight loss of the zirconia ball | bowl of the attritor after a grinding | pulverization process was measured, the weight loss of 5.7g was seen.

粉砕後の白金合金粉末は、本実施形態と同様の工程にて、焼結してインゴットとし、その後熱間鍛造、圧延を経て板材に加工した。クリープ試験片の採取も行った。   The crushed platinum alloy powder was sintered into an ingot in the same process as in this embodiment, and then processed into a plate material through hot forging and rolling. Creep specimens were also collected.

以上、本実施形態及び比較例で製造した酸化物分散強化型白金合金について、合金中のジルコニウム含有量の定量分析、クリープ試験を行った。クリープ試験は、5本の試験片を用いて、試験温度1400℃で応力15MPa、20MPaにおける破断時間を計測した。これらの結果を表1に示す。   As described above, the oxide dispersion strengthened platinum alloys manufactured in the present embodiment and the comparative example were subjected to the quantitative analysis of the zirconium content in the alloy and the creep test. In the creep test, the fracture time was measured at a test temperature of 1400 ° C. and a stress of 15 MPa and 20 MPa using five test pieces. These results are shown in Table 1.

Figure 0004965696
Figure 0004965696

表1から、本実施形態の白金合金は、ジルコニウム含有量が0.1重量%となっており、粉砕前の原料である白金合金粉末のジルコニウム含有量に等しい。これは、粉砕工程におけるジルコニア混入が抑制されていることを示す。これに対し、比較例では製造された白金合金のジルコニウム含有量が0.11重量%増加しており、粉砕工程時のジルコニア混入を示している。これは、粉砕工程後に粉砕媒体(ジルコニアボール)の重量が減少していたことからも伺える。   From Table 1, the platinum alloy of this embodiment has a zirconium content of 0.1% by weight, which is equal to the zirconium content of the platinum alloy powder that is the raw material before pulverization. This indicates that zirconia contamination in the pulverization process is suppressed. On the other hand, in the comparative example, the zirconium content of the manufactured platinum alloy was increased by 0.11% by weight, indicating zirconia contamination during the pulverization process. This can also be seen from the fact that the weight of the grinding media (zirconia balls) decreased after the grinding process.

そして、本実施形態の白金合金は、クリープ試験の結果から良好な高温強度を有することがわかる。即ち、本実施形態の白金合金は、比較例に対して、破断時間について数倍の延長効果を有することが表1からわかる。   And it turns out that the platinum alloy of this embodiment has favorable high temperature strength from the result of a creep test. That is, it can be seen from Table 1 that the platinum alloy of the present embodiment has an extension effect several times as long with respect to the breaking time as compared with the comparative example.

尚、本実施形態の効果は、上記の白金合金板材の製造工程においても現れていた。これは、熱間鍛造したインゴットの両面を面削加工するとき、本実施形態では加工後、全面が滑らかな光沢面を呈していたのに対し、比較例では所々、鱗状の表面となっていた。このことから、ジルコニア混入を回避した本実施形態の方法は、白金合金の加工性改善にも寄与しているものと考えられる。   In addition, the effect of this embodiment appeared also in the manufacturing process of said platinum alloy board | plate material. This is because when the both sides of the hot forged ingot are chamfered, in this embodiment, the entire surface exhibited a smooth glossy surface after processing, whereas in the comparative examples, there were some scale-like surfaces. . From this, it is considered that the method of the present embodiment that avoids zirconia contamination also contributes to improvement of the workability of the platinum alloy.

また、本実施形態について、粉砕前後の白金合金粉末の重量変化及び粉砕媒体(強化白金製ボール)の重量変化から、本実施形態では、粉砕工程時、白金合金粉末への白金合金の混入がわずかながらあったといえる。しかし、クリープ試験の結果から、これが白金合金の性質を悪化させたとはいえない。また、ジルコニウム含有量の分析結果からみても、本実施形態の酸化物分散強化型白金合金中の組成比は変化しておらずその強化作用を減ずることはないと考えられる。   Further, in this embodiment, due to the change in the weight of the platinum alloy powder before and after pulverization and the change in the weight of the pulverization medium (reinforced platinum balls), in this embodiment, the platinum alloy powder is slightly mixed during the pulverization process. It can be said that there was. However, from the results of the creep test, it cannot be said that this deteriorates the properties of the platinum alloy. Also, from the analysis result of the zirconium content, the composition ratio in the oxide dispersion strengthened platinum alloy of this embodiment is not changed, and it is considered that the strengthening action is not reduced.

以上説明したように、本発明に係る酸化物分散強化型白金合金の製造方法は、従来法よりも高品質の白金合金を製造することができる方法である。   As described above, the method for producing an oxide dispersion strengthened platinum alloy according to the present invention is a method capable of producing a higher quality platinum alloy than the conventional method.

Claims (2)

容器、粉砕媒体、攪拌棒を備える粉砕装置により、溶媒中で白金合金からなる被粉砕物を粉砕処理する工程を含む酸化物分散強化型白金合金の製造方法において、
前記容器、粉砕媒体、攪拌棒の少なくとも被粉砕物との接触面を白金又は白金合金で構成し、
前記溶媒に過酸化水素溶液を投入して粉砕を行うものであることを特徴とする酸化物分散強化型白金合金の製造方法。
In a method for producing an oxide dispersion strengthened platinum alloy comprising a step of pulverizing a material to be crushed comprising a platinum alloy in a solvent by a pulverizer equipped with a container, a pulverizing medium, and a stirring rod,
The contact surface of the container, the grinding medium, and the stirring rod with at least the object to be ground is composed of platinum or a platinum alloy,
A method for producing an oxide dispersion strengthened platinum alloy, wherein a hydrogen peroxide solution is charged into the solvent and pulverized.
過酸化水素溶液を、容器中の溶媒に対して過酸化水素濃度が0.2〜1質量%となるように投入する請求項1記載の酸化物分散強化型白金合金の製造方法。
The method for producing an oxide dispersion strengthened platinum alloy according to claim 1, wherein the hydrogen peroxide solution is added so that the hydrogen peroxide concentration is 0.2 to 1 mass% with respect to the solvent in the container.
JP2010236345A 2010-10-21 2010-10-21 Method for producing oxide dispersion strengthened platinum alloy Active JP4965696B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010236345A JP4965696B2 (en) 2010-10-21 2010-10-21 Method for producing oxide dispersion strengthened platinum alloy
PCT/JP2011/073912 WO2012053506A1 (en) 2010-10-21 2011-10-18 Method for manufacturing oxide dispersion strengthened platinum alloy
KR1020137010926A KR101818794B1 (en) 2010-10-21 2011-10-18 Method of producing oxide-dispersion-strengthened platinum alloy
CN201180050597.5A CN103180071B (en) 2010-10-21 2011-10-18 The manufacture method of the dispersion-strengthened type platinum alloy of oxide
SG2013020250A SG188599A1 (en) 2010-10-21 2011-10-18 Method of producing oxide-dispersion-strengthened platinum alloy
TW100137835A TWI441925B (en) 2010-10-21 2011-10-19 Production method for oxide-dispersion-strengthened platinum-alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236345A JP4965696B2 (en) 2010-10-21 2010-10-21 Method for producing oxide dispersion strengthened platinum alloy

Publications (2)

Publication Number Publication Date
JP2012087385A JP2012087385A (en) 2012-05-10
JP4965696B2 true JP4965696B2 (en) 2012-07-04

Family

ID=45975217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236345A Active JP4965696B2 (en) 2010-10-21 2010-10-21 Method for producing oxide dispersion strengthened platinum alloy

Country Status (6)

Country Link
JP (1) JP4965696B2 (en)
KR (1) KR101818794B1 (en)
CN (1) CN103180071B (en)
SG (1) SG188599A1 (en)
TW (1) TWI441925B (en)
WO (1) WO2012053506A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022086046A (en) * 2020-11-30 2022-06-09 田中貴金属工業株式会社 Reinforced platinum alloy and manufacturing method of reinforced platinum alloy, as well as glass production apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1229158A (en) * 1969-02-10 1971-04-21
JPS56501456A (en) * 1979-10-04 1981-10-08
JPH06200307A (en) * 1993-01-05 1994-07-19 Kawasaki Steel Corp Production of raw material alloy for rare earth magnet
DE4417495C1 (en) * 1994-05-19 1995-09-28 Schott Glaswerke Prodn. of pure platinum materials reinforced with yttrium oxide
JPH08134511A (en) * 1994-11-11 1996-05-28 Tanaka Kikinzoku Kogyo Kk Production of strengthened platinum material
DE10046456C2 (en) * 2000-09-18 2003-04-10 Heraeus Gmbh W C Through finely divided, small particles of base metal oxide, dispersion-strengthened, gold-free platinum material
WO2002083961A1 (en) * 2001-04-13 2002-10-24 Tanaka Kikinzoku Kogyo K.K. Method for preparing reinforced platinum material
JP4136914B2 (en) * 2003-11-28 2008-08-20 田中貴金属工業株式会社 Method for producing reinforced platinum material
JP4280215B2 (en) * 2004-08-23 2009-06-17 田中貴金属工業株式会社 Manufacturing method of oxide dispersion type alloy
DE102007007873A1 (en) * 2007-02-14 2008-08-21 W.C. Heraeus Gmbh Dispersion-hardened platinum-containing materials comprise platinum or its alloy with rhodium, gold or palladium and dispersion-hardener comprising cerium, zirconium, scandium or yttrium oxidized to extent of at least 90 percent by weight
KR100886946B1 (en) * 2007-08-13 2009-03-09 울산대학교 산학협력단 Producing method of metal powder flake

Also Published As

Publication number Publication date
CN103180071A (en) 2013-06-26
TWI441925B (en) 2014-06-21
TW201231683A (en) 2012-08-01
CN103180071B (en) 2015-09-30
KR101818794B1 (en) 2018-01-16
KR20130101535A (en) 2013-09-13
SG188599A1 (en) 2013-04-30
JP2012087385A (en) 2012-05-10
WO2012053506A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
CN108421985B (en) Method for preparing oxide dispersion strengthening medium-entropy alloy
JP5810469B2 (en) Cemented carbide and method for producing cemented carbide
Alizadeh et al. Hot extrusion process effect on mechanical behavior of stir cast Al based composites reinforced with mechanically milled B4C nanoparticles
JP5198121B2 (en) Tungsten carbide powder, method for producing tungsten carbide powder
CN105734321A (en) Preparing method for ultra-fine hard alloy
JPWO2006040995A1 (en) Oxide dispersion strengthened platinum material
CN111187960A (en) Double-crystal hard alloy and preparation method thereof
CN104946957A (en) Preparation method of environment-friendly nano doped Ag/SnO2 electrical contact material
JP2018020315A (en) Pulverization with low energy for producing thin powder
JP2885098B2 (en) Processing method of titanium sponge powder
CN107138731A (en) A kind of preparation method of nano metal powder
JP4965696B2 (en) Method for producing oxide dispersion strengthened platinum alloy
JP4835973B2 (en) Method for producing refractory metal powder and method for producing target material
JP6439833B2 (en) Cemented carbide manufacturing method
JPWO2015019391A1 (en) Ceramic composition and cutting tool
Dias et al. Comparative analysis of niobium and vanadium carbide efficiency in the high energy mechanical milling of aluminum bronze alloy
JP2012117100A (en) Cemented carbide
JP6387627B2 (en) Method for producing tungsten carbide based cemented carbide tool with excellent heat crack resistance
JP2016180183A (en) Cemented carbide, and working tool
Talijan et al. Processing and properties of silver-metal oxide electrical contact materials
JP7171973B1 (en) Method for producing silicon nitride powder, slurry, and silicon nitride sintered body
JP2017088972A (en) Titanium boride-containing powder and manufacturing method therefor and manufacturing method of sintered metal
CN111893337B (en) Preparation method of high-temperature alloy
JP2015145533A (en) Cemented carbide and working tool
JP2744469B2 (en) Powder manufacturing method by multi-stage grinding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4965696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250