JP2008031495A - Manufacturing method of grain-oriented electrical steel sheet - Google Patents

Manufacturing method of grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP2008031495A
JP2008031495A JP2006202986A JP2006202986A JP2008031495A JP 2008031495 A JP2008031495 A JP 2008031495A JP 2006202986 A JP2006202986 A JP 2006202986A JP 2006202986 A JP2006202986 A JP 2006202986A JP 2008031495 A JP2008031495 A JP 2008031495A
Authority
JP
Japan
Prior art keywords
annealing
rolling
temperature
hot
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006202986A
Other languages
Japanese (ja)
Other versions
JP4910539B2 (en
Inventor
Kunihiro Senda
邦浩 千田
Yasuyuki Hayakawa
康之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006202986A priority Critical patent/JP4910539B2/en
Publication of JP2008031495A publication Critical patent/JP2008031495A/en
Application granted granted Critical
Publication of JP4910539B2 publication Critical patent/JP4910539B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a grain-oriented electrical steel sheet having high permeability and workability. <P>SOLUTION: When manufacturing a grain-oriented electrical steel sheet by performing the final finish annealing so as not to generate a ceramic coating film on a surface with a steel slab containing ≤0.02% C and 1.0-5.0% Si and having the inhibitor-less composition as a base material, the cumulative draft when the surface temperature of the steel sheet during the hot rolling is ≥950°C is ≥75% and the cumulative draft when the surface temperature of the steel sheet is ≥1,050°C is ≥20%. The required time in the temperature rising process of the initial annealing after the hot rolling between 500 and 900°C is within 100 seconds. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主としてEIコアなどの小型変圧器、回転機、発電機用の鉄心あるいはイグニッションコイルなどの鉄心材料に供して好適な一方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a unidirectional electrical steel sheet that is suitable for use mainly in iron core materials such as small transformers such as EI cores, rotary machines, generator cores, and ignition coils.

従来の技術Conventional technology

結晶方位が{110}<001>方位いわゆるゴス方位に配向した一方向性電磁鋼板(以下、一方向性電磁鋼板と称す)は、鋼中にインヒビターと呼ばれる成分を含有させ、鋼スラブを高温で加熱してインヒビターを固溶させたのち、熱間圧延工程においてインヒビターを微細に析出させ、冷間圧延後、脱炭を兼ねた再結晶焼鈍を施してから、MgOを主体とする焼鈍分離剤を塗布し、高温・長時間の最終仕上げ焼鈍中に二次再結晶と呼ばれる現象を利用して上述の結晶方位を得るのが一般的である。ここで、焼鈍分離剤の主成分であるMgOは、湿潤雰囲気中にて行われる再結晶焼鈍により鋼板表面に生成したシリカと最終仕上げ焼鈍中に反応して、フォルステライト(Mg2SiO4)の層を形成する。このフォルステライト層は、それ自体が鋼板に張力を付与するばかりでなく、最終仕上げ焼鈍後の表面に焼き付けられるガラス質の絶縁張力被膜と地鉄との間の中間層の働きをする。このように、フォルステライト層は、焼鈍分離剤による副生成物であるものの、絶縁張力被膜による鉄損低減を必要とする一方向性電磁鋼板では必須の存在とされている。 A unidirectional electrical steel sheet (hereinafter referred to as a unidirectional electrical steel sheet) oriented in the {110} <001> orientation, the so-called Goss orientation, contains a component called an inhibitor in the steel, and the steel slab is heated at a high temperature. After solidifying the inhibitor by heating, the inhibitor is finely precipitated in the hot rolling process, and after cold rolling, recrystallization annealing is performed which also serves as decarburization, and then an annealing separator mainly composed of MgO is added. In general, the above crystal orientation is obtained by applying a phenomenon called secondary recrystallization during final finishing annealing at a high temperature for a long time. Here, MgO, which is the main component of the annealing separator, reacts with the silica formed on the surface of the steel sheet by recrystallization annealing performed in a humid atmosphere during the final finish annealing, so that forsterite (Mg 2 SiO 4 ) Form a layer. This forsterite layer not only imparts tension to the steel sheet itself, but also acts as an intermediate layer between the vitreous insulating tension coating and the ground iron baked on the surface after final finish annealing. Thus, although the forsterite layer is a by-product due to the annealing separator, it is considered essential for the unidirectional electrical steel sheet that requires a reduction in iron loss due to the insulating tension coating.

一方、フォルステライト層は、上記のような有用性を有する反面、セラミック質であるため、硬度が高く、打抜き加工で鉄心を製造する場合には金型の摩耗が顕著であるという問題点を有している。
また、フォルステライト層の上にガラス質の絶縁張力被膜を有する場合、曲げ加工の際の密着性が無方向性電磁鋼板の絶縁被膜として用いられている有機質を含んだ被膜に比べて劣るという問題点がある。
このような問題点のため、一方向性電磁鋼板は打抜き加工や曲げ加工を必要とする鉄心として工業的に用いることは難しかった。
On the other hand, the forsterite layer has the above-mentioned usefulness, but because it is ceramic, it has a high hardness, and there is a problem that the wear of the mold is remarkable when an iron core is manufactured by stamping. is doing.
In addition, when having a vitreous insulating tension coating on the forsterite layer, the problem is that the adhesion during bending is inferior to that of a coating containing an organic material used as an insulating coating for non-oriented electrical steel sheets. There is a point.
Because of these problems, it has been difficult to industrially use unidirectional electrical steel sheets as iron cores that require punching or bending.

上記の問題点を解決するためには、まずフォルステライトなどのセラミック質の被膜を形成させない一方向性電磁鋼板を製造し、これに無方向性電磁鋼板と同じ絶縁被膜を形成させることが考えられる。
このような技術としては、まず最終仕上げ焼鈍後にフォルステライト被膜を酸洗や研削などの方法で除去する方法が考えられるが、この方法はコスト高になるだけではなく、表面性状が劣化し、磁気特性の劣化を招くという問題点がある。
In order to solve the above-mentioned problems, it is conceivable to first produce a unidirectional electrical steel sheet that does not form a ceramic film such as forsterite, and to form the same insulating film as the non-oriented electrical steel sheet. .
As such a technique, a method of removing the forsterite film by a method such as pickling or grinding after the final finish annealing can be considered, but this method not only increases the cost but also deteriorates the surface properties and reduces the magnetic properties. There is a problem that the characteristics are deteriorated.

また、例えば特許文献1には、最終仕上げ焼鈍に適用するMgOを主体とする焼鈍分離剤中に薬剤を配合することによってフォルステライトの形成を抑制する技術が、さらに特許文献2には、Mnを含有する素材にシリカやアルミナを主体とする焼鈍分離剤を適用することによってフォルステライトの形成を抑制する技術が開示されている。
しかしながら、これらの技術では、インヒビター成分の除去のために高温での純化焼鈍が必要となるため、製造コストが高くなるという問題の他、製品の結晶粒径が粗大となって加工性が損なわれるという問題点があった。
Further, for example, Patent Document 1 discloses a technique for suppressing the formation of forsterite by blending a chemical in an annealing separator mainly composed of MgO applied to final finish annealing, and Patent Document 2 further describes Mn. A technique for suppressing the formation of forsterite by applying an annealing separator mainly composed of silica or alumina to the material to be contained is disclosed.
However, these techniques require purification annealing at a high temperature to remove the inhibitor component, which increases the manufacturing cost and increases the crystal grain size of the product and impairs workability. There was a problem.

これらの技術に対し、インヒビター成分を含有しない素材を用いてゴス方位結晶粒を低温で発達させ、純化焼鈍や特殊な焼鈍分離剤を必要としない方法が、特許文献3に開示されている。この方法によれば、フォルステライト被膜を有しない一方向性電磁鋼板を、純化焼鈍の必要なしに安価に製造することが可能である。
しかしながら、この方法で得られた一方向性電磁鋼板は、二次再結晶粒径が十分に制御されていないため、加工性の点で問題が生じる。
In contrast to these techniques, Patent Document 3 discloses a method in which goss-oriented crystal grains are developed at a low temperature using a material that does not contain an inhibitor component, and a purification annealing or a special annealing separator is not required. According to this method, a unidirectional electrical steel sheet having no forsterite film can be produced at low cost without the need for purification annealing.
However, the unidirectional electrical steel sheet obtained by this method has a problem in terms of workability because the secondary recrystallization grain size is not sufficiently controlled.

通常の冷延鋼板や無方向性電磁鋼板の結晶粒径は、数μm〜数100μm程度であるため、加工の際の結晶方位の影響は平均化されて顕著には表れない。これに対し、一方向性電磁鋼板では、二次再結晶粒の直径が数mm〜数10mmに達するため、加工の際に結晶方位による悪影響が生じるという問題点がある。
具体的には、鋼板を形成している二次再結晶粒の数度の結晶方位のずれにより、打抜き加工時の寸法精度が劣化する現象であり、二次再結晶粒径が増大する従って顕著になる。このような現象に対しては、二次再結晶粒径を細かくすることが有利である。
Since the crystal grain size of ordinary cold-rolled steel sheets and non-oriented electrical steel sheets is about several μm to several hundred μm, the influence of crystal orientation during processing is averaged and does not appear remarkably. On the other hand, in the unidirectional electrical steel sheet, since the diameter of the secondary recrystallized grains reaches several mm to several tens mm, there is a problem that an adverse effect due to crystal orientation occurs during processing.
Specifically, it is a phenomenon in which the dimensional accuracy at the time of punching deteriorates due to the deviation of the crystal orientation of the secondary recrystallized grains forming the steel sheet, and the secondary recrystallized grain size increases accordingly. become. For such a phenomenon, it is advantageous to make the secondary recrystallization grain size fine.

微細なゴス方位を得る方法としては、特許文献4や特許文献5に開示されている方法がある。これらの方法による電磁鋼板は、加工性に優れている反面、結晶粒径が微細であるため、方位集積度を向上させるのが困難であり、通常の一方向性電磁鋼板並みの透磁率は得られない。さらに、粒界密度が高いため結晶粒界で生成する磁極の総量が大きく、とくに磁束密度:1.0T付近の低磁束密度域での透磁率が低いという問題点を有している。   As a method for obtaining a fine goth orientation, there are methods disclosed in Patent Documents 4 and 5. Magnetic steel sheets by these methods are excellent in workability, but because the crystal grain size is fine, it is difficult to improve the orientation integration, and the magnetic permeability equivalent to that of ordinary unidirectional electrical steel sheets is obtained. I can't. Furthermore, since the grain boundary density is high, the total amount of magnetic poles generated at the crystal grain boundary is large, and in particular, there is a problem that the magnetic permeability is low in a low magnetic flux density region near 1.0 T.

特公平6−49948号公報Japanese Patent Publication No. 6-49948 特開平8−134542号公報JP-A-8-134542 特開2000−129356号公報JP 2000-129356 JP 特開2000―160305号公報JP 2000-160305 A 特開2001―303214号公報Japanese Patent Laid-Open No. 2001-303214

本発明は、上記の現状に鑑み開発されたもので、高い透磁率と加工性を併せ持つ一方向性電磁鋼板の有利な製造方法を提案することを目的とする。   The present invention has been developed in view of the above situation, and an object thereof is to propose an advantageous method for producing a unidirectional electrical steel sheet having both high magnetic permeability and workability.

さて、発明者らは、特許文献3に開示した、インヒビタ成分を含有しない素材からゴス方位組織を発達させる技術を発展させ、加工性と磁気特性を両立させる方法の開発に取り組んだ。
その結果、加工性と磁気特性を同時に確保するためには、二次再結晶粒の粒径分布を適正に制御することが重要であることを突き止め、本発明の基礎とした。
Now, the inventors have developed the technique disclosed in Patent Document 3 for developing a Goth orientation structure from a material that does not contain an inhibitor component, and has developed a method for achieving both workability and magnetic properties.
As a result, in order to ensure the workability and the magnetic characteristics at the same time, it was determined that it is important to appropriately control the particle size distribution of the secondary recrystallized grains, which was the basis of the present invention.

すなわち、加工性の観点からは、過度に粗大な粒径の二次再結晶粒を発生させないことが、また磁気特性確保の観点からは、微細な粒径の二次再結晶粒の割合を一定以下に抑制するのが重要である。
このような二次再結晶組織を得るためには、熱間圧延中にγ変態を起こすに足る量のCを含有する素材を用いて熱延板組織の均一化を図ることが有利であるものの、スラブ中のCの含有量が多いと製造工程での脱炭焼鈍の負荷が大きいため、製造コストの点で不利となる。
That is, from the viewpoint of workability, secondary recrystallized grains having an excessively coarse grain size should not be generated, and from the viewpoint of securing magnetic properties, the ratio of secondary recrystallized grains having a fine grain size is constant. It is important to suppress the following.
In order to obtain such a secondary recrystallized structure, it is advantageous to make the hot-rolled sheet structure uniform by using a material containing C in an amount sufficient to cause γ transformation during hot rolling. If the content of C in the slab is large, the load of decarburization annealing in the production process is large, which is disadvantageous in terms of production cost.

そこで、C含有量が少ない素材であっても、良好な二次再結晶組織を発達させる方法について鋭意検討を重ねた結果、熱間圧延において特定温度以上での圧下率を高くすると共に、この特定温度以上の温度域においてより高温域での圧下率も併せて制御し、さらに熱間圧延後の最初の焼鈍における昇温条件とくに500〜800℃の温度域における所要時間を適切に制御することが有効であることを見出し、本発明を完成するに至った。   Therefore, as a result of intensive studies on a method for developing a good secondary recrystallized structure even with a material having a low C content, the reduction ratio at a specific temperature or higher in hot rolling is increased, and this identification is performed. It is possible to control the reduction rate in the higher temperature range in the temperature range higher than the temperature, and to appropriately control the temperature increase condition in the first annealing after hot rolling, especially the time required in the temperature range of 500 to 800 ° C. As a result, the present invention has been found to be effective.

すなわち、本発明の要旨構成は次のとおりである。
(1)質量%で、C:0.02%以下およびSi:1.0〜5.0%を含み、Al:100ppm以下、N:50ppm 以下の組成になる鋼スラブを、1100〜1300℃の温度に加熱した後、熱間圧延し、ついで熱延板焼鈍を施してから冷間圧延して最終板厚とするか、あるいは熱延板焼鈍なしに中間焼鈍を挟む2回の冷間圧延を施して最終板厚としたのち、再結晶焼鈍を施し、その後表面にセラミック質の被膜が生成しないように最終仕上げ焼鈍を施し、ついで平坦化焼鈍後、絶縁コーティングを焼き付ける一連の工程からなる一方向性電磁鋼板の製造方法において、
熱間圧延中の鋼板表面温度が950℃以上における累積圧下率を75%以上とし、かつ熱間圧延の圧延ロール入側での被圧延鋼板の表面温度が1050℃以上における累積圧下率を20%以上とし、熱間圧延後の最初の焼鈍の昇温過程:500〜900℃間の所要時間を100秒以内とすることを特徴とする一方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) After heating a steel slab containing C: 0.02% or less and Si: 1.0-5.0%, Al: 100 ppm or less, N: 50 ppm or less to a temperature of 1100-1300 ° C. Hot roll and then hot-rolled sheet annealing and then cold-rolled to the final sheet thickness, or hot-rolled sheet annealing is performed twice with intermediate annealing between the final sheet thickness and After that, a method for producing a unidirectional electrical steel sheet comprising a series of steps in which recrystallization annealing is performed and then final finishing annealing is performed so that a ceramic film is not formed on the surface, followed by flattening annealing and baking an insulating coating. In
Cumulative rolling reduction at a steel sheet surface temperature of 950 ° C or higher during hot rolling is 75% or higher, and the cumulative rolling reduction at a rolling steel roll surface on the rolling roll entry side of hot rolling is 1050 ° C or higher is 20%. A method for producing a unidirectional electrical steel sheet as described above, characterized in that the temperature raising process of the first annealing after hot rolling: the required time between 500-900 ° C. is within 100 seconds.

(2)鋼スラブが、さらに質量%で、Mn:0.02〜2.0%、Ni:0.005〜2.0%、Sn:0.01〜2.0%、Sb:0.005〜0.5%、Cu:0.01〜2.0%、Mo:0.01〜0.50%およびCr:0.01〜2.0%のうちから選んだ1種または2種以上を含有することを特徴とする上記(1)記載の一方向性電磁鋼板の製造方法。 (2) Steel slab is further mass%, Mn: 0.02-2.0%, Ni: 0.005-2.0%, Sn: 0.01-2.0%, Sb: 0.005-0.5%, Cu: 0.01-2.0%, Mo: 0.01 The method for producing a unidirectional electrical steel sheet according to the above (1), comprising one or more selected from ˜0.50% and Cr: 0.01 to 2.0%.

本発明によれば、スラブ中のC添加量を低減することにより、熱間圧延以降の工程での脱炭焼鈍を低温もしくは短時間で行うか、もしくは省略することが可能な素材を用いて、1.0T程度の比較的低い磁束密度での透磁率を損なうことなく、かつ打抜き時の金型摩耗が少なく寸法精度も良好な一方向性電磁鋼板を得ることができる。   According to the present invention, by reducing the amount of C added in the slab, decarburization annealing in the process after hot rolling is performed at a low temperature or in a short time, or using a material that can be omitted, A unidirectional electrical steel sheet can be obtained without impairing the magnetic permeability at a relatively low magnetic flux density of about 1.0 T, and with little die wear during punching and good dimensional accuracy.

本発明は、優れた加工法と磁気特性を兼ね備える一方向性電磁鋼板を得るには、表面に硬質の被膜を存在せしめないと共に、二次再結晶粒の粒径分布を過度に微細でない範囲で均一化することが有効であることを新たに知見して完成されたものであり、そのために必要な粒径分布の指標を示すと共に、その製造方法を提示している。   In order to obtain a unidirectional electrical steel sheet having both an excellent processing method and magnetic properties, the present invention does not allow a hard coating on the surface, and the secondary recrystallized grain size distribution is not excessively fine. It has been completed by newly finding out that it is effective to make uniform, and an index of the particle size distribution necessary for that purpose is shown, and a manufacturing method thereof is presented.

以下、本発明を具体的に説明する。
まず、本発明を由来するに至った実験結果について詳述する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.04%、Si:3.3%およびMn:0.04%を含み、Al:40ppm、S:20ppm、N:20ppm、O:15ppmに低減した鋼スラブを、連続鋳造にて製造した。この鋼スラブから、試験片を採取して、1250℃に加熱後、種々の条件で熱間圧延を施したのち、保持温度:1000℃の熱延板焼鈍を施し、ついで冷間圧延により0.35mm厚の最終板厚としたのち、体積比で水素:窒素=25:75、露点:50℃の雰囲気中にて850℃の脱炭と再結晶を兼ねた焼鈍を施してから、アルミナ粉を焼鈍分離剤として塗布し、保持温度:900℃の最終仕上げ焼鈍を行ったのち、重クロム酸塩と樹脂からなる半有機コーティング液を塗布・焼き付けして試作鋼板を制作した。
The present invention will be specifically described below.
First, the experimental results that led to the present invention will be described in detail. Unless otherwise specified, “%” in relation to ingredients means mass%.
A steel slab containing C: 0.04%, Si: 3.3% and Mn: 0.04% and reduced to Al: 40 ppm, S: 20 ppm, N: 20 ppm, O: 15 ppm was produced by continuous casting. A specimen was taken from this steel slab, heated to 1250 ° C, hot-rolled under various conditions, then subjected to hot-rolled sheet annealing at a holding temperature of 1000 ° C, and then cold-rolled to 0.35 mm. After making the final thickness of the sheet thick, hydrogen: nitrogen = 25: 75 by volume ratio, dew point: annealing at 850 ° C for both decarburization and recrystallization, and then annealing the alumina powder After applying as a separating agent and performing a final finish annealing at a holding temperature of 900 ° C., a semi-organic coating solution composed of dichromate and resin was applied and baked to produce a prototype steel plate.

得られた試作鋼板の二次再結晶組織を、酸によるマクロエッチングで調査すると共に、プレス打抜き装置により、外径:100mm、内径:80mmのリング状サンプルを20枚打抜き、これらすべてのリング状サンプルについて、45°おきに外径を測定した。ここで、外径のばらつきを、以下に示す指標Δφ(%)により定量化した。
Δφ(%)=(外径の最大値−外径の最小値)/外径平均値×100 ・・・(1)
The secondary recrystallized structure of the obtained prototype steel sheet was investigated by macro etching with acid, and 20 ring-shaped samples with an outer diameter of 100 mm and an inner diameter of 80 mm were punched with a press punching device. The outer diameter was measured every 45 °. Here, the variation in outer diameter was quantified by the following index Δφ (%).
Δφ (%) = (maximum outer diameter−minimum outer diameter) / average outer diameter × 100 (1)

また、二次再結晶組織は、酸によるマクロエッチングの後に二次再結晶粒界を目視判定し、画像解析装置にて粒径の分布を調査した。二次再結晶粒の粒径は、画像解析により各二次再結晶粒の面積Sを測定し、以下の式により定めた円相当径とした。
円相当径r=2(S/π)0.5
The secondary recrystallized structure was determined by visually observing the secondary recrystallized grain boundary after macro etching with acid, and the particle size distribution was examined with an image analyzer. The particle size of the secondary recrystallized grains was determined by measuring the area S of each secondary recrystallized grain by image analysis and setting the equivalent circle diameter determined by the following equation.
Equivalent circle diameter r = 2 (S / π) 0.5

図1に、円相当径が20mm以上の結晶粒の面積率とΔφとの関係について調べた結果を示す。
同図に示したとおり、 円相当径が20mm以上の結晶粒の面積率が大きくなると、Δφが大きくなって寸法精度(打抜性)は劣化するが、この面積率が15%以下であれば打ち抜き寸法精度のばらつきは小さい。
この理由は、粗大な結晶粒が存在すると、打抜き加工の際の材料の変形過程で結晶方位がわずかずつずれた結晶粒の影響が平均化されずに特定の結晶粒の方位の影響が強くなり、寸法精度が劣化するのに対し、粗大な結晶粒を少なくすれば、かような劣化が抑制されるためと考えられる。
FIG. 1 shows the results of investigating the relationship between the area ratio of crystal grains having an equivalent circle diameter of 20 mm or more and Δφ.
As shown in the figure, when the area ratio of crystal grains with an equivalent circle diameter of 20 mm or more increases, Δφ increases and dimensional accuracy (punchability) deteriorates. However, if this area ratio is 15% or less, Variation in punching dimensional accuracy is small.
The reason for this is that when coarse crystal grains exist, the influence of the specific crystal grain orientation becomes stronger without averaging the influence of the crystal grains whose crystal orientation is slightly shifted during the deformation process of the material during the punching process. This is probably because the dimensional accuracy deteriorates, but if the number of coarse crystal grains is reduced, such deterioration is suppressed.

なお、特開2002−212687号公報には、「鉄損及び打抜き加工性の良好な一方向性電磁銅板とその製造方法」として、二次再結晶粒の中に微細な結晶粒を存在せしめる技術が開示されているが、ここでの微細な結晶粒は鉄損の改善に寄与する効果を有しているのみで、打抜き加工時の寸法精度を改善させるものではない。   JP 2002-212687 A discloses a technique for making fine crystal grains present in secondary recrystallized grains as “unidirectional electromagnetic copper plate with good iron loss and punching workability and manufacturing method thereof”. However, the fine crystal grains here have only the effect of contributing to the improvement of the iron loss, and do not improve the dimensional accuracy during the punching process.

次に、図2に、円相当径が3mm以下の結晶粒の面積率と50Hz、1.0Tでの比透磁率μr10/50との関係について調べた結果を示す。
同図に示したとおり、円相当径が3mm以下の結晶粒の面積率を20%以下に制限することにより、20000以上の比透磁率が得られている。
このような微細な粒径の二次再結晶粒の割合が増加した場合における透磁率の低下は、主として、粒界に生成する磁極によって透磁率が低下することが原因と考えられる。
Next, FIG. 2 shows the result of examining the relationship between the area ratio of crystal grains having an equivalent circle diameter of 3 mm or less and the relative permeability μr 10/50 at 50 Hz and 1.0 T.
As shown in the figure, by limiting the area ratio of crystal grains having an equivalent circle diameter of 3 mm or less to 20% or less, a relative magnetic permeability of 20000 or more is obtained.
The decrease in the permeability when the ratio of the secondary recrystallized grains having such a fine grain size is increased is considered to be mainly caused by the decrease in the permeability due to the magnetic pole generated at the grain boundary.

以上の結果より、円相当径が20mm以上の二次再結晶粒の面積率を15%以下とし、円相当径が3mm以下の二次再結晶粒の面積率を20%以下とすることにより、20000以上の高い比透磁率を確保しながら打抜き加工時に高い寸法精度を保つことが可能となることが解明された。   From the above results, by setting the area ratio of secondary recrystallized grains having an equivalent circle diameter of 20 mm or more to 15% or less and the area ratio of secondary recrystallized grains having an equivalent circle diameter of 3 mm or less to 20% or less, It has been clarified that it is possible to maintain high dimensional accuracy during punching while securing a high relative permeability of 20000 or more.

そこで、次に、発明者らは、上記のような二次再結晶組織の製品を安定して得るための製造方法について検討した。ここで、熱延中のγ変態が起きるに足るだけのC量をスラブ中に含有する場合は、γ変態による組織の均一化効果により、均一な結晶粒径分布の二次再結晶組織が得られ易いことが、本発明に先立つ研究により明らかになっていたが、スラブ中のC含有量が高いと、脱炭焼鈍に長時間を要する不利が生じるため、スラブ中のC添加量を低減させた方が製造コストの点で有利である。
そこで、発明者らは、スラブ中のC量が0.02%以下で、熱延中にγ変態を起こさないような鋼成分の場合にも、打抜き加工時の寸法精度の観点から必要とされる二次再結晶組織を得る方法について検討した。
以下に、その実験結果を示す。
Then, next, inventors examined the manufacturing method for obtaining the product of the above secondary recrystallized structures stably. Here, when the slab contains a C amount sufficient to cause the γ transformation during hot rolling, a secondary recrystallized structure having a uniform crystal grain size distribution is obtained due to the homogenizing effect of the structure due to the γ transformation. Although it has been clarified by research prior to the present invention that it is easy to be done, if the C content in the slab is high, the decarburization annealing takes a long time, so the amount of C addition in the slab is reduced. Is advantageous in terms of manufacturing cost.
Therefore, the inventors have been required from the viewpoint of dimensional accuracy at the time of punching even in the case of a steel component in which the amount of C in the slab is 0.02% or less and does not cause γ transformation during hot rolling. The method of obtaining the next recrystallized structure was examined.
The experimental results are shown below.

C:0.0010〜0.04%、Si:3.3%およびMn:0.04%を含み、Al:40ppm、S:20ppm、N:20pm、O:15ppmに低減した、厚さ:200mmの鋼スラブを、連続鋳造にて製造し、1150℃で2時間加熱した後、熱間圧延を施し、板厚:2.2mmの熱延板とした。この際、熱延の粗圧延の開始温度を1120℃(圧延前待機なし)および1020℃(圧延前待機あり)とし、終了温度を950℃とし、粗圧延後の鋼帯厚さおよび粗圧延の圧下パスの各段階での所要時間を変化させた。   C: 0.0010 to 0.04%, Si: 3.3% and Mn: 0.04%, Al: 40ppm, S: 20ppm, N: 20pm, O: Reduced to 15ppm, thickness: 200mm steel slab for continuous casting After heating at 1150 ° C. for 2 hours, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.2 mm. At this time, the hot rolling rough rolling start temperature is 1120 ° C (no waiting before rolling) and 1020 ° C (waiting before rolling), the end temperature is 950 ° C, the steel strip thickness after rough rolling and the rough rolling The required time at each stage of the rolling pass was changed.

ついで、得られた熱延板から試験材を採取し、1000℃にて60秒間保持する熱延板焼鈍を施した。この熱延板焼鈍においては、昇温過程:500〜900℃間の所要時間を60秒とした。ついで、酸洗後、板厚:0.35mmに冷間圧延し、体積比で水素:窒素=25:75、露点:50℃の雰囲気中で850℃、100秒保持する脱炭・再結晶焼鈍を施したのち、N2:25%、Ar:75%の雰囲気中で900℃に30時間保持する最終仕上げ焼鈍を行った。その後、鋼板にマクロエッチングを施し、二次再結晶組織を顕にして、画像解析により粒径分布を調査した。 Next, a test material was collected from the obtained hot rolled sheet and subjected to hot rolled sheet annealing at 1000 ° C. for 60 seconds. In this hot-rolled sheet annealing, the time required for the temperature raising process: 500-900 ° C. was 60 seconds. Next, after pickling, it is cold-rolled to a thickness of 0.35 mm and decarburized and recrystallized annealed in a volume ratio of hydrogen: nitrogen = 25: 75, dew point: 50 ° C. and held at 850 ° C. for 100 seconds. After the application, a final finish annealing was performed in an atmosphere of N 2 : 25% and Ar: 75%, which was held at 900 ° C. for 30 hours. Thereafter, the steel sheet was macro-etched to reveal the secondary recrystallization structure, and the particle size distribution was investigated by image analysis.

図3,図4にそれぞれ、熱間圧延中、950℃以上での累積圧下率と、円相当径が20mm以上の結晶粒の面積率および円相当径が3mm以下の結晶粒の面積率との関係について調べた結果を示す。
これらの図において、比較法とは、各圧延ロール入側での被圧延材の温度が1050℃以上での累積圧下率を12%、熱延板焼鈍の昇温過程:500〜900℃間の所要時間を60秒とした場合、一方発明法とは、各圧延ロール入側での被圧延材の温度が1050℃以上での累積圧下率を20%、熱延板焼鈍の昇温過程:500〜900℃間の所要時間を60秒とした場合である。
FIGS. 3 and 4 show the cumulative reduction ratio at 950 ° C. or more, the area ratio of crystal grains having an equivalent circle diameter of 20 mm or more, and the area ratio of crystal grains having an equivalent circle diameter of 3 mm or less during hot rolling, respectively. The result of investigating the relationship is shown.
In these figures, the comparative method refers to a cumulative rolling reduction rate of 12% when the temperature of the material to be rolled on the entry side of each rolling roll is 1050 ° C. or higher, and the temperature rising process of hot-rolled sheet annealing: between 500 to 900 ° C. When the required time is 60 seconds, the one-side invention method is that the temperature of the material to be rolled on each roll entry side is 1050 ° C. or higher, the cumulative rolling reduction is 20%, and the temperature raising process of hot-rolled sheet annealing: 500 This is a case where the required time between ˜900 ° C. is 60 seconds.

図3,4によれば、素材C量が0.040%の材料の場合には、熱延板焼鈍の昇温過程:500〜900℃間の所要時間が60秒の場合、熱間圧延中、950℃以上での累積圧下率を75%以上とするのみで、円相当径:20mm以上の二次粒の面積率を15%以下とすると同時に、円相当径:3mm以下の二次粒の面積率を20%以下とすることができている。
これに対し、素材C量が0.0020%の材料では、これらの方法を適用しただけでは所望の二次再結晶組織は得られておらず、さらに被圧延材の温度が1050℃以上の温度域での累積圧下率を20%まで高めることによって、打抜き寸法精度向上のために好適な二次再結晶組織となっていることが分かる。
According to FIGS. 3 and 4, when the amount of material C is 0.040%, the temperature rising process of hot-rolled sheet annealing: when the required time between 500 to 900 ° C. is 60 seconds, during hot rolling, 950 By simply setting the cumulative rolling reduction above 75 ° C to 75% or more, the area ratio of secondary grains with a circle equivalent diameter of 20 mm or more is 15% or less, and at the same time the area ratio of secondary grains with a circle equivalent diameter of 3 mm or less Can be reduced to 20% or less.
On the other hand, in a material having a material C amount of 0.0020%, a desired secondary recrystallization structure is not obtained only by applying these methods, and the temperature of the material to be rolled is in a temperature range of 1050 ° C. or higher. It can be seen that a secondary recrystallized structure suitable for improving the punching dimensional accuracy is obtained by increasing the cumulative rolling reduction to 20%.

次に、図5,図6に、素材C量が0.0020%の材料において、熱間圧延中、950℃以上での累積圧下率を75%とし、熱延板焼鈍の昇温過程:500〜900℃間の所要時間を60秒とした場合の、各圧延ロール入側での被圧延材の温度が1050℃以上での累積圧下率と円相当径:20mm以上の結晶粒の面積率および円相当径:3mm以下の結晶粒の面積率との関係について調べた結果を示す。
図5,図6に示されるように、被圧延材の温度:1050℃以上での累積圧下率を20%以上とすることによって、円相当径が20mm以上の結晶粒の面積率が15%以下で、かつ円相当径が3mm以下の結晶粒の面積率が20%以下の製品が得られていることが分かる。
Next, in FIG. 5 and FIG. 6, in a material having a material C amount of 0.0020%, during hot rolling, the cumulative rolling reduction at 950 ° C. or higher is set to 75%, and the temperature rising process of hot-rolled sheet annealing: 500 to 900 Cumulative rolling reduction and equivalent circle diameter when the temperature of the material to be rolled on each roll entry side is 1050 ° C or higher when the required time between ° C is 60 seconds and the equivalent circle diameter: equivalent area ratio of crystal grains of 20mm or more The diameter: The result of having investigated about the relationship with the area ratio of the crystal grain of 3 mm or less is shown.
As shown in FIG. 5 and FIG. 6, the area ratio of crystal grains having an equivalent circle diameter of 20 mm or more is 15% or less by setting the cumulative reduction ratio at a temperature of the rolled material: 1050 ° C. or more to 20% or more. In addition, it can be seen that a product having an area ratio of crystal grains having an equivalent circle diameter of 3 mm or less and 20% or less is obtained.

上述したように、C含有量が低い素材に関しては、本発明の熱間圧延方法および熱延板焼鈍方法を採る必要がある。
熱間圧延中、950℃以上での累積圧下率を75%以上確保することによって二次再結晶粒径の分布が改善される理由は、鋼板表層部が高温域で強い歪を加えられることで、熱延中の結晶粒成長が適度に進行して熱間圧延後の組織が均一化された結果、二次再結晶後の組織が均一化されたことによると考えられる。特に二次再結晶粒径の微細な粒や粗大な粒の発生が抑制された結果と考えられる。
As described above, for a material having a low C content, it is necessary to adopt the hot rolling method and the hot-rolled sheet annealing method of the present invention.
The reason why the distribution of secondary recrystallized grain size is improved by ensuring a cumulative reduction ratio of 75% or higher at 950 ° C or higher during hot rolling is that the surface layer of the steel sheet is subjected to strong strain at high temperatures. It is considered that crystal grain growth during hot rolling progresses moderately and the structure after hot rolling is made uniform, and as a result, the structure after secondary recrystallization is made uniform. In particular, it is considered that the generation of fine grains and coarse grains having a secondary recrystallization grain size is suppressed.

このように、熱間圧延の高温域において高い圧下率を確保することにより、均一な熱延板組織が形成され、再結晶焼鈍組織にも影響を与える結果、二次再結晶粒の粒径分布が均一化し、粒径(円相当径)が20mm以上の粗粒や粒径(円相当径)が3mm以下の細粒の面積率が低下するといえる。   Thus, by ensuring a high reduction ratio in the high temperature region of hot rolling, a uniform hot-rolled sheet structure is formed, which also affects the recrystallization annealing structure. As a result, the particle size distribution of secondary recrystallized grains It can be said that the area ratio of coarse particles having a particle diameter (equivalent circle diameter) of 20 mm or more and fine particles having a particle diameter (equivalent circle diameter) of 3 mm or less is reduced.

しかしながら、スラブ中のC含有量が低く、熱間圧延中にγ変態を起こさないような組成の鋼の場合は、熱間圧延中、950℃以上での累積圧下率を75%以上確保するだけでは、熱延板組織の均一化を達成することが困難なため、打抜き精度確保の点から必要とされる二次再結晶組織が得られないものと推定される。
この理由は、圧延中にγ変態が起こらない場合、圧延中に相変態に伴う再結晶の生成が起こりにくいため、スラブ組織の影響が残り易くなるためと考えられる。
However, in the case of a steel having a low C content in the slab and a composition that does not cause γ transformation during hot rolling, only a cumulative reduction of 75% or higher at 950 ° C. or higher is ensured during hot rolling. Then, since it is difficult to achieve a uniform hot-rolled sheet structure, it is presumed that a secondary recrystallized structure required from the viewpoint of ensuring punching accuracy cannot be obtained.
The reason for this is considered to be that when the γ transformation does not occur during rolling, recrystallization due to the phase transformation does not easily occur during rolling, so that the influence of the slab structure tends to remain.

このような低C組成の素材の場合、熱間圧延初期の1050℃以上の高温域での累積圧下率を20%以上と高めに設定することが有利となることが判明した。
この理由は、熱間圧延の高温域において大きな歪が加えられることにより、変形組織からの再結晶粒の生成と成長が促進されるからであると考えられる。γ変態を伴う場合は、圧延中の温度低下に伴いγ相率の低下に併せて、950℃程度の温度に至るまでの圧下量を十分に確保することで、熱延組織の均一化が達成されるのに対し、γ変態のない場合には、高温域で大きな歪を与えておき、変形組織から再結晶粒を生成させたのち、これをその後の圧延過程で適度に粒成長させる方が均一化に有利であると考えられる。一方、熱延中の鋼板温度が低下してから強い歪を与えた場合はその後の粒成長が進行せずに細かい結晶粒となり、熱延板焼鈍中の異常粒成長により結晶粒が部分的に粗大化し、最終的に二次再結晶組織の不均一化に繋がると推定される。
このため、熱間圧延において最も高温となる初期の圧延パスの圧下率を所定の値まで高めることが、C含有量の少ない素材の場合に重要と考えられ、このような効果を得るには熱間圧延の1パス目の入側温度を高温にしておくことが有利であるといえる。
In the case of such a material having a low C composition, it has been found that it is advantageous to set the cumulative rolling reduction at a high temperature range of 1050 ° C. or higher at the initial stage of hot rolling as high as 20% or higher.
The reason for this is considered to be that the generation and growth of recrystallized grains from the deformed structure is promoted by applying a large strain in the high temperature region of hot rolling. When γ transformation is involved, the hot rolled structure can be made uniform by ensuring a sufficient amount of rolling down to a temperature of about 950 ° C, along with a decrease in the γ phase rate as the temperature decreases during rolling. On the other hand, when there is no γ transformation, it is better to give a large strain in the high temperature range, generate recrystallized grains from the deformed structure, and then grow the grains appropriately in the subsequent rolling process. It is considered advantageous for homogenization. On the other hand, when a strong strain is applied after the temperature of the steel sheet during hot rolling is reduced, the subsequent grain growth does not proceed and the crystal grains become fine, and the grains are partially formed by abnormal grain growth during hot-rolled sheet annealing. It is estimated that it becomes coarse and eventually leads to non-uniform secondary recrystallized structure.
For this reason, it is considered important to increase the rolling reduction ratio of the initial rolling pass at the highest temperature in hot rolling to a predetermined value in the case of a material having a low C content. It can be said that it is advantageous to keep the entrance temperature in the first pass of the hot rolling high.

また、単に熱延板焼鈍の昇温速度を適正化しただけでは、二次再結晶粒の粒径分布が均一化されない理由は、固溶窒素によるピン止め効果が熱延組織の不均一性に応じて不均一化するためと推定される。すなわち、熱間圧延の高温域の圧下率を適正化して組織を均一化した上で、引き続く熱延板焼鈍の昇温過程の所要時間を適正化することによって、初めて所望の二次再結晶組織が達成されると考えられる。   Moreover, the reason why the particle size distribution of secondary recrystallized grains cannot be made uniform simply by optimizing the heating rate of hot-rolled sheet annealing is that the pinning effect by solute nitrogen is due to the non-uniformity of the hot-rolled structure. It is presumed to be non-uniform in response. That is, the desired secondary recrystallized structure is achieved for the first time by optimizing the time required for the temperature raising process of the subsequent hot-rolled sheet annealing after optimizing the reduction ratio in the high temperature region of hot rolling and making the structure uniform. Is considered to be achieved.

さらに、上記のような昇温速度による効果は、熱間圧延後の最初の焼鈍において現れると考えられる。すなわち、熱延板焼鈍を省略し中間焼鈍を実施する場合には、中間焼鈍の昇温過程がこれに相当する。
特開平9−316537号公報などに開示されている従来の技術においても、熱延板焼鈍や中間焼鈍の昇温速度を適正に制御することが行われていたが、これらの技術では、AlN等のインヒビターを適切に析出させることが目的であった。
一方、上記した熱延板焼鈍や中間焼鈍すなわち熱間圧延後最初の焼鈍の昇温過程での所要時間を適正化する方法は、本発明のようなインヒビターを用いない電磁鋼板の製造方法において、不純物の析出を抑制しようとするものであり、従来の技術とはその目的が異なっている。
Furthermore, it is considered that the effect of the temperature increase rate as described above appears in the first annealing after hot rolling. That is, when hot-rolled sheet annealing is omitted and intermediate annealing is performed, the temperature raising process of intermediate annealing corresponds to this.
In the prior art disclosed in Japanese Patent Application Laid-Open No. 9-316537, etc., the heating rate of hot-rolled sheet annealing and intermediate annealing has been appropriately controlled. In these techniques, AlN or the like is used. The purpose was to properly precipitate the inhibitors.
On the other hand, the method for optimizing the required time in the temperature raising process of the first annealing after hot rolling or intermediate annealing, that is, the first annealing after hot rolling, in the manufacturing method of the electrical steel sheet not using the inhibitor as in the present invention, It is intended to suppress the precipitation of impurities, and its purpose is different from that of the conventional technique.

次に、本発明の製造方法に関する限定理由を述べる。
まず、素材である鋼スラブの成分組成を前記の範囲に限定した理由について説明する。
C:0.02%以下
Cは、γ変態の促進により熱延後の組織を均質化させ、磁気特性を改善させる有用元素であるが、製品の鉄基部分に残留すると時効効果により鉄損の増加を招くため、最終製品では0.0050%以下に低減しておく必要がある。このため、熱間圧延中の組織改善を目的としてCを適量添加した場合でも、後の製造工程のいずれかの時点で鋼中からCを除去する必要がある。このために、最終冷間圧延後に再結晶焼鈍を兼ねた脱炭焼鈍を適用する方法が一般的に用いられるが、脱炭を十分に行いことは相応の焼鈍時間を要するため、生産効率が低下してしまう。このような鋼中Cの添加に伴う生産性の低下を軽減するには、素材中のC添加量を低減させるのがよい。ただし、この場合には、前述したように、熱延中のγ変態が生じなくなるか、あるいはγ相率が低下し、熱延組織の改善が望めない。
このような事態に対し、本発明では、熱間圧延の条件を工夫することで素材中のC量が少なくても、良好な熱延組織を得る方法を見出したものである。
すなわち、本発明の手法を用いることにより、熱延板の組織の劣化を招くことなしにC添加量を0.02%以下まで低減することが可能であるので、スラブ中のC量は上記範囲に限定した。なお、C量は、好ましくは0.01%以下、より好ましくは0.0050%以下である。
Next, the reason for limitation regarding the manufacturing method of the present invention will be described.
First, the reason why the component composition of the steel slab, which is a material, is limited to the above range will be described.
C: 0.02% or less C is a useful element that homogenizes the structure after hot rolling by improving the γ transformation and improves the magnetic properties. However, if it remains in the iron base part of the product, it will increase the iron loss due to the aging effect. Therefore, the final product must be reduced to 0.0050% or less. For this reason, even when an appropriate amount of C is added for the purpose of improving the structure during hot rolling, it is necessary to remove C from the steel at any point in the subsequent manufacturing process. For this reason, a method of applying decarburization annealing that also serves as recrystallization annealing after the final cold rolling is generally used, but since sufficient decarburization requires an appropriate annealing time, production efficiency decreases. Resulting in. In order to reduce such a decrease in productivity due to the addition of C in steel, it is preferable to reduce the amount of C added to the material. However, in this case, as described above, the γ transformation during hot rolling does not occur, or the γ phase ratio decreases, and improvement of the hot rolled structure cannot be expected.
In view of such a situation, the present invention has found a method for obtaining a good hot-rolled structure even if the amount of C in the material is small by devising hot rolling conditions.
That is, by using the method of the present invention, it is possible to reduce the C addition amount to 0.02% or less without causing deterioration of the structure of the hot-rolled sheet, so the C amount in the slab is limited to the above range. did. Note that the C content is preferably 0.01% or less, more preferably 0.0050% or less.

Si:1.0〜5.0%
Siは、電気抵抗を高めて鉄損を低減させるだけでなく、鉄のBCC組織を安定させて高温での焼鈍を可能とする効果がある。しかしながら、Si含有量が1.0%を下回ると十分な鉄損低減効果が得られず、一方5.0%を超えると磁束密度が低下するだけでなく、製品の二次加工性が著しく劣化するので、Si量は1.0〜5.0%の範囲に限定した。
Si: 1.0-5.0%
Si not only increases electric resistance and reduces iron loss, but also has the effect of stabilizing the iron BCC structure and enabling annealing at high temperatures. However, if the Si content is less than 1.0%, a sufficient iron loss reduction effect cannot be obtained. On the other hand, if the Si content exceeds 5.0%, not only the magnetic flux density is lowered but also the secondary workability of the product is remarkably deteriorated. The amount was limited to the range of 1.0-5.0%.

Al:100ppm以下、N:50ppm 以下
本発明は、前掲した特許文献3のようなインヒビターを用いない一方向性電磁鋼板の製造技術を基本としている。従って、不純物元素を低減することで、粒界構造に依存した粒界の動き易さの差を利用して二次再結晶粒の方位集積度を向上させる。このためには、特にAlおよびNについて、上記範囲に限定する必要がある。また、Al,Nの他にも、B,Nb,V,S,SeおよびPについても、50ppm以下に低減しておくことが好ましい。
なお、Nについては、固溶Nによるピン止め効果を得るために、スラブ中に10ppm以上含有させておくことは有利である。
Al: 100 ppm or less, N: 50 ppm or less The present invention is based on the manufacturing technology of a unidirectional electrical steel sheet that does not use an inhibitor as described in Patent Document 3 described above. Therefore, by reducing the impurity elements, the degree of orientation accumulation of secondary recrystallized grains is improved by utilizing the difference in the ease of movement of grain boundaries depending on the grain boundary structure. For this purpose, it is particularly necessary to limit the above range for Al and N. In addition to Al and N, B, Nb, V, S, Se and P are preferably reduced to 50 ppm or less.
In addition, about N, in order to acquire the pinning effect by solid solution N, it is advantageous to make it contain 10 ppm or more in a slab.

なお、その他の成分を含有させる場合には、次の範囲とすることが好ましい。
Mn:0.02〜2.0%
Mnは、熱間加工性を改善するために有用な元素である。しかしながら、含有量が0.02%に満たないとその添加効果に乏しく、また磁気特性上もやや不利となる。一方、2.0%を超えると磁束密度の低下を招く。従って、Mnの添加を行う場合には上記の範囲とするのが好ましい。なお、製品の鉄基部分にはスラブ段階で含有するMnのほぼ全量が残留する。
In addition, when it contains other components, it is preferable to set it as the following range.
Mn: 0.02 to 2.0%
Mn is an element useful for improving hot workability. However, if the content is less than 0.02%, the effect of addition is poor, and the magnetic properties are somewhat disadvantageous. On the other hand, if it exceeds 2.0%, the magnetic flux density is reduced. Therefore, when Mn is added, the above range is preferable. In addition, almost all of Mn contained in the slab stage remains in the iron base portion of the product.

Ni:0.005〜2.0%
Niは、組織を改善して磁気特性を向上させる有用元素であり、必要に応じて添加することができる。ここに、含有量が0.005%に満たないと磁気特性の改善が十分でなく、一方 2.0%を超えると二次再結晶が不安定になり磁気特性が劣化するので、Niを添加する場合には上記の範囲とするのが好ましい。なお、製品の鉄基部分にはスラブ段階で含有するNiのほぼ全量が残留する。
Ni: 0.005-2.0%
Ni is a useful element that improves the magnetic properties by improving the structure, and can be added as necessary. Here, if the content is less than 0.005%, the improvement of the magnetic properties is not sufficient. On the other hand, if it exceeds 2.0%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so when adding Ni The above range is preferable. In addition, almost all of the Ni contained in the slab stage remains in the iron base portion of the product.

Sn:0.01〜2.0%、Sb:0.005〜0.5%、Cu:0.01〜2.0%、Mo:0.01〜0.50%、Cr:0.01〜2.0%
上記の元素はいずれも、鉄損改善のために有用な成分であり、必要に応じて単独またはた複合して添加することができる。ここに、含有量が下限に満たない場合は鉄損の改善効果に乏しく、一方上限を超えると二次再結晶が不安定になり磁気特性が劣化するため、各元素とも上記の範囲で含有させることが好ましい。なお、上記のいずれの元素についても製品の鉄基部分にはスラブ段階での含有量のほぼ全量が残留する。
Sn: 0.01-2.0%, Sb: 0.005-0.5%, Cu: 0.01-2.0%, Mo: 0.01-0.50%, Cr: 0.01-2.0%
Any of the above elements is a useful component for improving iron loss, and can be added alone or in combination as required. Here, when the content is less than the lower limit, the effect of improving the iron loss is poor. On the other hand, when the upper limit is exceeded, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so each element is contained in the above range. It is preferable. For any of the above elements, almost the entire content in the slab stage remains in the iron base portion of the product.

スラブの加熱温度:1100〜1300℃
スラブの加熱温度が1100℃を下回ると、熱間圧延中に十分な温度を保つことができないため、高温域で十分な圧下率をとることができず、その結果、均一な熱延板組織が得られないため、二次再結晶の粒径分布が不均一化する。一方、スラブの加熱温度が1300℃を超えると、加熱中の結晶粒の成長が進行して熱間圧延後の組織が不均一となり、所望の二次再結晶組織が得られない。従って、スラブ加熱温度は1100〜1300℃の範囲に限定した。より好ましくは1150〜1250℃の範囲である。
特に、本発明では、スラブ中に含有させるC量を0.02%以下に限定しているため、熱間圧延中のγ相率が低く、γ変態による熱延組織の均一化が望めない。このため、スラブ加熱中の結晶粒の粗大化を防止する観点から、加熱温度は1300℃以下とする必要がある。
Slab heating temperature: 1100-1300 ℃
If the heating temperature of the slab is below 1100 ° C, a sufficient temperature cannot be maintained during hot rolling, so that a sufficient reduction ratio cannot be obtained in a high temperature range. As a result, a uniform hot rolled sheet structure is obtained. Since it cannot be obtained, the particle size distribution of secondary recrystallization becomes non-uniform. On the other hand, when the heating temperature of the slab exceeds 1300 ° C., the growth of crystal grains during heating proceeds, the structure after hot rolling becomes non-uniform, and a desired secondary recrystallized structure cannot be obtained. Therefore, the slab heating temperature was limited to the range of 1100-1300 ° C. More preferably, it is the range of 1150-1250 degreeC.
In particular, in the present invention, since the amount of C contained in the slab is limited to 0.02% or less, the γ phase ratio during hot rolling is low, and it is not possible to make the hot rolled structure uniform by γ transformation. For this reason, from the viewpoint of preventing coarsening of crystal grains during slab heating, the heating temperature needs to be 1300 ° C. or lower.

熱間圧延中の鋼板表面温度が950℃以上における累積圧下率:75%以上
前述したように、鋼板表面温度が950℃以上における累積圧下率を75%以上とすることで、粗大あるいは微細な二次再結晶粒の面積率を低減することができるので、上記の範囲とした。また、上記の被圧延材の表面温度は、圧延直後の温度と定義するものとする。従って、温度の計測時点と圧延終了時点にずれがある場合、圧延中に特別な加熱処理を加えない限りは時間に応じて被圧延材の表面温度が低下するものとして、各圧延ロール出側温度が950℃以上の温度域での累積圧下量を算定することが可能である。より好ましい累積圧下率は80%以上である。
Cumulative rolling reduction at a steel plate surface temperature of 950 ° C or higher during hot rolling: 75% or higher As described above, the cumulative rolling reduction at a steel plate surface temperature of 950 ° C or higher is set to 75% or higher. Since the area ratio of the next recrystallized grains can be reduced, the above range is adopted. The surface temperature of the material to be rolled is defined as the temperature immediately after rolling. Therefore, if there is a difference between the temperature measurement time and the rolling end time, the surface temperature of the material to be rolled decreases with time unless a special heat treatment is applied during rolling. It is possible to calculate the cumulative reduction in the temperature range of 950 ° C or higher. A more preferable cumulative rolling reduction is 80% or more.

熱間圧延の圧延ロール入側での被圧延材の表面温度が1050℃以上における累積圧下率:20%以上
前途したように、スラブ中のC含有量を低く制限したことにより、熱間圧延中のγ変態による熱延組織の均一化が期待できないような場合、熱間圧延初期の熱延条件を適切に制御することによって、かような不利を補償することができる。すなわち、1050℃以上の高温域での累積圧下率が20%以上となる圧延を行うことによって、高温域で導入される歪により熱延板の再結晶組織の粗大化が適度に進行し、熱間圧延以降の焼鈍後の組織が均一化される。上記の範囲を外れた熱延条件では、このような効果が生じず、最終的な製品で粗大または微細な二次再結晶粒の生成頻度が増加して、加工後の寸法精度が損なわれるため、上記範囲に限定した。より好ましい累積圧下率は30%以上である。
上記の被圧延材の表面温度は各ロールでの圧延直前の温度と定義するものとする。従って、温度の計測時点と圧延開始時点にずれがある場合、圧延中に特別な加熱処理を加えない限りは時間に応じて被圧延材の表面温度が低下するものとして各圧延ロール入測温度が1050℃以上の温度での累積の圧下量を算定することが可能である。
Cumulative rolling reduction when the surface temperature of the material to be rolled on the rolling roll entry side of hot rolling is 1050 ° C or higher: 20% or more As previously, by limiting the C content in the slab low, In the case where the homogenization of the hot rolling structure due to the γ transformation cannot be expected, such disadvantages can be compensated by appropriately controlling the hot rolling conditions at the initial stage of hot rolling. That is, by performing rolling so that the cumulative rolling reduction in a high temperature range of 1050 ° C. or higher is 20% or higher, the recrystallization structure of the hot rolled sheet is appropriately coarsened due to strain introduced in the high temperature range, The structure after annealing after hot rolling is made uniform. In hot rolling conditions outside the above range, such effects do not occur, and the frequency of formation of coarse or fine secondary recrystallized grains in the final product increases, and the dimensional accuracy after processing is impaired. , Limited to the above range. A more preferable cumulative rolling reduction is 30% or more.
The surface temperature of the material to be rolled is defined as the temperature immediately before rolling in each roll. Therefore, if there is a discrepancy between the temperature measurement time and the rolling start time, unless the special heat treatment is applied during rolling, the surface temperature of each rolled roll is assumed to decrease depending on the time. It is possible to calculate the cumulative reduction amount at a temperature of 1050 ° C. or higher.

熱延板焼鈍または中間焼鈍のうち、熱間圧延後、最初の焼鈍の昇温工程:500〜900℃間の所要時間:100秒以内
前述したように、熱延後最初の焼鈍の昇温工程:500〜900℃間の所要時間が100秒を超えると鋼中不純物の析出量が増加し、固溶N量が低下して二次再結晶焼鈍中に十分なピン止め効果が得られず、二次再結晶粒の中に粗大な粒径や微細な粒径のものが発生する。従って、二次再結晶粒の中に粗大な結晶粒や微細な結晶粒の発生を抑制するには、熱延後最初の焼鈍の昇温工程:500〜900℃間の所要時間を100秒以内とする必要がある。また、この効果を得るためには、上記の熱延条件とすることにより、熱延板組織を予め均一化しておく必要がある。
熱延後最初の焼鈍の昇温工程:500〜900℃間のより好ましい所要時間は60秒以下である。
Of hot-rolled sheet annealing or intermediate annealing, the first annealing temperature rising process after hot rolling: 500 to 900 ° C required time: within 100 seconds As mentioned above, the first annealing temperature rising process after hot rolling : If the required time between 500 and 900 ° C exceeds 100 seconds, the precipitation amount of impurities in the steel increases, the amount of dissolved N decreases, and sufficient pinning effect cannot be obtained during secondary recrystallization annealing, In the secondary recrystallized grains, coarse grains or fine grains are generated. Therefore, in order to suppress the generation of coarse and fine crystal grains in the secondary recrystallized grains, the temperature raising process of the first annealing after hot rolling: the required time between 500 and 900 ° C is within 100 seconds. It is necessary to. Moreover, in order to acquire this effect, it is necessary to make the hot-rolled board structure | tissue uniform previously by setting it as said hot-rolling conditions.
Temperature raising step of the first annealing after hot rolling: A more preferable required time between 500-900 ° C. is 60 seconds or less.

セラミックス質の被膜が生じない最終仕上げ焼鈍
本発明では、打抜き加工時の金型摩耗を防止すると共に、曲げ加工時の密着性確保のために、最終仕上げ焼鈍において表面にセラミックス質の被膜が生じないようにし、平坦化焼鈍の後に無機または有機あるいは半有機の絶縁コーティングを施す。このため、最終仕上げ焼鈍においては、鋼板表面にフォルステライトなどのセラミックス質の被膜が生成しないようにする必要がある。従って、焼鈍分離剤を用いる場合には、アルミナ粉やシリカ粉など鋼板との反応性の低い物質を選択するのが良い。また、MgOなどの従来の焼鈍分離剤を用いることも可能であり、この場合にフォルステライトが生成しないようするには、最終仕上げ焼鈍の到達温度を1000℃以下程度の低温域に制限すればよい。また、鋼中にSbやSn,Biなどの表面偏析型の元素を適量含有する場合、最終仕上げ焼鈍の到達温度を950℃程度以下の低温域に制限することで、焼鈍分離剤の塗布がなくても鋼帯同士の密着を防止することができる。
Final finish annealing without ceramic coating In the present invention, in order to prevent die wear during punching and ensure adhesion during bending, no ceramic coating is formed on the surface during final finishing annealing. Thus, after the planarization annealing, an inorganic, organic or semi-organic insulating coating is applied. For this reason, in the final finish annealing, it is necessary to prevent the formation of a ceramic film such as forsterite on the steel sheet surface. Therefore, when using an annealing separator, it is preferable to select a substance having low reactivity with the steel plate such as alumina powder or silica powder. It is also possible to use a conventional annealing separator such as MgO. In this case, in order to prevent the formation of forsterite, the ultimate temperature of final finish annealing may be limited to a low temperature range of about 1000 ° C. or less. In addition, when an appropriate amount of surface segregation type elements such as Sb, Sn, and Bi are contained in the steel, the final temperature of final finish annealing is limited to a low temperature range of about 950 ° C or less, so that no annealing separator is applied. However, adhesion between steel strips can be prevented.

本発明では、スラブ中の不純物元素を低減しているため、最終仕上げ焼鈍は従来の一方向性電磁鋼板ほど高温まで到達させる必要がないので、鋼帯同士の密着を有利に防止することができる。また、最終仕上げ焼鈍での到達温度が低いことは、焼鈍炉の建造やメンテナンスあるいはランニングコストといった点においても極めて有利といえる。   In the present invention, since the impurity elements in the slab are reduced, the final finish annealing does not need to reach as high a temperature as the conventional unidirectional electrical steel sheet, and therefore, the adhesion between the steel strips can be advantageously prevented. . Moreover, it can be said that the low temperature reached in the final finish annealing is extremely advantageous in terms of construction and maintenance of the annealing furnace or running cost.

次に、本発明において推奨される製造条件について示す。
熱延後最初の焼鈍における焼鈍温度は950〜1100℃程度とするのが好ましい。というのは、熱延後最初の焼鈍温度が950℃を下回ると、熱延後の未再結晶組織の再結晶が進行せず、二次再結晶粒の方位集積度の低を招き、一方熱延後最初の焼鈍温度が1100℃を超えると、冷延前粒径が粗大となり、冷間圧延後の組織で{111}〈112〉方位の体積分率の低下が著しくなって、二次再結晶粒の方位集積度が低下するからである。より好ましい焼鈍温度は950〜1050℃である。
Next, manufacturing conditions recommended in the present invention will be described.
The annealing temperature in the first annealing after hot rolling is preferably about 950 to 1100 ° C. This is because when the first annealing temperature after hot rolling is below 950 ° C., recrystallization of the unrecrystallized structure after hot rolling does not proceed, leading to a low degree of orientation accumulation of secondary recrystallized grains. When the first annealing temperature after rolling exceeds 1100 ° C, the grain size before cold rolling becomes coarse, and the volume fraction of the {111} <112> orientation becomes markedly reduced in the structure after cold rolling. This is because the degree of orientation of crystal grains decreases. A more preferable annealing temperature is 950 to 1050 ° C.

また、冷間圧延後の再結晶焼鈍温度は850〜1050℃程度とするのが好ましい。というのは、再結晶焼鈍温度が850℃を下回ると、一次粒組織が微細となり二次再結晶粒成長の駆動力が過多となる結果 、円相当径:20mm以上の結晶粒の面積率が15%を上回るようになり、一方再結晶焼鈍温度が1050℃を超えると、二次再結晶粒成長の駆動力不足により、円相当径:3mm以下の結晶粒の面積率が20%を上回るようになるからである。   The recrystallization annealing temperature after cold rolling is preferably about 850 to 1050 ° C. This is because when the recrystallization annealing temperature is lower than 850 ° C., the primary grain structure becomes fine and the driving force of secondary recrystallization grain growth becomes excessive. As a result, the area ratio of grains with an equivalent circle diameter of 20 mm or more is 15 On the other hand, when the recrystallization annealing temperature exceeds 1050 ° C, the area ratio of crystal grains with an equivalent circle diameter of 3 mm or less exceeds 20% due to insufficient driving force for secondary recrystallization grain growth. Because it becomes.

さらに、スラブ中に含有させたCは、脱炭焼鈍により鋼中から除去する必要がある。これは製品の鋼中でのC残留量が高いと時効効果による鉄損の劣化が生じるからである。脱炭焼鈍は再結晶焼鈍を脱炭性の雰囲気で行うことで再結晶焼鈍と兼ねることができ、製造工程を簡略化する上で有利である。また、熱延板焼鈍や中間焼鈍の雰囲気を脱炭性雰囲気とすることで補助的な脱炭を行うことは、冷間圧延以降の脱炭を簡略化する上で有効である。また、二次再結晶焼鈍の後に脱炭焼鈍を施すことも可能である。
本発明では、素材スラブ中のC含有量を0.02%以下と低くしても均一な粒径分布の二次再結晶組織が得られるため、かような脱炭焼鈍を低温、短時間にて行うことが可能である。また、スラブ中C量を0.0050%以下とすることで、脱炭焼鈍を省略することも可能である。
Furthermore, C contained in the slab needs to be removed from the steel by decarburization annealing. This is because if the C residual amount in the steel of the product is high, the iron loss is deteriorated due to the aging effect. Decarburization annealing can be combined with recrystallization annealing by performing recrystallization annealing in a decarburizing atmosphere, which is advantageous in simplifying the manufacturing process. In addition, it is effective to simplify the decarburization after cold rolling by performing auxiliary decarburization by setting the atmosphere of hot-rolled sheet annealing or intermediate annealing to a decarburizing atmosphere. It is also possible to perform decarburization annealing after secondary recrystallization annealing.
In the present invention, even if the C content in the material slab is lowered to 0.02% or less, a secondary recrystallized structure having a uniform particle size distribution can be obtained. Therefore, such decarburization annealing is performed at a low temperature in a short time. It is possible. Moreover, decarburization annealing is also omissible because the amount of C in a slab shall be 0.0050% or less.

次に、最終仕上げ焼鈍での焼鈍温度は850〜1000℃程度とするのが好ましい。というのは、この焼鈍温度が850℃を下回ると二次再結晶粒の発生直前の一次粒径が過小となり、二次再結晶粒成長の駆動力過大のために円相当径:20mm以上の結晶粒の面積率が15%を超えるようになり、一方1000℃を上回ると二次再結晶粒の発生直前の一次粒径が過大となり駆動力不足のために円相当径:3mm以下の結晶粒の面積率が20%を超えるようになるからである。最終仕上げ焼鈍では、一定温度に保持して二次再結晶を開始あるいは完了させ、その後、鋼板同士の密着が起こらない範囲の高温に昇温して、ごく微細な結晶粒を消失させる方法を併用することも可能である。   Next, the annealing temperature in the final finish annealing is preferably about 850 to 1000 ° C. This is because when the annealing temperature is lower than 850 ° C., the primary grain size immediately before the generation of secondary recrystallized grains becomes too small, and crystals with an equivalent circle diameter of 20 mm or more due to excessive driving force for secondary recrystallized grain growth. When the area ratio of the grains exceeds 15%, on the other hand, when the temperature exceeds 1000 ° C, the primary grain size immediately before the occurrence of secondary recrystallized grains becomes excessive and the driving force is insufficient. This is because the area ratio exceeds 20%. In final finish annealing, a method is used in which secondary recrystallization is started or completed while maintaining a constant temperature, and then the temperature is raised to a high temperature within a range where adhesion between steel plates does not occur, so that very fine crystal grains disappear. It is also possible to do.

実施例1
C:0.0020%およびSi:3.2%を含み、Al:50ppm、N:30ppmに低減した組成になる、厚さ:200mmの鋼スラブを、連続鋳造にて製造し、ガス加熱炉にて表1に示す温度で、1時間の加熱を施したのち、3機直列の粗圧延機および7スタンドのタンデム圧延機により2.2mm厚さまで熱間圧延した。ついで、1000℃で60秒間保持する熱延板焼鈍を施したが、この焼鈍での昇温過程中、500〜900℃間の所要時間を表1に示すように種々変化させた。続いて冷間圧延により 0.35mmの最終板厚としたのち、窒素雰囲気中にて900℃に20秒間保持する再結晶焼鈍を施した。
ついで、焼鈍分離剤としてシリカを鋼板表面に塗布したのち、窒素雰囲気中にて900℃に50時間保持する最終仕上げ焼鈍を施した。その後、シリカを水洗除去してから、平坦化焼鈍を施したのち、重クロム酸塩と樹脂からなる半有機コーティング液を塗布し、300℃で焼き付けて製品とした。
上記の製造方法において、スラブを加熱炉から抽出してから圧延を開始するまでの時間あるいは粗圧延中の各ロール間での時間を調整することによって、粗圧延中の950℃以上における累積圧下率、圧延ロール入側での被圧延材の表面温度が1050℃以上における圧下率を、表1に示すように種々に変化させた。また、粗圧延に続く仕上げ圧延の開始温度はいずれも930℃となるようにした。
かくして得られた製品の鋼板表面における円相当径が3mm以下の結晶粒が占める面積率および円相当径が20mm以上の結晶粒が占める面積率について調べた。また、得られた製品からエプスタイン試験片を採取し、磁気特性を測定した。さらに、外径:100mm、内径:80mmのリング状サンプルを20枚打抜き、式(1) にて定めたΔφを評価した。
得られた結果を表1に併記する。
Example 1
A steel slab with a thickness of 200mm, which contains C: 0.0020% and Si: 3.2%, and has a composition reduced to Al: 50ppm and N: 30ppm, is manufactured by continuous casting. After heating for 1 hour at the indicated temperature, it was hot-rolled to a thickness of 2.2 mm using a three-series rough rolling mill and a seven-stand tandem rolling mill. Subsequently, hot-rolled sheet annealing was performed at 1000 ° C. for 60 seconds, and the time required between 500 ° C. and 900 ° C. was variously changed as shown in Table 1 during the temperature raising process in this annealing. Subsequently, a final sheet thickness of 0.35 mm was obtained by cold rolling, and then recrystallization annealing was performed for 20 seconds at 900 ° C. in a nitrogen atmosphere.
Next, after applying silica as an annealing separator to the surface of the steel sheet, a final finish annealing was performed in a nitrogen atmosphere at 900 ° C. for 50 hours. Thereafter, the silica was washed and removed, followed by flattening annealing, and then a semi-organic coating liquid composed of dichromate and resin was applied and baked at 300 ° C. to obtain a product.
In the above manufacturing method, by adjusting the time from the extraction of the slab from the heating furnace to the start of rolling or the time between each roll during rough rolling, the cumulative rolling reduction at 950 ° C. or higher during rough rolling As shown in Table 1, the rolling reduction when the surface temperature of the material to be rolled on the rolling roll entry side was 1050 ° C. or higher was varied. In addition, the start temperature of finish rolling subsequent to rough rolling was set to 930 ° C in all cases.
The area ratio occupied by crystal grains having an equivalent circle diameter of 3 mm or less and the area ratio occupied by crystals having an equivalent circle diameter of 20 mm or more on the steel sheet surface of the product thus obtained were examined. Moreover, the Epstein test piece was extract | collected from the obtained product, and the magnetic characteristic was measured. Further, 20 ring-shaped samples having an outer diameter of 100 mm and an inner diameter of 80 mm were punched out, and Δφ defined by the equation (1) was evaluated.
The obtained results are also shown in Table 1.

Figure 2008031495
Figure 2008031495

同表から明らかなように、本発明に従い得られた一方向性電磁鋼板はいずれも、比透磁率μr10/50が20000以上と磁気特性に優れ、また加工品の寸法ばらつきも小さかった。 As is clear from the table, all of the unidirectional electrical steel sheets obtained according to the present invention had excellent magnetic properties with a relative permeability μr 10/50 of 20000 or more, and the dimensional variation of processed products was small.

実施例2
表2に示す成分元素を含有し、残部Feおよび不可避的不純物の組成になる、厚さ:250mmの珪素鋼スラブを、連続鋳造にて製造し、ガス加熱炉にて1250℃,1時間の加熱後、粗圧延前段における1050℃以上の累積圧下率:25%、粗圧延の終了温度:950℃、粗圧延後の板厚:50mm(粗圧延圧下率:80%)、仕上げ圧延の開始温度:930℃の条件の熱間圧延で2.2mm厚さとした後、酸洗処理を施してから冷間圧延により1.0mm厚に圧延した。ついで、窒素雰囲気中にて1050℃,30秒間の中間焼鈍を施したのち、冷間圧延により0.27mmの最終板厚とした。上記の中間焼鈍での昇温過程中、500〜900℃間の所要時間は60秒であった。ついで、窒素雰囲気中に900℃,10秒間の保持を行う脱炭と再結晶を兼ねた焼鈍を施した。
ついで、焼鈍分離剤としてシリカを鋼板表面に塗布した後、アルゴン雰囲気中にて900℃に50時間保持する最終仕上げ焼鈍を行った。その後、シリカを水洗除去してから平坦化焼鈍を施したのち、重クロム酸塩と樹脂からなる半有機コーティング液を塗布し、300℃で焼き付けて製品とした。
かくして得られた製品の鋼板表面における円相当径が3mm以下の結晶粒が占める面積率および円相当径が20mm以上の結晶粒が占める面積率について調べた。また、得られた製品からエプスタイン試験片を採取し、磁気特性を測定した。さらに、外径:100mm、内径:80mmのリング状サンプルを20枚打抜き、式(1) にて定めたΔφを評価した。
得られた結果を表2に併記する。
Example 2
A silicon steel slab with a thickness of 250 mm, containing the constituent elements shown in Table 2 and having the balance of Fe and inevitable impurities, is manufactured by continuous casting, and heated at 1250 ° C. for 1 hour in a gas heating furnace Afterwards, cumulative rolling reduction of 1050 ° C or higher in the first stage of rough rolling: 25%, end temperature of rough rolling: 950 ° C, plate thickness after rough rolling: 50mm (rough rolling rolling reduction: 80%), finishing rolling start temperature: The thickness was set to 2.2 mm by hot rolling at 930 ° C., and then pickled, and then rolled to 1.0 mm by cold rolling. Next, after intermediate annealing at 1050 ° C. for 30 seconds in a nitrogen atmosphere, a final thickness of 0.27 mm was obtained by cold rolling. During the temperature raising process in the intermediate annealing, the required time between 500 and 900 ° C. was 60 seconds. Next, annealing was performed for both decarburization and recrystallization that was held at 900 ° C. for 10 seconds in a nitrogen atmosphere.
Next, after applying silica as an annealing separator to the surface of the steel sheet, final finishing annealing was performed in an argon atmosphere at 900 ° C. for 50 hours. Thereafter, the silica was washed away with water and subjected to planarization annealing, and then a semi-organic coating liquid composed of dichromate and resin was applied and baked at 300 ° C. to obtain a product.
The area ratio occupied by crystal grains having an equivalent circle diameter of 3 mm or less and the area ratio occupied by crystals having an equivalent circle diameter of 20 mm or more on the steel sheet surface of the product thus obtained were examined. Moreover, the Epstein test piece was extract | collected from the obtained product, and the magnetic characteristic was measured. Further, 20 ring-shaped samples having an outer diameter of 100 mm and an inner diameter of 80 mm were punched out, and Δφ defined by the equation (1) was evaluated.
The obtained results are also shown in Table 2.

Figure 2008031495
Figure 2008031495

同表に示したとおり、本発明による製品の場合、打抜き時の寸法精度が良好であり、同時に磁気特性にも優れていた。   As shown in the table, in the case of the product according to the present invention, the dimensional accuracy at the time of punching was good, and at the same time, the magnetic characteristics were also excellent.

粒径(円相当径)が20mm以上の結晶粒の面積率と寸法精度劣化の指標Δφ(%)との関係を示す図であるIt is a figure which shows the relationship between the area ratio of a crystal grain with a particle size (equivalent circle diameter) of 20 mm or more and an index Δφ (%) of dimensional accuracy deterioration. 粒径(円相当径)が3mm以下の結晶粒の面積率と50Hz、1.0Tでの比透磁率μr10/50との関係を示す図であるIt is a figure which shows the relationship between the area ratio of the crystal grain whose particle size (equivalent circle diameter) is 3 mm or less, and relative permeability μr 10/50 at 50 Hz and 1.0 T. 熱間圧延中、950℃以上での累積圧下率と円相当径:20mm以上の二次再結晶粒の面積率との関係を示す図である。It is a figure which shows the relationship between the cumulative reduction rate in 950 degreeC or more during hot rolling, and the area ratio of the secondary recrystallized grain 20 mm or more in equivalent circle diameter. 熱間圧延中、950℃以上での累積圧下率と円相当径:3mm以下の二次再緒晶粒の面積率との関係を示す図であるIt is a figure which shows the relationship between the cumulative reduction rate in 950 degreeC or more and the area ratio of the secondary recrystallized grain of 3 mm or less diameter during hot rolling. 熱間圧延ロール入側温度:1050℃以上での累積圧下率と円相当径:20mm以上の二次再結晶粒の面積率との関係を示す図である。It is a figure which shows the relationship between the cumulative rolling reduction in hot rolling roll entrance temperature: 1050 degreeC or more, and the area ratio of the secondary recrystallized grain of circle equivalent diameter: 20 mm or more. 熱間圧延ロール入側温度:1050℃以上での累積圧下率と円相当径:3mm以下の二次再緒晶粒の面積率との関係を示す図である。It is a figure which shows the relationship between the cumulative rolling reduction in hot rolling roll entrance temperature: 1050 degreeC or more, and the area ratio of the secondary recrystallized crystal grain of circle equivalent diameter: 3 mm or less.

Claims (2)

質量%で、C:0.02%以下およびSi:1.0〜5.0%を含み、Al:100ppm以下、N:50ppm 以下の組成になる鋼スラブを、1100〜1300℃の温度に加熱した後、熱間圧延し、ついで熱延板焼鈍を施してから冷間圧延して最終板厚とするか、あるいは熱延板焼鈍なしに中間焼鈍を挟む2回の冷間圧延を施して最終板厚としたのち、再結晶焼鈍を施し、その後表面にセラミック質の被膜が生成しないように最終仕上げ焼鈍を施し、ついで平坦化焼鈍後、絶縁コーティングを焼き付ける一連の工程からなる一方向性電磁鋼板の製造方法において、
熱間圧延中の鋼板表面温度が950℃以上における累積圧下率を75%以上とし、かつ熱間圧延の圧延ロール入側での被圧延鋼板の表面温度が1050℃以上における累積圧下率を20%以上とし、熱間圧延後の最初の焼鈍の昇温過程:500〜900℃間の所要時間を100秒以内とすることを特徴とする一方向性電磁鋼板の製造方法。
A steel slab containing, by mass%, C: 0.02% or less and Si: 1.0-5.0%, Al: 100ppm or less, N: 50ppm or less, heated to a temperature of 1100-1300 ° C, and then hot-rolled Then, after hot-rolled sheet annealing, it is cold-rolled to the final sheet thickness, or after two cold-rolling sandwiching intermediate annealing without hot-rolled sheet annealing to the final sheet thickness, In the method for producing a unidirectional electrical steel sheet comprising a series of steps in which recrystallization annealing is performed and then final finishing annealing is performed so that a ceramic film is not formed on the surface, and then flattening annealing is performed, and an insulating coating is baked.
Cumulative rolling reduction at a steel sheet surface temperature of 950 ° C or higher during hot rolling is 75% or higher, and the cumulative rolling reduction at a rolling steel roll surface on the rolling roll entry side of hot rolling is 1050 ° C or higher is 20%. A method for producing a unidirectional electrical steel sheet as described above, characterized in that the temperature raising process of the first annealing after hot rolling: the required time between 500-900 ° C. is within 100 seconds.
鋼スラブが、さらに質量%で、Mn:0.02〜2.0%、Ni:0.005〜2.0%、Sn:0.01〜2.0%、Sb:0.005〜0.5%、Cu:0.01〜2.0%、Mo:0.01〜0.50%およびCr:0.01〜2.0%のうちから選んだ1種または2種以上を含有することを特徴とする請求項1記載の一方向性電磁鋼板の製造方法。   Steel slab is further mass%, Mn: 0.02-2.0%, Ni: 0.005-2.0%, Sn: 0.01-2.0%, Sb: 0.005-0.5%, Cu: 0.01-2.0%, Mo: 0.01-0.50% 1 or 2 or more types selected from Cr and 0.01-2.0%, The manufacturing method of the unidirectional electrical steel sheet of Claim 1 characterized by the above-mentioned.
JP2006202986A 2006-07-26 2006-07-26 Manufacturing method of unidirectional electrical steel sheet Expired - Fee Related JP4910539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202986A JP4910539B2 (en) 2006-07-26 2006-07-26 Manufacturing method of unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202986A JP4910539B2 (en) 2006-07-26 2006-07-26 Manufacturing method of unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2008031495A true JP2008031495A (en) 2008-02-14
JP4910539B2 JP4910539B2 (en) 2012-04-04

Family

ID=39121247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202986A Expired - Fee Related JP4910539B2 (en) 2006-07-26 2006-07-26 Manufacturing method of unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4910539B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151296A1 (en) * 2017-02-20 2018-08-23 Jfeスチール株式会社 Method for manufacturing grain-oriented electrical steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143637A (en) * 1995-11-27 1997-06-03 Kawasaki Steel Corp Grain oriented silicon steel sheet having extremely low iron loss and its production
JPH10121213A (en) * 1996-10-21 1998-05-12 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in iron loss characteristic in low magnetic field as compared with high magnetic field, and its production
JPH11302731A (en) * 1998-04-24 1999-11-02 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic characteristic and punching property
JP2002220644A (en) * 2001-01-30 2002-08-09 Kawasaki Steel Corp Grain-oriented electromagnetic steel sheet with satisfactory properties of high frequency iron loss, and manufacturing method therefor
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
JP2003226916A (en) * 2002-02-05 2003-08-15 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having less sheet fracture on cold rolling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143637A (en) * 1995-11-27 1997-06-03 Kawasaki Steel Corp Grain oriented silicon steel sheet having extremely low iron loss and its production
JPH10121213A (en) * 1996-10-21 1998-05-12 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in iron loss characteristic in low magnetic field as compared with high magnetic field, and its production
JPH11302731A (en) * 1998-04-24 1999-11-02 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic characteristic and punching property
JP2002220644A (en) * 2001-01-30 2002-08-09 Kawasaki Steel Corp Grain-oriented electromagnetic steel sheet with satisfactory properties of high frequency iron loss, and manufacturing method therefor
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
JP2003226916A (en) * 2002-02-05 2003-08-15 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having less sheet fracture on cold rolling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151296A1 (en) * 2017-02-20 2018-08-23 Jfeスチール株式会社 Method for manufacturing grain-oriented electrical steel sheet
JPWO2018151296A1 (en) * 2017-02-20 2019-06-27 Jfeスチール株式会社 Method of manufacturing directional magnetic steel sheet
KR20190107072A (en) * 2017-02-20 2019-09-18 제이에프이 스틸 가부시키가이샤 Method of manufacturing oriented electrical steel sheet
KR102295735B1 (en) 2017-02-20 2021-08-30 제이에프이 스틸 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
US11286538B2 (en) 2017-02-20 2022-03-29 Jfe Steel Corporation Method for manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4910539B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP5853352B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR101499371B1 (en) Method for producing non-oriented magnetic steel sheet
JP6236470B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
CN109844156B (en) Hot-rolled steel sheet for producing electromagnetic steel sheet and method for producing same
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
JP2009235574A (en) Method for producing grain-oriented electrical steel sheet having extremely high magnetic flux density
CN110678568A (en) Non-oriented electromagnetic steel sheet and method for producing same
WO2017022360A1 (en) Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP4923821B2 (en) Unidirectional electrical steel sheet and manufacturing method thereof
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
JP2022501517A (en) Directional electrical steel sheet and its manufacturing method
JP6690501B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003253341A (en) Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
KR100293140B1 (en) Unidirectional Electronic Steel Sheet and Manufacturing Method Thereof
JP2011208188A (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP5287615B2 (en) Method for producing grain-oriented electrical steel sheet
JP4910539B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2004332031A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic properties
JP2008261013A (en) Method of producing grain-oriented magnetic steel sheet with markedly high magnetic flux density
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
JP3893759B2 (en) Method for producing grain-oriented silicon steel sheet
JP5600991B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees