JP7380230B2 - Beam opening reinforcement method and beam structure - Google Patents

Beam opening reinforcement method and beam structure Download PDF

Info

Publication number
JP7380230B2
JP7380230B2 JP2020002687A JP2020002687A JP7380230B2 JP 7380230 B2 JP7380230 B2 JP 7380230B2 JP 2020002687 A JP2020002687 A JP 2020002687A JP 2020002687 A JP2020002687 A JP 2020002687A JP 7380230 B2 JP7380230 B2 JP 7380230B2
Authority
JP
Japan
Prior art keywords
hole
reinforcing
length
reinforcing material
shaped cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020002687A
Other languages
Japanese (ja)
Other versions
JP2021110149A (en
Inventor
英克 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2020002687A priority Critical patent/JP7380230B2/en
Publication of JP2021110149A publication Critical patent/JP2021110149A/en
Application granted granted Critical
Publication of JP7380230B2 publication Critical patent/JP7380230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、貫通孔が形成される梁の開口補強方法及び梁の構造に関する。 The present invention relates to a method for reinforcing the opening of a beam in which a through hole is formed, and a structure of the beam.

例えば、配管を通す等の目的のために、建物の躯体を構成する梁に貫通孔を開口することがある。貫通孔を設けた梁は、貫通孔を設けない梁に比べて、曲げ耐力が低下する。そこで、低下した曲げ耐力を補うために、従来、貫通孔毎に補強が行なわれていた。例えば、梁の各貫通孔にリング材を設置したり、各貫通孔の周囲を囲むプレート材を設けたりする(例えば、特許文献1参照。)。この文献に記載の梁においては、鉄骨梁本体のウェブに設けられる曲げ補強部とせん断補強部の幅及び厚さを設定する。この幅及び厚さに基づいて、梁の開口の部分の曲げ耐力とせん断耐力との関係を表す曲げせん断耐力曲線を定める。そして、曲げせん断耐力曲線と、梁に想定する設計用荷重から求められる設計用せん断力及び設計用曲げモーメントとを比較する。 For example, through holes are sometimes opened in beams that make up the framework of a building for the purpose of passing pipes through. A beam provided with a through hole has lower bending strength than a beam not provided with a through hole. Therefore, in order to compensate for the decreased bending strength, reinforcement was conventionally performed for each through hole. For example, a ring material is installed in each through-hole of the beam, or a plate material is provided surrounding each through-hole (see, for example, Patent Document 1). In the beam described in this document, the width and thickness of the bending reinforcement section and the shear reinforcement section provided in the web of the steel beam body are set. Based on this width and thickness, a bending shear strength curve representing the relationship between the bending strength and shear strength of the opening portion of the beam is determined. Then, the bending shear strength curve is compared with the design shear force and design bending moment obtained from the design load assumed for the beam.

特開2017-210785号公報JP2017-210785A

梁に設ける貫通孔は、配管等の状況に応じて、径の大きさ等を変更することがある。この場合、特許文献1に記載の補強方法等の従来技術では、貫通孔径に応じたリング状の補強材や貫通孔の周囲に配置するプレート状の補強材が必要であった。更に、配管の直径等が変わる度に、貫通孔径に応じた補強材を製作し、貫通孔の補強を再設計する必要があった。 The diameter of the through-hole provided in the beam may be changed depending on the conditions of the piping and the like. In this case, conventional techniques such as the reinforcing method described in Patent Document 1 require a ring-shaped reinforcing material depending on the diameter of the through-hole or a plate-shaped reinforcing material disposed around the through-hole. Furthermore, each time the diameter of the pipe changes, it is necessary to manufacture a reinforcing material according to the diameter of the through hole and redesign the reinforcement of the through hole.

上記課題を解決する梁の開口補強方法は、H形断面梁のウェブに貫通孔が設けられ、前記H形断面梁のフランジに補強材を設けて、前記貫通孔の開口を補強する梁の開口補強方法であって、前記貫通孔の大きさを決定した場合、前記貫通孔の大きさに応じて、前記H形断面梁の軸方向の前記補強材の長さと、前記軸方向に対して直交する面における前記補強材の断面積とを設定する。
上記課題を解決する梁の構造は、H形断面梁のウェブに貫通孔が設けられ、前記H形断面梁の上方にスラブが配置される梁の構造であって、前記貫通孔の上方で、前記スラブに埋設した補強筋を、上方補強部材として設け、前記貫通孔の下方で、前記貫通孔の下方の前記H形断面梁の下面に固定した補強板を、下方補強部材として設け、前記上方補強部材及び前記下方補強部材は、前記貫通孔の大きさに応じて低下した耐力を補強する。
A method for reinforcing an opening in a beam that solves the above problem includes providing a through hole in the web of an H-shaped cross-section beam, providing a reinforcing material in the flange of the H-shaped cross-section beam, and reinforcing the opening of the through-hole in the beam opening. In the reinforcing method, when the size of the through hole is determined, the length of the reinforcing material in the axial direction of the H-shaped cross-section beam and the length orthogonal to the axial direction are determined according to the size of the through hole. The cross-sectional area of the reinforcing material in the plane to be set is set.
A beam structure that solves the above problem is a beam structure in which a through hole is provided in the web of an H-shaped cross-section beam, and a slab is placed above the H-shaped cross-section beam, and above the through-hole, A reinforcing bar embedded in the slab is provided as an upper reinforcing member, a reinforcing plate fixed to the lower surface of the H-shaped cross-section beam below the through hole is provided as a lower reinforcing member, and a reinforcing plate is provided as a lower reinforcing member below the through hole. The reinforcing member and the lower reinforcing member reinforce the yield strength, which is reduced depending on the size of the through hole.

本発明によれば、効率的に貫通孔を補強することができる。 According to the present invention, through holes can be efficiently reinforced.

実施形態における梁の構造の正面図。FIG. 3 is a front view of the beam structure in the embodiment. 実施形態における梁の構造を解析するモデル条件を説明する説明図。FIG. 4 is an explanatory diagram illustrating model conditions for analyzing the structure of a beam in the embodiment. 実施形態におけるFEM解析モデルの全体を説明する斜視図。FIG. 1 is a perspective view illustrating the entire FEM analysis model in the embodiment. 実施形態におけるFEM解析モデルの要部を説明する斜視図。FIG. 3 is a perspective view illustrating the main parts of the FEM analysis model in the embodiment. 実施形態におけるFEM解析結果による軸方向応力の分布例を説明する説明図であって、(a)は貫通孔なしの場合、(b)は無補強の場合、(c)は補強材長さが貫通孔径の0.5倍の場合、(d)は補強材長さが貫通孔径と同じ場合、(e)補強材長さが貫通孔径の2倍の場合。FIG. 3 is an explanatory diagram illustrating an example of the distribution of axial stress according to the FEM analysis results in the embodiment, in which (a) is a case without a through hole, (b) is a case without reinforcement, and (c) is a case where the reinforcing material length is (d) when the reinforcing material length is the same as the through-hole diameter; (e) when the reinforcing material length is twice the through-hole diameter. 実施形態におけるFEM解析結果によるミーゼス応力の分布例を説明する説明図であって、(a)は貫通孔なしの場合、(b)は無補強の場合、(c)は補強材長さが貫通孔径の0.5倍の場合、(d)は補強材長さが貫通孔径と同じ場合、(e)補強材長さが貫通孔径の2倍の場合。FIG. 4 is an explanatory diagram illustrating an example of Mises stress distribution according to FEM analysis results in the embodiment, in which (a) is a case without a through hole, (b) is a case without reinforcement, and (c) is a case where the length of the reinforcing material is penetrating. (d) when the length of the reinforcing material is the same as the diameter of the through hole; (e) when the length of the reinforcing material is twice the diameter of the through hole. 実施形態におけるFEM解析結果による変位に対する荷重の変化を示すグラフであって、(a)は貫通孔が梁せいの1/3倍の場合、(b)は(a)の要部を拡大した場合、(c)は貫通孔が梁せいの4/5倍の場合、(d)は(c)の要部を拡大した場合を示す。Graphs showing changes in load with respect to displacement according to FEM analysis results in the embodiment, where (a) is a case where the through hole is 1/3 times the size of the beam, and (b) is when the main part of (a) is enlarged. , (c) shows the case where the through hole is 4/5 times the size of the beam, and (d) shows the case where the main part of (c) is enlarged. 実施形態における基準化補強材長さと耐力比との関係を示すグラフ。5 is a graph showing the relationship between standardized reinforcing material length and proof stress ratio in the embodiment. 実施形態における必要補強材長さと基準化した貫通孔径との関係を示すグラフ。7 is a graph showing the relationship between the required reinforcing material length and the standardized through-hole diameter in the embodiment.

以下、図1~図9を用いて、梁の開口補強方法及び梁の構造を具体化した実施形態を説明する。
図1に示すように、本実施形態の梁構造10は、梁20と、梁20の上に設けられたスラブ30とを備える。梁20は、例えばH形鋼の鉄骨梁で構成され、上フランジ21、下フランジ22及びこれらを中央で連結するウェブ23を有する。梁20のウェブ23には、貫通孔径(貫通孔の直径)φの貫通孔25が形成される。この貫通孔25は、梁20の軸C1方向に対して直交する水平方向に開口する。
Hereinafter, embodiments embodying a beam opening reinforcing method and a beam structure will be described using FIGS. 1 to 9.
As shown in FIG. 1, the beam structure 10 of this embodiment includes a beam 20 and a slab 30 provided on the beam 20. The beam 20 is made of a steel beam, such as an H-beam, and has an upper flange 21, a lower flange 22, and a web 23 connecting these at the center. A through hole 25 having a through hole diameter (diameter of the through hole) φ is formed in the web 23 of the beam 20 . This through hole 25 opens in a horizontal direction perpendicular to the axis C1 direction of the beam 20.

更に、梁20の下フランジ22の下面には、下方補強部材として、補強板41が取り付けられている。この補強板41は、梁20に設けられる仕上材の捨てプレートとして用いることができる。本実施形態では、仕上材として、軽量鉄骨間仕切壁等を用いる。 Further, a reinforcing plate 41 is attached to the lower surface of the lower flange 22 of the beam 20 as a lower reinforcing member. This reinforcing plate 41 can be used as a sacrificial plate for finishing material provided on the beam 20. In this embodiment, a lightweight steel partition wall or the like is used as the finishing material.

補強板41は、ウェブ23に貫通孔25を設けることにより低下した耐力の一部を補強する。本実施形態では、補強板41の長さは、ウェブ23の高さH1の1.5倍である。更に、補強板41は、貫通孔25の垂直軸V1で等分されて配置される。また、補強板41の幅(紙面に対して垂直な方向の長さ)は、下フランジ22の両端から約10mmずつ短い。そして、補強板41の周囲は、下フランジ22の下面と溶接されて一体化される。 The reinforcing plate 41 reinforces a part of the yield strength reduced by providing the through holes 25 in the web 23. In this embodiment, the length of the reinforcing plate 41 is 1.5 times the height H1 of the web 23. Further, the reinforcing plates 41 are equally divided and arranged along the vertical axis V1 of the through hole 25. Further, the width of the reinforcing plate 41 (the length in the direction perpendicular to the plane of the drawing) is about 10 mm shorter from both ends of the lower flange 22. Then, the periphery of the reinforcing plate 41 is welded to the lower surface of the lower flange 22 to be integrated.

梁20の上フランジ21の上面には、スラブ30が設けられている。このスラブ30は、複数のスタッドボルト31と複数のスラブ筋32とを、コンクリート35内に埋設して構成される。複数のスタッドボルト31は、上フランジ21の上面に並ぶように立設される。複数のスラブ筋32は、格子状に配置される。 A slab 30 is provided on the upper surface of the upper flange 21 of the beam 20. This slab 30 is constructed by embedding a plurality of stud bolts 31 and a plurality of slab reinforcements 32 in concrete 35. The plurality of stud bolts 31 are arranged upright so as to be lined up on the upper surface of the upper flange 21. The plurality of slab lines 32 are arranged in a grid pattern.

更に、このスラブ30内には、上方補強部材として、複数の補強筋42が埋設される。補強筋42は、補強板41と協働して、ウェブ23に貫通孔25を設けることにより低下した耐力を補強する。複数の補強筋42は、補強板41が補強する耐力に釣り合う合計断面積となるように、鉄筋の断面積及び数が決定されて用いられる。この補強筋42は、補強板41に対応した位置に配置される。そして、補強筋42は、補強板41の長さに対して、両方向に、補強筋42の定着長さ分を追加した長さを有する。
上述したように、梁20の上方及び下方に設けた補強板41及び補強筋42により、貫通孔25によって低下した剛性及び耐力を補強することができる。
Furthermore, a plurality of reinforcing bars 42 are embedded within this slab 30 as upper reinforcing members. The reinforcing bars 42 work together with the reinforcing plate 41 to reinforce the yield strength reduced by providing the through holes 25 in the web 23. The plurality of reinforcing bars 42 are used with the cross-sectional area and number of the reinforcing bars determined so that the total cross-sectional area is balanced with the proof stress reinforced by the reinforcing plate 41. This reinforcing bar 42 is arranged at a position corresponding to the reinforcing plate 41. The reinforcing bars 42 have a length that is the length of the reinforcing bar 41 plus the fixing length of the reinforcing bars 42 in both directions.
As described above, the stiffness and strength reduced by the through holes 25 can be reinforced by the reinforcing plates 41 and reinforcing bars 42 provided above and below the beam 20.

(補強部材の効果)
次に、上述した補強板41及び補強筋42について、貫通孔がない梁(無貫通孔梁)と同等の曲げ耐力を有することを説明する。
ここでは、補強板41及び補強筋42をモデル化した補強材を用いて、有限要素法(FEM)による解析により、この長さを算出した。
(Effect of reinforcing member)
Next, it will be explained that the reinforcing plate 41 and the reinforcing bars 42 described above have the same bending strength as a beam without through holes (a beam without through holes).
Here, this length was calculated by analysis using the finite element method (FEM) using a reinforcing material in which the reinforcing plate 41 and the reinforcing bar 42 were modeled.

図2に示すように、貫通孔55の周囲に曲げモーメントのみが作用する力学モデルの梁50を用いた。そして、梁50の上面及び下面には、貫通孔55の下方及び上方の位置に補強材61,62を設けると仮定する。補強材61,62は、同じ材質であって、同じ大きさ(長さ、幅及び厚み)を有する部材であると仮定する。 As shown in FIG. 2, a mechanically modeled beam 50 in which only a bending moment acts around the through hole 55 was used. It is assumed that reinforcing members 61 and 62 are provided on the upper and lower surfaces of the beam 50 at positions below and above the through hole 55. It is assumed that the reinforcing members 61 and 62 are made of the same material and have the same size (length, width, and thickness).

梁50は、600mmの梁せいD、200mmの幅を有する。この梁50のウェブの厚みtwが12mmであって、フランジの厚みtfが22mmである。更に、梁50の支点間の距離が4800mmであって、中央に貫通孔55が位置し、各支点から1200mmの位置に、半分の荷重(P/2)がそれぞれ加わると仮定する。また、貫通孔径を「φ」、補強材61,62の補強材長さを「Lr」、厚みを「tr」と仮定する。 The beam 50 has a beam length D of 600 mm and a width of 200 mm. The web thickness tw of this beam 50 is 12 mm, and the flange thickness tf is 22 mm. Furthermore, it is assumed that the distance between the supporting points of the beam 50 is 4800 mm, the through hole 55 is located in the center, and half the load (P/2) is applied to a position 1200 mm from each supporting point. Further, it is assumed that the diameter of the through hole is "φ", the length of the reinforcing members 61 and 62 is "Lr", and the thickness is "tr".

図3は、力学モデルを有限要素に分割した様子を示している。なお、図4は図3の要部の拡大図である。この力学モデルとして、梁50のウェブの板厚中心で分割した1/2モデルを用いる。この力学モデルにおいては、荷重によって梁50が局部的に撓まない条件を追加している。このために、荷重が加わる箇所にはスチフナを設けている。なお、力学モデルにおいては、下方の補強材61を備えているが、図3及び図4では省略している。 FIG. 3 shows how the dynamic model is divided into finite elements. Note that FIG. 4 is an enlarged view of the main part of FIG. 3. As this mechanical model, a 1/2 model in which the web of the beam 50 is divided at the center of the plate thickness is used. In this mechanical model, a condition is added in which the beam 50 is not locally bent by the load. For this purpose, stiffeners are provided at locations where loads are applied. Note that although the mechanical model includes a lower reinforcing member 61, it is omitted in FIGS. 3 and 4.

このような力学モデルを用いて、貫通孔径φと補強材長さLrを変化させるパレメトリックスタディを行なった。
この場合、貫通孔55の貫通孔径(梁せい比)φは、「0」、「200(=D/3)」、「300(=D/2)」、「315(=0.525D)」、「330(=0.55D)」、「360(=0.6D)」、「400(=2D/3)」、「500(=4D/5)」の8種類を用いる。また、補強材長さLrは、「0(無補強)」、「0.5φ」、「0.75φ」、「1.0φ」、「1.25φ」、「1.50φ」、「2.00φ」、「3.00φ」の8種類を用いる。
Using such a mechanical model, a parametric study was conducted in which the through-hole diameter φ and the reinforcing material length Lr were varied.
In this case, the through-hole diameter (beam ratio) φ of the through-hole 55 is "0", "200 (=D/3)", "300 (=D/2)", "315 (=0.525D)" , "330 (=0.55D),""360(=0.6D),""400(=2D/3)," and "500 (=4D/5)" are used. Further, the reinforcing material length Lr is "0 (no reinforcement)", "0.5φ", "0.75φ", "1.0φ", "1.25φ", "1.50φ", "2. 00φ” and “3.00φ” are used.

図2に示すように、補強材61,62の断面は、貫通孔55による耐力減少量Mφを補う断面積Br×trの組み合わせを用いて算出する。この場合、以下の2式を用いる。
貫通孔による耐力減少量Mφ=1/4×tw×φ2×σyw …(1)
補強材による耐力増加Mr=Br×tr×(D+tr)×σyr …(2)
そして、Mφ=MrとなるBr×trの組み合わせを算出する。
ここで、twはウェブ厚、φは貫通孔径、Brは補強材の幅、trは補強材の板厚、Dは梁せい、σywはウェブの降伏応力、σyrは補強材の降伏応力である。
As shown in FIG. 2, the cross-sections of the reinforcing members 61 and 62 are calculated using a combination of cross-sectional area Br×tr that compensates for the reduction in strength due to the through-hole 55. In this case, the following two equations are used.
Amount of proof stress reduction due to through hole M φ = 1/4×tw×φ 2 ×σyw…(1)
Yield strength increase Mr=Br×tr×(D+tr)×σyr due to reinforcing material…(2)
Then, a combination of Br×tr such that M φ =Mr is calculated.
Here, tw is the web thickness, φ is the through hole diameter, Br is the width of the reinforcing material, tr is the plate thickness of the reinforcing material, D is the beam thickness, σyw is the yield stress of the web, and σyr is the yield stress of the reinforcing material.

そして、補強材61,62は、同じ大きさ及び対応する位置に配置し、梁50のフランジに溶接で接合されることを想定する。この場合、図4に示すように、補強材62(61)の外周部と梁50のフランジのFEMの接点を共有する。
更に、本実施形態では、材料の降伏応力は、すべて325N/mmとする。材料の応力-ひずみ関係はバイリニア型とし、降伏後の剛性は初期剛性の1/200とする。
It is assumed that the reinforcing members 61 and 62 are arranged in the same size and at corresponding positions, and are joined to the flange of the beam 50 by welding. In this case, as shown in FIG. 4, the outer periphery of the reinforcing member 62 (61) and the flange of the beam 50 share the FEM contact point.
Furthermore, in this embodiment, the yield stress of all materials is 325 N/mm 2 . The stress-strain relationship of the material is bilinear, and the stiffness after yielding is 1/200 of the initial stiffness.

(解析結果の説明)
図5及び図6には、貫通孔径φが400mmとして解析したときの軸方向応力の分布例及びミーゼス応力の分布例をそれぞれ示している。図5(a)及び図6(a)は貫通孔なし、図5(b)及び図6(b)は無補強、図5(c)及び図6(c)は補強材長さが貫通孔径の0.5倍の場合、図5(d)及び図6(d)は補強材長さが貫通孔径と同じ場合、図5(e)及び図6(e)は補強材長さが貫通孔径の2倍の場合を示す。図5の軸方向応力の分布例においては、絶対値が高くなるに従って色が濃くなるように示している。図6のミーゼス応力の分布例においては、応力が高くなるに従って色が薄くなるように示している。
(Explanation of analysis results)
5 and 6 respectively show an example of the distribution of axial stress and an example of the distribution of Mises stress when analyzed assuming that the through hole diameter φ is 400 mm. Figures 5(a) and 6(a) have no through holes, Figures 5(b) and 6(b) have no reinforcement, and Figures 5(c) and 6(c) have reinforcing material length equal to the through hole diameter. 5 (d) and 6 (d), the length of the reinforcing material is the same as the diameter of the through hole, and FIG. This shows the case of twice as much. In the example of the distribution of axial stress in FIG. 5, the color becomes darker as the absolute value becomes higher. In the Mises stress distribution example shown in FIG. 6, the color becomes lighter as the stress becomes higher.

図5及び図6に示すように、補強材長さLrが長い程、梁50のウェブ中央付近まで軸方向応力を伝達でき、高い耐力を発揮できることがわかる。ただし、解析結果より、有効な補強材61,62の補強材長さLrには上限があることもわかった。 As shown in FIGS. 5 and 6, it can be seen that the longer the reinforcing material length Lr is, the more the axial stress can be transmitted to the vicinity of the center of the web of the beam 50, and the higher the yield strength can be exhibited. However, the analysis results also revealed that there is an upper limit to the effective reinforcing material length Lr of the reinforcing materials 61 and 62.

また、図7には、荷重と変位の関係を示す。この場合、接線剛性が初期剛性の1/3に低下した時を降伏耐力Pyと定めている。
図7(a),(b)は、貫通孔55の貫通孔径φが200(=D/3)の場合であり、図7(b)は図7(a)における荷重Pが1000~2000(kN)の部分を拡大した要部のグラフである。また、図7(c),(d)は、貫通孔55の貫通孔径φが500(=4D/5)の場合であり、図7(c)は図7(d)における荷重Pが1000~2000(kN)の部分を拡大した要部のグラフである。
Further, FIG. 7 shows the relationship between load and displacement. In this case, the yield strength Py is defined as the time when the tangential stiffness decreases to 1/3 of the initial stiffness.
7(a) and 7(b) show the case where the through hole diameter φ of the through hole 55 is 200 (=D/3), and FIG. 7(b) shows the case where the load P in FIG. 7(a) is 1000 to 2000 ( This is a graph showing the main part of the graph (kN). Furthermore, FIGS. 7(c) and 7(d) show the case where the through-hole diameter φ of the through-hole 55 is 500 (=4D/5), and FIG. 7(c) shows the case where the load P in FIG. 7(d) is 1000~ This is an enlarged graph of the main part of the 2000 (kN) part.

図7(a),(b)に示すように、貫通孔55が小さい場合には、貫通孔がない場合と補強材がない場合の耐力に大きな差は生じない。また、図7(c),(d)に示すように、貫通孔55が大きいと、貫通孔がない場合と補強材がない場合との耐力の差が大きくなる。また、全体的に、補強材61,62の補強材長さLrが大きくなると耐力が上昇する傾向がある。 As shown in FIGS. 7(a) and 7(b), when the through-hole 55 is small, there is no large difference in the yield strength between the case where there is no through-hole and the case where there is no reinforcing material. Furthermore, as shown in FIGS. 7(c) and 7(d), when the through hole 55 is large, the difference in proof strength between the case where there is no through hole and the case where there is no reinforcing material increases. Moreover, overall, as the reinforcing material length Lr of the reinforcing materials 61 and 62 increases, the yield strength tends to increase.

図8は、耐力比(Pφy/Py)と、基準化補強材長さ(Lr/φ)との関係を示している。ここで、耐力比とは、無貫通孔の梁の降伏耐力Pyに対する、貫通孔55がある梁50の降伏耐力Pφyの割合である。また、基準化補強材長さ(Lr/φ)は、貫通孔径φに対する補強材長さLrである。 FIG. 8 shows the relationship between the proof stress ratio (P φy /Py) and the standardized reinforcement length (Lr/φ). Here, the yield strength ratio is the ratio of the yield strength Py of the beam 50 with the through holes 55 to the yield strength Py of the beam without through holes. Further, the standardized reinforcing material length (Lr/φ) is the reinforcing material length Lr with respect to the through hole diameter φ.

図8に示すように、補強材長さLrが長くなると、耐力が上昇する傾向が見られる。ここで、無貫通梁の耐力の99%以上の耐力を有する場合を、無貫通梁同等と見なすと仮定する。この場合、基準化補強材長さ(Lr/φ)は、1.5以上であれば、無貫通梁同等の耐力となる。 As shown in FIG. 8, there is a tendency for the yield strength to increase as the reinforcing material length Lr increases. Here, it is assumed that a case having a proof stress of 99% or more of the proof stress of a non-penetrating beam is considered to be equivalent to a non-penetrating beam. In this case, if the standardized reinforcing material length (Lr/φ) is 1.5 or more, the strength will be equivalent to that of a non-penetrating beam.

更に、図9における実線は、無貫通孔梁と同等の耐力を発揮するための必要補強材長さ(Lr/φ)と、梁せいで基準化した貫通孔径(φ/D)との関係(解析値)を示している。貫通孔55が大きくなる程、必要補強材長さ(Lr/φ)は大きくなる傾向が見られる。
また、図9における点線は、解析値に基づいて近似した必要補強材長さの設計式を示している。ここでは、0.5≦φ<0.55の範囲と0.55≦φ<0.8の範囲とにおいて異なる近似曲線を用いて長さを算出する。0.5≦φ<0.55の範囲では、必要補強材長さ(Lr/φ)は、「9×φ/D-4」で算出され、0.55≦φ<0.8の範囲では、必要補強材長さ(Lr/φ)は、「1.8×φ/D-0.04」で算出される。
Furthermore, the solid line in Fig. 9 shows the relationship between the length of the reinforcement material (Lr/φ) required to exhibit the same strength as a beam without through holes and the diameter of the through hole (φ/D) standardized by the beam. analysis value). There is a tendency that the larger the through hole 55 becomes, the larger the required reinforcing material length (Lr/φ) becomes.
Moreover, the dotted line in FIG. 9 shows a design formula for the required reinforcement material length approximated based on the analytical values. Here, the length is calculated using different approximate curves in the range of 0.5≦φ<0.55 and the range of 0.55≦φ<0.8. In the range of 0.5≦φ<0.55, the required reinforcing material length (Lr/φ) is calculated as “9×φ/D−4”, and in the range of 0.55≦φ<0.8, , the required reinforcing material length (Lr/φ) is calculated as “1.8×φ/D−0.04”.

貫通孔径を3種類の閾値(D/2、2D/3、4D/5)で区分すれば、貫通孔径に対して、以下の補強材長さLrを確保することで無貫通孔梁と同等の曲げ耐力を発揮できる。
・2D/3<φ≦4D/5の場合、補強材長さLrは1.4φ以上
・D/2<φ≦2D/3の場合、補強材長さLrは1.2φ以上
・0<φ≦D/2の場合、補強材長さLrは0.5φ以上
また、図9から、梁20に最大径の貫通孔25を形成しても、補強材長さLrは、1.5φ程度あれば、無貫通孔梁と同等の曲げ耐力を発揮することができる。
If the through hole diameter is divided into three types of threshold values (D/2, 2D/3, 4D/5), by ensuring the following reinforcing material length Lr for the through hole diameter, the beam can be equivalent to a beam without through holes. Can exhibit bending strength.
・If 2D/3<φ≦4D/5, the reinforcing material length Lr is 1.4φ or more. ・If D/2<φ≦2D/3, the reinforcing material length Lr is 1.2φ or more. ・0<φ In the case of ≦D/2, the reinforcement length Lr is 0.5φ or more. Also, from FIG. For example, it can exhibit the same bending strength as a beam without through holes.

(作用)
梁20の貫通孔25の下方で下フランジ22に溶接された補強板41と、貫通孔25の上方でスラブ30内に埋設された補強筋42により、貫通孔25がある場合にも貫通孔周囲の応力を伝達できる。そして、貫通孔25がない場合同等の耐力を維持することができる。
(effect)
A reinforcing plate 41 welded to the lower flange 22 below the through hole 25 of the beam 20 and a reinforcing bar 42 buried in the slab 30 above the through hole 25 ensure that the area around the through hole is can transmit stress. In addition, the same proof strength can be maintained when there is no through hole 25.

本実施形態によれば、以下のような効果を得ることができる。
(1)本実施形態では、補強板41及び補強筋42によって、貫通孔25によって低下した梁20の剛性及び耐力を補強する。これにより、貫通孔25の内部を補強するリング材や貫通孔25の周囲を補強するプレート材を不要にすることができる。
According to this embodiment, the following effects can be obtained.
(1) In this embodiment, the stiffness and proof strength of the beam 20, which have been reduced due to the through hole 25, are reinforced by the reinforcing plate 41 and the reinforcing bars 42. This makes it possible to eliminate the need for a ring material for reinforcing the inside of the through hole 25 and a plate material for reinforcing the periphery of the through hole 25.

(2)本実施形態では、補強板41は、梁20のウェブ23の高さH1の1.5倍の長さを有する。これにより、梁20に形成される貫通孔25の貫通孔径φの大きさが梁20に形成可能な最大径まで変更した場合においても、補強板41及び補強筋42によって梁20の曲げ耐力を確保できる。従って、貫通孔25の貫通孔径φの大きさが変更になっても、それに応じて補強材の形状を変更する必要がなく、更に補強を設計し直す必要がない。 (2) In this embodiment, the reinforcing plate 41 has a length 1.5 times the height H1 of the web 23 of the beam 20. As a result, even if the through-hole diameter φ of the through-hole 25 formed in the beam 20 is changed to the maximum diameter that can be formed in the beam 20, the bending strength of the beam 20 is ensured by the reinforcing plate 41 and the reinforcing bar 42. can. Therefore, even if the through-hole diameter φ of the through-hole 25 is changed, there is no need to change the shape of the reinforcing material accordingly, and there is no need to redesign the reinforcement.

(3)本実施形態では、補強板41は、梁20の下フランジ22の幅よりも小さいので、補強板41の端部を、下フランジ22の下面に効率的に溶接することができる。
(4)本実施形態では、補強板41を、仕上材の捨てプレートとして用いることができるので、補強板41とは別に、仕上材の捨てプレートを設ける箇所を少なくすることができる。
(3) In this embodiment, since the reinforcing plate 41 is smaller in width than the lower flange 22 of the beam 20, the end of the reinforcing plate 41 can be efficiently welded to the lower surface of the lower flange 22.
(4) In this embodiment, since the reinforcing plate 41 can be used as a finishing material waste plate, the number of locations where finishing material waste plates are provided separately from the reinforcing plate 41 can be reduced.

(5)本実施形態では、貫通孔25の上方のスラブ30に、補強板41に対応する補強筋42を埋設する。これにより、補強板をスラブ30の上下に設けないので、スラブ30を凹凸なく形成することができる。 (5) In this embodiment, reinforcing bars 42 corresponding to the reinforcing plates 41 are embedded in the slab 30 above the through holes 25. Thereby, since reinforcing plates are not provided above and below the slab 30, the slab 30 can be formed without unevenness.

(6)本実施形態では、補強筋42は、補強板41が補強した耐力と同等の耐力となる合計断面積となる断面積の鉄筋及び数で配置し、補強板41に対応した位置を覆い、更に必要補強材長さの両方に定着長さ分を加えた長さ以上の長さを有する。これにより、補強板41とバランスさせて、貫通孔25によって低下した剛性と耐力を補強することができる。 (6) In this embodiment, the reinforcing bars 42 are arranged in the number and number of reinforcing bars with a cross-sectional area that has a total cross-sectional area that has the same proof stress as that reinforced by the reinforcing plate 41, and cover the positions corresponding to the reinforcing plates 41. , and further has a length equal to or longer than the required length of the reinforcing material plus the fixing length. Thereby, it is possible to balance with the reinforcing plate 41 and to reinforce the rigidity and proof strength reduced by the through hole 25.

本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・上記実施形態では、補強板41を、梁20のウェブ23の高さH1の1.5倍の長さとした。補強材長さLrは、1.5倍に限定されない。例えば、貫通孔の最大径がD/2以下で形成される場合には、補強材長さLrを0.5φ以上にすればよいし、貫通孔の最大径が2D/3で形成される場合には、補強材長さLrを1.2φ以上にすればよい。これにより、設計される貫通孔の範囲に応じた適切な長さの補強材を用いることができる。
This embodiment can be modified and implemented as follows. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
- In the above embodiment, the length of the reinforcing plate 41 is 1.5 times the height H1 of the web 23 of the beam 20. The reinforcing material length Lr is not limited to 1.5 times. For example, if the maximum diameter of the through hole is D/2 or less, the reinforcing material length Lr may be 0.5φ or more, and if the maximum diameter of the through hole is 2D/3. For this purpose, the reinforcing material length Lr may be set to 1.2φ or more. Thereby, it is possible to use a reinforcing material with an appropriate length depending on the range of the designed through hole.

・上記実施形態では、梁20において貫通孔25の上方には、補強板41に対応する補強筋42をスラブ30内に設けた。梁20の上方に設ける補強部材は補強筋に限定されない。例えば、補強筋42の代わりに、梁20の上フランジ21の上面に、補強板41を設けてもよい。 - In the above embodiment, reinforcing bars 42 corresponding to the reinforcing plates 41 are provided in the slab 30 above the through holes 25 in the beams 20. The reinforcing member provided above the beam 20 is not limited to reinforcing bars. For example, instead of the reinforcing bars 42, a reinforcing plate 41 may be provided on the upper surface of the upper flange 21 of the beam 20.

・上記実施形態において、貫通孔25を設けた梁20を、H形断面の鉄骨で構成した。梁はH形鋼に限定されず、例えば閉鎖型の箱型断面梁でもよい。更に、梁20は、鉄骨造に限定されず、鉄骨鉄筋コンクリート造の鉄骨部分、ステンレス造、アルミニウム合金造等、等方性とみなせるいかなる材料で構成されてもよい。 - In the above embodiment, the beam 20 provided with the through hole 25 is made of a steel frame with an H-shaped cross section. The beam is not limited to H-shaped steel, and may be a closed box-section beam, for example. Further, the beam 20 is not limited to a steel frame structure, and may be made of any material that can be considered isotropic, such as a steel frame part of a steel reinforced concrete structure, a stainless steel structure, an aluminum alloy structure, etc.

次に、上記実施形態及び別例から把握できる技術的思想について、以下に追記する。
(a)前記補強筋は、前記補強板に対応する補強材長さの両端に定着長さをそれぞれ加えた長さを有し、前記補強板の断面積以上の合計断面積となる本数で配置されることを特徴とする請求項2に記載の梁の構造。
(b)前記下方補強部材は、仕上材を取り付けるための捨てプレートとして用いられることを特徴とする請求項2又は前記(a)に記載の梁の構造。
Next, technical ideas that can be understood from the above embodiment and other examples will be additionally described below.
(a) The reinforcing bars have a length that is the sum of the length of the reinforcing material corresponding to the reinforcing plate and the anchoring length at both ends, and are arranged in such a number that the total cross-sectional area is greater than or equal to the cross-sectional area of the reinforcing plate. The beam structure according to claim 2, characterized in that:
(b) The beam structure according to claim 2 or (a), wherein the lower reinforcing member is used as a sacrificial plate for attaching finishing material.

φ…貫通孔径、C1…軸、Lr…補強材長さ、10…梁構造、20,50…梁、21…上フランジ、22…下フランジ、23…ウェブ、25,55…貫通孔、30…スラブ、31…スタッドボルト、32…スラブ筋、35…コンクリート、41…補強板、42…補強筋、61,62…補強材。 φ... Through hole diameter, C1... Axis, Lr... Reinforcement material length, 10... Beam structure, 20, 50... Beam, 21... Upper flange, 22... Lower flange, 23... Web, 25, 55... Through hole, 30... Slab, 31... Stud bolt, 32... Slab reinforcement, 35... Concrete, 41... Reinforcement plate, 42... Reinforcement bar, 61, 62... Reinforcement material.

Claims (2)

H形断面梁のウェブに貫通孔が設けられ、前記H形断面梁のフランジに補強材を設けて、前記貫通孔の開口を補強する梁の開口補強方法であって、
前記貫通孔の大きさを決定した場合、前記貫通孔の大きさに応じて、前記H形断面梁の軸方向の前記補強材の長さと、前記軸方向に対して直交する面における前記補強材の断面積とを設定することを特徴とする梁の開口補強方法。
A method for reinforcing an opening in a beam, in which a through hole is provided in a web of an H-shaped cross-sectional beam, and a reinforcing material is provided in a flange of the H-shaped cross-sectional beam to reinforce the opening of the through hole,
When the size of the through hole is determined, the length of the reinforcing material in the axial direction of the H-shaped cross-section beam and the reinforcing material in a plane perpendicular to the axial direction are determined according to the size of the through hole. A beam opening reinforcement method characterized by setting a cross-sectional area of .
H形断面梁のウェブに貫通孔が設けられ、前記H形断面梁の上方にスラブが配置される梁の構造であって、
前記貫通孔の上方で、前記スラブに埋設した補強筋を、上方補強部材として設け、
前記貫通孔の下方で、前記貫通孔の下方の前記H形断面梁の下面に固定した補強板を、下方補強部材として設け、
前記上方補強部材及び前記下方補強部材は、前記貫通孔の大きさに応じて低下した耐力を補強することを特徴とする梁の構造。
A beam structure in which a through hole is provided in the web of an H-shaped cross-section beam, and a slab is arranged above the H-shaped cross-section beam,
A reinforcing bar embedded in the slab is provided above the through hole as an upper reinforcing member,
Below the through hole, a reinforcing plate fixed to the lower surface of the H-shaped cross-section beam below the through hole is provided as a lower reinforcing member;
The beam structure is characterized in that the upper reinforcing member and the lower reinforcing member reinforce a proof stress that is reduced depending on the size of the through hole.
JP2020002687A 2020-01-10 2020-01-10 Beam opening reinforcement method and beam structure Active JP7380230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020002687A JP7380230B2 (en) 2020-01-10 2020-01-10 Beam opening reinforcement method and beam structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020002687A JP7380230B2 (en) 2020-01-10 2020-01-10 Beam opening reinforcement method and beam structure

Publications (2)

Publication Number Publication Date
JP2021110149A JP2021110149A (en) 2021-08-02
JP7380230B2 true JP7380230B2 (en) 2023-11-15

Family

ID=77059313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020002687A Active JP7380230B2 (en) 2020-01-10 2020-01-10 Beam opening reinforcement method and beam structure

Country Status (1)

Country Link
JP (1) JP7380230B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193619A (en) 2001-12-26 2003-07-09 Daiwa House Ind Co Ltd Structure for reinforcing periphery of sleeve hole of steel-framed beam
JP2013014956A (en) 2011-07-05 2013-01-24 Takenaka Komuten Co Ltd Steel perforated beam reinforcing structure
WO2014041632A1 (en) 2012-09-12 2014-03-20 中国電力株式会社 Structure for reinforcing opening in steel frame
JP2015081431A (en) 2013-10-22 2015-04-27 株式会社竹中工務店 Reinforcement structure of steel perforated member
JP2017210785A (en) 2016-05-25 2017-11-30 株式会社大林組 Method for evaluating beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193619A (en) 2001-12-26 2003-07-09 Daiwa House Ind Co Ltd Structure for reinforcing periphery of sleeve hole of steel-framed beam
JP2013014956A (en) 2011-07-05 2013-01-24 Takenaka Komuten Co Ltd Steel perforated beam reinforcing structure
WO2014041632A1 (en) 2012-09-12 2014-03-20 中国電力株式会社 Structure for reinforcing opening in steel frame
JP2015081431A (en) 2013-10-22 2015-04-27 株式会社竹中工務店 Reinforcement structure of steel perforated member
JP2017210785A (en) 2016-05-25 2017-11-30 株式会社大林組 Method for evaluating beam

Also Published As

Publication number Publication date
JP2021110149A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP6414374B1 (en) Analysis method, design method, manufacturing method, and program
JP2018131883A (en) Floor structure
JP2018131882A (en) Foundation structure
JP6724618B2 (en) Beam-column joint structure
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP6447777B2 (en) Column beam connection structure and steel reinforced concrete column
JP7380230B2 (en) Beam opening reinforcement method and beam structure
JP2020041319A (en) Joint structure of main structure and brace
JP7362455B2 (en) frame structure
Oh et al. A study to enhance the deformation capacity of beam-to-column connections using high strength steel having high yield ratio
JP7070890B2 (en) Joint structure
JP2008007949A (en) Skeleton system between precast concrete column or wall and beam
JP2012188872A (en) Concrete filled circular steel pipe column
Feng et al. Seismic behavior and design of PEC shear wall with replaceable corner components
JPH08246547A (en) Pole-beam junction structure
JP2020094478A (en) Earthquake proof repair method of existing structure
JP2012188870A (en) Steel concrete composite column
JP7423419B2 (en) Steel beam design method
JP5851056B2 (en) Car drop protection fence
De’nan et al. Optimum shapes and sizes on torsion behaviour of I-beam with web opening
JP5931185B2 (en) Column structure and base member
KR20120075282A (en) Connecting structure of frame
JP2017203378A (en) Reinforcement structure for reinforced-concrete wall pillar and reinforcement structure for reinforced-concrete beam member
JP3215633U (en) Brace mounting structure
JP6832135B2 (en) Peripheral frame reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221205

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7380230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150