JP2008031818A - Method for evaluating strength of steel pipe concrete column/beam joint - Google Patents

Method for evaluating strength of steel pipe concrete column/beam joint Download PDF

Info

Publication number
JP2008031818A
JP2008031818A JP2006272041A JP2006272041A JP2008031818A JP 2008031818 A JP2008031818 A JP 2008031818A JP 2006272041 A JP2006272041 A JP 2006272041A JP 2006272041 A JP2006272041 A JP 2006272041A JP 2008031818 A JP2008031818 A JP 2008031818A
Authority
JP
Japan
Prior art keywords
steel pipe
yield strength
strength
flange
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006272041A
Other languages
Japanese (ja)
Other versions
JP4898374B2 (en
Inventor
Toru Hiraide
亨 平出
Mitsuru Morizaki
充 森崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Takenaka Komuten Co Ltd
Original Assignee
Kubota Corp
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Takenaka Komuten Co Ltd filed Critical Kubota Corp
Priority to JP2006272041A priority Critical patent/JP4898374B2/en
Publication of JP2008031818A publication Critical patent/JP2008031818A/en
Application granted granted Critical
Publication of JP4898374B2 publication Critical patent/JP4898374B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To determine evaluated strength with a high degree of accuracy even if an Lp value in a column/beam joint is changed. <P>SOLUTION: Among joints between a steel pipe concrete column 4 and a steel-frame beam 3, a joint between a tension-side flange 3F of the steel-frame beam 3 and the steel pipe concrete column 4 is split into an end area e and a central area m. The resultant force of the end yield strength of the end area e and the central yield strength of the central area m is set as the evaluated strength. In this case, when a length Lp to the flange 3F from a boundary between stiffened and unstiffened portions of the steel pipe is set at 0, the evaluated strength is determined by distribution obtained by multiplying a predetermined weighting factor, so as to be set at a value between yield strength in the case where the thickness dimension of the stiffened portion is decreased up to that of the unstiffened portion, and yield strength in the case where the thickness dimension of the unstiffened portion is increased up to that of the stiffened portion. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼管にコンクリートを充填すると共に、前記鋼管のうち鉄骨梁と接合する仕口部の全長にわたる厚肉化によりその仕口部を補剛した構造の鋼管コンクリート柱に鉄骨梁を溶接で接合させてある鋼管コンクリート柱・梁接合部の耐力評価方法に関する。   In the present invention, the steel pipe is filled with concrete, and the steel beam is welded to the steel pipe concrete column having a structure in which the joint is stiffened by increasing the thickness of the joint to be joined to the steel beam. The present invention relates to a method for evaluating the strength of steel pipe concrete column / beam joints.

従来、この種の鋼管コンクリート柱・梁接合部の耐力を評価する方法としては、鉄骨梁のうち、引っ張り側のフランジが鋼管コンクリート柱の仕口部から抜け出すことで仕口部が破壊する抜け出し最大荷重を算定し、この抜け出し最大荷重を評価耐力とする方法が知られている(例えば、特許文献1参照)。具体的には、鋼管の剪断降伏強度Fsと仕口部の管厚tpと鉄骨梁の引っ張り側のフランジの周長φfとから抜け出し最大荷重Pmaxを式Pmax=Fs×tp×φfに基づいて算出していた。
しかし、この技術では、接合部の耐力を過大評価する傾向があることが実験等で確認され、改善の余地があった。
また、このような過大評価の傾向が改善されたものとしては、鋼管コンクリート柱と鉄骨梁との接合部のうち、鉄骨梁の引っ張り側のフランジと鋼管コンクリート柱との接合部を、フランジ幅方向の両端近くの端領域とそれら間の中央領域とに分け、これら端領域及び中央領域のそれぞれについて、鋼管の降伏耐力とフランジの降伏耐力とを求め、端領域については、鋼管の降伏耐力とフランジの降伏耐力とのうち小さい方を端降伏耐力とし、中央領域については、鋼管の降伏耐力とフランジの降伏耐力とのうち小さい方に応力ブロック係数を乗じた耐力を中央降伏耐力とし、これら端降伏耐力と中央降伏耐力との合力を評価耐力(P(ζ))とする技術が提案された(例えば、特許文献2参照)。
そして、この技術においては、前記鋼管の補剛部と非補剛部との境界から、前記フランジまでの長さ(Lp)が、0となる時には、評価耐力(P(0))を、次の数2によって求めていた。
Conventionally, as a method of evaluating the proof stress of this kind of steel pipe concrete column / beam joint, the maximum pull-out of the steel beam is caused by the pull-out flange breaking out from the joint of the steel pipe concrete column. A method is known in which the load is calculated and the maximum load that is pulled out is used as the evaluation strength (see, for example, Patent Document 1). Specifically, the maximum load Pmax is calculated from the shear yield strength Fs of the steel pipe, the pipe thickness tp of the joint, and the peripheral length φf of the flange on the pulling side of the steel beam based on the formula Pmax = Fs × tp × φf Was.
However, with this technique, it has been confirmed by experiments that there is a tendency to overestimate the yield strength of the joint, and there is room for improvement.
In addition, the tendency of such overestimation has been improved as follows. Of the joints between steel pipe concrete columns and steel beams, the joints between the steel beam concrete side flange and steel pipe concrete columns are It is divided into an end region near both ends and a central region between them, and the yield strength of the steel pipe and the yield strength of the flange are determined for each of the end region and the central region. The lower one of the yield strengths of the steel is the end yield strength, and the central region is the yield strength obtained by multiplying the smaller one of the yield strength of the steel pipe and the yield strength of the flange by the stress block factor. A technique has been proposed in which the resultant strength of the yield strength and the central yield strength is the evaluation strength (P (ζ)) (see, for example, Patent Document 2).
In this technique, when the length (Lp) from the boundary between the stiffened portion and the non-stiffened portion of the steel pipe to the flange is 0, the evaluation yield strength (P (0)) is The number 2 was obtained.

Figure 2008031818
Figure 2008031818

特開平7‐324382号公報JP-A-7-324382 特開2001−98642号公報JP 2001-98642 A

鋼管コンクリート柱と梁との接合部における鋼管の補剛部の範囲は、図1に示すように、通常は梁成より大きな寸法に設定してあることが多く、そのような条件下での耐力評価は従来の方法でもまったく問題は無かった。しかしながら、さまざまな建物ニーズに応える必要性から、接合部構造として、前記Lp(鋼管の補剛部と非補剛部との境界から、梁フランジまでの長さ)が0となることも充分考えられ、そのような接合部構造を前提とした場合、上述した従来の鋼管コンクリート柱・梁接合部の耐力を評価する方法によれば、耐力評価の精度が低くなり易い問題点があった。
即ち、接合部での耐力は、常識的には、前記Lpが小さくなるに伴って低くなると評価されるが、従来法によれば、Lp=0とした場合に、大きくなる傾向が見られ、精度の向上が望まれた。
As shown in Fig. 1, the range of the stiffening part of the steel pipe at the joint between the steel pipe concrete column and the beam is usually set to a size larger than that of the beam, and the yield strength under such conditions Evaluation was no problem even with the conventional method. However, due to the need to meet various building needs, it is considered that the Lp (the length from the boundary between the stiffening part and the non-stiffening part of the steel pipe to the beam flange) becomes 0 as the joint structure. However, when such a joint structure is assumed, the conventional method for evaluating the proof stress of a steel pipe concrete column / beam joint has a problem in that the accuracy of the proof stress tends to be low.
That is, the proof stress at the joint is generally evaluated to decrease as Lp decreases, but according to the conventional method, when Lp = 0, a tendency to increase is seen, Improvement in accuracy was desired.

従って、本発明の目的は、上記問題点を解消し、柱・梁接合部におけるLp値が変化しても高い精度で評価耐力を求めることができる鋼管コンクリート柱・梁接合部の耐力を評価する方法を提供するところにある。   Accordingly, an object of the present invention is to evaluate the proof stress of a steel pipe concrete column / beam joint which can solve the above-mentioned problems and can obtain the evaluation proof strength with high accuracy even if the Lp value in the column / beam joint changes. Is to provide a method.

本発明の第1の特徴構成は、鋼管にコンクリートを充填すると共に、前記鋼管のうち鉄骨梁と接合する仕口部の全長にわたる厚肉化によりその仕口部を補剛した構造の鋼管コンクリート柱に鉄骨梁を溶接で接合させてある鋼管コンクリート柱・梁接合部の耐力を評価する方法において、接合部のうち鉄骨梁の引っ張り側のフランジと鋼管コンクリート柱との接合部を、フランジ幅方向の両端近くの端領域とそれら間の中央領域とに分け、これら端領域及び中央領域のそれぞれについて、鋼管の降伏耐力とフランジの降伏耐力とを求め、端領域については、鋼管の降伏耐力とフランジの降伏耐力とのうち小さい方を端降伏耐力とし、中央領域については、鋼管の降伏耐力とフランジの降伏耐力とのうち小さい方に応力ブロック係数を乗じた耐力を中央降伏耐力とし、これら端降伏耐力と中央降伏耐力との合力を評価耐力(P(ζ))とするにあたり、前記鋼管の補剛部と非補剛部との境界から、前記フランジまでの長さ(Lp)が、0となる時には、評価耐力(P(0))を、補剛部の肉厚寸法を非補剛部の肉厚寸法まで減じた場合の降伏耐力(P※)と、非補剛部の肉厚寸法を補剛部の肉厚寸法まで増やした場合の降伏耐力(P(∞))との間の値となるように、所定の重み係数(w)を乗じた配分によって求めるところにある。   A first characteristic configuration of the present invention is a steel pipe concrete column having a structure in which a steel pipe is filled with concrete and the joint portion is stiffened by increasing the thickness over the entire length of the joint portion to be joined to a steel beam. In the method for evaluating the proof stress of steel pipe concrete columns / beam joints where steel beams are joined to each other by welding, the joint between the steel beam concrete column and the steel pipe concrete column is connected in the flange width direction. It is divided into an end region near both ends and a central region between them, and the yield strength of the steel pipe and the yield strength of the flange are determined for each of the end region and the central region. For the end region, the yield strength of the steel pipe and the flange strength of the flange are obtained. The smaller of the yield strength is the end yield strength, and for the central region, the smaller of the steel pipe yield strength and the flange yield strength is multiplied by the stress block factor. The center yield strength, and the resultant strength of the end yield strength and the central yield strength as the evaluation strength (P (ζ)), the length from the boundary between the stiffened portion and the non-stiffened portion of the steel pipe to the flange When the thickness (Lp) is 0, the evaluation yield strength (P (0)) is the yield strength (P *) when the thickness of the stiffened portion is reduced to the thickness of the non-stiffened portion. Allocation multiplied by a predetermined weighting factor (w) so as to be a value between the yield strength (P (∞)) when the thickness dimension of the non-stiffening part is increased to the thickness dimension of the stiffening part Is where you want.

本発明の第1の特徴構成によれば、Lp=0の時の評価耐力P(0)は、全長が補剛部とした直管の降伏耐力P(∞)と、全長が非補剛部とした直管の降伏耐力P※の間に存在すると考えられ、これら両者の重み付きの配分値、即ち、重み係数を乗じることで求められるから、従来のような矛盾が発生することを防止でき、図7に示すように、Lpが0に近い時には評価耐力も小さくなり、より精度の高い接合部耐力の評価を行うことが可能となる。
従って、柱・梁接合部におけるLp値が変化しても、何れの場合にも、高い精度で評価耐力を求めることができる。
According to the first characteristic configuration of the present invention, the evaluation strength P (0) when Lp = 0 is equal to the yield strength P (∞) of the straight pipe having the full length as the stiffening portion, and the non-stiffening portion having the full length. It is considered to exist between the yield strengths P * of straight pipes, and it can be obtained by multiplying the weighted distribution value of these two, that is, the weighting coefficient, so that it is possible to prevent the occurrence of contradictions as in the past. As shown in FIG. 7, when Lp is close to 0, the evaluation proof strength is also small, and it is possible to evaluate the joint strength with higher accuracy.
Therefore, even if the Lp value at the column / beam joint changes, the evaluation strength can be obtained with high accuracy in any case.

本発明の第2の特徴構成は、数3に示すように設計式(F)を設定し、その設計式(F)に基づいて評価耐力(P(ζ))を算定するところにある。   The second characteristic configuration of the present invention is that a design formula (F) is set as shown in Equation 3 and an evaluation proof stress (P (ζ)) is calculated based on the design formula (F).

Figure 2008031818
Figure 2008031818

本発明の第2の特徴構成によれば、本発明の第1の特徴構成による上述の作用効果を叶えることができるのに加えて、設定した設計式に基づいて評価耐力を算出するから、評価耐力の算出を容易にしながらも、評価耐力の精度を向上させることができ、接合部の耐力評価を、より一層、迅速に適正に実施することが可能となる。   According to the second characteristic configuration of the present invention, in addition to being able to achieve the above-described operation and effect of the first characteristic configuration of the present invention, the evaluation proof stress is calculated based on the set design formula. While it is easy to calculate the proof stress, the accuracy of the evaluation proof strength can be improved, and the proof stress evaluation of the joint can be performed more promptly and appropriately.

本発明の第3の特徴構成は、前記重み係数(W)が0.740であるところにある。   A third characteristic configuration of the present invention is that the weight coefficient (W) is 0.740.

本発明の第3の特徴構成によれば、本発明の第1又は2の特徴構成による上述の作用効果を叶えることができるのに加えて、耐力P※とP(∞)との重み付き平均耐力であるP(0)と、Lp=0のFEM解析結果との差が最小となるように、最小二乗法を用いて0.740(詳しくは、0.74042)と言う重み係数Wを求めたから、当該重み係数Wを使用して求めた評価耐力は、その都度、FEM解析を行わなくても非常に近い値として求めることができ、且つ、高い精度で求めることができる。
この一例を示すと、図6に示すとおりで、横軸のFEM解析値と、縦軸の計算値とは、極めて近い値を示している。
According to the third characteristic configuration of the present invention, in addition to being able to achieve the above-described operational effects according to the first or second characteristic configuration of the present invention, a weighted average of the proof stress P * and P (∞) A weight coefficient W of 0.740 (specifically, 0.74042) is obtained using the least square method so that the difference between the proof stress P (0) and the FEM analysis result of Lp = 0 is minimized. Therefore, the evaluation strength obtained using the weight coefficient W can be obtained as a very close value without performing FEM analysis each time, and can be obtained with high accuracy.
As an example, as shown in FIG. 6, the FEM analysis value on the horizontal axis and the calculated value on the vertical axis show extremely close values.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1、図2、図3に示すように、鋼管1にコンクリート2を充填すると共に、前記鋼管1のうちH型鋼利用の鉄骨梁3と接合する仕口部1Aの全長にわたる厚肉化によりその仕口部1Aを補剛した構造の鋼管コンクリート柱4に鉄骨梁3を溶接で接合してある鋼管コンクリート柱・梁接合部の耐力を評価する方法であって、接合部のうち鉄骨梁3の引っ張り側のフランジ3Fと鋼管コンクリート柱4との接合部を、フランジ幅方向の両端近くの端領域eとそれら間の中央領域mとに分け、これら端領域e及び中央領域mのそれぞれについて、鋼管1の降伏耐力とフランジ3Fの降伏耐力とを求め、端領域eについては、鋼管1の降伏耐力とフランジ3Fの降伏耐力とのうち小さい方を端降伏耐力とし、中央領域mについては、鋼管1の降伏耐力とフランジ3Fの降伏耐力とのうち小さい方に応力ブロック係数を乗じた耐力を中央降伏耐力とし、これら端降伏耐力と中央降伏耐力との合力を評価耐力とする方法である。   As shown in FIGS. 1, 2, and 3, the steel pipe 1 is filled with the concrete 2, and the steel pipe 1 is thickened over the entire length of the joint portion 1 </ b> A that joins the steel beam 3 using H-shaped steel. A method for evaluating the strength of a steel pipe concrete column / beam joint where a steel beam 3 is welded to a steel pipe concrete column 4 having a stiffened joint 1A. The joint between the flange 3F on the pulling side and the steel pipe concrete column 4 is divided into an end region e near both ends in the flange width direction and a central region m between them, and each of the end region e and the central region m is a steel pipe. The yield strength of 1 and the yield strength of the flange 3F are obtained. For the end region e, the smaller one of the yield strength of the steel pipe 1 and the yield strength of the flange 3F is defined as the end yield strength. Yield resistance And a yield strength multiplied by the stress block coefficient smaller of the yield strength of the flange 3F and central yield strength, is the resultant force of these end yield strength and the central yield strength method to evaluate strength.

具体的には、スロープファクター1/3として実施する設計条件下での評価耐力(P(ζ))の算定条件が、ζ=∞の時には、数3で示す評価耐力(P(∞))を算定し、ζ=0の時には、数3で示す評価耐力(P(0))を算定し、0<ζ<∞の時には、数3で示す(P(ζ))を算定する。なお、スロープファクター1/3とは、図4に示すように、鋼管コンクリート柱・梁接合部の荷重変形曲線における弾性域の第1傾斜角θ1の1/3の傾斜角で定義される第2傾斜角θ2を接線角とする荷重変形曲線上の点に対応した荷重を降伏荷重とすることであり、本実施の形態では、降伏荷重としてスロープファクター1/3を採用したが、本発明では、スロープファクター1/3に替えて、例えば、スロープファクター1/2やスロープファクター1/4、スロープファクター1/5などの数値を採用しても良い。更には、降伏荷重の決定法はスロープファクター法に限定するものではなく、他の方法(ゼネラルイールド法や0.2%オフセット法等)でも良い。 Specifically, when the calculation condition of the evaluation strength (P (ζ)) under the design conditions implemented with the slope factor 1/3 is ζ = ∞, the evaluation strength (P (∞)) expressed by Equation 3 is used. When ζ = 0, the evaluation yield strength (P (0)) expressed by Equation 3 is calculated, and when 0 <ζ <∞, (P (ζ)) expressed by Equation 3 is calculated. As shown in FIG. 4, the slope factor 1/3 is defined as an inclination angle that is 1/3 of the first inclination angle θ 1 of the elastic region in the load deformation curve of the steel pipe concrete column / beam joint. A load corresponding to a point on the load deformation curve having a tangent angle of 2 inclination angle θ 2 is a yield load. In the present embodiment, a slope factor of 1/3 is used as a yield load. Then, instead of the slope factor 1/3, for example, numerical values such as a slope factor 1/2, a slope factor 1/4, and a slope factor 1/5 may be adopted. Furthermore, the method for determining the yield load is not limited to the slope factor method, and other methods (general yield method, 0.2% offset method, etc.) may be used.

ここで以下の説明を容易にするために、応力検討断面を示す接合部モデルを図5に基づいて説明する。
Lpは補剛部(仕口部1A)と非補剛部との境界からフランジ3Fまでの長さであり、Dpは補剛部の外径であり、hpiは補剛部の非補剛部から内方への突出長さであり、hpoは補剛部の非補剛部から外方への突出長さであり、Tpは補剛部の肉厚であり、Tcは非補剛部の肉厚であり、Tfはフランジ3Fの肉厚であり、Bfはフランジ3Fの幅である。また、S1はフランジ3F側辺の仕口部1Aへの溶接の余盛り量であり、S2はフランジ3F下辺の仕口部1Aへの溶接の余盛り量であり、S3はフランジ3F上辺の仕口部1Aへの溶接の余盛り量である。θsは接合部中心(左右中心)と柱中心とを結ぶ直線と、接合部左右余盛り端と柱中心とを結ぶ直線とが成す接合部角であり、mθは接合部中心(左右中心)と柱中心とを結ぶ直線と、領域境界と柱中心とを結ぶ直線とが成す中央領域角であり、eθは領域境界と柱中心とを結ぶ直線と、接合部左右余盛り端と柱中心とを結ぶ直線とが成す端領域角である。なお、本実施の形態では領域境界を、フランジ3Fの側辺からフランジ3Fの肉厚Tfの1/2の距離の位置に設定してあるが、その位置設定は適宜変更可能である。
Here, in order to facilitate the following description, a joint model showing a stress examination section will be described with reference to FIG.
Lp is the length from the boundary between the stiffening portion (joint portion 1A) and the non-stiffening portion to the flange 3F, Dp is the outer diameter of the stiffening portion, and hpi is the non-stiffening portion of the stiffening portion. , Hpo is the protruding length of the stiffened portion from the non-stiffened portion to the outside, Tp is the thickness of the stiffened portion, and Tc is the length of the non-stiffened portion. Thickness, Tf is the thickness of the flange 3F, and Bf is the width of the flange 3F. S 1 is the surplus amount of welding to the joint portion 1A on the side of the flange 3F, S 2 is the surplus amount of welding to the joint portion 1A on the lower side of the flange 3F, and S 3 is the flange 3F. It is the amount of surplus welding of the upper side joint portion 1A. θs is a joint angle formed by a straight line connecting the joint center (left and right center) and the column center, and a straight line connecting the left and right extra-ends of the joint and the column center, and mθ is the joint center (left and right center). The central area angle formed by a straight line connecting the column center and a straight line connecting the region boundary and the column center, and eθ is a straight line connecting the region boundary and the column center, the left and right extra-ends of the joint, and the column center. It is an end region angle formed by a connecting straight line. In the present embodiment, the region boundary is set to a position at a distance of ½ of the thickness Tf of the flange 3F from the side of the flange 3F, but the position setting can be changed as appropriate.

Figure 2008031818
Figure 2008031818

ここで、pσyを補剛部鋼管の材料降伏応力度として、ζは、数3のように定義する。 Here, ζ is defined as in Equation 3, where p σ y is the material yield stress degree of the stiffened steel pipe.

そして、フランジ3Fに引っ張り力が作用した場合に接合部に作用する応力を数4に示す式に基づいて算出する。   Then, the stress acting on the joint when a tensile force acts on the flange 3F is calculated based on the equation shown in Equation 4.

Figure 2008031818
Figure 2008031818

Figure 2008031818
Figure 2008031818

そして、端領域eのうちフランジ厚さ方向に沿った余盛りが施された鋼管部分の横断面部分(I)の降伏耐力eQ1、端領域eのうちフランジ幅方向に沿った余盛りが施された上下鋼管部分の一方の横断面部分(II)の降伏耐力eQ2、端領域eのフランジ部分の横断面部分の降伏耐力eT、中央領域mをフランジ幅方向で二分した一方の領域部分のうち余盛りが施された上下鋼管部分の一方の横断面部分(II)の降伏耐力mQ2、中央領域mをフランジ幅方向で二分した一方の領域部分のフランジ部分の横断面部分の降伏耐力mT、Lp=0の場合の端領域eにおける補剛部と非補剛部との境界部の横断面部分(III)の降伏耐力eQ3、Lp=0の場合の中央領域mをフランジ幅方向で二分した一方の領域部分における補剛部と非補剛部との境界部の横断面部分(III)の降伏耐力mQ3は、数6で示す式で表される。 The yield strength eQ 1 cross-section portion of the excess heap is applied steel tube portion along the flange thickness direction of the end region e (I), excess prime is facilities along the flange width direction of the end region e The yield strength eQ 2 of one cross-sectional portion (II) of the upper and lower steel pipe portions, the yield strength eT of the cross-sectional portion of the flange portion of the end region e, and one region portion of the central region m divided into two in the flange width direction Yield strength mQ 2 of one cross-sectional portion (II) of the upper and lower steel pipe portions that are overfilled, yield strength mT of the cross-sectional portion of the flange portion of one region portion that bisects the central region m in the flange width direction , Yield strength eQ 3 of the cross-sectional portion (III) at the boundary between the stiffened portion and the non-stiffened portion in the end region e when Lp = 0, and the central region m when Lp = 0 in the flange width direction Between the stiffened part and the non-stiffened part The yield strength mQ 3 of the cross-sectional portion (III) of the boundary portion is expressed by the equation shown in Equation 6.

Figure 2008031818
Figure 2008031818

そして、数3における応力ブロック係数は、表1及び数7で示す式で定義されている。   And the stress block coefficient in Formula 3 is defined by the formula shown in Table 1 and Formula 7.

Figure 2008031818
Figure 2008031818

Figure 2008031818
Figure 2008031818

次に、本実施形態の評価方法によって鋼管コンクリート柱・梁接合部の耐力を適正に評価できることを確認するために条件を変えた139モデルについて、数3による計算と、FEM解析とを行った。   Next, the calculation by Formula 3 and the FEM analysis were performed on the 139 model whose conditions were changed in order to confirm that the proof stress of the steel pipe concrete column / beam joint can be appropriately evaluated by the evaluation method of the present embodiment.

各モデル20〜158の各寸法(形状)を表2〜4に、また、物性を表5〜7にそれぞれ示す。   The dimensions (shapes) of the models 20 to 158 are shown in Tables 2 to 4, and the physical properties are shown in Tables 5 to 7, respectively.

Figure 2008031818
Figure 2008031818

Figure 2008031818
Figure 2008031818

Figure 2008031818
Figure 2008031818

Figure 2008031818
Figure 2008031818

Figure 2008031818
Figure 2008031818

Figure 2008031818
Figure 2008031818

〈結果〉
FEM解析値cPyと算定した評価耐力(P(ζ))の一覧を表8〜10に示す。
<result>
Tables 8 to 10 show a list of the FEM analysis value cPy and the calculated evaluation yield strength (P (ζ)).

Figure 2008031818
Figure 2008031818

Figure 2008031818
Figure 2008031818

Figure 2008031818
Figure 2008031818

また、FEM解析値と、本実施形態評価方法で算定した評価耐力との関係を図8に示す。   Further, FIG. 8 shows the relationship between the FEM analysis value and the evaluation strength calculated by the evaluation method of the present embodiment.

以上の結果から、本実施形態の評価方法によるときは、従来の評価方法に比較して、過
大評価すること少なく、かつ、バラツキ少なく適正に降伏耐力を評価することができることが判る。
From the above results, it can be seen that when the evaluation method according to the present embodiment is used, it is possible to appropriately evaluate the yield strength with less overestimation and less variation compared to the conventional evaluation method.

更に、本発明は、円形以外に各種断面形状の鋼管コンクリート柱4を備えた接合部の耐力評価に適用することができる。   Furthermore, this invention is applicable to the proof stress evaluation of the junction part provided with the steel pipe concrete pillar 4 of various cross-sectional shapes other than circular.

尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry. In addition, it goes without saying that the present invention can be carried out in various modes without departing from the gist of the present invention.

鋼管コンクリート柱・梁接合部の切り欠き正面図Notched front view of steel pipe concrete column / beam joint 鋼管コンクリート柱・梁接合部の横断平面図Cross section plan of steel pipe concrete column / beam joint 鋼管コンクリート柱・梁接合部の切り欠き側面図Notched side view of steel pipe concrete column / beam joint 荷重と変形量との関係を示すグラフ図Graph showing the relationship between load and deformation 鋼管コンクリート柱・梁接合部の模式図Schematic diagram of steel pipe concrete column / beam joint FEM解析値と算定した評価耐力との関係を示すグラフ図Graph showing the relationship between the FEM analysis value and the calculated evaluation strength Lpと局部降伏耐力との関係図Relationship diagram between Lp and local yield strength FEM解析値と算定した評価耐力との関係を示すグラフ図Graph showing the relationship between the FEM analysis value and the calculated evaluation strength

符号の説明Explanation of symbols

1 鋼管
1A 仕口部
2 コンクリート
3 鉄骨梁
3F 引っ張り側のフランジ
4 鋼管コンクリート柱
e 端領域
Lp 鋼管の補剛部と非補剛部との境界から、フランジまでの長さ
m 中央領域
P(ζ) 評価耐力
P(0) 評価耐力
P※ 補剛部の肉厚寸法を非補剛部の肉厚寸法まで減じた場合の降伏耐力
P(∞) 非補剛部の肉厚寸法を補剛部の肉厚寸法まで増やした場合の降伏耐力
w 重み係数
DESCRIPTION OF SYMBOLS 1 Steel pipe 1A Joint part 2 Concrete 3 Steel beam 3F Pull side flange 4 Steel pipe concrete pillar e End area Lp Length from boundary of stiffened part and non-stiffened part of steel pipe to flange m Central area P (ζ ) Evaluation strength P (0) Evaluation strength P * Yield strength when the thickness of the stiffening part is reduced to the thickness of the non-stiffening part P (∞) The thickness of the non-stiffening part Yield strength when weight is increased to w

Claims (3)

鋼管にコンクリートを充填すると共に、前記鋼管のうち鉄骨梁と接合する仕口部の全長にわたる厚肉化によりその仕口部を補剛した構造の鋼管コンクリート柱に鉄骨梁を溶接で接合させてある鋼管コンクリート柱・梁接合部の耐力を評価する方法であって、
接合部のうち鉄骨梁の引っ張り側のフランジと鋼管コンクリート柱との接合部を、フランジ幅方向の両端近くの端領域とそれら間の中央領域とに分け、これら端領域及び中央領域のそれぞれについて、鋼管の降伏耐力とフランジの降伏耐力とを求め、端領域については、鋼管の降伏耐力とフランジの降伏耐力とのうち小さい方を端降伏耐力とし、中央領域については、鋼管の降伏耐力とフランジの降伏耐力とのうち小さい方に応力ブロック係数を乗じた耐力を中央降伏耐力とし、これら端降伏耐力と中央降伏耐力との合力を評価耐力(P(ζ))とするにあたり、前記鋼管の補剛部と非補剛部との境界から、前記フランジまでの長さ(Lp)が、0となる時には、評価耐力(P(0))を、補剛部の肉厚寸法を非補剛部の肉厚寸法まで減じた場合の降伏耐力(P※)と、非補剛部の肉厚寸法を補剛部の肉厚寸法まで増やした場合の降伏耐力(P(∞))との間の値となるように、所定の重み係数(w)を乗じた配分によって求める鋼管コンクリート柱・梁接合部の耐力評価方法。
The steel pipe is filled with concrete, and the steel beam is welded to the steel pipe concrete column with a stiffening of the joint part by thickening the joint part of the steel pipe over the entire length. A method for evaluating the strength of steel pipe concrete columns and beam joints,
Of the joints, the joint between the flange on the pulling side of the steel beam and the steel pipe concrete column is divided into an end region near both ends in the flange width direction and a center region between them, and each of these end regions and the center region, The yield strength of the steel pipe and the yield strength of the flange are obtained. For the end region, the smaller one of the yield strength of the steel pipe and the yield strength of the flange is the end yield strength, and for the central region, the yield strength of the steel pipe and the flange strength of the flange are obtained. The yield strength obtained by multiplying the smaller of the yield strength by the stress block coefficient is the central yield strength, and the resultant strength of these end yield strength and central yield strength is the evaluation strength (P (ζ)). When the length (Lp) from the boundary between the part and the non-stiffened part to the flange is 0, the evaluation yield strength (P (0)) is set, and the thickness of the stiffened part is set to the thickness of the non-stiffened part. Reduced to wall thickness Predetermined yield strength (P *) and the yield strength (P (∞)) when the thickness of the non-stiffened part is increased to the thickness of the stiffened part. Strength evaluation method for steel pipe concrete column / beam joint obtained by distribution multiplied by weight coefficient (w).
次の設計式(F)を設定し、その設計式(F)に基づいて評価耐力(P(ζ))を算定する請求項1記載の鋼管コンクリート柱・梁接合部の耐力評価方法。
Figure 2008031818
The method of evaluating the strength of a steel pipe concrete column / beam joint according to claim 1, wherein the following design formula (F) is set and the evaluation strength (P (ζ)) is calculated based on the design formula (F).
Figure 2008031818
前記重み係数(W)が0.740である請求項1又は2に記載の鋼管コンクリート柱・梁接合部の耐力評価方法。   The method for evaluating the strength of a steel pipe concrete column / beam joint according to claim 1 or 2, wherein the weight coefficient (W) is 0.740.
JP2006272041A 2006-06-29 2006-10-03 Strength evaluation method of steel pipe concrete column / beam joint Expired - Fee Related JP4898374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272041A JP4898374B2 (en) 2006-06-29 2006-10-03 Strength evaluation method of steel pipe concrete column / beam joint

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006180186 2006-06-29
JP2006180186 2006-06-29
JP2006272041A JP4898374B2 (en) 2006-06-29 2006-10-03 Strength evaluation method of steel pipe concrete column / beam joint

Publications (2)

Publication Number Publication Date
JP2008031818A true JP2008031818A (en) 2008-02-14
JP4898374B2 JP4898374B2 (en) 2012-03-14

Family

ID=39121540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272041A Expired - Fee Related JP4898374B2 (en) 2006-06-29 2006-10-03 Strength evaluation method of steel pipe concrete column / beam joint

Country Status (1)

Country Link
JP (1) JP4898374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025583A (en) * 2008-07-15 2010-02-04 Ohbayashi Corp Calculation method of shearing force distribution in joint surface between steel product and concrete member, calculation method of maximum shearing proof stress in joint surface between steel product and concrete member, calculation method of shearing force working on stud, and support structure of reversely driven column

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110987247B (en) * 2019-10-21 2021-06-04 武汉大学 Test method for measuring uniform and non-uniform restraining force of concrete-filled steel tubular column by adopting piezoelectric film
CN111006798B (en) * 2019-10-21 2021-06-11 武汉大学 Test method for measuring active and passive hoop force of FRP (fiber reinforced Plastic) confined concrete column by adopting piezoelectric film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303665A (en) * 2001-03-30 2001-10-31 Nkk Corp Circular steel pipe column filled with concrete
JP2002081134A (en) * 2000-09-07 2002-03-22 Takenaka Komuten Co Ltd Strength estimating method for steel pipe column and beam joint

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081134A (en) * 2000-09-07 2002-03-22 Takenaka Komuten Co Ltd Strength estimating method for steel pipe column and beam joint
JP2001303665A (en) * 2001-03-30 2001-10-31 Nkk Corp Circular steel pipe column filled with concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025583A (en) * 2008-07-15 2010-02-04 Ohbayashi Corp Calculation method of shearing force distribution in joint surface between steel product and concrete member, calculation method of maximum shearing proof stress in joint surface between steel product and concrete member, calculation method of shearing force working on stud, and support structure of reversely driven column

Also Published As

Publication number Publication date
JP4898374B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
Hancock Cold-formed steel structures
KR20120101494A (en) Z-shaped steel sheet pile
CN203716304U (en) Flat-plate type embedded part
JP2012117995A (en) Deformation state evaluation method for cold-forming square steel pipe
CN101413323B (en) Method for preparing and preventing plug of wide-span case beam rear tension method prestress pore passage
JP4898374B2 (en) Strength evaluation method of steel pipe concrete column / beam joint
Lee et al. Structural performance of welded built-up square CFST stub columns
JP4898375B2 (en) Strength evaluation method of steel pipe concrete column / beam joint
Wang et al. Strength design of welded high-strength steel beams considering coupled local and global buckling
Lawson et al. Serviceability performance of composite cellular beams with partial shear connection
Ning et al. Experimental and numerical study of hot-rolled duplex stainless steel CHS columns
CN105195574A (en) Cold-bending forming method for large-section-dimension component
CN204023800U (en) Steel corbel formula steel core concrete column and girder with rolled steel section en cased in concrete node connecting structure
Li Calculation of moment capacity of cold-formed steel members
JP2003132107A (en) Piping device and design method of piping device
CN105369983B (en) A kind of rib constrains thin wall steel tube concrete structure
JP2013142275A (en) Steel sheet pile underground wall structure
JP5903792B2 (en) Load bearing material
JP2020094478A (en) Earthquake proof repair method of existing structure
JP2011202424A (en) H-shaped steel beam
Mendis Warping analysis of concrete cores
JP2011202423A (en) H-shaped steel
JP7380230B2 (en) Beam opening reinforcement method and beam structure
CN206752749U (en) A kind of S types dowel steel plate concrete combined shear wall
JP2004300913A (en) H-shape steel with projection and wall body using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees