JP2008032393A - Detection element having nano-gap electrode and detection method using it - Google Patents

Detection element having nano-gap electrode and detection method using it Download PDF

Info

Publication number
JP2008032393A
JP2008032393A JP2006190407A JP2006190407A JP2008032393A JP 2008032393 A JP2008032393 A JP 2008032393A JP 2006190407 A JP2006190407 A JP 2006190407A JP 2006190407 A JP2006190407 A JP 2006190407A JP 2008032393 A JP2008032393 A JP 2008032393A
Authority
JP
Japan
Prior art keywords
chemical substance
detection element
electrode
molecule
sensor molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006190407A
Other languages
Japanese (ja)
Other versions
JP4873463B2 (en
Inventor
Yasuzo Suzuki
靖三 鈴木
Tetsuo Yatabe
哲夫 谷田部
Takashi Funaki
敬 舩木
Yuji Kawanishi
祐司 川西
Masayo Horikawa
昌代 堀川
Wataru Mizutani
亘 水谷
Tenshi Yana
天賜 梁
Yasuhisa Naito
泰久 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006190407A priority Critical patent/JP4873463B2/en
Publication of JP2008032393A publication Critical patent/JP2008032393A/en
Application granted granted Critical
Publication of JP4873463B2 publication Critical patent/JP4873463B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detection element having a nano-gap electrode capable of directly grasping the hydrogen bonding interaction with an extremely small amount of a chemical substance, especially a nucleic acid compound being the constituent substance of DNA, as a current change. <P>SOLUTION: The detection element of the chemical substance to be detected is constituted by bonding a sensor molecule, which has the region bonded to the chemical substance to be detected to the surface of the nano-gap electrode. The sensor molecule is a wire-like molecule having a partial structure, which is fixed to the surface of the nano-gap electrode, at is one end part and a receptor part structure, which is bonded to the chemical substance to be detected, at its other end part and characterized in that the length of the sensor molecule is 2 nanometer or below and the maximum gap width of the nano-gap electrode is 10 nanometer or below. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ナノギャップ電極を有する検出素子及びこれを用いたチミンの検出方法に関する。詳しくは、分子認識結果を直接電流変化として捉える事によって化学物質を検出する検出素子及び検出方法である。   The present invention relates to a detection element having a nanogap electrode and a thymine detection method using the same. Specifically, the present invention relates to a detection element and a detection method for detecting a chemical substance by directly capturing a molecular recognition result as a current change.

化学物質のセンシング技術は従来の分析化学の延長線を超えて急速に発達している。
特に、DNAなどの特定の物質を高感度化には遺伝子工学や生命化学分野では重要であり、1fmol(1×10−15モル)のペプチドが検出できる質量分析装置や、一分子からの蛍光検出も可能な単分子蛍光計測装置が市販されている。(例えばScientific Analysis Instruments社製 MALDITof/Tof-MS/MS質量分析器、オリンパス社製単分子蛍光計測装置MF20型(商品名))。
このほかに、核酸塩基の検出については、塩基と特異的に結合する機能性分子のスペクトル変化、電気化学的変化として捉える提案が学術雑誌に報告されている。しかし、上記の従来技術では、大がかりな装置や高価な装置を必要とし、目的の塩基類の検出には多くの時間を要し、迅速、高感度、簡便な目的物質のセンシングには適していなかった。
Chemical sensing technology is rapidly developing beyond the extension of conventional analytical chemistry.
In particular, it is important in the field of genetic engineering and biochemistry to increase the sensitivity of specific substances such as DNA, and is a mass spectrometer capable of detecting 1 fmol (1 × 10-15 mol) peptide, or fluorescence detection from a single molecule. Single-molecule fluorescence measuring devices that can be used are commercially available. (For example, MALDITof / Tof-MS / MS mass spectrometer manufactured by Scientific Analysis Instruments, single molecule fluorescence measurement device MF20 (trade name) manufactured by Olympus).
In addition to this, with regard to detection of nucleobases, proposals have been reported in academic journals that are regarded as spectral changes and electrochemical changes of functional molecules that specifically bind to bases. However, the above-described conventional technology requires a large-scale device or an expensive device, requires a lot of time to detect the target bases, and is not suitable for rapid, high-sensitivity and simple sensing of the target substance. It was.

また、ナノギヤップ電極問にアフィニティーセンサーを配置し、これと相補的に結合可能なパートナー化合物を導電性微粒子上に修飾した仲介粒子が特異的に電極間に結合配置されることにより、導電性変化が起こることを利用する新しいセンサーも提案されている(特許文献1参照)。   In addition, an affinity sensor is placed on the nanogap electrode, and intermediary particles in which a partner compound that can be complementarily bound to the nanogap electrode is modified on the conductive fine particles are specifically bound and arranged between the electrodes. A new sensor utilizing what happens has also been proposed (see Patent Document 1).

しかし、上記導電性微粒子を仲介して目的物を検出する方法は、比較的簡便な方法に近づいているが、ホスト分子あるいはゲスト分子のいずれかを金等の導電性微粒子に前もって結合して置く必要があり、迅速な方法とは言い難かった。   However, the method for detecting the target substance through the conductive fine particles is approaching a relatively simple method, but either the host molecule or the guest molecule is previously bonded to the conductive fine particles such as gold. It was necessary and it was hard to say that it was a quick method.

さらに、数ナノメートルサイズの物質を直接検出する方法としては、スキャニング型のトンネル電流顕微鏡がある。このタイプの顕微鏡は高感度、高解像度で分子を観測できるが、単結晶や単分子膜等の規則性構造のある表面上にある物質の検出に限定されることや探針をミクロンメートル単位の面積範囲をスキャニングし無ければならない等、迅速な方法と言い難かった。   Further, as a method for directly detecting a substance having a size of several nanometers, there is a scanning tunneling current microscope. Although this type of microscope can observe molecules with high sensitivity and high resolution, it is limited to the detection of substances on the surface with a regular structure such as a single crystal or a monomolecular film, and the probe is in the order of micrometers. It was difficult to say that it was a quick method because the area range had to be scanned.

本発明者らは10ナノメートル以下のナノギャップ電極間に核酸塩基化合物と水素結合可能な部位を持つ機能性センサー分子類(特許文献2参照)をナノギャップ電極に架橋した素子を用いて形成結果を直接電気伝導度の変化として捉えることのできることを見いだしている。しかしながら、数ナノメートルから10ナノメートル程度の間隔を持つ電極に架橋できる3ナノメートルから10ナノメートル程度センサー分子の合成は多段階反応を必要とし、多大な労力を必要とした。
特開2002−533698号公報 特願2005−065072 特開2004−259748号公報 特開2005−79335号公報 特開2005−175164号公報
The inventors of the present invention have formed a functional sensor molecule having a site capable of hydrogen bonding with a nucleobase compound between nanogap electrodes of 10 nanometers or less (see Patent Document 2) using a device in which nanogap electrodes are cross-linked. Has been found to be directly understood as a change in electrical conductivity. However, the synthesis of sensor molecules of about 3 nanometers to 10 nanometers that can be cross-linked to electrodes having a spacing of several nanometers to about 10 nanometers requires a multi-step reaction and requires a great deal of labor.
JP 2002-533698 A Japanese Patent Application No. 2005-065072 JP 2004-259748 A JP 2005-79335 A JP 2005-175164 A

本発明は、上記のような問題点を解消するため、合成が簡単な2ナノメートル程度のセンサー化合物を用いて極微量の化学物質、特にDNAの構成物質である核酸化合物との水素結合相互作用を直接電流変化として捉えることを可能とするナノギャップ電極を有する検出素子及び検出方法を提供することを目的とする。   In order to solve the above problems, the present invention uses a sensor compound of about 2 nanometers that is easy to synthesize, and uses hydrogen bonding interaction with a very small amount of chemical substances, particularly nucleic acid compounds that are constituents of DNA. An object of the present invention is to provide a detection element and a detection method having a nanogap electrode that can be directly regarded as a current change.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、10ナノメートル以下のギャップを持つ電極に2ナノメートル以下のセンサー分子を非架橋状態で表面修飾し、検出対象物質が結合した時、非結合状態で流れていたトンネル電流が増加する現象を見いだし、本発明に至ったものである。すなわち、本発明は、
検出対象物の化学物質と、結合する部位を有するセンサー分子を、ナノギャップ電極表面に結合させた化学物質の検出素子であって、センサー分子はナノギャップ電極表面に固定化するための部分構造及び検出対象物の化学物質と結合するレセプター部分構造からなり、かつ、分子長が2ナノメートル以下であって、前記電極のギャップ巾が最大10ナノメートル以下であることを特徴とする化学物質の検出素子である。
また、本発明においては、センサー分子を、式(1)

Figure 2008032393
とすることができる。

さらに、本発明においては、センサー分子を、式(2)
Figure 2008032393
とすることができる。 As a result of intensive studies to solve the above problems, the present inventors modified the surface of a sensor molecule of 2 nanometers or less in an uncrosslinked state on an electrode having a gap of 10 nanometers or less, and the detection target substance is The inventors have found a phenomenon in which a tunnel current flowing in a non-coupled state increases when they are coupled, leading to the present invention. That is, the present invention
A detection element of a chemical substance in which a chemical substance to be detected and a sensor molecule having a binding site are bonded to the surface of the nanogap electrode, the sensor molecule being immobilized on the nanogap electrode surface, Detection of a chemical substance comprising a receptor partial structure that binds to a chemical substance to be detected, a molecular length of 2 nanometers or less, and a gap width of the electrodes of 10 nanometers or less It is an element.
In the present invention, the sensor molecule is represented by the formula (1)
Figure 2008032393
It can be.

Furthermore, in the present invention, the sensor molecule is represented by the formula (2)
Figure 2008032393
It can be.

また、本発明においては、ナノギャップ電極を、金、銀、白金、パラジウム、ニッケルから選ばれる金属の一つとすることができる。
またさらに、本発明は、前記電極の検出対象物質をチミンとすることができる。
さらに、本発明は、検出対象物の化学物質と、結合する部位を有するセンサー分子を、ナノギャップ電極表面に結合させた化学物質の検出素子であって、センサー分子はナノギャップ電極表面に固定化するための部分構造及び検出対象物の化学物質と結合するレセプター部分構造からなり、前記電極のギャップ巾が最大10ナノメートル以下であることを特徴とする化学物質の検出素子を用いて、検出対象物の化学物質を捕捉し、捕捉前と捕捉後のギャップ電極間の電気抵抗値変化として検出する化学物質の検出方法である。
In the present invention, the nanogap electrode can be one of metals selected from gold, silver, platinum, palladium, and nickel.
Furthermore, in the present invention, the detection target substance of the electrode can be thymine.
Furthermore, the present invention provides a chemical substance detection element in which a chemical substance to be detected and a sensor molecule having a binding site are bonded to the nanogap electrode surface, and the sensor molecule is immobilized on the nanogap electrode surface. A detection target of a chemical substance comprising a partial structure for the detection and a receptor partial structure that binds to a chemical substance of the detection target, wherein the gap width of the electrode is 10 nanometers or less at maximum This is a method for detecting a chemical substance, in which a chemical substance is captured and detected as a change in electric resistance between the gap electrodes before and after capture.

本発明の新規なセンサー素子構造は、ギャップ電極間の電気抵抗値変化を直接検出することにより、検出対象物の化学物質をダイレクトに検知することができる。代表的な検出対象物の化学物質はチミンであり、核酸塩基の1つであるチミン化合物と特異的に水素結合し、かつギャップ電極に容易に合成できるセンサー化合物を非架橋構造で結合させる事により、トンネル電流型顕微鏡では必須なスキャニングを省くことにより、従来の検出法よりも迅速かつ鋭敏に標的物質を検出しうる核酸塩基センサーを提供できる。   The novel sensor element structure of the present invention can directly detect a chemical substance to be detected by directly detecting a change in electrical resistance value between gap electrodes. A typical chemical substance to be detected is thymine, which is specifically bonded to a thymine compound, which is one of the nucleobases, and bonded to the gap electrode in a non-crosslinked structure. By omitting the essential scanning in the tunneling current microscope, it is possible to provide a nucleobase sensor capable of detecting a target substance more rapidly and sensitively than the conventional detection method.

図1は本発明の化学物質センサーの原理図である。
図1−aは検出前の図である。Aは導電性の電極である。その間隔はトンネル電流が測定できる程度の間隔を持つ。電極表面には導電性を持つ分子(B)が化学的に結合している。センサー分子の末端には検出対象と特異的に結合可能なレセプター部位を持つ(C)。
図1−bは検出対象物質(D)が図1−aのセンサー電極に結合した状態を示している。図1−aの電極はナノメートルスケールの間隔を持つことから、STMの原理に使用されているトンネル電流が観測されている。トンネル電流量は測定物質間の距離の関数であり、短いほど多く流れる。図1−bの状態、すなわち検出対象化合物(D)がセンサー部位に結合するとセンサー部位を含めた電極間の距離が短くなる。その結果、図1−aの状態より図1−bの状態がより多くのトンネル電流が流れることになり、特定の化学物質(D)を検出できる事になる。
このセンサー構造を使用すれば、今までの探針でトンネル電流の変化の分布図を作成する必要が無く、高感度、迅速に化学物質を検出できることが可能である。
FIG. 1 is a principle diagram of a chemical substance sensor of the present invention.
FIG. 1A is a diagram before detection. A is a conductive electrode. The interval is such that the tunnel current can be measured. A molecule (B) having conductivity is chemically bonded to the electrode surface. The end of the sensor molecule has a receptor site that can specifically bind to the detection target (C).
FIG. 1B shows a state in which the detection target substance (D) is bound to the sensor electrode of FIG. Since the electrode of FIG. 1-a has a nanometer-scale interval, a tunnel current used in the STM principle is observed. The amount of tunnel current is a function of the distance between the measured substances, and the shorter the amount, the more current flows. When the detection target compound (D) binds to the sensor site in the state of FIG. 1-b, the distance between the electrodes including the sensor site is shortened. As a result, more tunnel current flows in the state of FIG. 1-b than in the state of FIG. 1-a, and a specific chemical substance (D) can be detected.
If this sensor structure is used, it is not necessary to create a distribution map of changes in tunnel current with a conventional probe, and it is possible to detect chemical substances with high sensitivity and speed.

ギャップ電極は分子サイズオーダーのギャップを持つ電極であり、センサー化合物との共有結合形成を可能とする材料ならば使用可能であるが、金、銀、白金、パラジウム、ニッケルから選ばれる金属の一つが良く、金電極が最も望ましい。すなわち、本発明者らにより既に分子サイズのギャップを持つ電極構造の製造方法および該方法により製造された電極構造を有する分子素子に関する特許文献(特許文献3〜5参照)のなかで述べられたナノギャップ電極構造が望ましい。   A gap electrode is an electrode having a gap of molecular size order, and any material that can form a covalent bond with a sensor compound can be used, but one of metals selected from gold, silver, platinum, palladium, and nickel is used. Good, gold electrodes are most desirable. That is, the nanometers described in the patent documents (see Patent Documents 3 to 5) related to the manufacturing method of the electrode structure having a molecular size gap and the molecular element having the electrode structure manufactured by the method by the present inventors. A gap electrode structure is desirable.

使用する電極のギャップ巾は、使用するセンサー分子と検出対象とする化学物質の分子サイズで最適巾が決定されるが、架橋型のセンサー系とは異なり、トンネル電流が測定可能な範囲に近接すればよいのでその融通性は高い。実際に使用される巾としてはギャップ電極の作成歩留まりおよびセンサー分子の合成の容易さから、最大10nm以下の金製のギャップ電極が望ましい。   The gap width of the electrode to be used is determined by the molecular size of the sensor molecule to be used and the chemical substance to be detected, but unlike the cross-linked sensor system, it is close to the range where the tunnel current can be measured. The flexibility is high. As a width actually used, a gold gap electrode having a maximum of 10 nm or less is desirable from the viewpoint of the yield of gap electrodes and the ease of synthesis of sensor molecules.

前記ナノギャップ電極に化学結合可能なセンサー分子の構造は式(1)又は式(2)で表される。

Figure 2008032393

Figure 2008032393
The structure of the sensor molecule that can be chemically bonded to the nanogap electrode is represented by Formula (1) or Formula (2).
Figure 2008032393

Figure 2008032393

式中の(アセチル基で保護されたチオール基(アセチルチオ基)は取扱中に酸化によりジスルフィド誘導体に変化を防ぐためにアセチル基で保護してある。この保護基は使用直前もしくはin situで脱保護して用いることができる。式(1)又は式(2)のフェニレンエチニレンユニットは電極に固定化した時、導電性をできるだけ高める、剛直な鎖であることから電極間の距離をせばめて導電性の向上に寄与できることから選ばれた。さらに、ここで使用されている2,6−ジアミドピリジン誘導体はチミン類の人工レセプターとして広く利用されている化合物である。なお、式(1)は公知の化合物であり、式(2)の化合物合成法は発明者らが7th International Synposium on Polymers and Advanced Technorojies(2003, Florida, USA) にて発表済みであり、既知化合物である。   In the formula, the thiol group protected with an acetyl group (acetylthio group) is protected with an acetyl group to prevent the disulfide derivative from being changed by oxidation during handling. This protective group is deprotected immediately before use or in situ. The phenylene ethynylene unit of formula (1) or formula (2) is a rigid chain that increases the conductivity as much as possible when it is fixed to the electrode. In addition, the 2,6-diamidepyridine derivative used here is a compound that is widely used as an artificial receptor for thymines. The compound synthesis method of formula (2) has been published by the inventors at 7th International Synposium on Polymers and Advanced Technorojies (2003, Florida, USA). It is.

以下に本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限定されるものでない。
(式(2)の化合物のギャップ電極への修飾およびブチルチミンによる導電性変化の測定)

<1>式(2)の化合物およびピロリジンを塩化メチレン溶液(0.1mM/L)を調製し、この溶液にナノギャップ電極を室温、24時間、浸積した。修飾反応後、電極はエタノールにて良く洗浄して電気測定に使用した。
<2>この修飾済電極を1.0mM/LのN−ブチルチミン溶液に1時間、浸積し、
<3>余分のブチルチミンを除く目的でエタノール中、1時間浸積した。
<2>と<3>の操作を繰り返し、各々の段階でI−V曲線を測定し、V=0付近での抵抗値を算出した。
図2に得られた結果の一例を示す。図2のBuT+およびBuT−は、それぞれブルチミンを結合させた状態およびブチルチミンを洗浄した状態を示している。
図2から、ブチルチミンを結合させるとギャップ電極の抵抗が低くなり、ブチルチミンを取ると抵抗値が上昇した。すなわち、検出対象のブチルチミンの存在に対応した電気的応答が得られた。
Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
(Modification of the compound of formula (2) to the gap electrode and measurement of conductivity change by butylthymine)

<1> A methylene chloride solution (0.1 mM / L) of the compound of formula (2) and pyrrolidine was prepared, and a nanogap electrode was immersed in this solution at room temperature for 24 hours. After the modification reaction, the electrode was thoroughly washed with ethanol and used for electrical measurement.
<2> The modified electrode is immersed in a 1.0 mM / L N-butylthymine solution for 1 hour,
<3> It was immersed in ethanol for 1 hour in order to remove excess butylthymine.
The operations of <2> and <3> were repeated, an IV curve was measured at each stage, and a resistance value near V = 0 was calculated.
An example of the results obtained is shown in FIG. In FIG. 2, BuT + and BuT− indicate a state in which bruthymine is bound and a state in which butylthymine is washed, respectively.
From FIG. 2, when butylthymine was bonded, the resistance of the gap electrode was lowered, and when butylthymine was taken, the resistance value was increased. That is, an electrical response corresponding to the presence of the detection target butylthymine was obtained.

(アミノピリジンを有する分子ワイヤ(新規化合物I)の製造)

市販の2−アミノ−5−ヨードピリジン(0.100g)とアセチル基で保護したフェニレンエチニレン化合物(0.138g)、

Figure 2008032393

を2mLのトルエンに溶解後、触媒としてテトラキス(トリフェニルフォスフィン)パラジウム(0.0263g)およびトリフェニルフォスフィン(23.8mg)ヨウ化銅(8.66mg)、2mLのトリエチルアミンを加え、窒素下で3日、40℃加熱撹拌する。反応終了後、シリカゲル−塩化メチレン−酢酸エチルのカラムクロマトグラフィーにて精製を行い、0.117g(収率70.3%)で化合物1を得た。
構造確認はESI質量分析(アセトニトリル溶液)およびH−NMR測定より行った。
ESI質量分析: 計算値 m/z = 368.10[M]
実測値 m/z =410.2[M+CHCN+H]
H−NMR(重クロロホルム) δ:8.28(d, J=1.7Hz, 1H), 7.57(dd, J=8.5Hzと1.7Hz, 1H) 7.55(d, J=8.4Hz, 2H), 7.51-7.46(m, 4H), 7.40(d, J=8.4Hz, 2H), 6.46(d, J=8.5Hz, 1H), 4.61(br, 2H), 2.44(s, 3H) (Production of molecular wire with aminopyridine (novel compound I))

Commercially available 2-amino-5-iodopyridine (0.100 g) and an acetyl-protected phenyleneethynylene compound (0.138 g),
Figure 2008032393

Was dissolved in 2 mL of toluene, tetrakis (triphenylphosphine) palladium (0.0263 g) and triphenylphosphine (23.8 mg) copper iodide (8.66 mg) were added as catalysts, and 2 mL of triethylamine was added under nitrogen. And stir at 40 ° C. for 3 days. After completion of the reaction, purification was performed by silica gel-methylene chloride-ethyl acetate column chromatography to obtain Compound 1 at 0.117 g (yield 70.3%).
The structure was confirmed by ESI mass spectrometry (acetonitrile solution) and 1 H-NMR measurement.
ESI mass spectrometry: Calculated value m / z = 368.10 [M] +
Actual value m / z = 410.2 [M + CH 3 CN + H] +
1 H-NMR (deuterated chloroform) δ: 8.28 (d, J = 1.7 Hz, 1H), 7.57 (dd, J = 8.5 Hz and 1.7 Hz, 1H) 7.55 (d, J = 8.4 Hz, 2H), 7.51- 7.46 (m, 4H), 7.40 (d, J = 8.4Hz, 2H), 6.46 (d, J = 8.5Hz, 1H), 4.61 (br, 2H), 2.44 (s, 3H)

新規化合物Iの導電性測定結果
<1>新規化合物Iおよびピロリジンの塩化メチレン溶液(0.1mM/L)を調製し、この溶液にナノギャップ電極を室温、24時間、浸積した。修飾反応後、電極はエタノールにて良く洗浄して電気測定に使用した。
<2>この修飾済電極を1.0mM/LのN−ブチルチミン溶液に1時間、浸積後、余分のブチルチミンを除く目的でジクロロエタンにて洗浄した。
<3>N−ブチルチミンを脱離させる目的で、エタノール中、1時間浸積した。
<2>と<3>の操作を繰り返し、各々の段階でI−V曲線を測定し、V=0付近での抵抗値を算出した。図3に得られた結果の一例を示す。図3の+BuTおよび−BuTは、それぞれN−ブルチミンを結合させた状態およびN−ブチルチミンを洗浄した状態を示している。
図3から、N−ブチルチミンを結合させるとギャップ電極の抵抗が低くなり、N−ブチルチミンを取ると抵抗値が上昇した。すなわち、検出対象のブチルチミンの存在に対応した電気的応答が得られた。
Measurement Results of Conductivity of Novel Compound I <1> A methylene chloride solution (0.1 mM / L) of novel compound I and pyrrolidine was prepared, and a nanogap electrode was immersed in this solution at room temperature for 24 hours. After the modification reaction, the electrode was thoroughly washed with ethanol and used for electrical measurement.
<2> This modified electrode was immersed in a 1.0 mM / L N-butylthymine solution for 1 hour and then washed with dichloroethane for the purpose of removing excess butylthymine.
<3> It was immersed in ethanol for 1 hour for the purpose of eliminating N-butylthymine.
The operations of <2> and <3> were repeated, an IV curve was measured at each stage, and a resistance value near V = 0 was calculated. An example of the results obtained is shown in FIG. In FIG. 3, + BuT and -BuT indicate a state in which N-burtimine is bound and a state in which N-butylthymine is washed, respectively.
From FIG. 3, when N-butylthymine was bonded, the resistance of the gap electrode was lowered, and when N-butylthymine was taken, the resistance value was increased. That is, an electrical response corresponding to the presence of the detection target butylthymine was obtained.

(チミンと等価なウラシル基を有する分子ワイヤ(新規化合物II)の製造)
市販の5−ブロモウラシル(0.314g)とアセチル基で保護したフェニレンエチニレン化合物(0.500g)、

Figure 2008032393
を15mLのDMFに溶解後、触媒としてテトラキス(トリフェニルフォスフィン)パラジウム(0.190g)およびトリフェニルフォスフィン(0.173g)ヨウ化銅(0.0626g)、5mLのトリエチルアミンを加え、窒素下で1日、70℃加熱撹拌する。反応終了後、シリカゲル−塩化メチレン−メタノール混合溶媒のカラムクロマトグラフィーにて精製を行う。さらに、SEPHADEX LH-20−テトラヒドロフランとエタノール混合溶媒のゲルクロマトグラフィーにて精製を行い、0.0551g(収率8.7%)で化合物IIを得た。
構造確認はESI質量分析(アセトニトリル溶液)およびH−NMR測定より行った。
ESI質量分析: 計算値 m/z =384.08[M]
実測値 m/z =427.0[M+Na+HO]
H−NMR(DMSO−d) δ:11.40(br, 2H), 7.95(s, 1H), 7.65(d, J=8.6Hz, 2H), 7.60(d, J= 8.6, 2H), 7.51-7.48(m, 4H), 2.47(s, 3H) (Production of molecular wire having a uracil group equivalent to thymine (new compound II))
Commercially available 5-bromouracil (0.314 g) and an acetyl-protected phenyleneethynylene compound (0.500 g),
Figure 2008032393
Was dissolved in 15 mL of DMF, tetrakis (triphenylphosphine) palladium (0.190 g) and triphenylphosphine (0.173 g) copper iodide (0.0626 g) were added as catalysts, and 5 mL of triethylamine was added under nitrogen. At 70 ° C. for 1 day. After completion of the reaction, purification is performed by column chromatography using a mixed solvent of silica gel, methylene chloride and methanol. Furthermore, it refine | purified by the gel chromatography of SEPHADEX LH-20-tetrahydrofuran and ethanol mixed solvent, and compound II was obtained by 0.0551g (yield 8.7%).
The structure was confirmed by ESI mass spectrometry (acetonitrile solution) and 1 H-NMR measurement.
ESI mass spectrometry: calculated m / z = 384.08 [M] +
Found m / z = 427.0 [M + Na + H 2 O] +
1 H-NMR (DMSO-d 6 ) δ: 11.40 (br, 2H), 7.95 (s, 1H), 7.65 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.6, 2H), 7.51 -7.48 (m, 4H), 2.47 (s, 3H)

新規化合物IIの導電性測定結果
<1>新規化合物IIおよびピロリジンのジクロロエタン−エタノール(1:1)混合溶液(0.1mM/L)を調製し、この溶液にナノギャップ電極を室温、2日間、浸積した。修飾反応後、電極はエタノールにて良く洗浄して電気測定に使用した。
<2>この修飾済電極を0.5mM/Lのアデニン溶液に1時間、浸積後、余分のアデニンを除く目的でジクロロエタンにて洗浄した。
<3>アデニンを脱離させる目的で、エタノール中、1時間浸積した。
<2>と<3>の操作を繰り返し、各々の段階でI−V曲線を測定し、V=0付近での抵抗値を算出した。図4に得られた結果の一例を示す。図4の+adenineおよび−adenineは、それぞれアデニンを結合させた状態およびアデニンを洗浄した状態を示している。
図4から、アデニンを結合させるとギャップ電極の抵抗が低くなり、アデニンを取ると抵抗値が上昇した。すなわち、検出対象のアデニンの存在に対応した電気的応答が得られた。

Conductivity measurement results of novel compound II <1> A dichloroethane-ethanol (1: 1) mixed solution (0.1 mM / L) of novel compound II and pyrrolidine was prepared, and a nanogap electrode was added to this solution at room temperature for 2 days. Soaked. After the modification reaction, the electrode was thoroughly washed with ethanol and used for electrical measurement.
<2> This modified electrode was immersed in a 0.5 mM / L adenine solution for 1 hour, and then washed with dichloroethane for the purpose of removing excess adenine.
<3> For the purpose of desorbing adenine, it was immersed in ethanol for 1 hour.
The operations of <2> and <3> were repeated, an IV curve was measured at each stage, and a resistance value near V = 0 was calculated. An example of the results obtained is shown in FIG. + Adenine and −adenine in FIG. 4 indicate a state where adenine is bound and a state where adenine is washed, respectively.
From FIG. 4, when adenine was bonded, the resistance of the gap electrode was lowered, and when adenine was removed, the resistance value was increased. That is, an electrical response corresponding to the presence of adenine to be detected was obtained.

シトシンを有する分子ワイヤ(新規化合物III)の製造
新規化合物IIIは次の行程に従い製造した。各工程の実施例を示す。

Figure 2008032393
Production of molecular wire having cytosine (novel compound III) Novel compound III was produced according to the following process. Examples of each step will be shown.
Figure 2008032393

(行程1 中間体(3a)の製造)
3-ヨード安息香酸クロリド
(5.00g)、シトシン (0.695g) を脱水ピリジン(15mL)中、室温・窒素下で、1時間攪拌した。同量のシトシンを追加した後、5日間反応を続けた。氷冷下、1N-HCl(50mL)をゆっくり加え1時間攪拌、生じた固体を濾過し50mLの熱エタノール-水(50/50=v/v)で洗浄した。固体を80mLの熱エタノール-水に分散・攪拌・濾過の過程を数回繰り返した後、真空乾燥した(60℃、12時間)。収量3.83g(収率約90%)。構造確認はESI質量分析(エタノール溶液)およびH−NMR測定より行った。
ESI質量分析: 計算値 m/z =340.97[M]
実測値 m/z =364.06[M+Na]
H−NMR(DMSO−d) δ:〜11.5(br,, 2H), 8.35(s, 1H), 7.99(d, 8.4Hz, 1H), 7.97(d, J=8Hz, 1H), 7.88(d, J=6.8Hz, 1H), 7.31(dd, J=7.6Hz, 8Hz, 1H), 7.12(br, 1H),
(Process 1 Production of intermediate (3a))
3-iodobenzoic acid chloride
(5.00 g) and cytosine (0.695 g) were stirred in dehydrated pyridine (15 mL) at room temperature under nitrogen for 1 hour. The reaction was continued for 5 days after the same amount of cytosine was added. Under ice-cooling, 1N-HCl (50 mL) was slowly added and stirred for 1 hour. The resulting solid was filtered and washed with 50 mL of hot ethanol-water (50/50 = v / v). The process of dispersing, stirring and filtering the solid in 80 mL of hot ethanol-water was repeated several times, and then dried in vacuo (60 ° C., 12 hours). Yield 3.83 g (about 90% yield). The structure was confirmed by ESI mass spectrometry (ethanol solution) and 1 H-NMR measurement.
ESI mass spectrometry: calculated m / z = 340.97 [M] +
Actual value m / z = 364.06 [M + Na] +
1 H-NMR (DMSO-d 6 ) δ: ˜11.5 (br ,, 2H), 8.35 (s, 1H), 7.99 (d, 8.4 Hz, 1H), 7.97 (d, J = 8 Hz, 1H), 7.88 (d, J = 6.8Hz, 1H), 7.31 (dd, J = 7.6Hz, 8Hz, 1H), 7.12 (br, 1H),

(行程2 中間体(3b)の製造)
3a(3.40g)、トリメチルシリルアセチレン(10mL)、テトラキストリフェニルホスフィンパラジウム(0)(0.6g)、トリフェニルホスフィン(0.25g)、ジイソプロピルエチルアミン(10mL)を50mLのN,N-ジメチルアセタミド中で混合し、窒素下で攪拌しながらヨウ化銅(I)(1g)を投入した(反応温度60℃)。反応液が赤茶透明状態を経て、黄色固体が生成したところで20mLのN,N-ジメチルアセタミドを加え、温度を50℃としてさらに5時間反応させた。生じた固体を減圧濾過して集め、50mLのクロロホルムで洗浄・乾燥し、白色固体1.48gを得た。先の濾液を減圧蒸留により濃縮し、150mLのクロロホルムを加えることにより固体を析出した。固体を濾別、クロロホルム50mLで洗浄・乾燥し、目的物の3b、0.94gを得た。合計収量 2.42g(収率約78%)。構造確認はESI質量分析(エタノール溶液)およびH−NMR測定より行った。
ESI質量分析: 計算値 m/z =311.11[M]
実測値 m/z =334.94[M+Na]
H−NMR(DMSO−d) δ:〜11.5(br, 2H), 8.09(s, , 1H), 8.00(d, 8.0Hz, 1H), 7.88(d, J=6.8Hz, 1H), 7.67(d, J=7.6Hz, 1H), 7.51(dd, J=7.6Hz, 8.0Hz, 1H), 7.10(br, 1H), 0.25(s, 9H)
(Process 2 Production of intermediate (3b))
3a (3.40 g), trimethylsilylacetylene (10 mL), tetrakistriphenylphosphine palladium (0) (0.6 g), triphenylphosphine (0.25 g), diisopropylethylamine (10 mL) were added to 50 mL of N, N-dimethylamine. The mixture was mixed in cetamide, and copper (I) iodide (1 g) was added while stirring under nitrogen (reaction temperature 60 ° C.). When the reaction liquid passed through a red brown transparent state and a yellow solid was formed, 20 mL of N, N-dimethylacetamide was added, and the temperature was set to 50 ° C., and the reaction was further continued for 5 hours. The resulting solid was collected by filtration under reduced pressure, washed and dried with 50 mL of chloroform, and 1.48 g of a white solid was obtained. The previous filtrate was concentrated by distillation under reduced pressure, and 150 mL of chloroform was added to precipitate a solid. The solid was separated by filtration, washed with 50 mL of chloroform and dried to obtain the target product 3b, 0.94 g. Total yield 2.42 g (yield approximately 78%). The structure was confirmed by ESI mass spectrometry (ethanol solution) and 1 H-NMR measurement.
ESI mass spectrometry: calculated m / z = 311.11 [M] +
Actual value m / z = 334.94 [M + Na] +
1 H-NMR (DMSO-d 6 ) δ: ˜11.5 (br, 2H), 8.09 (s,, 1H), 8.00 (d, 8.0 Hz, 1H), 7.88 (d, J = 6.8 Hz, 1H), 7.67 (d, J = 7.6Hz, 1H), 7.51 (dd, J = 7.6Hz, 8.0Hz, 1H), 7.10 (br, 1H), 0.25 (s, 9H)

(行程3 中間体(3c)の製造)
3b(1.47g)を乾燥テトラヒドロフラン150mLに分散し、バス温度を−10℃に下げ、穏やかに攪拌しながら4.5mLの1Mフッ化テトラ-n-ブチルアンモニウムテトラヒドロン溶液を、シリンジで注入した。温度を保ちながら6時間反応した後、水1.0mL(過剰量)を加えさらに3時間攪拌を続けた。生じた白色固体を濾別、30mLの冷メタノールで洗浄、真空下乾燥し、0.323gの目的物を得た。先の濾液を30mLまで濃縮、水30mLを加えた後、メタノール分を留去することによりさらに固体を得た。固体を濾別、冷水で洗浄後、真空乾燥し目的物0.67gを得た。合計収量0.993g (収率約83%)。構造確認はESI質量分析(エタノール溶液)およびH−NMR測定より行った。
ESI質量分析: 計算値 m/z =239.07[M]
実測値 m/z =242.30[M+H]
H−NMR(DMSO−d) δ:〜11.5(br, 2H), 8.09(s, 1H), 8.01(d, 8.0Hz, 1H), 7.88(d, 6.8Hz, 1H), 7.70(d, J=7.6Hz, 1H), 7.52(dd, J=7.6Hz, 8.0Hz, 1H), 4.32(s, 1H),
(Process 3 Production of intermediate (3c))
3b (1.47 g) was dispersed in 150 mL of dry tetrahydrofuran, the bath temperature was lowered to −10 ° C., and 4.5 mL of 1M tetra-n-butylammonium fluoride tetrahydrone solution was injected with a syringe with gentle stirring. . After reacting for 6 hours while maintaining the temperature, 1.0 mL (excess amount) of water was added and stirring was continued for another 3 hours. The resulting white solid was filtered off, washed with 30 mL of cold methanol, and dried under vacuum to obtain 0.323 g of the desired product. The previous filtrate was concentrated to 30 mL, 30 mL of water was added, and then methanol was distilled off to obtain a solid. The solid was separated by filtration, washed with cold water, and then vacuum-dried to obtain 0.67 g of the desired product. Total yield 0.993 g (yield about 83%). The structure was confirmed by ESI mass spectrometry (ethanol solution) and 1 H-NMR measurement.
ESI mass spectrometry: calculated value m / z = 239.07 [M] +
Actual measurement value m / z = 242.30 [M + H] +
1 H-NMR (DMSO-d 6 ) δ: ˜11.5 (br, 2H), 8.09 (s, 1H), 8.01 (d, 8.0 Hz, 1H), 7.88 (d, 6.8 Hz, 1H), 7.70 (d , J = 7.6Hz, 1H), 7.52 (dd, J = 7.6Hz, 8.0Hz, 1H), 4.32 (s, 1H),

(行程4 新規化合物IIIの製造)
3c(0.989g)、パラアセチルチオヨードベンゼン(1.15g,等モル量)、テトラキストリフェニルホスフィンパラジウム(0.212g)、トリフェニルホスフィン(0.055g)、ジイソプロピルエチルアミン(4mL)を、20mLのN,N-ジメチルアセタミド中で混合し、窒素置換後攪拌しながらヨウ化銅(I)(0.202g)を投入し、温度40℃で24時間反応を行った。生成した茶色固体を濾過により取り除き、濾液を15mLまで濃縮、クロロホルム50mLを投入して新たな固体を析出した。これをクロロホルム洗浄・乾燥し、3cの粗製物0.46gを得た。粗製物50mgをソックスレー抽出器におき、テトラヒドロフラン50mLで10時間抽出、冷却後生じた白色固体を濾別、最少量のテトラヒドロフランで洗浄後、真空乾燥した。このソックスレー抽出操作を繰り返すことにより、粗製物0.32gから精製物0.152gを得た。収率9%以上。構造確認はESI質量分析(エタノール溶液)およびH−NMR測定より行った。
ESI質量分析: 計算値 m/z =389.08[M]
実測値 m/z =412.49[M+Na]
H−NMR(DMSO−d) δ:〜11.5(br, 2H), 8.22(s, 1H), 8.04(d, 8.0Hz, 1H), 7.80(d, J=7.6Hz, 1H), 7.68(d, J=8.4Hz, 2H), 7.58(dd, J=7.6Hz, 8.0Hz, 1H), 7.50(d, J=8.8Hz, 1H), 7.10(br, 1H), 2.47(s, 3H)
(Process 4 Production of new compound III)
3 mL (0.989 g), paraacetylthioiodobenzene (1.15 g, equimolar amount), tetrakistriphenylphosphine palladium (0.212 g), triphenylphosphine (0.055 g), diisopropylethylamine (4 mL) in 20 mL In N, N-dimethylacetamide, copper (I) iodide (0.202 g) was added with stirring after nitrogen substitution, and the reaction was performed at a temperature of 40 ° C. for 24 hours. The generated brown solid was removed by filtration, the filtrate was concentrated to 15 mL, and 50 mL of chloroform was added to precipitate a new solid. This was washed with chloroform and dried to obtain 0.46 g of a crude product of 3c. 50 mg of the crude product was placed in a Soxhlet extractor and extracted with 50 mL of tetrahydrofuran for 10 hours. After cooling, the resulting white solid was filtered off, washed with a minimum amount of tetrahydrofuran, and then dried in vacuo. By repeating this Soxhlet extraction operation, 0.152 g of a purified product was obtained from 0.32 g of the crude product. Yield 9% or more. The structure was confirmed by ESI mass spectrometry (ethanol solution) and 1 H-NMR measurement.
ESI mass spectrometry: calculated value m / z = 389.08 [M] +
Actual value m / z = 412.49 [M + Na] +
1 H-NMR (DMSO-d 6 ) δ: ˜11.5 (br, 2H), 8.22 (s, 1H), 8.04 (d, 8.0 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 8.4Hz, 2H), 7.58 (dd, J = 7.6Hz, 8.0Hz, 1H), 7.50 (d, J = 8.8Hz, 1H), 7.10 (br, 1H), 2.47 (s, 3H )

新規化合物IIIの導電性測定結果
<1>新規化合物IIIおよびピロリジンのジクロロエタン−DMSO(4:1)混合溶液(0.2mM/L)を調製し、この溶液にナノギャップ電極を室温、3時間、浸積した。修飾反応後、電極はエタノールにて良く洗浄して電気測定に使用した。
<2>この修飾済電極を0.5mM/Lのアシクロビル溶液に1時間、浸積後、余分のアシクロビルを除く目的でジクロロエタンにて洗浄した。
<3>アシクロビルを脱離させる目的で、エタノール中、1時間浸積した。
<2>と<3>の操作を繰り返し、各々の段階でI−V曲線を測定し、V=0付近での抵抗値を算出した。図5に得られた結果の一例を示す。図5の+アシクロビルおよび−アシクロビルは、それぞれアシクロビルを結合させた状態およびアシクロビルを洗浄した状態を示している。
図5から、アシクロビルを結合させるとギャップ電極の抵抗が低くなり、アシクロビルを取ると抵抗値が上昇した。すなわち、検出対象のアシクロビルの存在に対応した電気的応答が得られた。
Conductivity measurement results of novel compound III <1> A mixed solution (0.2 mM / L) of dichloroethane-DMSO (4: 1) of novel compound III and pyrrolidine was prepared, and a nanogap electrode was added to this solution at room temperature for 3 hours. Soaked. After the modification reaction, the electrode was thoroughly washed with ethanol and used for electrical measurement.
<2> This modified electrode was immersed in a 0.5 mM / L acyclovir solution for 1 hour and then washed with dichloroethane for the purpose of removing excess acyclovir.
<3> For the purpose of eliminating acyclovir, it was immersed in ethanol for 1 hour.
The operations of <2> and <3> were repeated, an IV curve was measured at each stage, and a resistance value near V = 0 was calculated. An example of the results obtained is shown in FIG. + Acyclovir and -Acyclovir in FIG. 5 indicate the state in which acyclovir is bound and the state in which acyclovir is washed, respectively.
From FIG. 5, when acyclovir was bonded, the resistance of the gap electrode was lowered, and when acyclovir was taken, the resistance value was increased. That is, an electrical response corresponding to the presence of acyclovir to be detected was obtained.

(3−アミノシクロヘキサノンを有する分子ワイヤ(新規化合物IV)の製造)
4−アミノチオフェノール(1.35g)とジメドン(1.50g)の混合物にトルエン(200mL)とパラトルエンスルホン酸(0.04g)を加え、130℃、8時間撹拌した。100℃、減圧下でトルエン(50mL)を留去後、ヘキサン(200mL)を加え、析出した固体を集めた。これをエタノール(50mL)に溶解し、シクロヘキサン(400mL)に注ぎ、析出した淡黄色固体、化合物4を1.40g(収率53%)を得た。
構造確認はESI質量分析(エタノール溶液)およびH−NMR測定より行った。
ESI質量分析: 計算値 m/z = 247.10[M]
実測値 m/z =248.0[M+H]
316.0[M+Na+EtOH]
H−NMR(CDCl) δ:ca.11.5(br, 2H), 8.22(s, 1H), 8.04(d, 8.0Hz, 1H), 7.80(d, J=7.6Hz, 1H), 7.68(d, J=8.4Hz, 2H), 7.58(dd, J=7.6Hz, 8.0Hz, 1H), 7.50(d, J=8.8Hz, 2H), 2.47(s, 3H)
(Production of molecular wire having 3-aminocyclohexanone (new compound IV))
Toluene (200 mL) and paratoluenesulfonic acid (0.04 g) were added to a mixture of 4-aminothiophenol (1.35 g) and dimedone (1.50 g), and the mixture was stirred at 130 ° C. for 8 hours. Toluene (50 mL) was distilled off at 100 ° C. under reduced pressure, hexane (200 mL) was added, and the precipitated solid was collected. This was dissolved in ethanol (50 mL) and poured into cyclohexane (400 mL) to obtain 1.40 g (yield 53%) of a precipitated pale yellow solid, compound 4.
The structure was confirmed by ESI mass spectrometry (ethanol solution) and 1 H-NMR measurement.
ESI mass spectrometry: Calculated value m / z = 247.10 [M] + ,
Actual value m / z = 248.0 [M + H] + ,
316.0 [M + Na + EtOH] +
1 H-NMR (CDCl 3 ) δ: ca.11.5 (br, 2H), 8.22 (s, 1H), 8.04 (d, 8.0 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.68 ( d, J = 8.4Hz, 2H), 7.58 (dd, J = 7.6Hz, 8.0Hz, 1H), 7.50 (d, J = 8.8Hz, 2H), 2.47 (s, 3H)

化合物4導電性測定結果
<1>化合物4のジクロロエタン溶液(0.2mM/L)を調製し、この溶液にナノギャップ電極を室温、16時間、浸積した。修飾反応後、電極はエタノールにて良く洗浄して電気測定に使用した。
<2>この修飾済電極を0.5mM/Lの5−フルオロシトシン(F−Cyt)溶液に1時間、浸積後、余分のF−Cytを除く目的でジクロロエタンにて洗浄した。
<3>F−Cytを脱離させる目的で、エタノール中、1時間浸積した。
<2>と<3>の操作を繰り返し、各々の段階でI−V曲線を測定し、V=0付近での抵抗値を算出した。図4に得られた結果の一例を示す。図4の+F−Cytおよび−F−Cytは、それぞれF−Cytを結合させた状態およびF−Cytを洗浄した状態を示している。
図4から、F−Cytを結合させるとギャップ電極の抵抗が低くなり、F−Cytを取ると抵抗値が上昇した。すなわち、検出対象のF−Cytの存在に対応した電気的応答が得られた。
Compound 4 conductivity measurement results <1> A dichloroethane solution (0.2 mM / L) of compound 4 was prepared, and a nanogap electrode was immersed in this solution at room temperature for 16 hours. After the modification reaction, the electrode was thoroughly washed with ethanol and used for electrical measurement.
<2> This modified electrode was immersed in a 0.5 mM / L 5-fluorocytosine (F-Cyt) solution for 1 hour and then washed with dichloroethane for the purpose of removing excess F-Cyt.
<3> For the purpose of desorbing F-Cyt, it was immersed in ethanol for 1 hour.
The operations of <2> and <3> were repeated, an IV curve was measured at each stage, and a resistance value near V = 0 was calculated. An example of the results obtained is shown in FIG. + F-Cyt and -F-Cyt in FIG. 4 indicate a state where F-Cyt is bound and a state where F-Cyt is washed, respectively.
From FIG. 4, when F-Cyt was coupled, the resistance of the gap electrode was lowered, and when F-Cyt was taken, the resistance value was increased. That is, an electrical response corresponding to the presence of F-Cyt to be detected was obtained.

本発明のセンサー素子構造、化学物質の分子認識センサー、分子素子などナノテクノロジー分野およびバイオ・環境分野における高感度分子認識センサーとして有用性は極めて高い。   The sensor element structure of the present invention, a chemical substance molecular recognition sensor, a molecular element, etc. are extremely useful as a highly sensitive molecular recognition sensor in the fields of nanotechnology and bio / environment.

本発明のセンサー素子の検出原理の説明図Explanatory drawing of the detection principle of the sensor element of the present invention 実施例1の検出結果Detection result of Example 1 実施例2の検出結果Detection result of Example 2 実施例3の検出結果Detection result of Example 3 実施例4の検出結果Detection result of Example 4 実施例5の検出結果Detection result of Example 5

Claims (11)

検出対象物化学物質と、結合する部位を有するセンサー分子を、ナノギャップ電極表面に結合させた検出対象化学物質の検出素子であって、センサー分子は、一方の端部にナノギャップ電極表面に固定化するための部分構造及び他方の端部に検出対象化学物質と結合するレセプター部分構造を有するワイヤ状分子であり、かつ、分子長が2ナノメートル以下であって、前記電極のギャップ巾が最大10ナノメートル以下であることを特徴とする化学物質の検出素子。
A detection element of a detection target chemical substance in which a detection target chemical substance and a sensor molecule having a binding site are bonded to the nanogap electrode surface, and the sensor molecule is fixed to the nanogap electrode surface at one end. A wire-like molecule having a partial structure to be converted and a receptor partial structure that binds to a chemical substance to be detected at the other end, the molecular length is 2 nanometers or less, and the gap width of the electrode is maximum A chemical substance detection element characterized by being 10 nanometers or less.
センサー分子が、式(1)
Figure 2008032393
である請求項1に記載した化学物質の検出素子。
The sensor molecule is of formula (1)
Figure 2008032393
The chemical substance detection element according to claim 1, wherein
センサー分子が、式(2)
Figure 2008032393
である請求項1に記載した化学物質の検出素子。
The sensor molecule is of formula (2)
Figure 2008032393
The chemical substance detection element according to claim 1, wherein
ナノギャップ電極が、金、銀、白金、パラジウム、ニッケルから選ばれる金属の一つである請求項1〜3のいずれかひとつに記載された化学物質の検出素子。   The chemical substance detection element according to any one of claims 1 to 3, wherein the nanogap electrode is one of metals selected from gold, silver, platinum, palladium, and nickel. 前記電極の検出対象物質がチミンである請求項2〜4のいずれかひとつに記載された化学物質の検出素子。   The chemical substance detection element according to claim 2, wherein the detection target substance of the electrode is thymine. 検出対象物化学物質と、結合する部位を有するセンサー分子を、ナノギャップ電極表面に結合させた検出対象化学物質の検出素子であって、センサー分子は、一方の端部にナノギャップ電極表面に固定化するための部分構造及び他方の端部に検出対象化学物質と結合するレセプター部分構造を有するワイヤ状分子であり、かつ、分子長が2ナノメートル以下であって、前記電極のギャップ巾が最大10ナノメートル以下であることを特徴とする化学物質の検出素子を用いて、検出対象物の化学物質を捕捉し、捕捉前と捕捉後のギャップ間のトンネル電流を検出する化学物質の検出方法。   A detection element of a detection target chemical substance in which a detection target chemical substance and a sensor molecule having a binding site are bonded to the nanogap electrode surface, and the sensor molecule is fixed to the nanogap electrode surface at one end. A wire-like molecule having a partial structure to be converted and a receptor partial structure that binds to a chemical substance to be detected at the other end, the molecular length is 2 nanometers or less, and the gap width of the electrode is maximum A chemical substance detection method for capturing a chemical substance as a detection target using a chemical substance detection element characterized by being 10 nanometers or less and detecting a tunnel current between a gap before and after the capture. 一対の電極と、各電極の表面にそれぞれ固定されたセンサー分子からなる検出素子であって、該センサー分子は、電極表面に固定するための部位と、長さの調節可能な直線上の剛直なn個の鎖部位と被検出対象物質と結合するレセプター部位とを備えたワイヤ状分子であり、センサー分子と対向したセンサー分子間のレセプター部位間は、所定のギャップを有し、レセプター部位に被検出対象物質が捕捉されたことを、ギャップ間距離の変化のトンネル電流を測定してなる検出素子。 A detection element comprising a pair of electrodes and a sensor molecule fixed to the surface of each electrode, the sensor molecule comprising: a portion for fixing to the electrode surface; and a rigid on a straight line of adjustable length It is a wire-like molecule having n chain sites and a receptor site that binds to the substance to be detected. The receptor site between the sensor molecules facing the sensor molecule has a predetermined gap, and the receptor site A detection element obtained by measuring a tunnel current of a change in a gap distance, when a detection target substance is captured. 一般式
Figure 2008032393
において、
Figure 2008032393
で表される新規化合物I。
General formula
Figure 2008032393
In
Figure 2008032393
A novel compound I represented by:
一般式
Figure 2008032393
において、
Figure 2008032393
で表される新規化合物II。
General formula
Figure 2008032393
In
Figure 2008032393
A novel compound II represented by
一般式
Figure 2008032393
において、
Figure 2008032393
で表される新規化合物III。
General formula
Figure 2008032393
In
Figure 2008032393
A novel compound III represented by
一般式
Figure 2008032393
において、
Figure 2008032393
で表される新規化合物IV。
General formula
Figure 2008032393
In
Figure 2008032393
A novel compound IV represented by
JP2006190407A 2006-06-30 2006-07-11 Detection element having nanogap electrode and detection method using the same Expired - Fee Related JP4873463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190407A JP4873463B2 (en) 2006-06-30 2006-07-11 Detection element having nanogap electrode and detection method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006180751 2006-06-30
JP2006180751 2006-06-30
JP2006190407A JP4873463B2 (en) 2006-06-30 2006-07-11 Detection element having nanogap electrode and detection method using the same

Publications (2)

Publication Number Publication Date
JP2008032393A true JP2008032393A (en) 2008-02-14
JP4873463B2 JP4873463B2 (en) 2012-02-08

Family

ID=39122003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190407A Expired - Fee Related JP4873463B2 (en) 2006-06-30 2006-07-11 Detection element having nanogap electrode and detection method using the same

Country Status (1)

Country Link
JP (1) JP4873463B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210272A (en) * 2008-02-29 2009-09-17 Nippon Telegr & Teleph Corp <Ntt> Molecule analysis method and molecule analysis element
US8410144B2 (en) 2009-03-31 2013-04-02 Arqule, Inc. Substituted indolo-pyridinone compounds

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101927415B1 (en) 2012-11-05 2019-03-07 삼성전자주식회사 Nanogap device and signal processing method from the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522748A (en) * 1998-05-04 2002-07-23 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド Detection of targets in samples
JP2002533698A (en) * 1998-12-23 2002-10-08 インスティトゥート フュア フィジカーリッシェ ホッホテヒノロギー エー.ファウ. Affinity sensors for detecting the formation of specific binding and uses thereof
JP2003185662A (en) * 1992-04-23 2003-07-03 Massachusetts Inst Of Technol <Mit> Optical and electric method and apparatus for detecting molecule
JP2005079335A (en) * 2003-08-29 2005-03-24 National Institute Of Advanced Industrial & Technology Method for manufacturing nano gap electrode and element having the nano gap electrode manufactured by this method
JP2006248934A (en) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology Conductive 2,6-diamidopyridine compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185662A (en) * 1992-04-23 2003-07-03 Massachusetts Inst Of Technol <Mit> Optical and electric method and apparatus for detecting molecule
JP2002522748A (en) * 1998-05-04 2002-07-23 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド Detection of targets in samples
JP2002533698A (en) * 1998-12-23 2002-10-08 インスティトゥート フュア フィジカーリッシェ ホッホテヒノロギー エー.ファウ. Affinity sensors for detecting the formation of specific binding and uses thereof
JP2005079335A (en) * 2003-08-29 2005-03-24 National Institute Of Advanced Industrial & Technology Method for manufacturing nano gap electrode and element having the nano gap electrode manufactured by this method
JP2006248934A (en) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology Conductive 2,6-diamidopyridine compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210272A (en) * 2008-02-29 2009-09-17 Nippon Telegr & Teleph Corp <Ntt> Molecule analysis method and molecule analysis element
US8410144B2 (en) 2009-03-31 2013-04-02 Arqule, Inc. Substituted indolo-pyridinone compounds

Also Published As

Publication number Publication date
JP4873463B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP2002532386A (en) Method for electrochemically detecting nucleic acid oligomer hybrid
Pitié et al. Targeting the DNA Cleavage Activity of Copper Phenanthroline and Clip-Phen to A⊙ T Tracts via Linkage to a Poly-N-methylpyrrole
JP4873463B2 (en) Detection element having nanogap electrode and detection method using the same
JP3665707B2 (en) DNA sensor and method for detecting DNA
Navarro et al. Automated synthesis of new ferrocenyl-modified oligonucleotides: study of their properties in solution
JP2967197B1 (en) Probe for detecting special single-stranded nucleic acid site of gene, method and apparatus for detecting special single-stranded nucleic acid site of gene
JP3760158B2 (en) Novel conductive polymer, sensor using the same, and target substance detection method
KR20210150549A (en) Polycyclic aromatic bridges for molecular electronic sensors
JP2006337351A (en) Electrochemical detection method for gene
JP4588336B2 (en) Conductive compound, electrode and sensor including the same, and target molecule detection method using the sensor
Moreau et al. Synthesis and characterization of oligonucleotide conjugates bearing electroactive labels
JP2006275670A (en) Tripod type functional interfacial molecule for immobilizing biomolecule and gene detecting device using it
JP2009222635A (en) Nucleic acid detection method
JP4244023B2 (en) Molecular detection nanosensor
JP5006033B2 (en) Ligand for detection of electrochemically active sequence-specific double-stranded nucleic acid molecules
JP2006248934A (en) Conductive 2,6-diamidopyridine compound
JP4773062B2 (en) NOVEL ELECTROCHEMICALLY RESPONSIBLE COMPOUND, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR DETECTING BODY BETWEEN TARGET SUBSTANCE AND PROBE MOLECULE USING SAME
KR100381457B1 (en) Intercalator compound useful in electrochemical detection of double stranded dna, process for preparation thereof and intermediate used in said process
US20030152958A1 (en) Nucleic acid fragment-fixed electrode and its use
JP4043362B2 (en) Novel ferrocene polycyclic hydrocarbon derivative, novel ferrocene naphthalene diimide derivative, production method thereof, intercalator comprising the derivative, and electrochemical detection method of gene
JP2009136238A (en) Method for detecting gene
JP4138773B2 (en) Novel ferroceneated polycyclic hydrocarbon derivative, method for producing the same, and method for detecting target nucleic acid
JPWO2006054426A1 (en) High fluorescence quantum yield type hydrophobic fluorescent probe, biopolymer detection method using the same, and biopolymer interaction detection method
JP4729739B2 (en) Pyridylbenzamide compound
CN103969300A (en) Difunctional electroactive probe capable of recognizing CGG trinucleotide repetitive sequence, preparation of probe, and kit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees