JPH11302731A - Production of grain-oriented silicon steel sheet excellent in magnetic characteristic and punching property - Google Patents
Production of grain-oriented silicon steel sheet excellent in magnetic characteristic and punching propertyInfo
- Publication number
- JPH11302731A JPH11302731A JP10114791A JP11479198A JPH11302731A JP H11302731 A JPH11302731 A JP H11302731A JP 10114791 A JP10114791 A JP 10114791A JP 11479198 A JP11479198 A JP 11479198A JP H11302731 A JPH11302731 A JP H11302731A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- steel sheet
- finish
- atmosphere
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、変圧器その他の
電気機器の鉄芯等に用いられる方向性珪素鋼板、中でも
小型発電器の鉄心やEIコアなど、高磁場特性よりも低磁
場特性に優れることが必要とされる用途に供して好適な
方向性電磁鋼板の有利な製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented silicon steel sheet used for iron cores of transformers and other electric equipment, and more particularly to a low power magnetic field characteristic better than a high magnetic field characteristic, such as an iron core and an EI core of a small generator. The present invention relates to an advantageous method for producing a grain-oriented electrical steel sheet which is suitable for use in which it is necessary to use.
【0002】[0002]
【従来の技術】方向性珪素鋼板の製造工程は、鋼スラブ
に熱間圧延、そして冷間圧延を施し、次いで一次再結晶
焼鈍を施した後、二次再結晶のために最終仕上げ焼鈍を
行うのが一般的である。そして、最終仕上げ焼鈍中に二
次再結晶が起こり、圧延方向に磁化容易軸の揃った粗大
な結晶粒が生成するのである。2. Description of the Related Art Oriented silicon steel sheets are manufactured by subjecting a steel slab to hot rolling and cold rolling, followed by primary recrystallization annealing, and then final finishing annealing for secondary recrystallization. It is common. Then, secondary recrystallization occurs during the final finish annealing, and coarse crystal grains having a uniform axis of easy magnetization in the rolling direction are generated.
【0003】この仕上焼鈍は、高温で長時間行うことか
ら、鋼板の焼付防止のために焼鈍分離剤を塗布するのが
一般的である。焼鈍分離剤としては、通常MgO を主成分
とするものが用いられている。このMgO は、焼鈍中に鋼
板表層に生成している酸化層と反応する結果、フォルス
テライトを主成分とする被膜が生成する。さらに、この
被膜上には、張力効果を高めて鉄損を改善したり絶縁性
を確保するために、リン酸塩−シリカ系の無機コーティ
ングを被成することも、通常に行われている。[0003] Since this finish annealing is performed at a high temperature for a long time, it is general to apply an annealing separator to prevent the steel sheet from burning. As the annealing separator, a material mainly containing MgO is generally used. This MgO reacts with the oxide layer formed on the surface of the steel sheet during annealing, so that a coating mainly composed of forsterite is formed. Further, a phosphate-silica-based inorganic coating is usually formed on the coating in order to improve the iron loss by increasing the tension effect and to secure insulation.
【0004】ところで、EIコアや小型の鉄心材料として
方向性電磁鋼板を使用する場合は、低磁場での鉄損を低
くする必要があり、二次再結晶粒の粒径を小さくするこ
とが有効である。そこで、出願人は、素材成分のAl量を
低減してSbを添加し、熱延板焼鈍および脱炭焼鈍の条件
を適正化する方法について、特願平8-286720号明細書に
て提案した。この方法により、低磁場での磁気特性を著
しく改善することができたのである。[0004] When grain-oriented electrical steel sheets are used as an EI core or a small iron core material, it is necessary to reduce iron loss in a low magnetic field, and it is effective to reduce the particle size of secondary recrystallized grains. It is. Therefore, the applicant has proposed a method of reducing the amount of Al of the material component, adding Sb, and optimizing the conditions of hot-rolled sheet annealing and decarburizing annealing in Japanese Patent Application No. 8-286720. . By this method, the magnetic properties in a low magnetic field could be remarkably improved.
【0005】一方、EIコアは、金型で所定の形状に打抜
き、積層して製作するのが通例である。この際、上述の
ようなフォルステライト質被膜が存在すると、金型が磨
耗することが問題となるために、種々の提案がなされて
いる。[0005] On the other hand, the EI core is usually punched into a predetermined shape by a die and laminated to produce. At this time, if the forsterite coating as described above is present, there is a problem that the mold is worn, and various proposals have been made.
【0006】例えば、特開平7-278669号公報には、焼鈍
分離剤にMgO を用い、これに塩素化合物を添加する方法
が開示されている。また、特開平6-17137 号公報には焼
鈍分離剤主剤にMgO を用い、これにアルカリ金属化合物
を添加し、仕上げ焼鈍雰囲気の窒素分圧を30%以上にす
る方法が開示されている。これらの方法により、ある程
度フォルステライト質被膜の形成を抑え、磁気特性も良
好な製品が得られているが、焼鈍分離剤にMgO を用いる
と完全には被膜形成が抑えきれないという問題が依然と
して解決されない。このため、焼鈍後に酸洗などにより
被膜を除去する工程を余分に設ける必要が生じ、コスト
増をまねくことになる。For example, Japanese Patent Application Laid-Open No. 7-278669 discloses a method in which MgO is used as an annealing separator and a chlorine compound is added thereto. JP-A-6-17137 discloses a method in which MgO is used as a main component of an annealing separator, and an alkali metal compound is added thereto to increase the nitrogen partial pressure in the finish annealing atmosphere to 30% or more. By these methods, the formation of a forsterite film is suppressed to some extent and a product with good magnetic properties is obtained, but the problem that the film formation cannot be completely suppressed by using MgO as the annealing separator is still solved. Not done. For this reason, it is necessary to provide an extra step of removing the coating by pickling or the like after annealing, resulting in an increase in cost.
【0007】一方、特開平4-337030号公報では、焼鈍分
離剤の主剤にAl2O3 を用い、脱炭焼鈍から仕上焼鈍まで
のいずれかの段階でアンモニア窒化を行う方法が提案さ
れている。この提案では、焼鈍分離剤にAl2O3 を用いて
いるため、被膜形成を抑えることが可能であるが、純化
不良によって磁気特性が劣化しやすいところが問題であ
った。On the other hand, Japanese Patent Application Laid-Open No. 4-337030 proposes a method in which Al 2 O 3 is used as a main component of an annealing separator, and ammonia nitriding is performed at any stage from decarburizing annealing to finish annealing. . In this proposal, since Al 2 O 3 is used as the annealing separator, it is possible to suppress the formation of a film, but there is a problem in that magnetic properties are easily deteriorated due to poor purification.
【0008】[0008]
【発明が解決しようとする課題】この発明は、上記の事
情に鑑み成されたものであり、磁気特性の劣化をまねく
ことなしに、被膜の形成を抑制して打抜き性を改善す
る、新規な方向性珪素鋼板の製造方法について提案する
ことを目的とする。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a novel method for suppressing the formation of a coating film and improving punchability without causing deterioration of magnetic characteristics. An object of the present invention is to propose a method for manufacturing a grain-oriented silicon steel sheet.
【0009】[0009]
【課題を解決するための手段】発明者らは、EIコア用の
方向性珪素鋼として低磁場での鉄損を低下させないまま
被膜の形成を抑制して打抜き性を改善する手法について
種々の検討を行ったところ、素材成分を調整し、さらに
特定の焼鈍分離剤を用いた上で仕上げ焼鈍の雰囲気を制
御することが、極めて有効であることを見出し、この発
明を完成するに到った。Means for Solving the Problems The inventors of the present invention have conducted various studies on a method of improving the punching property by suppressing the formation of a coating without reducing the iron loss in a low magnetic field as a directional silicon steel for an EI core. As a result, it has been found that it is extremely effective to adjust the material components and further control the atmosphere of the finish annealing using a specific annealing separator, and have completed the present invention.
【0010】この発明は、C:0.005 〜0.070 wt%、S
i:1.5 〜7.0 wt%、Mn:0.03〜2.50wt%、SおよびSe
を合計で0.01wt%以下、Al:0.005 〜0.017 wt%、N:
0.003〜0.010 wt%およびSb:0.010 〜0.080 wt%を含
有する鋼塊を、1300℃以下の温度に加熱後、熱間圧延
し、次いで1回もしくは中間焼鈍を含む複数回の冷間圧
延を施して最終板厚に仕上げたのち、一次再結晶焼鈍を
施し、その後焼鈍分離剤を塗布、乾燥してから最終仕上
焼鈍を行う一連の工程によって方向性珪素鋼板を製造す
るに当たり、焼鈍分離剤に、吸着種にH2O を用いたとき
のBET 法による比表面積が80m2/g以上 150m2/g以下
のAl2O3 を主成分とするものを用いて、仕上焼鈍は、 8
00℃以上の雰囲気中における窒素濃度を1%以下に調整
して行うことを特徴とする磁気特性および打抜き性に優
れた方向性珪素鋼板の製造方法である。[0010] The present invention relates to a method for producing C: 0.005 to 0.070 wt%,
i: 1.5 to 7.0 wt%, Mn: 0.03 to 2.50 wt%, S and Se
To 0.01 wt% or less in total, Al: 0.005 to 0.017 wt%, N:
A steel ingot containing 0.003 to 0.010 wt% and Sb: 0.010 to 0.080 wt% is heated to a temperature of 1300 ° C. or lower, hot-rolled, and then subjected to one or more cold rolling operations including intermediate annealing. After finishing to the final sheet thickness, subjected to primary recrystallization annealing, then apply an annealing separator, after drying and then performing a final finish annealing to produce a grain oriented silicon steel sheet, the annealing separator, the specific surface area by the BET method when using H 2 O to adsorbed species is used as a main component 80 m 2 / g or more 150 meters 2 / g or less of Al 2 O 3, finish annealing, 8
A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties and punching properties, wherein the method is performed by adjusting the nitrogen concentration in an atmosphere of 00 ° C. or more to 1% or less.
【0011】[0011]
【発明の実施の形態】以下、この発明を導くに到った実
験結果について説明する。すなわち、表1に示す鋼A,
DおよびEの成分組成に成る鋼スラブを1200℃で30分加
熱後、熱間圧延にて2.5mm の板厚にし、900 ℃で1分間
の熱延板焼鈍を行ってから、タンデム圧延機で0.34mm厚
に冷間圧延し、最終板厚に仕上げた。次いで、脱炭焼鈍
を、850 ℃,2分間で雰囲気の水蒸気分圧に対する水素
分圧の比{以下、P(H2O) /P(H2)と示す}を0.45とし
て施した。その後、鋼板表面に、スラリー状の焼鈍分離
剤をロールコーターにより塗布、乾燥して最終仕上焼鈍
を行った。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, experimental results which led to the present invention will be described. That is, steel A shown in Table 1
A steel slab having the composition of D and E is heated at 1200 ° C for 30 minutes, hot-rolled to a thickness of 2.5 mm, and hot-rolled at 900 ° C for 1 minute, and then tandem milled. It was cold rolled to a thickness of 0.34 mm and finished to a final thickness. Next, decarburizing annealing was performed at 850 ° C. for 2 minutes with the ratio of the hydrogen partial pressure to the water vapor partial pressure of the atmosphere (less than or equal to P (H 2 O) / P (H 2 )) set to 0.45. Thereafter, a slurry-like annealing separator was applied to the surface of the steel sheet by a roll coater and dried to perform final finish annealing.
【0012】ここで、焼鈍分離剤は、主剤として吸着種
にH2O を用いたときのBET 法による比表面積が80および
160 m2/gのAl2O3 を用いて成るものを適用した。ま
た、仕上焼鈍は、800 ℃までをAr雰囲気で行ったのち、
800 ℃から1100℃までを乾水素雰囲気に窒素を種々の濃
度で微量添加して行った。その際の昇温速度は30℃/h
とした。引続き、純化焼鈍として、水素雰囲気にて1200
℃,5時間の保定焼鈍を行った。純化焼鈍後のコイル
は、40wt%のコロイダルシリカを含有するリン酸マグネ
シウムを主成分とする、絶縁コーティング処理に施し、
800 ℃で焼付けて製品とした。[0012] The annealing separator has a specific surface area of 80 and 80 according to the BET method when H 2 O is used as an adsorbent as a main agent.
One consisting of 160 m 2 / g of Al 2 O 3 was applied. Finish annealing was performed up to 800 ° C in an Ar atmosphere.
From 800 ° C to 1100 ° C, a slight amount of nitrogen was added at various concentrations to a dry hydrogen atmosphere. The heating rate at that time is 30 ° C / h
And Subsequently, purify annealing was performed in a hydrogen atmosphere at 1200
Hold annealing was performed at 5 ° C. for 5 hours. The coil after purification annealing is subjected to an insulation coating process that is mainly composed of magnesium phosphate containing 40 wt% of colloidal silica,
The product was baked at 800 ° C.
【0013】かくして得られた鋼板を、エプスタインサ
イズの試験片に切り出し、800 ℃で3時間の歪取焼鈍を
施した後、磁束密度B8(T)を測定するとともに、被膜密
着性を曲げ剥離径を測定することにより評価した。さら
に、各製品からEIコアを打ち抜き、歪取焼鈍後、積み加
工、銅線の巻き加工などによってEIコアを作成し、その
鉄損を測定した。さらに、さらに各コイルに対して、ダ
イス径15mmφのスチールダイスにより打抜き作業を行っ
た際、返り高さが50μmに達するまでの打ち抜き回数を
測定した。これらの製品品質の評価結果を表2に示す。The steel sheet thus obtained was cut into test pieces of Epstein size, subjected to strain relief annealing at 800 ° C. for 3 hours, and the magnetic flux density B 8 (T) was measured. It was evaluated by measuring the diameter. Further, an EI core was punched out of each product, and after the strain relief annealing, an EI core was created by stacking, copper wire winding, and the like, and the iron loss was measured. Furthermore, when a punching operation was performed on each coil with a steel die having a die diameter of 15 mmφ, the number of punchings until the return height reached 50 μm was measured. Table 2 shows the evaluation results of these product qualities.
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【表2】 [Table 2]
【0016】表2から、素材成分Aを用いて、かつ仕上
焼鈍雰囲気のN2 分圧を低減することにより、磁気特性
および打抜き性が顕著に改善されていることがわかる。
一方、Seを含有する素材Dでは、磁束密度は高いものの
鉄損の低減が不十分であり、Sbを添加しない素材Eで
は、脱炭焼鈍時に生成したサブスケールが残存して、金
属光沢のない表面外観となり、打抜き性も劣化した。一
方、焼鈍分離剤について、吸着質にH2O を用いたときの
BET 法による比表面積が160 m2/gのAl2O3 を主成分と
するものを用いると、磁気特性および打抜き性はともに
劣化した。このように製品品質が変化した理由について
は明らかでないが、発明者らは次のように考えている。From Table 2, it can be seen that the magnetic properties and punching properties are significantly improved by using the material component A and reducing the N 2 partial pressure in the finish annealing atmosphere.
On the other hand, in the case of the material D containing Se, although the magnetic flux density is high, the reduction of iron loss is insufficient, and in the case of the material E to which Sb is not added, the sub-scale generated during the decarburization annealing remains and has no metallic luster. The surface appearance was obtained, and the punching property was also deteriorated. On the other hand, as for the annealing separator, when H 2 O was used as the adsorbate,
When Al 2 O 3 having a specific surface area of 160 m 2 / g by the BET method was used as a main component, both the magnetic properties and the punching property were deteriorated. Although it is not clear why the product quality has changed, the inventors think as follows.
【0017】通常、Al2O3 を焼鈍分離剤に用いると鋼板
の純化は進まないが、今回の素材AのようにS,Seを含
有させないものでは、純化の負荷が少ないために、焼鈍
分離剤がAl2O3 であっても純化したものと考えられる。Normally, when Al 2 O 3 is used as an annealing separator, the steel sheet does not purify. However, in the case of the material A which does not contain S and Se as in the case of the material A of the present invention, the load of the purification is small. It is considered that even if the agent was Al 2 O 3 , it was purified.
【0018】また、素材CのようなSbを含まない材料で
は、脱炭焼鈍の際にSiO2を主体とするサブスケールが鋼
板内部まで深く生成するために、仕上焼鈍時にこれらSi
O2が表面まで浮上せずに残存してしまうが、Sbを添加す
ると、脱炭焼鈍時のサブスケールは最表面のみで生成
し、仕上焼鈍時での被膜の除去は容易となる。さらに、
Sbは鋼板表面に偏析しているため、仕上焼鈍中に雰囲気
の微量の酸素が鋼板に浸入して鋼中のAlやSiと反応して
Al2O3 やSiO2が新たに生成するのを、阻害する働きもあ
り、純化不良も防がれる。In the case of a material that does not contain Sb, such as the material C, a sub-scale mainly composed of SiO 2 is formed deep into the steel sheet during the decarburizing annealing.
While O 2 will remain without floating to the surface, the addition of Sb, subscale during decarburization annealing is generated only at the outermost surface, removal of the coating at the time of finish annealing is facilitated. further,
Since Sb is segregated on the steel sheet surface, a small amount of oxygen in the atmosphere enters the steel sheet during finish annealing and reacts with Al and Si in the steel.
Al 2 O 3 and SiO 2 also function to inhibit the new generation, and also prevent poor purification.
【0019】同様に、焼鈍分離剤の主成分であるAl2O3
について、その吸着種にH2O を用いたときのBET 法によ
る比表面積は、Al2O3 スラリー乾燥後に残留した水分
の、仕上焼鈍中に持ち込まれる量に対応するとともに、
コイルをタイトに巻いたときの雰囲気の通気性にも影響
を及ぼすため、この比表面積を適度に制御することによ
り水分を鋼板表面から逃がし、酸素の鋼中浸入を防ぐこ
とができる。Similarly, Al 2 O 3 which is a main component of the annealing separator
The specific surface area by the BET method when H 2 O is used as the adsorbed species corresponds to the amount of moisture remaining after drying the Al 2 O 3 slurry and the amount brought into the finish annealing,
Since the air permeability of the atmosphere when the coil is tightly wound is affected, by appropriately controlling the specific surface area, moisture can escape from the steel sheet surface and oxygen can be prevented from entering the steel.
【0020】以上のような理由により、素材成分のSお
よびSeを低減し、Sbを添加して焼鈍分離剤のAl2O3 につ
いて、吸着種にH2O を用いたときのBET 法による比表面
積を制御することにより、磁気特性に優れ、打抜き性に
も優れた鋼板が得られるのである。For the above reasons, S and Se of the raw material components are reduced, Sb is added, and the ratio of Al 2 O 3 as an annealing separator by the BET method when H 2 O is used as an adsorbent is used. By controlling the surface area, a steel sheet having excellent magnetic properties and excellent punching properties can be obtained.
【0021】ただし、このような素材であっても、仕上
焼鈍時の雰囲気の窒素分圧が高いと、良好な特性は得ら
れない。これは、雰囲気の窒素が鋼中に浸入することに
より、純化が不十分となるためであり、また、この窒素
の鋼中浸入によりサブスケールのSiO2の鋼板表面への浮
上が抑制されるためであると考えられる。However, even with such a material, good characteristics cannot be obtained if the nitrogen partial pressure of the atmosphere during the finish annealing is high. This is because the nitrogen in the atmosphere penetrates into the steel, resulting in insufficient purification, and the infiltration of the nitrogen into the steel prevents the subscale SiO 2 from floating on the steel sheet surface. It is considered to be.
【0022】次に、この発明の各構成要件の限定理由に
ついて述べる。まず、この発明の素材の成分組成の範囲
は、次の通りである。 C:0.005 〜0.070 wt% Cは、0.070 wt%をこえるとγ変態量が過剰となり、熱
間圧延中のAlの分布が不均一となって熱延板焼鈍の昇温
過程で析出するAlN の分布も不均一となり、磁性不良と
なる。一方、0.005 wt%未満では、組織の改善効果が得
られずに二次再結晶が不安定となり、やはり磁気特性の
劣化を招く。従って、0.005 〜0.070 wt%の範囲に限定
する。Next, the reasons for limiting the constituent elements of the present invention will be described. First, the range of the component composition of the material of the present invention is as follows. C: 0.005 to 0.070 wt% If C exceeds 0.070 wt%, the amount of γ transformation becomes excessive, the distribution of Al during hot rolling becomes uneven, and the amount of AlN precipitated during the temperature rise process of hot-rolled sheet annealing is increased. The distribution is also non-uniform, resulting in poor magnetism. On the other hand, if the content is less than 0.005 wt%, the effect of improving the structure cannot be obtained and the secondary recrystallization becomes unstable, which also causes the deterioration of the magnetic properties. Therefore, it is limited to the range of 0.005 to 0.070 wt%.
【0023】Si:1.5 〜7.0 wt% Siは、電気抵抗を増加して鉄損を低減するために必須の
成分であり、そのためには1.5 wt%以上は含有させる必
要があるが、7.0 wt%をこえると加工性が劣化し、製造
や製品の加工が極めて困難になるため、1.5 〜7.0 wt%
の範囲に限定する。Si: 1.5 to 7.0 wt% Si is an essential component for increasing electric resistance and reducing iron loss. For this purpose, it is necessary to contain 1.5 wt% or more, but 7.0 wt% If it exceeds the limit, the workability will deteriorate and the production and processing of the product will be extremely difficult.
To the range.
【0024】Mn:0.03〜2.50wt% Mnも、同じく電気抵抗を高め、また製造時の熱間加工性
を向上させるのに必要な成分である。そのためには、0.
03wt%以上の含有が必要であるが、2.50wt%をこえる含
有は、γ変態を誘起して磁気特性が劣化することから、
0.03〜2.50wt%の範囲に限定した。Mn: 0.03 to 2.50 wt% Mn is also a component necessary for increasing electric resistance and improving hot workability at the time of production. For that, 0.
It is necessary to contain more than 03wt%, but if it exceeds 2.50wt%, it induces γ transformation and the magnetic properties deteriorate, so
It was limited to the range of 0.03 to 2.50 wt%.
【0025】SおよびSeを合計で0.01wt%以下 SおよびSeは、上述のとおり、焼鈍分離剤にAl2O3 を主
成分とするものを使用した場合にあっても、純化を進め
るために、合計で0.01wt%以下に抑制する。S and Se in a total of 0.01 wt% or less As described above, S and Se are used for purifying even if an annealing separator mainly containing Al 2 O 3 is used. , To a total of 0.01 wt% or less.
【0026】Al:0.005 〜0.017 wt% 鋼中には上記の元素の他に、2次再結晶を誘起するため
のインヒビター成分の含有が不可欠であり、そのためイ
ンヒビター成分としてAlを 0.005〜0.017 wt%の範囲で
含有させる。ここに、Alの含有量が 0.005wt%未満の場
合、熱延板焼鈍の昇温過程において析出するAlNの量が
不足し、逆に 0.017wt%を超える場合には、1200℃前後
でのスラブの低温加熱においてのAlNの固溶が困難とな
り、またAlNの固溶温度が上昇するため熱間圧延におい
てAlNが析出し、熱延板焼鈍の昇温過程におけるAlNの
微細析出が不可能となり、低磁場での良好な鉄損特性が
得られない。従って、Alは 0.005〜0.017 wt%の範囲で
含有させるものとした。なお、上記の不備を解消するた
めに、1400℃前後の高温度でスラブ加熱を行うと、製品
の結晶粒径が粗大化し、高磁場での鉄損が低減し、低磁
場での鉄損が増大する結果となり実機の鉄損が劣化す
る。Al: 0.005 to 0.017 wt% In addition to the above-mentioned elements, the steel must contain an inhibitor component for inducing secondary recrystallization. Therefore, Al is contained as an inhibitor component in an amount of 0.005 to 0.017 wt%. Content within the range. Here, if the Al content is less than 0.005 wt%, the amount of AlN precipitated during the heating process in hot-rolled sheet annealing is insufficient, and if it exceeds 0.017 wt%, the slab at around 1200 ° C is used. It becomes difficult to form a solid solution of AlN at low temperature heating, and the solid solution temperature of AlN rises, so that AlN precipitates in hot rolling, and it becomes impossible to finely precipitate AlN in a heating process of hot-rolled sheet annealing. Good iron loss characteristics in a low magnetic field cannot be obtained. Therefore, Al was contained in the range of 0.005 to 0.017 wt%. In addition, when slab heating is performed at a high temperature of about 1400 ° C. to eliminate the above deficiencies, the crystal grain size of the product becomes coarse, iron loss in a high magnetic field is reduced, and iron loss in a low magnetic field is reduced. As a result, the iron loss of the actual machine deteriorates.
【0027】N:0.003 〜0.010 wt% Nは、AlNを構成する成分であるので、0.0030wt%以上
の含有が必要である。しかしながら、0.010 wt%を超え
て含有すると鋼中でガス化し膨れなどの欠陥をもたらす
ので、0.0030〜0.010 wt%の範囲に限定した。N: 0.003 to 0.010 wt% Since N is a component constituting AlN, it must be contained in an amount of 0.0030 wt% or more. However, if the content exceeds 0.010 wt%, it is gasified in the steel and causes defects such as swelling.
【0028】Sb:0.01〜0.08wt% Sbは、0.01wt%よりも少ないと脱炭焼鈍時にサブスケー
ルの形成が進みすぎて仕上焼鈍後にもこのサブスケール
が残存するため、打抜き性が劣化する。また、仕上焼鈍
中に Al2O3やSiO2が新たに生成するため鈍化不良とな
り、磁気特性も劣化する。逆に0.08wt%よりも多いとSb
の粒界偏析が進みすぎることにより、二次再結晶が不安
定となる。Sb: 0.01 to 0.08 wt% If the content of Sb is less than 0.01 wt%, the formation of the sub-scale proceeds excessively during the decarburizing annealing, and the sub-scale remains after the finish annealing, so that the punching property deteriorates. In addition, Al 2 O 3 and SiO 2 are newly generated during the finish annealing, resulting in poor dullness and degraded magnetic properties. Conversely, if more than 0.08 wt%, Sb
Secondary recrystallization becomes unstable due to excessive progress of grain boundary segregation.
【0029】また、インヒビター形成成分として、さら
にSb,B,Ti,Nb,Cu,Sn,Cr,Ge,Mo,Vなどを添加
することができる。その好適量としては、Sb:0.003 〜
0.080 wt%、B:0.0001〜0.0020wt%、Ti:0.0005〜0.
0020wt%、Nb:0.0010〜0.010 wt%、そしてCu,Sn,C
r,Ge,Mo,Vの1種または2種合計で0.001 wt%以上
0.3 wt%以下である。これらの各インヒビターは単独使
用、複数使用いずれも可能である。Further, Sb, B, Ti, Nb, Cu, Sn, Cr, Ge, Mo, V, and the like can be further added as an inhibitor-forming component. The preferred amount is Sb: 0.003 to
0.080 wt%, B: 0.0001-0.0020 wt%, Ti: 0.0005-0.
0020 wt%, Nb: 0.0010-0.010 wt%, and Cu, Sn, C
0.001 wt% or more in total of one or two of r, Ge, Mo, V
0.3 wt% or less. Each of these inhibitors can be used alone or in combination.
【0030】次に、製造条件の限定理由について述べ
る。まず、スラブ加熱は1300℃以下の温度で行う。なぜ
なら、1300℃を超える温度でスラブ加熱を行った場合、
製品結晶粒のうち1mm以下の微細粒が減少して粗大粒が
増加するため、低磁場での鉄損が劣化する。ちなみに、
近年、スラブ加熱を行わずに連続鋳造後、直接熱間圧延
を行う方法が提案されているが、この方法はスラブ温度
が上昇しないので、この発明方法に適した方法といえ
る。Next, the reasons for limiting the manufacturing conditions will be described. First, slab heating is performed at a temperature of 1300 ° C. or less. Because, when slab heating is performed at a temperature exceeding 1300 ° C,
Since fine grains of 1 mm or less in the product crystal grains decrease and coarse grains increase, iron loss in a low magnetic field deteriorates. By the way,
In recent years, a method has been proposed in which hot rolling is performed directly after continuous casting without slab heating, but this method is suitable for the method of the present invention since the slab temperature does not increase.
【0031】次いで、1回または中問焼鈍をはさむ複数
回の冷間圧延を行って最終板厚にする。なお、必要に応
じて熱延板を冷間圧延前に焼鈍することも可能である。
このとき、冷間圧延は、タンデム圧延でもゼンジマー圧
延でも良いが、生産性の観点からはタンデム圧延が望ま
しい。その後は、一次再結晶焼鈍を行い、焼鈍分離剤を
塗布した後、最終仕上焼鈍を行う。Next, cold rolling is performed once or a plurality of times including intermediate annealing to obtain a final thickness. Incidentally, if necessary, the hot-rolled sheet can be annealed before cold rolling.
At this time, the cold rolling may be tandem rolling or sendzimer rolling, but tandem rolling is desirable from the viewpoint of productivity. After that, primary recrystallization annealing is performed, and after applying an annealing separating agent, final finish annealing is performed.
【0032】ここで、焼鈍分離剤の主剤には、Al2O3 を
用いる。MgO ではフォルステライト被膜が形成されるた
めに不適である。特に主剤のAl2O3 には、吸着種にH2O
を用いたときのBET 法による比表面積が80m2/g以上 1
50m2/g以下の粉体を用いる。これは、鋼板表面の通気
性と持ち込み水分量を調節するためである。また、分離
剤には特公昭58-44152号公報に開示されたように、Sr,
Ba, Caの化合物あるいは他の化合物を添加することも可
能である。Here, Al 2 O 3 is used as a main component of the annealing separating agent. MgO is not suitable because it forms a forsterite film. In particular, in the main agent Al 2 O 3 , H 2 O
The specific surface area by BET method when using is 80 m 2 / g or more 1
Use a powder of 50 m 2 / g or less. This is to adjust the air permeability of the steel sheet surface and the amount of water brought in. As disclosed in Japanese Patent Publication No. 58-44152, Sr,
It is also possible to add compounds of Ba and Ca or other compounds.
【0033】なお、脱炭焼鈍から仕上焼鈍にかけて鋼板
を窒化させる方法が多数開示されているが、低磁場での
磁気特性の面からはこの方法は極めて有害で、窒化は可
能な限り起こさないようにする必要がある。There are disclosed many methods of nitriding a steel sheet from decarburizing annealing to finish annealing. However, this method is extremely harmful from the viewpoint of magnetic properties in a low magnetic field, and nitriding is performed as little as possible. Need to be
【0034】また、仕上焼鈍は、 800℃以上の雰囲気の
窒素分圧を1%以下とする。窒素分圧が1%をこえる
と、鋼板が窒化されて磁気特性が劣化することになる。
なお、温度パターンは珪素鋼板の一般に従えばよい。そ
の後、絶縁コートを施してフラットニング焼鈍をして製
品に仕上げる。絶縁コーティングは公知の張力コートで
も良いが、打ち抜き性をさらに改善するために有機樹脂
系のコーティングを施すことも可能である。かかる処理
工程によって優れた磁気特性、打抜き加工性を有する方
向性珪素鋼を得ることができる。In the final annealing, the partial pressure of nitrogen in an atmosphere of 800 ° C. or more is set to 1% or less. If the nitrogen partial pressure exceeds 1%, the steel sheet is nitrided and the magnetic properties deteriorate.
It should be noted that the temperature pattern may follow the general rules for silicon steel sheets. Thereafter, an insulating coat is applied and flattening annealing is performed to finish the product. The insulating coating may be a known tension coat, but it is also possible to apply an organic resin-based coating to further improve the punching property. By such a processing step, a directional silicon steel having excellent magnetic properties and punching workability can be obtained.
【0035】[0035]
【実施例】実施例1 前掲の表1に示したA〜Mの成分組成になる溶鋼を、電
磁攪枠しつつ連続鋳造によってスラブとし、1180℃に加
熱後、粗5パスで45mm厚のシートバーとし、仕上げ出側
温度: 950℃で7パスの仕上げ熱間圧延によって2.2mm
厚まで圧延した。次いで、得られた熱延コイルを、900
℃、1分間の熱延板焼鈍後、タンデム圧延機にて0.34mm
まで冷間圧延した。その後、850 ℃2分間の脱炭焼鈍を
施し、焼鈍分離剤として吸着種にH2O を用いたときのBE
T 法による比表面積が120 m2/gのAl2O3 を塗布してか
ら、仕上焼鈍を施した。仕上焼鈍は、 800℃から1200℃
までを30℃/hで昇温し、引き続き1200℃、5時間の保
定焼鈍を行った。また、昇温時に、800 ℃までをAr雰囲
気、 800℃から1200℃までを水素雰囲気(窒素濃度:0
%)で行った。この仕上焼鈍後は、酢酸ビニル樹脂を含
有する重クロム酸マグネシウムを塗布、焼き付けしてヒ
ートフラットニングを施して製品とした。EXAMPLE 1 Molten steel having the component compositions of A to M shown in Table 1 above was formed into a slab by continuous casting while being subjected to electromagnetic stirring, heated to 1180 ° C., and then subjected to rough 5 passes to form a 45 mm thick sheet. Bar and finish exit temperature: 2.2mm by 7-pass finish hot rolling at 950 ° C
Rolled to thickness. Then, the obtained hot rolled coil was 900
℃, 1 minute hot rolled sheet annealing, 0.34mm in tandem rolling mill
Until cold-rolled. After that, decarburization annealing was performed at 850 ° C for 2 minutes, and BE when H 2 O was used as an adsorbent as an annealing separator
After applying Al 2 O 3 having a specific surface area of 120 m 2 / g according to the T method, finish annealing was performed. Finish annealing from 800 ℃ to 1200 ℃
The temperature was raised at a rate of 30 ° C./h, followed by holding annealing at 1200 ° C. for 5 hours. When the temperature is raised, an Ar atmosphere up to 800 ° C and a hydrogen atmosphere (nitrogen concentration: 0 to 800 ° C to 1200 ° C) are used.
%). After the finish annealing, magnesium bichromate containing a vinyl acetate resin was applied, baked and heat flattened to obtain a product.
【0036】かくして得られた鋼板からエプスタインサ
イズの試験片を切り出し、800 ℃で3時間の歪取焼鈍を
施した後、曲げ剥離試験を行うとともに、磁束密度B
8(T)を測定した。また、各製品からEIコアを打ち抜き、
歪取焼鈍後、積み加工、銅線の巻き加工などによってEI
コアを作成し、その鉄損を測定した。さらに、各コイル
をダイス径15mmφのスチールダイスにより打ち抜き作業
を行った際、その返り高さが50μmに達するまでの打ち
抜き回数を測定した。その結果を表3に示すように、こ
の発明法によって得られた方向性電磁鋼板は、鉄損が良
好であり、かつ打ち抜き性も優れている。A specimen of Epstein size was cut out from the steel sheet thus obtained, subjected to strain relief annealing at 800 ° C. for 3 hours, and then subjected to a bending peel test and to a magnetic flux density B
8 (T) was measured. Also, punching EI cores from each product,
After strain relief annealing, EI is obtained by stacking, winding copper wire, etc.
A core was prepared and its iron loss was measured. Furthermore, when each coil was punched with a steel die having a die diameter of 15 mmφ, the number of punches until the return height reached 50 μm was measured. As shown in Table 3, the grain-oriented electrical steel sheet obtained by the method of the present invention has good iron loss and excellent punching properties.
【0037】[0037]
【表3】 [Table 3]
【0038】実施例2 前掲の表1に示したHの成分組成になる溶鋼を、電磁攪
枠しつつ連続鋳造によってスラブとし、1180℃に加熱
後、粗5パスで45mm厚のシートバーとし、仕上げ出側温
度: 950℃で7パスの仕上げ熱間圧延によって2.2mm 厚
まで圧延した。次いで、得られた熱延コイルを、900
℃、1分間の熱延板焼鈍後、タンデム圧延機にて0.34mm
まで冷間圧延した。その後、850 ℃2分間の脱炭焼鈍を
施し、焼鈍分離剤として吸着種にH2O を用いたときのBE
T 法による比表面積が120 m2/gのAl 2O3 を塗布してか
ら、仕上焼鈍を施した。仕上焼鈍は 800℃から1200℃ま
でを30℃/hで昇温し、引き続き1200℃、5時間の保定
焼鈍を行った。また、昇温時に、800 ℃までをAr雰囲
気、 800℃から1100℃までを水素雰囲気における窒素濃
度を種々に変化した雰囲気、そして1100℃以上を水素雰
囲気で行った。この仕上焼鈍後は、酢酸ビニル樹脂を含
有する重クロム酸マグネシウムコーティングを塗布、焼
き付けしてヒートフラットニングを施して製品とした。Example 2 Molten steel having the H component composition shown in Table 1 above was subjected to electromagnetic stirring.
Slab by continuous casting while framing, heated to 1180 ° C
After that, make a 45 mm thick sheet bar with 5 coarse passes and finish exit temperature
Degree: 2.2mm thick by 7 pass finishing hot rolling at 950 ℃
Rolled up. Then, the obtained hot rolled coil was 900
℃, 1 minute hot rolled sheet annealing, 0.34mm in tandem rolling mill
Until cold-rolled. Then, decarburization annealing at 850 ° C for 2 minutes
To the adsorbed species as an annealing separatorTwoBE with O
120m specific surface area by T methodTwo/ g Al TwoOThreeOr apply
Then, finish annealing was performed. Finish annealing from 800 ° C to 1200 ° C
At 30 ° C / h, then keep at 1200 ° C for 5 hours
Annealing was performed. When the temperature rises, up to 800 ° C in an Ar atmosphere
From 800 ° C to 1100 ° C in a hydrogen atmosphere
Atmosphere of various degrees and a hydrogen atmosphere at 1100 ° C or more
I went in the atmosphere. After this finish annealing, it contains vinyl acetate resin.
Apply and bake magnesium dichromate coating
The product was subjected to heat flattening.
【0039】かくして得られた鋼板からエプスタインサ
イズの試験片を切り出し、780 ℃で3時間の歪取焼鈍を
施した後、曲げ剥離試験を行うとともに、磁束密度B
8(T)を測定した。また、各製品からEIコアを打ち抜き、
歪取焼鈍後、積み加工、銅線の巻き加工などによってEI
コアを作成し、その鉄損を測定した。さらに、各コイル
をダイス径15mmφのスチールダイスにより打ち抜き作業
を行った際、その返り高さが50μmに達するまでの打ち
抜き回数を測定した。その結果を表4に示すように、特
に仕上げ焼鈍雰囲気の窒素濃度を1%以下にすることに
より、鉄損が良好であり、かつ打ち抜き性も優れた製品
が得れる。A test piece of Epstein size was cut out from the steel sheet thus obtained, and subjected to a strain relief annealing at 780 ° C. for 3 hours.
8 (T) was measured. Also, punching EI cores from each product,
After strain relief annealing, EI is obtained by stacking, winding copper wire, etc.
A core was prepared and its iron loss was measured. Furthermore, when each coil was punched with a steel die having a die diameter of 15 mmφ, the number of punches until the return height reached 50 μm was measured. As shown in Table 4, by setting the nitrogen concentration in the finish annealing atmosphere to 1% or less, a product having good iron loss and excellent punching property can be obtained.
【0040】[0040]
【表4】 [Table 4]
【0041】実施例3 前掲の表1に示したHの成分組成になる溶鋼を、電磁攪
枠しつつ連続鋳造によってスラブとし、1180℃に加熱
後、粗5パスで45mm厚のシートバーとし、仕上げ出側温
度: 950℃で7パスの仕上げ熱間圧延によって2.2mm 厚
まで圧延した。次いで、得られた熱延コイルを、900
℃、1分間の熱延板焼鈍後、タンデム圧延機にて0.34mm
まで冷間圧延した。その後、850 ℃2分間の脱炭焼鈍を
施し、焼鈍分離剤として吸着種にH2O を用いたときのBE
T 法による比表面積が70〜160 m2/gのAl2O3 を塗布し
てから、仕上焼鈍を施した。仕上焼鈍は 800℃から1200
℃までを30℃/hで昇温し、引き続き1200℃、5時間の
保定焼鈍を行った。また、昇温時に、800 ℃までをAr雰
囲気、 800℃から1200℃までを水素雰囲気(窒素濃度:
0%)で行った。この仕上焼鈍後は、酢酸ビニル樹脂を
含有する重クロム酸マグネシウムコーティングを塗布、
焼き付けしてヒートフラットニングを施して製品とし
た。Example 3 Molten steel having the H composition shown in Table 1 above was formed into a slab by continuous casting while being subjected to electromagnetic stirring, heated to 1180 ° C., and formed into a 45 mm-thick sheet bar with five coarse passes. Finishing Outlet Temperature: Rolled to 2.2 mm thickness at 950 ° C. by 7 passes of finishing hot rolling. Then, the obtained hot rolled coil was 900
℃, 1 minute hot rolled sheet annealing, 0.34mm in tandem rolling mill
Until cold-rolled. After that, decarburization annealing was performed at 850 ° C for 2 minutes, and BE when H 2 O was used as an adsorbent as an annealing separator
After applying Al 2 O 3 having a specific surface area of 70 to 160 m 2 / g according to the T method, finish annealing was performed. Finish annealing from 800 ℃ to 1200
The temperature was raised to 30 ° C at 30 ° C / h, followed by holding annealing at 1200 ° C for 5 hours. When the temperature is raised, an Ar atmosphere up to 800 ° C and a hydrogen atmosphere from 800 ° C to 1200 ° C (nitrogen concentration:
0%). After this finish annealing, apply a magnesium dichromate coating containing vinyl acetate resin,
The product was baked and subjected to heat flattening.
【0042】かくして得られた鋼板からエプスタインサ
イズの試験片を切り出し、700 ℃で3時間の歪取焼鈍を
施した後、曲げ剥離試験を行うとともに、磁束密度B
8(T)を測定した。また、各製品からEIコアを打ち抜き、
歪取焼鈍後、積み加工、銅線の巻き加工などによってEI
コアを作成し、その鉄損を測定した。さらに、各コイル
をダイス径15mmφのスチールダイスにより打ち抜き作業
を行った際、その返り高さが50μmに達するまでの打ち
抜き回数を測定した。その結果を表5に示すように、特
に焼鈍分離剤として吸着種にH2O を用いたときのBET 法
による比表面積が80〜150 m2/gのAl2O3 を用いること
によって、鉄損が良好であり、かつ打ち抜き性も優れた
製品が得られる。A test piece of Epstein size was cut out from the steel sheet thus obtained, and subjected to a strain relief annealing at 700 ° C. for 3 hours.
8 (T) was measured. Also, punching EI cores from each product,
After strain relief annealing, EI is obtained by stacking, winding copper wire, etc.
A core was prepared and its iron loss was measured. Furthermore, when each coil was punched with a steel die having a die diameter of 15 mmφ, the number of punches until the return height reached 50 μm was measured. The results are as shown in Table 5, by a specific surface area by the BET method when using H 2 O adsorption species used Al 2 O 3 of 80 to 150 m 2 / g as particularly annealing separator, iron A product having good loss and excellent punching properties can be obtained.
【0043】[0043]
【表5】 [Table 5]
【0044】[0044]
【発明の効果】この発明によれば、磁気特性及び打抜き
性に優れた方向性珪素鋼板を製造することが可能とな
り、電磁鋼板の品質向上に大きく寄与するものである。According to the present invention, it is possible to manufacture a grain-oriented silicon steel sheet having excellent magnetic properties and punching properties, which greatly contributes to improving the quality of an electromagnetic steel sheet.
フロントページの続き (51)Int.Cl.6 識別記号 FI C23C 22/00 C23C 22/00 A H01F 1/16 H01F 1/16 B (72)発明者 本田 厚人 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 峠 哲雄 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内Continued on the front page (51) Int.Cl. 6 Identification symbol FI C23C 22/00 C23C 22/00 A H01F 1/16 H01F 1/16 B (72) Inventor Atsuto Honda 1-chome, Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture (No address) Inside the Mizushima Steel Works of Kawasaki Steel Co., Ltd. (72) Inventor Tetsuo Toge 1-chome, Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture (No address) Inside the Mizushima Steel Works of Kawasaki Steel Corporation
Claims (1)
wt%、 Mn:0.03〜2.50wt%、SおよびSeを合計で0.01wt%以
下、 Al:0.005 〜0.017 wt%、N:0.003 〜0.010 wt%およ
び Sb:0.010 〜0.080 wt%を含有する鋼塊を、1300℃以下
の温度に加熱後、熱間圧延し、次いで1回もしくは中間
焼鈍を含む複数回の冷間圧延を施して最終板厚に仕上げ
たのち、一次再結晶焼鈍を施し、その後焼鈍分離剤を塗
布、乾燥してから最終仕上焼鈍を行う一連の工程によっ
て方向性珪素鋼板を製造するに当たり、焼鈍分離剤に、
吸着種にH2O を用いたときのBET 法による比表面積が80
m2/g以上 150m2/g以下のAl2O3 を主成分とするもの
を用いて、仕上焼鈍は、 800℃以上の雰囲気中における
窒素濃度を1%以下に調整して行うことを特徴とする磁
気特性および打抜き性に優れた方向性珪素鋼板の製造方
法。(1) C: 0.005 to 0.070 wt%, Si: 1.5 to 7.0
wt%, Mn: 0.03 to 2.50 wt%, S and Se in total of 0.01 wt% or less, Al: 0.005 to 0.017 wt%, N: 0.003 to 0.010 wt%, and Sb: 0.010 to 0.080 wt% After heating to a temperature of 1300 ° C. or less, hot rolling is performed, and then cold rolling is performed once or a plurality of times including intermediate annealing to finish the final sheet thickness, and then, primary recrystallization annealing is performed, and then annealing is performed. In producing a grain-oriented silicon steel sheet by a series of steps of applying a separating agent, drying and then performing final finish annealing, the annealing separating agent includes:
When H 2 O is used as an adsorbent, the specific surface area by the BET method is 80.
with which the m 2 / g or more 150 meters 2 / g or less of Al 2 O 3 as a main component, finish annealing, characterized in that, by adjusting the nitrogen concentration in the atmosphere above 800 ° C. to less than 1% A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties and punching properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11479198A JP3921807B2 (en) | 1998-04-24 | 1998-04-24 | Method for producing grain-oriented silicon steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11479198A JP3921807B2 (en) | 1998-04-24 | 1998-04-24 | Method for producing grain-oriented silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11302731A true JPH11302731A (en) | 1999-11-02 |
JP3921807B2 JP3921807B2 (en) | 2007-05-30 |
Family
ID=14646786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11479198A Expired - Fee Related JP3921807B2 (en) | 1998-04-24 | 1998-04-24 | Method for producing grain-oriented silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3921807B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002088403A1 (en) * | 2001-04-23 | 2002-11-07 | Nippon Steel Corporation | Method for producing unidirectional silicon steel sheet free of inorganic mineral coating film |
JP2008031495A (en) * | 2006-07-26 | 2008-02-14 | Jfe Steel Kk | Manufacturing method of grain-oriented electrical steel sheet |
JP2008031498A (en) * | 2006-07-26 | 2008-02-14 | Jfe Steel Kk | Grain-oriented electrical steel sheet and its production method |
-
1998
- 1998-04-24 JP JP11479198A patent/JP3921807B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002088403A1 (en) * | 2001-04-23 | 2002-11-07 | Nippon Steel Corporation | Method for producing unidirectional silicon steel sheet free of inorganic mineral coating film |
US6733599B2 (en) | 2001-04-23 | 2004-05-11 | Nippon Steel Corporation | Method for producing grain-oriented silicon steel sheet not having inorganic mineral film |
CN100413980C (en) * | 2001-04-23 | 2008-08-27 | 新日本制铁株式会社 | Method for producing unidirectional silicons steel sheet free of inorganic mineral coating film |
JP2008031495A (en) * | 2006-07-26 | 2008-02-14 | Jfe Steel Kk | Manufacturing method of grain-oriented electrical steel sheet |
JP2008031498A (en) * | 2006-07-26 | 2008-02-14 | Jfe Steel Kk | Grain-oriented electrical steel sheet and its production method |
Also Published As
Publication number | Publication date |
---|---|
JP3921807B2 (en) | 2007-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2878687B1 (en) | Method for producing grain-oriented electrical steel sheet | |
EP2957644B1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5610084B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
KR101498404B1 (en) | Method for manufacturing grain oriented electrical steel sheet | |
JP6354957B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP6057108B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3386751B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties | |
JPWO2020203928A1 (en) | Directional electrical steel sheet and its manufacturing method | |
JP3921806B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JP2000256810A (en) | Grain oriented silicon steel sheet excellent in magnetic property in low magnetic field and high-frequency and punching workability and its production | |
JP2004332071A (en) | Method for producing high magnetic flux density grain-oriented magnetic steel sheet | |
KR101919527B1 (en) | Oriented electrical steel sheet and method for manufacturing the same | |
JP3921807B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JP2019099839A (en) | Manufacturing method of oriented electromagnetic steel sheet | |
JP2691828B2 (en) | Ultra low iron loss grain oriented electrical steel sheet with extremely high magnetic flux density. | |
JPH0617137A (en) | Production of grain-priented silicon steel sheet free from glass film and having high magnetic flux density | |
JP3061491B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JP3743707B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JPH1136018A (en) | Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property | |
JP2002348613A (en) | Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing | |
JP7214974B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JPH08143964A (en) | Production of grain oriented silicon steel sheet | |
JPH11241120A (en) | Production of grain-oriented silicon steel sheet having uniform forsterite film | |
WO2024162442A1 (en) | Method for producing grain-oriented electrical steel sheet | |
JPH0949027A (en) | Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060718 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070212 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |