JP4244023B2 - Molecular detection nanosensor - Google Patents

Molecular detection nanosensor Download PDF

Info

Publication number
JP4244023B2
JP4244023B2 JP2004141741A JP2004141741A JP4244023B2 JP 4244023 B2 JP4244023 B2 JP 4244023B2 JP 2004141741 A JP2004141741 A JP 2004141741A JP 2004141741 A JP2004141741 A JP 2004141741A JP 4244023 B2 JP4244023 B2 JP 4244023B2
Authority
JP
Japan
Prior art keywords
nanosensor
compound
mmol
molecule
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004141741A
Other languages
Japanese (ja)
Other versions
JP2005127998A (en
Inventor
小山恵美子
英雄 徳久
徹 中村
吉信 名川
雅敏 金里
アブデラク ベラセウス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004141741A priority Critical patent/JP4244023B2/en
Publication of JP2005127998A publication Critical patent/JP2005127998A/en
Application granted granted Critical
Publication of JP4244023B2 publication Critical patent/JP4244023B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、センサーに関する。さらに、詳しくは特定の分子と反応する分子検出ナノセンサーに関する。   The present invention relates to a sensor. More specifically, the present invention relates to a molecular detection nanosensor that reacts with a specific molecule.

従来、金基板上に固定化したビス(フェニルエチニル)ベンゼン骨格の片末端にチオール基を導入した分子の走査型トンネル顕微鏡測定から、マトリックスであるn-ドデカンチオールよりも導電性が高いことが知られている(非特許文献1)。また、中央部にp−ニトロアニリンを導入した分子の電流・電圧測定からスイッチ機能を示すことが知られている(非特許文献2)。
L.A.Bumm,J.J.Arnold,M.T.Cygan,T.D.Dunbar,T.P.Burgin,LJonesII,D.L.Allara,J.M.Tour,P.S.Weiss,Science271,1705(1996) J.Chen,M.A.Reed,A.M.Rawlett,J.M.Tour,Science286,1550(1999)
Conventionally, a scanning tunneling microscope measurement of a molecule in which a thiol group is introduced at one end of a bis (phenylethynyl) benzene skeleton immobilized on a gold substrate shows that the conductivity is higher than that of the matrix n-dodecanethiol. (Non-Patent Document 1). Moreover, it is known that a switch function is shown from the current / voltage measurement of a molecule in which p-nitroaniline is introduced at the center (Non-Patent Document 2).
LABumm, JJArnold, MTCygan, TDDunbar, TPBurgin, LJonesII, DLAllara, JMTour, PSWeiss, Science271,1705 (1996) J.Chen, MAReed, AMRawlett, JMTour, Science286,1550 (1999)

本発明は、ひとつの分子を用いて、感度良くターゲット分子を捕捉でき、これを電気信号として取り出すことができるナノセンサーを開発する。   The present invention develops a nanosensor that can capture a target molecule with high sensitivity and extract it as an electrical signal using a single molecule.

上記目的を達成するため、鋭意研究したところ、ひとつの分子でこの働きをするものがあることを見出した。
すなわち、本発明は、
ひとつの分子内に、ターゲット分子の結合による電子状態の変化をシグナルとして発生するセンシング部位と、シグナルを電極に伝達するワイヤー部位とを有することを特徴とするナノセンサーである。
本発明のナノセンサーにおいては、前記ワイヤー部位は2つ有しているか、或いは、前記ワイヤー部位を1つにして、一方を金極に結合させないで、STMチップ(走査型トンネル顕微鏡)で見ることができる構造としてもよい。
また、本発明において、とくに、センシング部位が、次の化学式
で表わされるビピリジンか、或いは、次の化学式
又は
で表わされるビピリジンのプラチナ錯体又はパラジウム錯体であることが望ましい。
また、ワイヤー部位は、パイ結合を有する化合物であって、電極金属に結合する基を有する化合物とすることができる。
さらに、ワイヤー部位が、
(式中、nは1〜50の整数)
で示される化合物であることが望ましい
このセンシング部位を取り付けたナノセンサーは、特定のDNAを検知することが出来るため、例えばガンの発見などに利用することが出来る。
In order to achieve the above-mentioned object, earnestly researched, it was found that there is one molecule that performs this function.
That is, the present invention
In one molecule, the nanosensor has a sensing site that generates a change in an electronic state due to binding of a target molecule as a signal, and a wire site that transmits the signal to an electrode .
In the nanosensor of the present invention, there are two wire parts, or one wire part and one is not bonded to the gold electrode, and is viewed with an STM chip (scanning tunnel microscope). It is good also as a structure which can do.
In the present invention , in particular, the sensing site has the following chemical formula:
Or bipyridine represented by the following formula:
Or
A platinum complex or a palladium complex of bipyridine represented by
Further, the wire portion may be a compound having a pi bond, and a compound having a group bonded to the electrode metal.
Furthermore, the wire part
(Where n is an integer from 1 to 50)
It is desirable that it is a compound shown by these .
Since the nanosensor attached with this sensing site can detect specific DNA, it can be used, for example, for discovery of cancer.

本発明のナノセンサは、ひとつの分子で、センシング部位とワイヤー部位をもち、金などの金属電極に直接取り付けることが出来るため、高感度の超小型のセンサーを作り出すことが出来る。   The nanosensor of the present invention is a single molecule that has a sensing portion and a wire portion, and can be directly attached to a metal electrode such as gold. Therefore, a highly sensitive ultra-small sensor can be created.

本発明のナノセンサーの基本的な概念を、センシング部位がビピリジンである例を用いて、図1に示す。
ナノセンサーは、電子状態の変化をシグナルとして発生させるセンシング部位1と、シグナルを電極に伝達するワイヤー部位2からなり、ワイヤー部位2の末端基により、電極金属に結合している。ターゲット分子4が近づいてきて、センシング部位1に捕捉されたとき、シグマ結合により結合しているため、自由回転していた2つのピリジン環は固定されるとともに、該センシング部位のターゲット分子の捕捉により電子状態が変化し、この変化のシグナルをワイヤー部位2を通して、電極3に伝える。この電気的変化を知ることにより、ターゲット分子の存在を検知できる。
本発明においては、図2に示すように、2つのタイプのナノセンサーを作ることが出来る。
すなわち、ひとつは、図2のA1に示すように、センシング部位1がターゲット分子Gを補足すると2つのワイヤー部位2が、信号を電極3に伝えるタイプのもの(以下タイプI)である。もうひとつは、図2のA2に示すように、前記タイプIにおけるシグナルを伝達するワイヤー部位の一方を、電極3に結合させないで、STMチップ(走査型トンネル顕微鏡)で見ることができる構造としたナノセンサー(以下タイプII)である。
The basic concept of the nanosensor of the present invention is shown in FIG. 1 using an example in which the sensing site is bipyridine .
Nanosensors, the sensing portion 1 which generates a change in the electronic state as a signal, consists of a wire portion 2 for transmitting signals to the electrodes, the terminal groups of wire portions 2 are bonded to the electrode metal 3. When the target molecule 4 approaches and is captured by the sensing site 1, it is bound by sigma binding, so the two pyridine rings that have been freely rotated are fixed, and by capturing the target molecule at the sensing site The electronic state changes, and a signal of this change is transmitted to the electrode 3 through the wire part 2. By knowing this electrical change, the presence of the target molecule can be detected.
In the present invention, two types of nanosensors can be made as shown in FIG.
That is, as shown in A1 of FIG. 2, one is a type (hereinafter referred to as type I) in which the two wire parts 2 transmit signals to the electrodes 3 when the sensing part 1 supplements the target molecule G. The other is, as shown in A2 of FIG. 2, a structure that can be seen with an STM chip (scanning tunneling microscope) without binding one of the wire portions transmitting the signal in type I to the electrode 3 . It is a nanosensor (hereinafter referred to as type II).

(電極の調製)
本発明において、電気的変化を検出するために、分子ワイヤー部位2の末端基が配線電極と結合することが肝要であるが、そのために電極表面の調整が重要である。すなわち、電極表面の清浄化が重要である。清浄化は強力な一般的に知られている酸化剤により行うことができる。酸化に用いるものとして、オゾン、酸、過酸化物、硫酸・過酸化水素混合液(ピラニー液)がある。本発明の一部として、清浄化はこれで終わりではなく、この後の還元過程も重要であることを見出した。つまり、先の酸化反応によって電極表面には酸化物が形成しており、これを取り除く還元過程も必須である。還元に用いるものとして、亜硫酸塩、亜鉛、金属、アルカリ金属があり、中でもヒドラジン一水和物が(NH2NH2・H2O)が有用である。

(Preparation of electrode)
In the present invention, in order to detect an electrical change, it is important that the terminal group of the molecular wire portion 2 is bonded to the wiring electrode. For this reason, adjustment of the electrode surface is important. That is, it is important to clean the electrode surface. Cleaning can be carried out with strong commonly known oxidizing agents. Oxides, acids, peroxides, sulfuric acid / hydrogen peroxide mixed liquid (Pirani liquid) are used for oxidation. As part of the present invention, we have found that cleaning is not the end, and the subsequent reduction process is also important. That is, an oxide is formed on the electrode surface by the previous oxidation reaction, and a reduction process for removing the oxide is also essential. There are sulfites, zinc, metals, and alkali metals used for the reduction. Among them, hydrazine monohydrate (NH 2 NH 2 .H 2 O) is useful.

本発明のセンシング部位及びワイヤー部位を結合した化合物の例を、次に示す。
The example of the compound which couple | bonded the sensing part and wire part of this invention is shown next.

図3の化学式で示すように、タイプIのナノセンサーとして用いられる対称な構造を有する化合物6および化合物7は、5,5’-ジブロモビピリジン(化合物1)を出発原料とし、触媒としてPd (PPh3)4、もしくはPdCl2(PPh3)2およびCuIの混合物を用いて有機アミンあるいは有機アミンおよびTHF混合溶媒中で2当量のアセチレン誘導体(化合物3)を反応させることにより合成される。もしくは、5,5’-ジエチニルビピリジン(化合物2)を出発原料とし、触媒としてPd (PPh3)4 、もしくはPdCl2(PPh3)2およびCuIの混合物を用いて有機アミンあるいは有機アミンおよびTHF混合溶媒中で2当量のハロゲン化物(化合物4)を反応させることにより合成される。化合物6を塩化メチレン中、ピロリジンを作用することで保護基がアミノリシスを受けることによって、あるいはNaOHやトリエチルアミンなどのアルカリ水溶液を作用させることによる加水分解によって容易に脱保護が可能であり、定量的に化合物7を得ることができる。
本発明のもうひとつの型であるタイプIIのナノセンサーとして用いられる非対称な構造を有する化合物10および化合物11は、5,5’-ジブロモビピリジンを出発原料とし、触媒としてPd (PPh3)4 、もしくはPdCl2(PPh3)2およびCuIの混合物を用いて有機アミンあるいは有機アミンおよびTHF混合溶媒中で1当量のアセチレン誘導体3を反応させることにより合成される。もしくは、5-ブロモ-5’-エチニルビピリジン8を出発原料とし、触媒としてPd (PPh3)4 、もしくはPdCl2(PPh3)2およびCuIの混合物を用いて有機アミンあるいは有機アミンおよびTHF混合溶媒中で2当量のハロゲン化物4を反応させることにより合成される。化合物10を塩化メチレン中、ピロリジンを作用することで保護基がアミノリシスを受けることによって、あるいはNaOHやトリエチルアミンなどのアルカリ水溶液を作用させることによる加水分解によって容易に脱保護が可能であり、定量的に化合物11を得ることができる。
As shown in the chemical formula of FIG. 3, compound 6 and compound 7 having a symmetric structure used as a type I nanosensor have 5,5′-dibromobipyridine (compound 1) as a starting material and Pd (PPh as a catalyst). 3 ) It is synthesized by reacting 2 equivalents of an acetylene derivative (compound 3) in an organic amine or a mixed solvent of organic amine and THF using a mixture of 4 or PdCl 2 (PPh 3 ) 2 and CuI. Alternatively, using 5,5'-diethynylbipyridine (compound 2) as a starting material and using Pd (PPh 3 ) 4 or a mixture of PdCl 2 (PPh 3 ) 2 and CuI as a catalyst, an organic amine or organic amine and THF It is synthesized by reacting 2 equivalents of halide (compound 4) in a mixed solvent. Compound 6 can be easily deprotected by the action of pyrrolidine in methylene chloride to undergo aminolysis of the protecting group, or by hydrolysis by the action of an alkaline aqueous solution such as NaOH or triethylamine. Compound 7 can be obtained.
Compound 10 and Compound 11 having an asymmetric structure used as a type II nanosensor, which is another type of the present invention, are prepared using 5,5′-dibromobipyridine as a starting material and Pd (PPh 3 ) 4 as a catalyst, Alternatively, it is synthesized by reacting 1 equivalent of acetylene derivative 3 in an organic amine or a mixed solvent of organic amine and THF using a mixture of PdCl 2 (PPh 3 ) 2 and CuI. Alternatively, starting from 5-bromo-5'-ethynylbipyridine 8 and using Pd (PPh 3 ) 4 or a mixture of PdCl 2 (PPh 3 ) 2 and CuI as a catalyst, an organic amine or an organic amine and THF mixed solvent In which 2 equivalents of halide 4 are reacted. Compound 10 can be easily deprotected by the action of pyrrolidine in methylene chloride to undergo aminolysis of the protecting group, or by hydrolysis by the action of an alkaline aqueous solution such as NaOH or triethylamine. Compound 11 can be obtained.

本発明のナノセンサーは、状態Aにあるとき、ビピリジン部位に配位能力のあるプロトンや金属イオンを認識し、状態B’の状態へと変換される。この時、ビピリジン部の平面性の変化とターゲット補足による電子状態の変化によってナノセンサー分子の導電性が変化し、検知できる。さらに、状態B’にあるナノセンサーは、捕捉された金属イオンと相互作用できる能力のある中性分子あるいはアニオン分子を捕捉し、状態Bへと変化する。この時、金属を介して捕捉された分子によってナノセンサー分子の電子的および場合により構造的変化によってその認識を検知できる。


When the nanosensor of the present invention is in the state A 3, it recognizes protons and metal ions capable of coordinating at the bipyridine moiety and converts them to the state B ′ 3 . At this time, the conductivity of the nanosensor molecule changes due to the change in the planarity of the bipyridine moiety and the change in the electronic state due to the target supplementation, which can be detected. Furthermore, the nanosensor in state B ′ 3 captures neutral or anionic molecules capable of interacting with the captured metal ion and changes to state B 3 . At this time, the recognition can be detected by electronic and possibly structural changes of the nanosensor molecule by the molecule captured through the metal.


(タイプIのナノセンサーのモデルとなる化合物5(n= 6)の合成)
ヘキシルチオフェニルアセチレン501 mg (2.29 mmol)および5,5’-ジブロモビピリジン 300 mg(0.96 mmol)、 NaI 343 mg (2.29 mmol)をPdCl2(PPh3)235 mg (0.05 mmol)およびCuI 10 mg(0.05mmol)を触媒として窒素気流下にてトリエチルアミン中、70度で12時間加熱攪拌する。反応後、固体をろ別して得られたろ液と、固体をさらに塩化メチレンで洗浄してろ過したろ液を合わせ、溶媒を減圧留去した残渣を少量のクロロホルムに溶解してゲルパーミエーションクロマトグラフィーによって精製すると、収率60%で化合物5を得ることができる。1H NMR (CDCl3):δ 0.90(t, J = 7.0, 6H, CH 3-CH2-),1.30-1.32 (m, 8H, CH3-(CH 2)2-), 1.42-1.48(m, 4H, -S-(CH2)2-CH 2-), 1.65-1.71 (m, 4H,-S-CH2-CH 2-), 2.96 (t, J = 7.3, 4H, -S-CH 2-),7.28 (d, J = 8.6 Hz, 4H, -Ar-), 7.47 (d, J = 8.6 Hz, 4H, -Ar-), 7.93 (dd, J1= 8.3 Hz, J2 = 2.2 Hz, 2H, Ar), 8.42 (dd, J1 = 8.2 Hz, J2= 0.8 Hz, 2H, Ar), 8.80 (dd, J1 = 2.1 Hz, J2 = 0.8 Hz, 2H,Ar)
(タイプIのナノセンサーのモデル化合物による金属イオンの認識)
上記の化合物5(n = 6) 0.200mgを、溶剤DMSO0.5mlに溶解し、Pd(CH3CN)2Cl2 0.088mgおよびPd(CH3CN)2Cl20.118 mgを加え、70度にて1H NMR測定を行った。図5に示したように、いずれの場合も単一物質の生成を示しており、金属イオンが認識されることを確認した。また、化合物5(n = 6)のCH3CN/CHCl3 =2/1溶液(1x10-5 M, 室温)にPd(CH3CN)2Cl2およびPd(CH3CN)2Cl2をそれぞれ添加したところ、紫外-可視吸収スペクトルおよび蛍光スペクトルが変化し、物理的性質の変化が確認された。
(Synthesis of compound 5 (n = 6) as a model of type I nanosensor)
Hexylthiophenylacetylene 501 mg (2.29 mmol) and 5,5'-dibromobipyridine 300 mg (0.96 mmol), NaI 343 mg (2.29 mmol), PdCl 2 (PPh 3 ) 2 35 mg (0.05 mmol) and CuI 10 mg (0.05 mmol) as a catalyst, the mixture is heated and stirred at 70 ° C. for 12 hours in triethylamine under a nitrogen stream. After the reaction, the filtrate obtained by filtering off the solid is combined with the filtrate obtained by further washing the solid with methylene chloride and filtered, and the residue obtained by distilling off the solvent under reduced pressure is dissolved in a small amount of chloroform and subjected to gel permeation chromatography. Upon purification, compound 5 can be obtained in a yield of 60%. 1 H NMR (CDCl 3 ): δ 0.90 (t, J = 7.0, 6H, C H 3 -CH 2- ), 1.30-1.32 (m, 8H, CH 3- (C H 2 ) 2- ), 1.42- 1.48 (m, 4H, -S- (CH 2 ) 2 -C H 2- ), 1.65-1.71 (m, 4H, -S-CH 2 -C H 2- ), 2.96 (t, J = 7.3, 4H , -SC H 2- ), 7.28 (d, J = 8.6 Hz, 4H, -Ar-), 7.47 (d, J = 8.6 Hz, 4H, -Ar-), 7.93 (dd, J 1 = 8.3 Hz, J 2 = 2.2 Hz, 2H, Ar), 8.42 (dd, J 1 = 8.2 Hz, J 2 = 0.8 Hz, 2H, Ar), 8.80 (dd, J 1 = 2.1 Hz, J 2 = 0.8 Hz, 2H, Ar)
(Recognition of metal ions by model compounds of type I nanosensors)
Dissolve 0.200 mg of the above compound 5 (n = 6) in 0.5 ml of solvent DMSO, add 0.088 mg of Pd (CH 3 CN) 2 Cl 2 and 0.118 mg of Pd (CH 3 CN) 2 Cl 2, and increase to 70 degrees 1 H NMR measurement was performed. As shown in FIG. 5, in any case, the production of a single substance was shown, and it was confirmed that metal ions were recognized. Further, Pd (CH 3 CN) 2 Cl 2 and Pd (CH 3 CN) 2 Cl 2 were added to a CH3CN / CHCl3 = 2/1 solution (1 × 10 −5 M, room temperature) of compound 5 (n = 6), respectively. However, the ultraviolet-visible absorption spectrum and the fluorescence spectrum were changed, and changes in physical properties were confirmed.

(タイプIのナノセンサーに用いる化合物6の合成)
4-(アセチルチオ)-ヨードベンゼン 176 mg (0.63 mmol)および5,5’-ジエチニルビピリジン 62.2mg (0.xx mmol)をPdCl2(PPh3)222 mg (0.03 mmol)およびCuI 12 mg(0.06 mmol)を触媒として、トリエチルアミン0.5 mlおよびテトラヒドロフラン6 ml混合溶媒中、室温で1晩攪拌すると収率80%で化合物6を得ることができる。1H NMR (CDCl3):δ 2.45 (s, 6 H, -S-(C=O)CH 3),7.43 (d, J = 8 Hz, 4 H, Ar), 7.59 (d, J = 8 Hz, 4 H, Ar), 7.95 (dd, J1= 8 Hz, J2 = 2 Hz, 2 H, Ar), 8.44 (d, J = 8 Hz, 2 H, Ar), 8.81 (d, J= 8 Hz, 2 H, Ar)
(Synthesis of Compound 6 used for Type I Nanosensor)
4- (acetylthio) -iodobenzene 176 mg (0.63 mmol) and 5,5'-diethynylbipyridine 62.2 mg (0.xx mmol) were added to PdCl 2 (PPh 3 ) 2 22 mg (0.03 mmol) and CuI 12 mg ( When the mixture is stirred overnight at room temperature in a mixed solvent of 0.5 ml of triethylamine and 6 ml of tetrahydrofuran using 0.06 mmol) as a catalyst, compound 6 can be obtained in a yield of 80%. 1 H NMR (CDCl 3 ): δ 2.45 (s, 6 H, -S- (C = O) C H 3 ), 7.43 (d, J = 8 Hz, 4 H, Ar), 7.59 (d, J = 8 Hz, 4 H, Ar), 7.95 (dd, J 1 = 8 Hz, J 2 = 2 Hz, 2 H, Ar), 8.44 (d, J = 8 Hz, 2 H, Ar), 8.81 (d, (J = 8 Hz, 2 H, Ar)

(タイプIのナノセンサーに用いる化合物7の合成)
得られる化合物6 10 mgを塩化メチレンもしくはクロロホルムに溶解し、1 mlのピロリジンを加え、室温で一晩攪拌する。反応後、酢酸を1 ml加えて得られる沈殿をろ取し、さらに塩化メチレンで2回洗浄すると収率100%で化合物7が得られる。
1H NMR (CDCl3):δ 7.05 (d, J = 8.2 Hz, 4 H, Ar), 7.29(d, J = 8.2 Hz, 4 H, Ar), 7.70 (dd, J1 = 8.2 Hz, J2 = 2.2Hz, 2 H, Ar), 8.18 (d, J = 8.2 Hz, 2 H, Ar), 8.60 (s, 2 H, Ar)IR: 2555.2(SH) cm-1
(Synthesis of Compound 7 used for Type I Nanosensor)
Dissolve 10 mg of the resulting compound 6 in methylene chloride or chloroform, add 1 ml of pyrrolidine, and stir at room temperature overnight. After the reaction, 1 ml of acetic acid is added and the resulting precipitate is collected by filtration and further washed twice with methylene chloride to obtain compound 7 in a yield of 100%.
1 H NMR (CDCl 3 ): δ 7.05 (d, J = 8.2 Hz, 4 H, Ar), 7.29 (d, J = 8.2 Hz, 4 H, Ar), 7.70 (dd, J 1 = 8.2 Hz, J 2 = 2.2Hz, 2 H, Ar), 8.18 (d, J = 8.2 Hz, 2 H, Ar), 8.60 (s, 2 H, Ar) IR: 2555.2 (SH) cm -1

(タイプIIのナノセンサーのモデル化合物9(n= 1)の合成)メチルチオフェニルアセチレン1.416 g (9.55 mmol)および5,5’-ジブロモビピリジン 3.00 g(9.55 mmol)をPd (PPh3)40.117 g (0.20 mmol)を触媒として窒素気流下にてTHF-トリエチルアミン混合溶媒中、70度で2日間加熱攪拌する。反応後、固体をろ別して得られたろ液と、固体をさらにTHFで洗浄してろ過したろ液を合わせ、溶媒を減圧留去した残渣を少量のクロロホルムに溶解し、ゲルパーミエーションクロマトグラフィーによって精製すると収率46%で化合物9を得ることができる。
1H NMR (CDCl3):δ2.51 (s, 3H, CH 3-S), 7.23 (d,J = 8.5 Hz, 2H, -Ar-), 7.47 (d, J = 8.6 Hz, 2H, -Ar-), 7.91 (dd, J1 = 8.2 Hz, J2 = 2.1 Hz, 1H, Ar), 7.95(dd, J1 = 8.6 Hz, J2 = 2.5 Hz, 1H, Ar), 8.33 (d, J = 8.6Hz, 1H, Ar), 8.37 (d, J = 8.3 Hz, 1H, Ar), 8.72 (d, J = 2.3 Hz, 1H, Ar), 8.78 (d,J = 2.0 Hz, 1H, Ar)
(Synthesis of model compound 9 (n = 1) of type II nanosensor) 1.416 g (9.55 mmol) of methylthiophenylacetylene and 3.00 g (9.55 mmol) of 5,5′-dibromobipyridine were added to Pd (PPh 3 ) 4 0.117 g (0.20 mmol) as a catalyst in a THF-triethylamine mixed solvent under a nitrogen stream at 70 ° C. for 2 days with stirring. After the reaction, the filtrate obtained by filtering off the solid is combined with the filtrate obtained by further washing the solid with THF and filtered, and the residue obtained by distilling off the solvent under reduced pressure is dissolved in a small amount of chloroform and purified by gel permeation chromatography. Then, compound 9 can be obtained with a yield of 46%.
1 H NMR (CDCl 3 ): δ2.51 (s, 3H, C H 3 -S), 7.23 (d, J = 8.5 Hz, 2H, -Ar-), 7.47 (d, J = 8.6 Hz, 2H, -Ar-), 7.91 (dd, J 1 = 8.2 Hz, J 2 = 2.1 Hz, 1H, Ar), 7.95 (dd, J 1 = 8.6 Hz, J 2 = 2.5 Hz, 1H, Ar), 8.33 (d , J = 8.6Hz, 1H, Ar), 8.37 (d, J = 8.3 Hz, 1H, Ar), 8.72 (d, J = 2.3 Hz, 1H, Ar), 8.78 (d, J = 2.0 Hz, 1H, Ar)

(タイプIIのナノセンサーのモデル化合物9(n= 6)の合成)
ヘキシルチオフェニルアセチレン1.197 g (5.48 mmol)および5,5’-ジブロモビピリジン 1.436g (4.57 mmol)をPd (PPh3)40.231 g (0.20 mmol)を触媒として窒素気流下にてTHF-イソプロピルアミン混合溶媒中、70度で24時間加熱攪拌する。反応後、固体をろ別して得られたろ液と、固体をさらにTHFで洗浄してろ過したろ液を合わせ、溶媒を減圧留去した残渣を少量のクロロホルムに溶解し、ゲルパーミエーションクロマトグラフィーによって精製すると収率60%で化合物8を得ることができる。
1H NMR (CDCl3):δ 0.90(t, J = 6.9, 3H, CH 3-CH2-),1.30-1.32 (m, 4H, CH3-(CH 2)2-),1.41-1.48 (m, 2H, CH3-(CH2)2-CH 2-),1.65-1.71 (m, 2H, -S-CH2-CH 2-), 2.96 (t, J = 7.5,2H, -S-CH 2-), 7.28 (d, J = 8.4 Hz, 2H, -Ar-), 7.46 (d, J = 8.5Hz, 2H, -Ar-), 7.91 (dd, J1 = 8.3 Hz, J2 = 2.2 Hz, 1H,Ar), 7.95 (dd, J1 = 8.5 Hz, J2 = 2.4 Hz, 1H, Ar), 8.33(d, J = 8.6 Hz, 1H, Ar), 8.38 (d, J = 8.2 Hz, 1H, Ar), 8.73 (s, 1H, Ar), 8.78 (s,1H, Ar)
(Synthesis of model compound 9 (n = 6) of type II nanosensor)
Mixing THF-isopropylamine under nitrogen flow using 1.197 g (5.48 mmol) of hexylthiophenylacetylene and 1.436 g (4.57 mmol) of 5,5'-dibromobipyridine as a catalyst with 0.231 g (0.20 mmol) of Pd (PPh 3 ) 4 Heat and stir in a solvent at 70 degrees for 24 hours. After the reaction, the filtrate obtained by filtering off the solid is combined with the filtrate obtained by further washing the solid with THF and filtered, and the residue obtained by distilling off the solvent under reduced pressure is dissolved in a small amount of chloroform and purified by gel permeation chromatography. Then, Compound 8 can be obtained with a yield of 60%.
1 H NMR (CDCl 3 ): δ 0.90 (t, J = 6.9, 3H, C H 3 -CH 2- ), 1.30-1.32 (m, 4H, CH 3- (C H 2 ) 2- ), 1.41- 1.48 (m, 2H, CH 3- (CH 2 ) 2 -C H 2- ), 1.65-1.71 (m, 2H, -S-CH 2 -C H 2- ), 2.96 (t, J = 7.5,2H , -SC H 2- ), 7.28 (d, J = 8.4 Hz, 2H, -Ar-), 7.46 (d, J = 8.5 Hz, 2H, -Ar-), 7.91 (dd, J 1 = 8.3 Hz, J 2 = 2.2 Hz, 1H, Ar), 7.95 (dd, J 1 = 8.5 Hz, J 2 = 2.4 Hz, 1H, Ar), 8.33 (d, J = 8.6 Hz, 1H, Ar), 8.38 (d, J = 8.2 Hz, 1H, Ar), 8.73 (s, 1H, Ar), 8.78 (s, 1H, Ar)

(タイプIIのナノセンサーに用いる化合物10の合成)
4-アセチルチオ-ヨードベンゼン 256 mg (0.92 mmol)および5-ブロモ-5’-エチニルビピリジン 244 mg (0.94 mmol)をPdCl2(CH3CN)228 mg (0.04 mmol)およびCuI 7.6 mg(0.04mmol)を触媒としてトリエチルアミンおよびテトラヒドロフラン混合溶媒中、室温で3日間攪拌すると収率51%で化合物10を得ることができる。
1H NMR (CDCl3):δ 3.55 (s, 1H, -SH), 7.27 (d, J = 8.3,2H, Ar), 7.38 (d, J = 8.4, 2H, Ar), 7.91 (dd, J1 = 8.2 Hz, J2= 2.1 Hz, 1H, Ar), 7.95 (dd, J1 = 8.6 Hz, J2 = 2.5 Hz,1H, Ar), 8.33 (d, J = 8.6 Hz, 1H, Ar), 8.38 (d, J = 8.3 Hz, 1H, Ar), 8.73 (d, J= 2.3 Hz, 1H, Ar), 8.77 (d, J = 2.2 Hz, 1H, Ar)
(Synthesis of Compound 10 used for Type II Nanosensor)
4-acetylthio-iodobenzene 256 mg (0.92 mmol) and 5-bromo-5'-ethynylbipyridine 244 mg (0.94 mmol) with PdCl 2 (CH 3 CN) 2 28 mg (0.04 mmol) and CuI 7.6 mg (0.04 mmol) ) As a catalyst in a mixed solvent of triethylamine and tetrahydrofuran at room temperature for 3 days, compound 10 can be obtained in a yield of 51%.
1 H NMR (CDCl 3 ): δ 3.55 (s, 1H, -SH), 7.27 (d, J = 8.3,2H, Ar), 7.38 (d, J = 8.4, 2H, Ar), 7.91 (dd, J 1 = 8.2 Hz, J 2 = 2.1 Hz, 1H, Ar), 7.95 (dd, J 1 = 8.6 Hz, J 2 = 2.5 Hz, 1H, Ar), 8.33 (d, J = 8.6 Hz, 1H, Ar) , 8.38 (d, J = 8.3 Hz, 1H, Ar), 8.73 (d, J = 2.3 Hz, 1H, Ar), 8.77 (d, J = 2.2 Hz, 1H, Ar)

(タイプIIのナノセンサーに用いる化合物11の合成)
(その1)
得られる化合物10 1 mgを塩化メチレンもしくはクロロホルムに溶解し、5 μlのピロリジンを加えると、1H NMRスペクトルから、1分後にピロリジンによって定量的に脱保護されることを確認できる。化合物1030 mgを塩化メチレンもしくはクロロホルムに溶解し、100μlのピロリジンを加え、窒素気流下で10分間攪拌後、トリフルオロ酢酸を加えて中和した後溶媒をおよそ1/5まで減圧留去してからエタノールを加えると固体が沈殿する。この固体をろ取すると収率67%で化合物11が得られる。
1H NMR (CDCl3):δ 2.45 (s, 1H, -SH), 7.43 (d, J = 8.4,2H, Ar), 7.59 (d, J = 8.2, 2H, Ar), 7.93-7.96 (m, 2H, Ar), 8.34 (brs, 1H, Ar) ,8.39 (brs, 1H, Ar) , 8.73 (brs, 1H, Ar) , 8.79 (brs, 1H, Ar)
(その2)
化合物9(n = 1) 139 mg(0.36 mmol) を塩化メチレンに溶解し、酸化剤である60%メタクロロ過安息香酸62.1 mg (0.36 mmol)の塩化メチレン溶液を-20度で滴下し、その後12時間室温にて攪拌する。反応後、NaHCO3水溶液で洗浄した後、溶媒を減圧留去してシリカゲルカラムクロマトグラフィ−によって精製すると5-(4-メチルスルフィニル)フェニルエチニル)-5’-ブロモビピリジンを収率72%で得ることができる。得られた化合物100 mg (0.25 mmol) を乾燥塩化メチレン中、-20度で無水トリフルオロ酢酸 63 mg (0.3 mmol) を加え、序々に室温にして2時間攪拌した後、1N 塩酸水溶液を加えて12時間攪拌する。その後、有機層から溶媒を減圧留去し、シリカゲルカラムクロマトグラフィ(溶媒;クロロホルム:酢酸エチル=4:1)により精製すると、化合物11が収率25%で得られる。
(Synthesis of Compound 11 used for Type II Nanosensor)
(Part 1)
When 1 mg of the resulting compound 10 is dissolved in methylene chloride or chloroform and 5 μl of pyrrolidine is added, it can be confirmed from 1H NMR spectrum that it is quantitatively deprotected by pyrrolidine after 1 minute. Dissolve 1030 mg of compound in methylene chloride or chloroform, add 100 μl of pyrrolidine, stir for 10 minutes under a nitrogen stream, neutralize by adding trifluoroacetic acid, and distill off the solvent under reduced pressure to about 1/5. A solid precipitates when ethanol is added. The solid is collected by filtration to give compound 11 in a yield of 67%.
1 H NMR (CDCl 3 ): δ 2.45 (s, 1H, -SH), 7.43 (d, J = 8.4, 2H, Ar), 7.59 (d, J = 8.2, 2H, Ar), 7.93-7.96 (m , 2H, Ar), 8.34 (brs, 1H, Ar), 8.39 (brs, 1H, Ar), 8.73 (brs, 1H, Ar), 8.79 (brs, 1H, Ar)
(Part 2)
Compound 9 (n = 1) 139 mg (0.36 mmol) was dissolved in methylene chloride, and an oxidizing agent 60% metachloroperbenzoic acid 62.1 mg (0.36 mmol) in methylene chloride was added dropwise at -20 degrees, and then 12 Stir at room temperature for hours. After the reaction, after washing with NaHCO 3 aqueous solution, the solvent is distilled off under reduced pressure and purified by silica gel column chromatography to obtain 5- (4-methylsulfinyl) phenylethynyl) -5′-bromobipyridine in a yield of 72%. Can do. 100 mg (0.25 mmol) of the obtained compound was added with trifluoroacetic anhydride 63 mg (0.3 mmol) at -20 degrees in dry methylene chloride and gradually stirred at room temperature for 2 hours, and then 1N hydrochloric acid aqueous solution was added. Stir for 12 hours. Thereafter, the solvent is distilled off from the organic layer under reduced pressure, and the residue is purified by silica gel column chromatography (solvent; chloroform: ethyl acetate = 4: 1) to obtain compound 11 in a yield of 25%.

(タイプIIのナノセンサーに用いる化合物12の調製)
化合物6を4.03 mg (0.8 μmol)秤量し、塩化メチレン10 mLに溶解する。この溶液を1 mL
ピペットを用いて5 mLのビーカーに移す。小さなスターラーバーをいれ、攪拌器をセットし、小さなスターラーバーを溶液内で回転させる。ここへ濃度0.15mmol/Lに調製したピロリジンの塩化メチレン溶液1mLを1〜2分かけて加え、20分攪拌を継続する。得られた溶液を酸化アルミナ約2gの短いカラムでろ過し、ろ液に0.5mLの蒸留エタノールを加える。これの操作により、化合物6の一方のみの保護基を取り去ることができ、ナノセンサーに用いるタイプIIの化合物として使用できる。
(Preparation of compound 12 used for type II nanosensor)
4.03 mg (0.8 μmol) of Compound 6 is weighed and dissolved in 10 mL of methylene chloride. 1 mL of this solution
Transfer to a 5 mL beaker using a pipette. Add a small stir bar, set a stirrer, and rotate the small stir bar in the solution. To this, 1 mL of a pyrrolidine methylene chloride solution prepared to a concentration of 0.15 mmol / L is added over 1 to 2 minutes, and stirring is continued for 20 minutes. The resulting solution is filtered through a short column of about 2 g alumina and 0.5 mL of distilled ethanol is added to the filtrate. By this operation, only one protecting group of compound 6 can be removed, and it can be used as a type II compound used in a nanosensor.

上記の化合物5(n = 6) 0.200 mgを、溶剤としてDMSO 0.5mlに溶解し、Pd(CH3CN)2Cl2 0.088mgおよびPd(CH3CN)2Cl20.118 mgをそれぞれ加え、70度にて1H NMR測定を行った。図5に示したように、いずれの場合も単一物質の生成を示してお、また、それぞれのピークがシフトしており、金属イオンが配位していることを確認した。また、図6に示したように、化合物5(n = 6)のCH3CN/CHCl3= 2/1溶液(1x10-5 M, 室温)にPd(CH3CN)2Cl2およびPd(CH3CN)2Cl2のCH3CN/CHCl3 = 2/1溶液をそれぞれ添加したところ、紫外-可視吸収スペクトルおよび蛍光スペクトルは添加量に応じて徐々に変化し、最大吸収波長は長波長側へシフトし、蛍光は徐々に消光するなど物理的性質の変化が確認された。 Compound 5 (n = 6) 0.200 mg of the above, were dissolved in DMSO 0.5 ml as a solvent, was added Pd (CH 3 CN) 2 Cl 2 0.088mg and Pd (CH 3 CN) 2 Cl 2 0.118 mg , respectively, 70 1 H NMR measurements were taken at degrees. As shown in FIG. 5, in any case, the production of a single substance was shown, and each peak was shifted, and it was confirmed that metal ions were coordinated. In addition, as shown in FIG. 6, Pd (CH 3 CN) 2 Cl 2 and Pd () were added to a CH 3 CN / CHCl 3 = 2/1 solution (1 × 10 −5 M, room temperature) of compound 5 (n = 6). CH 3 CN) 2 Cl 2 in CH 3 CN / CHCl 3 = 2/1 solution was added respectively, an ultraviolet - visible absorption spectrum and fluorescence spectrum gradually changes according to the amount added, the maximum absorption wavelength long wavelength It was confirmed that the physical properties changed, such as the fluorescence was gradually extinguished.

2つのClおよび2つのNH3をリガンドとして有する二価のPtはシスプラチンと呼ばれ、DNA鎖中に連続してグアニン残基が存在するとき、選択的にその場に捕捉される。本発明では、図3の化合物5とPt(CHCN)ClをDMSO(ジメチルスルホキシド)中で、100℃、7時間反応させることにより、図7に示すセンシング部位を有するビピリジンのプラチナ錯体を得ることが出来た。
本発明にかかるナノセンサーのセンシング部位は、シスプラチンがグアニンリッチな部位に捕捉するように、グアニン残基を検出することが期待できる。
Bivalent Pt having two Cl and two NH 3 as ligands is called cisplatin and is selectively captured in situ when there are consecutive guanine residues in the DNA strand. In the present invention, the platinum complex of bipyridine having the sensing site shown in FIG. 7 is prepared by reacting compound 5 of FIG. 3 and Pt (CH 3 CN) 2 Cl 2 in DMSO (dimethyl sulfoxide) at 100 ° C. for 7 hours. I was able to get.
The sensing part of the nanosensor according to the present invention can be expected to detect a guanine residue so that cisplatin is captured at a guanine-rich part.

図2Bに示したタイプIIの化合物群に関して、それらのセンシング機能を確認した。表面を水素アニール法によって清浄にした基板を用いた。次に、この表面にマトリックスとしてオクタンチオールの自己組織化膜を形成させた。これは、目的とするタイプII化合物の電気的変化をシグナルとして取り出すための下地として用いる。0018で調製したタイプII化合物の一つである化合物12の溶液を約40度に穏やかに加熱しながら、先に作製したオクタンチオール自己組織化膜を有する基板を浸漬した。その結果、オクタンチオールと化合物12の交換反応が起こり、走査型トンネル顕微鏡を用いて図8(a)に示すような2分子系の相分離ナノ構造が得られた。この交換反応はX線光電子分光の硫黄2pおよび窒素1sスペクトルの観測により確認した。次に、得られた2分子系の相分離ナノ構造を、ターゲット分子の一つであるPdCl2(AN)2 (AN = アセトニトリル)の1.2mmol/L塩化メチレン溶液に室温で浸漬させた。それを塩化メチレン、エタノールでリンスした後、走査型トンネル顕微鏡観察を行ったところ図8bのような像が得られた。測定条件は同一にしてあり、観測されるタイプII化合物のトンネル電流は、マトリックス分子オクタンチオールを基準にして比較できる。図8に示したように、ターゲット分子が作用することで分子に流れる電流密度が、明らかに増幅されることを確認できた。さらにこの試料を用いてターゲット分子の捕捉をX線光電子分光(Pd 3d, N 1s)により確認した。以上より、本発明の分子検出ナノセンサーの動作確認を行えた。
The sensing function of the type II compound group shown in FIG. 2B was confirmed. A substrate whose surface was cleaned by hydrogen annealing was used. Next, a self-assembled film of octanethiol was formed on this surface as a matrix. This is used as a base for taking out the electrical change of the target type II compound as a signal. The substrate having the previously prepared octanethiol self-assembled film was immersed while gently heating the solution of compound 12 which is one of the type II compounds prepared in 0018 to about 40 degrees. As a result, an exchange reaction between octanethiol and compound 12 occurred, and a bimolecular phase-separated nanostructure as shown in FIG. 8A was obtained using a scanning tunneling microscope. This exchange reaction was confirmed by observation of sulfur 2p and nitrogen 1s spectra by X-ray photoelectron spectroscopy. Next, the obtained bimolecular phase-separated nanostructure was immersed in a 1.2 mmol / L methylene chloride solution of PdCl 2 (AN) 2 (AN = acetonitrile), which is one of the target molecules, at room temperature. After rinsing with methylene chloride and ethanol, observation with a scanning tunneling microscope was performed, an image as shown in FIG. 8b was obtained. The measurement conditions are the same, and the tunnel current of the observed type II compound can be compared with reference to the matrix molecule octanethiol. As shown in FIG. 8, it was confirmed that the current density flowing in the molecule was clearly amplified by the action of the target molecule. Furthermore, using this sample, the capture of the target molecule was confirmed by X-ray photoelectron spectroscopy (Pd 3d, N 1s). From the above, the operation of the molecular detection nanosensor of the present invention was confirmed.

本発明は、ひとつの分子でセンシング部位とワイヤー部位を持ち、ワイヤー部位の末端の基が金属と結合できる形であるので、超小型のセンサーとなるばかりか、電気信号としてターゲット分子の存在を知ることが出来るので、周知のセンサーに簡単に組み込むことが出来、その利用価値は計り知れない。   Since the present invention has a sensing site and a wire site with one molecule, and the terminal group of the wire site can be bonded to a metal, it becomes an ultra-small sensor and knows the presence of a target molecule as an electrical signal. Can be easily integrated into a well-known sensor, and its utility value is immeasurable.

本発明のナノセンサーの要部の説明図Explanatory drawing of the main part of the nanosensor of the present invention 本発明のナノセンサータイプI、タイプIIの説明図Explanatory drawing of nanosensor type I and type II of the present invention ナノセンサーの合成経路説明図Nanosensor synthesis route diagram 本発明のナノセンサー作動の説明図Explanatory drawing of nanosensor operation of the present invention 本発明のモデル化合物のNMRスペクトルNMR spectrum of the model compound of the present invention 本発明のモデル化合物の紫外-可視吸収スペクトルUV-visible absorption spectrum of the model compound of the present invention 本発明で用いるDNA検出用のセンシング部位Sensing site for DNA detection used in the present invention 本発明ナノセンサーの動作確認の一例 (a)パラジウムイオン捕捉前 (b)パラジウムイオン捕捉後Example of operation confirmation of nanosensor of the present invention (a) Before capturing palladium ion (b) After capturing palladium ion

符号の説明Explanation of symbols

1 センシング部位
2 ワイヤー部位
3 電極
4 ターゲット分子
5 STMチップ
1 Sensing site 2 Wire site 3 Electrode 4 Target molecule 5 STM chip

Claims (3)

ーゲット分子の結合による電子状態の変化をシグナルとして発生するセンシング部位と、該シグナルを電極に伝達するワイヤー部位とからなるナノセンサーであって、前記センサー部位は、下記の化学式(I)ないし(III)のいずれかで表されるビピリジン又はビピリジン錯体であり、前記ワーヤー部位は、下記の化学式(IV)で表される化合物であることを特徴とするナノセンサー。
(式中、nは1〜50の整数)
A sensing portion which generates a change in the electronic state by binding data Getto molecule as a signal, a nanosensor comprising a wire portion that transmits the signal to the electrodes, the sensor site, to the following chemical formula (I) to ( A nanosensor characterized in that it is a bipyridine or a bipyridine complex represented by any one of (III), and wherein the Wayer site is a compound represented by the following chemical formula (IV).
(Where n is an integer from 1 to 50)
前記ワイヤー部位を2つ有することを特徴とする請求項1に記載のナノセンサー。   The nanosensor according to claim 1, wherein the nanosensor has two wire portions. 前記ワイヤー部位を1つにして、STMチップで見ることができる構造としたことを特徴とする請求項1に記載のナノセンサー。   2. The nanosensor according to claim 1, wherein the wire portion is formed into one and can be seen with an STM chip.
JP2004141741A 2003-09-30 2004-05-12 Molecular detection nanosensor Expired - Fee Related JP4244023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141741A JP4244023B2 (en) 2003-09-30 2004-05-12 Molecular detection nanosensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003341195 2003-09-30
JP2004141741A JP4244023B2 (en) 2003-09-30 2004-05-12 Molecular detection nanosensor

Publications (2)

Publication Number Publication Date
JP2005127998A JP2005127998A (en) 2005-05-19
JP4244023B2 true JP4244023B2 (en) 2009-03-25

Family

ID=34655666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141741A Expired - Fee Related JP4244023B2 (en) 2003-09-30 2004-05-12 Molecular detection nanosensor

Country Status (1)

Country Link
JP (1) JP4244023B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604176B2 (en) * 2004-08-17 2010-12-22 独立行政法人産業技術総合研究所 Sensor device for measuring surface potential
JP4779152B2 (en) * 2005-08-31 2011-09-28 独立行政法人産業技術総合研究所 Ultra-high-density noble metal or magnetic metal nanoparticle-dispersed composite thin film, highly sensitive molecular detection substrate using the thin film, and method for producing the thin film
JP4966435B2 (en) 2010-08-05 2012-07-04 パナソニック株式会社 Gas molecule detection element, gas molecule detection device, and gas molecule detection method

Also Published As

Publication number Publication date
JP2005127998A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP2008502715A (en) New DNA stitching intercalator
Wu et al. Gold-catalyzed generation of azafulvenium from an enyne sulfonamide: rapid access to fully substituted pyrroles
JP4244023B2 (en) Molecular detection nanosensor
CN107033331A (en) A kind of fluorescence conjugated macromolecule of side-chain amino group protonation, preparation method and applications
JP2006337351A (en) Electrochemical detection method for gene
EP3953491B1 (en) Polycyclic aromatic bridges for molecular electronic sensors
CN109422680A (en) A kind of synthetic method of N- acetylquinoline -2- amide and its derivative
CN109422700A (en) A kind of synthetic method of N- acetyl group quinoxaline -2- amide and its derivative
CN114426534B (en) Reversible fluorescent probe for detecting copper ions and preparation method thereof
JP4873463B2 (en) Detection element having nanogap electrode and detection method using the same
US7833406B2 (en) Gene detection method, and intercalator
CN105985770A (en) Preparation method and application of hydrogen sulfide fluorescent probe
CN110105280B (en) Water-soluble fluorescent probe based on 1, 8-naphthalimide and preparation method and application thereof
JP2004269532A (en) Conductive comound, electrode and sensor comprising the same and method for detecting target molecule by using the sensor
CN110386903B (en) Tetrazine-containing oligomeric phenylene acetylene compound and preparation method thereof
CN101962351A (en) Alpha-amino acid derivatives and preparation method, intermediate and application thereof
JP4766316B2 (en) Monolayer for target detection nanosensor
JP4043362B2 (en) Novel ferrocene polycyclic hydrocarbon derivative, novel ferrocene naphthalene diimide derivative, production method thereof, intercalator comprising the derivative, and electrochemical detection method of gene
CN114773381B (en) Pyridine ring-containing aromatic acrylonitrile carbazole reaction type fluoride ion fluorescent probe and preparation method and application thereof
JP4138773B2 (en) Novel ferroceneated polycyclic hydrocarbon derivative, method for producing the same, and method for detecting target nucleic acid
JP5006033B2 (en) Ligand for detection of electrochemically active sequence-specific double-stranded nucleic acid molecules
JP4729739B2 (en) Pyridylbenzamide compound
JP2009263605A (en) Molecular capsule and its producing method
JP2010008253A (en) Electrochemical molecule recognizing probe
JP2006248934A (en) Conductive 2,6-diamidopyridine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees