JP2008030102A - Brazing method of composite material for brazing, and brazed product - Google Patents

Brazing method of composite material for brazing, and brazed product Download PDF

Info

Publication number
JP2008030102A
JP2008030102A JP2006208361A JP2006208361A JP2008030102A JP 2008030102 A JP2008030102 A JP 2008030102A JP 2006208361 A JP2006208361 A JP 2006208361A JP 2006208361 A JP2006208361 A JP 2006208361A JP 2008030102 A JP2008030102 A JP 2008030102A
Authority
JP
Japan
Prior art keywords
brazing
layer
composite material
gas
gas adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006208361A
Other languages
Japanese (ja)
Inventor
Kazuma Kuroki
一真 黒木
Hiromitsu Kuroda
洋光 黒田
Hideyuki Sagawa
英之 佐川
Fumio Horii
文夫 堀井
Nobuhito Sakuyama
信人 作山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006208361A priority Critical patent/JP2008030102A/en
Publication of JP2008030102A publication Critical patent/JP2008030102A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brazing method capable of suppressing surface discoloration of a brazing filler metal part and degradation of fluidity of a brazing filler metal caused by the components of a heat treatment atmospheric gas during the brazing heat treatment of a composite material for brazing, and a brazed product. <P>SOLUTION: In the brazing method of a composite material for brazing, the composite material for brazing having a brazing filler metal part composed of a plurality of metal layers is brazed. A composite material 10 for gas adsorption having a gas adsorption layer 15 which is lower in melting point than the brazing filler metal part of a composite material 30 for brazing and high in reactivity with gas components such as oxygen and nitrogen in an atmospheric gas in a heat treatment furnace is arranged in a brazing heat treatment furnace in a closed space. Thereafter, the gas adsorption layer 15 is melted and the gas components are adsorbed by the gas adsorption layer 15 and removed. Then, the brazing heat treatment is performed and the brazing filler metal part is melted to perform the brazing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ろう付け用複合材のろう付け接合方法及びろう付け製品に係り、特に、熱交換器及び燃料電池用部材のろう付けに用いられるろう付け用複合材のろう付け接合方法及びろう付け製品に関するものである。   The present invention relates to a brazing and brazing method for brazing composite materials and brazing products, and more particularly to a brazing and joining method and brazing for brazing composite materials used for brazing heat exchangers and fuel cell members. It relates to products.

自動車用オイルクーラの接合材としてステンレス基クラッド材が使用されている。これは、基材であるステンレス鋼板の片面又は両面に、ろう材としての機能を有するCu材がクラッドされている。   Stainless steel-based clad materials are used as joining materials for automobile oil coolers. In this case, a Cu material having a function as a brazing material is clad on one side or both sides of a stainless steel plate as a base material.

また、ステンレス鋼や、Ni基又はCo基合金などからなる部材のろう付け材として、ろう付け接合部の耐食性に優れる各種Niろう材が、JIS規格により規定されている。   Further, as a brazing material for members made of stainless steel, Ni-base or Co-base alloy, various Ni brazing materials having excellent corrosion resistance at the brazed joint are defined by JIS standards.

さらに、熱交換器の接合に用いられるNiろう材として、粉末状のNiろう材に、Ni、Cr、Ni−Cr合金、又はステンレス鋼の中から選択される金属粉末を4〜22wt%添加してなる粉末Niろう材が提案されている(例えば、特許文献1参照)。   Further, 4 to 22 wt% of metal powder selected from Ni, Cr, Ni—Cr alloy, or stainless steel is added to the powdered Ni brazing material as the Ni brazing material used for joining the heat exchanger. A powder Ni brazing material is proposed (see, for example, Patent Document 1).

また、基材であるステンレス鋼の表面にNi及びTiからなるろう付け層を有する、即ちNi/Ti/ステンレス鋼というろう付け層構造を有する自己ろう付け性複合材がある(例えば、特許文献2参照)。   Further, there is a self-brazing composite material having a brazing layer made of Ni and Ti on the surface of stainless steel as a base material, that is, having a brazing layer structure of Ni / Ti / stainless steel (for example, Patent Document 2). reference).

特開2000−107883号公報JP 2000-107883 A 特開平7−299592号公報Japanese Patent Laid-Open No. 7-299592

特許文献2記載の自己ろう付け性複合材は、ろう付け層にTi層を含んでいる。   The self-brazing composite material described in Patent Document 2 includes a Ti layer in the brazing layer.

Tiは他の金属元素と比べて、酸素、窒素などのガス成分との反応性が高い。そのため、ろう付け熱処理を行う際には、熱処理雰囲気に含まれる上記ガス成分を可能な限り少なくするために、5.0×10-2Pa以上の(5.0×10-2Paより高い)真空度が必要となる。それ以下の真空度でろう付け熱処理を行った場合、ろう付け層が溶融する時にそれらのガス成分と反応して化合物を形成する。その結果、ろう材の表面が変色すると共に、化合物によってろう材の湯流れ性が阻害され、ろう付け生産性が低下する問題がある。 Ti has higher reactivity with gas components such as oxygen and nitrogen than other metal elements. Therefore, when performing the brazing heat treatment, in order to reduce the gas component contained in the heat treatment atmosphere as much as possible, it is 5.0 × 10 −2 Pa or higher (higher than 5.0 × 10 −2 Pa). A degree of vacuum is required. When brazing heat treatment is performed at a vacuum level lower than that, when the brazing layer melts, it reacts with those gas components to form a compound. As a result, there is a problem that the surface of the brazing material is discolored and the hot metal flowability of the brazing material is hindered by the compound and brazing productivity is lowered.

これらの問題を解決するために、前記雰囲気成分との反応性が高いTi又はTi合金などの金属単体を同一熱処理炉内に配置し、これを雰囲気ガス成分と反応させる方法がある。   In order to solve these problems, there is a method in which a simple metal such as Ti or Ti alloy having high reactivity with the atmosphere component is placed in the same heat treatment furnace and reacted with the atmosphere gas component.

しかしながら、この方法をとる場合、前記ろう付け用複合材のろう付け層の方が、より雰囲気ガス成分と反応しやすい為に、前記問題の解決とはならない。これは、溶融して液相状態にあるTi成分(ろう付け層)の方が、固相状態のTi成分(Ti又はTi合金などの金属単体)よりも雰囲気ガス成分と反応しやすいからである。   However, when this method is adopted, the brazing layer of the brazing composite material is more likely to react with the atmospheric gas component, and thus the above problem cannot be solved. This is because the Ti component (brazing layer) that is melted and in the liquid phase state reacts more easily with the atmospheric gas component than the Ti component (metal alone such as Ti or Ti alloy) in the solid phase state. .

本発明の目的は、前記従来技術における問題を解決すべく、ろう付け用複合材のろう付け熱処理時において、熱処理雰囲気ガス成分によるろう材部の表面変色及びろうの湯流れ性低下を抑制したろう付け接合方法及びろう付け製品を提供することにある。   An object of the present invention is to suppress the surface discoloration of the brazing filler metal part due to the heat treatment atmosphere gas component and the decrease in the flow property of the brazing metal during the brazing heat treatment of the brazing composite material in order to solve the problems in the prior art. It is to provide a brazing and joining method and a brazing product.

上記の目的を達成するために、請求項1の発明は、複数の金属層からなるろう材部を有するろう付け用複合材をろう付け接合する方法において、閉空間のろう付け熱処理炉内に、前記ろう付け用複合材のろう材部より融点が低く、かつ熱処理炉内の雰囲気ガス中の酸素、窒素などのガス成分と反応性が高いガス吸着層を有するガス吸着用複合材を配置し、その後、前記ガス吸着層を溶融させてガス吸着層に前記ガス成分を吸着させて除去し、その後、ろう付け熱処理を行い、前記ろう材部を溶融させてろう付けを行うものである。   In order to achieve the above object, the invention according to claim 1 is a method for brazing a brazing composite material having a brazing material portion composed of a plurality of metal layers, in a brazing heat treatment furnace in a closed space. A gas adsorbing composite material having a gas adsorbing layer having a lower melting point than the brazing material portion of the brazing composite material and having high reactivity with gas components such as oxygen and nitrogen in the atmosphere gas in the heat treatment furnace is disposed, Thereafter, the gas adsorption layer is melted and the gas component is adsorbed and removed by the gas adsorption layer, and then brazing heat treatment is performed to melt the brazing material portion and perform brazing.

請求項2の発明は、前記ガス吸着層のみが溶融し、前記ろう材部は溶融しない温度で所定時間保持し、ガス吸着層を溶融させてガス吸着層に前記ガス成分を吸着させて除去し、その後、ろう付け温度まで昇温してろう付け熱処理を行い、ろう材部を溶融させてろう付けを行うことが好ましい。   According to a second aspect of the present invention, only the gas adsorbing layer is melted and the brazing filler metal part is held at a temperature at which it is not melted for a predetermined time, and the gas adsorbing layer is melted to adsorb and remove the gas components. After that, it is preferable to perform brazing heat treatment by raising the temperature to the brazing temperature and melting the brazing material part to perform brazing.

請求項3の発明は、前記ガス吸着用複合材が、基材表面にTi又はTi合金層とNi又はNi合金層とからなるガス吸着層を重ねた複層構造とされる。   According to a third aspect of the present invention, the gas adsorbing composite material has a multilayer structure in which a gas adsorbing layer composed of a Ti or Ti alloy layer and a Ni or Ni alloy layer is stacked on the surface of the base material.

請求項4の発明は、前記ガス吸着用複合材のTi層とNi層の層厚和に対するTi層の層厚比は、70%以上82%以下が好ましい。   In the invention of claim 4, the layer thickness ratio of the Ti layer to the sum of the layer thicknesses of the Ti layer and Ni layer of the gas adsorption composite material is preferably 70% or more and 82% or less.

請求項5の発明は、前記ろう付け用複合材が、基材表面にTi又はTi合金層とNi又はNi合金層とからなる前記ろう材部を重ねた複層構造とされる。   According to a fifth aspect of the present invention, the brazing composite material has a multi-layer structure in which the brazing material portion composed of a Ti or Ti alloy layer and a Ni or Ni alloy layer is stacked on the surface of a base material.

請求項6の発明は、前記ろう付け用複合材のTi層とNi層の層厚和に対するTi層の層厚比は、56%以下が好ましい。   In the invention of claim 6, the thickness ratio of the Ti layer to the sum of the thicknesses of the Ti layer and the Ni layer of the brazing composite material is preferably 56% or less.

請求項7の発明は、前記ガス吸着用複合材のガス吸着層を構成するTi層及びNi層の内、少なくとも一方の層がPを含んでいてもよい。   According to the seventh aspect of the present invention, at least one of the Ti layer and the Ni layer constituting the gas adsorption layer of the gas adsorption composite material may contain P.

請求項8の発明は、前記ガス吸着用複合材のガス吸着層中に含まれるP濃度は、0.02〜10wt%が好ましい。   In the invention according to claim 8, the P concentration contained in the gas adsorption layer of the gas adsorption composite material is preferably 0.02 to 10 wt%.

請求項9の発明は、前記ガス吸着用複合材のガス吸着層を構成するTi層及びNi層の内、少なくとも一方の層がCu、Mn、Al、又はCrの内の少なくとも1種を含んでいてもよい。   According to the ninth aspect of the present invention, at least one of the Ti layer and the Ni layer constituting the gas adsorption layer of the gas adsorption composite material includes at least one of Cu, Mn, Al, or Cr. May be.

請求項10の発明は、前記ガス吸着用複合材のガス吸着層中に含まれるCu濃度は、0.2〜30wt%が好ましい。   In a tenth aspect of the present invention, the Cu concentration contained in the gas adsorption layer of the gas adsorption composite material is preferably 0.2 to 30 wt%.

請求項11の発明は、請求項1〜10いずれかに記載のろう付け用複合材のろう付け接合方法を用い、ろう付け用複合材と被ろう付け部材とをろう付け接合してなるものである。   The invention of claim 11 is formed by brazing and joining a brazing composite material and a member to be brazed using the brazing composite material brazing method according to any one of claims 1 to 10. is there.

本発明によれば、複数の金属層からなるろう材部を有するろう付け用複合材をろう付け接合する際に、基材にTi又はTi合金層とNi又はNi合金層とを貼合せ接合したガス吸着用複合材を、同一熱処理炉内に配置することによって、炉内に残留する酸素、窒素などのガス成分によるろう材部、ろう付け製品の変色を抑制し、ろう流れ性を向上させる効果が得られる。   According to the present invention, when brazing a brazing composite material having a brazing material portion composed of a plurality of metal layers, a Ti or Ti alloy layer and a Ni or Ni alloy layer are bonded and bonded to a base material. By disposing the gas adsorption composite material in the same heat treatment furnace, the discoloration of the brazing material part and brazing product due to gas components such as oxygen and nitrogen remaining in the furnace is suppressed, and the brazing flow property is improved. Is obtained.

以下、本発明の好適一実施の形態を添付図面に基いて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

本実施の形態に係るろう付け用複合材の接合方法は、ろう付け用複合材のろう材部の融点より低い温度で溶融するクラッド層(ガス吸着層)を持つガス吸着用複合材を、ろう付け用複合材と同一熱処理炉内に配置して、ろう付け熱処理を行う方法である。   In the brazing composite material joining method according to the present embodiment, a gas adsorption composite material having a cladding layer (gas adsorption layer) that melts at a temperature lower than the melting point of the brazing material portion of the brazing composite material is brazed. This is a method in which brazing heat treatment is performed in the same heat treatment furnace as the brazing composite material.

本発明の好適一実施の形態に係るろう付け接合方法に用いるガス吸着用複合材の断面図を図1に示す。   FIG. 1 shows a cross-sectional view of a gas adsorption composite material used in a brazing joining method according to a preferred embodiment of the present invention.

図1に示すように、ガス吸着用複合材10は、合金などの板材からなる基材11の片面(図1中では上面)に、ガス吸着層(基材11側から順に、Ti又はTi合金層(以下、Ti層という)12、Ni又はNi合金層(以下、Ni層という)13)15を貼り合わせ接合してなるクラッド材である。ここで、ガス吸着層(溶融層)15は、基材11の片面のみではなく、両面(図1中では上・下面)に設けてもよい。   As shown in FIG. 1, a gas adsorbing composite material 10 is composed of a gas adsorbing layer (in order from the base material 11 side) on one side (upper surface in FIG. 1) of a base material 11 made of a plate material such as an alloy. It is a clad material formed by laminating and bonding a layer (hereinafter referred to as a Ti layer) 12, a Ni or Ni alloy layer (hereinafter referred to as a Ni layer) 13) 15. Here, the gas adsorption layer (molten layer) 15 may be provided not only on one side of the substrate 11 but also on both sides (upper and lower surfaces in FIG. 1).

ガス吸着用複合材10にクラッドされるガス吸着層(Ni/Ti層)15におけるTi成分の重量比率は55〜70mass%、望ましくは58〜67mass%、さらに望ましくは60〜65mass%とされる。これは、ろう付け用複合材のろう材部の拡散による反応敏感な成分の表層への露出を防ぐため、ろう付け温度よりできるだけ低い温度下で熱処理を行う必要があるからであり、最も望ましいTi成分の重量比率は、Ni/Ti合金の中で最も低い温度(共晶点:942℃)をとる63mass%である。   The weight ratio of the Ti component in the gas adsorption layer (Ni / Ti layer) 15 clad on the gas adsorption composite material 10 is 55 to 70 mass%, preferably 58 to 67 mass%, and more preferably 60 to 65 mass%. This is because it is necessary to perform heat treatment at a temperature lower than the brazing temperature in order to prevent exposure of reaction-sensitive components to the surface layer due to diffusion of the brazing filler metal portion of the brazing composite material. The weight ratio of the components is 63 mass% which takes the lowest temperature (eutectic point: 942 ° C.) in the Ni / Ti alloy.

また、ガス吸着用複合材10のガス吸着層15を構成するTi層12及びNi層13の内、少なくとも一方の層がPを含んでいてもよい。望ましいガス吸着層15中に含まれるP濃度は、0.02〜10wt%である。   Further, at least one of the Ti layer 12 and the Ni layer 13 constituting the gas adsorption layer 15 of the gas adsorption composite material 10 may contain P. The concentration of P contained in the desired gas adsorption layer 15 is 0.02 to 10 wt%.

さらに、ガス吸着用複合材10のガス吸着層15を構成するTi層12及びNi層13の内、少なくとも一方の層がCu、Mn、Al、又はCrの内の少なくとも1種を含んでいてもよい。例えば、ガス吸着層15中にCuが含まれる場合、望ましいCu濃度は0.2〜30wt%である。   Further, at least one of the Ti layer 12 and the Ni layer 13 constituting the gas adsorption layer 15 of the gas adsorption composite material 10 may contain at least one of Cu, Mn, Al, or Cr. Good. For example, when Cu is contained in the gas adsorption layer 15, a desirable Cu concentration is 0.2 to 30 wt%.

基材11を構成する合金としては、ステンレス鋼が挙げられ、例えば、SUS304(JIS規格)等が挙げられる。また、複合材10の構成として、ガス吸着層15をステンレス鋼以外の金属からなる基材11に接合してもよい。ただし、ガス吸着層15を接合する金属(基材11)は、TiとNi合金との反応の際に、融点を上昇させないものが望ましい。   Stainless steel is mentioned as an alloy which comprises the base material 11, For example, SUS304 (JIS specification) etc. are mentioned. Further, as a configuration of the composite material 10, the gas adsorption layer 15 may be bonded to the base material 11 made of a metal other than stainless steel. However, it is desirable that the metal (base material 11) to which the gas adsorption layer 15 is bonded does not increase the melting point upon reaction between Ti and the Ni alloy.

基材11の厚さは、ガス吸着層15の厚さと比べて十分に厚く、例えば、2倍以上に形成される。   The thickness of the base material 11 is sufficiently thick compared with the thickness of the gas adsorption layer 15, and is formed, for example, twice or more.

基材11の表面にガス吸着層15をクラッドしてなる複合材10の形成方法は特に限定するものではなく、クラッド材形成のための慣用の方法が全て適用可能であり、例えば、板材を積層した後、圧延により一体化する方法が挙げられる。   The formation method of the composite material 10 formed by cladding the gas adsorption layer 15 on the surface of the base material 11 is not particularly limited, and all conventional methods for forming the clad material can be applied. Then, the method of integrating by rolling is mentioned.

図1に示した複合材10は、ガス吸着層15が2層構造のものであったが、これに限定するものではなく、図2に変形例を示すように、基材11の表面に3層構造以上(例えば、基材11側から順に、Ni層13、Ti層12、及びNi層13の3層構造)のガス吸着層15を設けた複合材20であっても良い。   In the composite material 10 shown in FIG. 1, the gas adsorption layer 15 has a two-layer structure. However, the present invention is not limited to this, and as shown in FIG. The composite material 20 provided with the gas adsorption layer 15 having a layer structure or more (for example, a three-layer structure of the Ni layer 13, the Ti layer 12, and the Ni layer 13 in this order from the substrate 11 side) may be used.

また、ガス吸着層15については、板材同士の貼合せ材に限らなくても良い。例えば、Ni粉末およびTi粉末の混合粉又はそれらをバインダなどの溶剤で溶かし、固めたものでもよい。しかし、粉末あるいは粉末をバインダで固めた状態での使用は、取扱いが困難であるため、より簡便に取り扱うことの出来る板材貼り合せ接合材をガス吸着層15として使用することが望ましい。   Further, the gas adsorbing layer 15 is not limited to the bonding material between the plate materials. For example, a mixed powder of Ni powder and Ti powder or a powder obtained by dissolving them with a solvent such as a binder may be used. However, since it is difficult to handle the powder or the powder in a state in which the powder is hardened with a binder, it is desirable to use a plate-bonded bonding material that can be more easily handled as the gas adsorption layer 15.

また、複合材10の構成として、基材11を用いず、Ti層12とNi層13のみを貼り合せ接合したもの(ガス吸着層15のみ)を複合材として使用しても、同様の効果は期待できるが、この場合、溶融した成分(ガス吸着層15)が炉内に凝固し、炉床および炉壁に付着する場合があり、取扱い性に劣る問題がある。   Moreover, the same effect can be obtained by using the composite material 10 without using the base material 11 and using only the Ti layer 12 and the Ni layer 13 bonded and bonded (only the gas adsorption layer 15) as the composite material. Although it can be expected, in this case, the melted component (gas adsorption layer 15) is solidified in the furnace and may adhere to the hearth and the furnace wall, which is inferior in handleability.

次に、本実施の形態に係るろう付け接合方法を説明する。   Next, the brazing joining method according to the present embodiment will be described.

図3に示すように、ろう付け用複合材30と被ろう付け材(パイプ材)14を組み合わせる。ろう付け用複合材30は、基材の片面に、ろう材部(基材側から順に、Ti層、Ni層)を設けてなるクラッド材である。ろう付け用複合材30にクラッドされるろう材部(Ti層及びNi層)におけるTi層の板厚比は56%以下とされる。   As shown in FIG. 3, a brazing composite material 30 and a brazing material (pipe material) 14 are combined. The brazing composite material 30 is a clad material in which a brazing material portion (Ti layer, Ni layer in order from the base material side) is provided on one side of the base material. The thickness ratio of the Ti layer in the brazing material portion (Ti layer and Ni layer) clad by the brazing composite material 30 is 56% or less.

その後、図4に示すように、ろう付け品(ろう付け用複合材30とパイプ材14)の周りにガス吸着用複合材10が配置される。この時、ガス吸着用複合材10は、出来るだけろう付け品30,14の近くに、かつ、取り囲むように配置することが望ましい。これは、ガス吸着用複合材10をろう付け用複合材30近傍に残留するガス成分と優先的に反応させるためである。   Thereafter, as shown in FIG. 4, the gas adsorbing composite material 10 is disposed around the brazed product (the brazing composite material 30 and the pipe material 14). At this time, it is desirable that the gas adsorbing composite material 10 is disposed as close to and as possible to the brazed products 30 and 14. This is because the gas adsorbing composite 10 is preferentially reacted with the gas component remaining in the vicinity of the brazing composite 30.

ガス吸着用複合材10の反応面積(図4中では4枚のガス吸着用複合材10におけるガス吸着層15の総面積)は、ろう付け製品の最大幅と最大長さと最大高さを基準とした直方体の表面積以上であることが望ましい。これは、ろう付け品30,14を囲むようにガス吸着用複合材10を配置することが出来る最低限の面積であるからである。ろう付け用複合材30をガス吸着用複合材10で囲むように配置することにより、ろう付け用複合材30近傍のガス成分とガス吸着用複合材10を効率よく反応させることができる。ただし、この条件は、炉内の体積およびガス成分の残留濃度に応じて適宜変更されるため、十分条件とはならない。   The reaction area of the gas adsorption composite 10 (in FIG. 4, the total area of the gas adsorption layers 15 in the four gas adsorption composites 10) is based on the maximum width, maximum length, and maximum height of the brazed product. It is desirable that the surface area of the rectangular parallelepiped be greater than or equal to. This is because this is the minimum area in which the gas adsorbing composite material 10 can be disposed so as to surround the brazed products 30 and 14. By disposing the brazing composite material 30 so as to be surrounded by the gas adsorption composite material 10, the gas component in the vicinity of the brazing composite material 30 and the gas adsorption composite material 10 can be reacted efficiently. However, since this condition is appropriately changed according to the volume in the furnace and the residual concentration of the gas component, it is not a sufficient condition.

図4に示すように配設されたガス吸着用複合材10及びろう付け品30,14を熱処理炉内に配置する。熱処理炉内は、ガスの出入りがない閉空間であり、5.0×10-2Paより低い真空度で真空引きされている。この時、実際のろう付け熱処理を行うためのろう付け温度に昇温する前に、それより低温、ガス吸着用複合材10の融点の20℃〜50℃、望ましくは25℃〜40℃高い温度(予熱処理温度)で、一定時間保持することを推奨する。保持時間は10min〜20min、望ましくは15min〜20minを推奨する。この保持時間の間に、ガス吸着用複合材10におけるガス吸着層15のみが溶融する。この予熱処理終了後、更に加熱してろう付け温度まで昇温してろう材部を溶融させ、そのろう付け温度で一定時間保持、冷却することで、ろう付け熱処理が終了し、ろう付け製品が得られる。 As shown in FIG. 4, the gas adsorbing composite material 10 and the brazed articles 30 and 14 are placed in a heat treatment furnace. The inside of the heat treatment furnace is a closed space where gas does not enter and exit, and is evacuated at a vacuum level lower than 5.0 × 10 −2 Pa. At this time, before raising the temperature to the brazing temperature for performing the actual brazing heat treatment, the temperature is lower than that by 20 ° C. to 50 ° C., preferably 25 ° C. to 40 ° C. higher than the melting point of the gas adsorbing composite material 10. (Pre-heat treatment temperature) is recommended to hold for a certain time. The holding time is 10 min to 20 min, preferably 15 min to 20 min. During this holding time, only the gas adsorption layer 15 in the gas adsorption composite material 10 is melted. After this pre-heat treatment is completed, the brazing material is melted by further heating to raise the brazing temperature, and the brazing heat treatment is completed by holding and cooling at the brazing temperature for a certain period of time. can get.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

ガス吸着用複合材10のガス吸着層15に、Ti層12とNi層13の組合せを用いた理由は、第一にTi又はTi合金が他の元素と比べて、酸素および窒素と反応しやすいことが挙げられる。このTi又はTi合金にNi又はNi合金を組み合わせた理由は、TiとNiとを接合することで、加熱時にTi原子とNi原子が相互拡散し、それによって形成される合金部分が、Ni、Ti各々の融点より低下することにより、ろう付け用複合材30のろう材部よりも低い融点にて溶融するからである。ガス吸着用複合材10のガス吸着層15を、ろう付け用複合材30におけるろう材部の融点より低い温度で溶融させる理由は、Ti成分は、溶融状態の方が固相状態よりもガス成分(酸素、窒素、炭素など)との反応性が高まるからである。   The reason why the combination of the Ti layer 12 and the Ni layer 13 is used for the gas adsorption layer 15 of the gas adsorption composite material 10 is that Ti or Ti alloy first reacts more easily with oxygen and nitrogen than other elements. Can be mentioned. The reason why Ni or Ni alloy is combined with Ti or Ti alloy is that Ti and Ni are joined together, so that Ti atoms and Ni atoms are interdiffused during heating, and the alloy part formed thereby becomes Ni, Ti. It is because it melt | dissolves in melting | fusing point lower than the brazing | wax material part of the composite material 30 for brazing by falling from each melting | fusing point. The reason why the gas adsorbing layer 15 of the gas adsorbing composite material 10 is melted at a temperature lower than the melting point of the brazing filler metal portion in the brazing composite material 30 is that the Ti component is a gas component in the molten state than in the solid phase state. This is because the reactivity with (oxygen, nitrogen, carbon, etc.) increases.

このガス吸着用複合材10のガス吸着層15は、ろう付け用複合材30のろう材部分と比べてより低温で溶融するため、前述した予熱処理温度で保持することで、ガス吸着層15と炉内に残留しているガス成分の反応の方が先に進む。これによって、ほとんどのガス成分が、溶融したガス吸着層15に吸着されて除去される。   Since the gas adsorbing layer 15 of the gas adsorbing composite material 10 is melted at a lower temperature than the brazing material portion of the brazing composite material 30, the gas adsorbing layer 15 The reaction of the gas components remaining in the furnace proceeds further. As a result, most gas components are adsorbed and removed by the molten gas adsorption layer 15.

その後、ろう付け用複合材30のろう付け温度まで加熱、昇温してろう材部を溶融させ、ろう付け熱処理を行うが、この時には、炉内に不純なガス成分(Tiとの反応性が高いガス成分)はほとんど残留していない。よって、溶融したろう材部にガス成分が吸着されることはなく、良好なろう付けが可能となる。また、ガス吸着用複合材10において、基材11はガス吸着層15と比べて十分に厚く形成されているため、溶融したガス吸着層15は基材11に付着したままで保持され、冷却、凝固したガス吸着層15が炉床および炉壁に付着することはない。   Thereafter, the brazing material 30 is heated and heated to the brazing temperature to melt the brazing material portion, and a brazing heat treatment is performed. At this time, an impure gas component (reactivity with Ti is present in the furnace). Almost no high gas component) remains. Therefore, the gas component is not adsorbed on the molten brazing material portion, and good brazing is possible. Further, in the gas adsorbing composite material 10, since the base material 11 is formed to be sufficiently thick as compared with the gas adsorption layer 15, the molten gas adsorption layer 15 is held while adhering to the base material 11, cooled, The solidified gas adsorption layer 15 does not adhere to the hearth and the furnace wall.

このように、ガス吸着用複合材10を、ろう付け用複合材30と同一熱処理炉内に配置することで、5.0×10-2Paより低い真空度でろう付け接合熱処理を行っても、ろう付け用複合材30のろう材部に先んじて、複合材10の表層部(ガス吸着層15)が炉内に残留する酸素、窒素などのガス成分と反応することにより、ろう材部の表面変色が抑制され、また、ろうの湯流れが損なわれることもない。その結果、ろう付け熱処理時に、5.0×10-2Paより高い真空度に保たなくても、ろう付け接合部の耐熱性及び耐食性が良好なろう付け製品を得ることができる。 As described above, the gas adsorbing composite material 10 is placed in the same heat treatment furnace as the brazing composite material 30, so that the brazing joint heat treatment can be performed at a vacuum level lower than 5.0 × 10 −2 Pa. Prior to the brazing material portion of the brazing composite material 30, the surface layer portion (gas adsorption layer 15) of the composite material 10 reacts with gas components such as oxygen and nitrogen remaining in the furnace, thereby Surface discoloration is suppressed, and the flow of brazing water is not impaired. As a result, a brazed product with good heat resistance and corrosion resistance of the brazed joint can be obtained without maintaining a vacuum higher than 5.0 × 10 −2 Pa during brazing heat treatment.

本発明の好適一実施の形態に係る複合材のろう付け接合熱処理方法は、例えば、EGR用クーラなどの高温で、腐食性の高いガス又は液体に晒される熱交換器のみに、その用途を限定するものではなく、その他にも、例えば、燃料電池の改質器用クーラや、燃料電池部材などの各種用途にも適用可能である。   The heat treatment method for brazing and bonding a composite material according to a preferred embodiment of the present invention is limited to a heat exchanger that is exposed to a highly corrosive gas or liquid at a high temperature, such as an EGR cooler. In addition, for example, it can be applied to various uses such as a fuel cell reformer cooler and a fuel cell member.

(実施例1)
SUS304(JIS規格)からなり、厚さ2.5mmのステンレス鋼条材の表面に、そのステンレス鋼条材側から順に、厚さ0.77mmのTi条材、厚さ0.23mmのNi条材を圧延法によりクラッドし、積層構造がNi/Ti/SUS304、Ni/Ti層に対するTi層の重量比率が63mass%(板厚比率が77%)である複合材を作製した。
(Example 1)
Made of SUS304 (JIS standard), on the surface of a 2.5 mm thick stainless steel strip, in order from the stainless steel strip side, a 0.77 mm thick Ti strip, a 0.23 mm thick Ni strip Was laminated by a rolling method to produce a composite material having a laminated structure of Ni / Ti / SUS304 and a weight ratio of the Ti layer to the Ni / Ti layer of 63 mass% (plate thickness ratio of 77%).

その後、この複合材に対して圧延を繰り返し行い、1.0mmの複合材を作製した。作製した複合材を熱処理炉内に配置し、後述のろう付け評価を実施した。
(実施例2)
実施例1と同じステンレス鋼条材の表面に、そのステンレス鋼条材側から順に、厚さ0.8mmのTi条材、厚さ0.2mmのNi条材を圧延法によりクラッドし、積層構造がNi/Ti/SUS304、Ni/Ti層に対するTi層の重量比率が67mass%(板厚比率が80%)である複合材を作製した。
Thereafter, the composite material was repeatedly rolled to produce a 1.0 mm composite material. The produced composite material was placed in a heat treatment furnace, and brazing evaluation described later was performed.
(Example 2)
A surface of the same stainless steel strip as in Example 1 is clad by rolling with a Ti strip having a thickness of 0.8 mm and a Ni strip having a thickness of 0.2 mm in order from the stainless steel strip side. Ni / Ti / SUS304, a composite material in which the weight ratio of the Ti layer to the Ni / Ti layer was 67 mass% (plate thickness ratio was 80%) was produced.

その後、この複合材に対して圧延を繰り返し行い、1.0mmの複合材を作製した。作製した複合材を熱処理炉内に配置し、後述のろう付け評価を実施した。
(比較例1)
実施例1と同じステンレス鋼条材の表面に、そのステンレス鋼条材側から順に、厚さ0.83mmのTi条材、厚さ0.17mmのNi条材を圧延法によりクラッドし、積層構造がNi/Ti/SUS304、Ni/Ti層に対するTi層の重量比率が72mass%(板厚比率が83%)である複合材を作製した。
Thereafter, the composite material was repeatedly rolled to produce a 1.0 mm composite material. The produced composite material was placed in a heat treatment furnace, and brazing evaluation described later was performed.
(Comparative Example 1)
A surface of the same stainless steel strip as in Example 1 was clad by rolling with a Ti strip having a thickness of 0.83 mm and a Ni strip having a thickness of 0.17 mm in this order from the stainless steel strip side. Ni / Ti / SUS304, a composite material in which the weight ratio of the Ti layer to the Ni / Ti layer was 72 mass% (plate thickness ratio was 83%) was produced.

その後、この複合材に対して圧延を繰り返し行い、1.0mmの複合材を作製した。作製した複合材を熱処理炉内に配置し、後述のろう付け評価を実施した。
(比較例2)
実施例1と同じステンレス鋼条材の表面に、そのステンレス鋼条材側から順に、厚さ0.89mmのTi条材、厚さ0.11mmのNi条材を圧延法によりクラッドし、積層構造がNi/Ti/SUS304、Ni/Ti層に対するTi層の重量比率が80mass%(板厚比率が89%)である複合材を作製した。
Thereafter, the composite material was repeatedly rolled to produce a 1.0 mm composite material. The produced composite material was placed in a heat treatment furnace, and brazing evaluation described later was performed.
(Comparative Example 2)
A surface of the same stainless steel strip as in Example 1 was clad by rolling with a Ti strip having a thickness of 0.89 mm and a Ni strip having a thickness of 0.11 mm in this order from the stainless steel strip side. Ni / Ti / SUS304, a composite material in which the weight ratio of the Ti layer to the Ni / Ti layer is 80 mass% (plate thickness ratio is 89%) was produced.

その後、この複合材に対して圧延を繰り返し行い、1.0mmの複合材を作製した。作製した複合材を熱処理炉内に配置し、後述のろう付け評価を実施した。
(比較例3)
実施例1と同じステンレス鋼条材の表面に、そのステンレス鋼条材側から順に、厚さ0.66mmのTi条材、厚さ0.34mmのNi条材を圧延法によりクラッドし、積層構造がNi/Ti/SUS304、Ni/Ti層に対するTi層の重量比率が50%(板厚比率が66%)である複合材を作製した。
Thereafter, the composite material was repeatedly rolled to produce a 1.0 mm composite material. The produced composite material was placed in a heat treatment furnace, and brazing evaluation described later was performed.
(Comparative Example 3)
On the surface of the same stainless steel strip as in Example 1, in order from the stainless steel strip side, a Ti strip with a thickness of 0.66 mm and a Ni strip with a thickness of 0.34 mm are clad by a rolling method to form a laminated structure Ni / Ti / SUS304, a composite material in which the weight ratio of the Ti layer to the Ni / Ti layer is 50% (plate thickness ratio is 66%) was produced.

その後、この複合材に対して圧延を繰り返し行い、1.0mmの複合材を作製した。作製した複合材を熱処理炉内に配置し、後述のろう付け評価を実施した。
(比較例4)
実施例1と同じステンレス鋼条材の表面に、そのステンレス鋼条材側から順に、厚さ0.59mmのTi条材、厚さ0.41mmのNi条材を圧延法によりクラッドし、積層構造がNi/Ti/SUS304、Ni/Ti層に対するTi層の重量比率が42mass%(板厚比率が59%)である複合材を作製した。
Thereafter, the composite material was repeatedly rolled to produce a 1.0 mm composite material. The produced composite material was placed in a heat treatment furnace, and brazing evaluation described later was performed.
(Comparative Example 4)
On the surface of the same stainless steel strip as in Example 1, in order from the stainless steel strip side, a Ti strip having a thickness of 0.59 mm and a Ni strip having a thickness of 0.41 mm are clad by a rolling method to form a laminated structure. Ni / Ti / SUS304, a composite material in which the weight ratio of the Ti layer to the Ni / Ti layer was 42 mass% (plate thickness ratio was 59%) was produced.

その後、この複合材に対して圧延を繰り返し行い、1.0mmの複合材を作製した。作製した複合材を熱処理炉内に配置し、後述のろう付け評価を実施した。
(従来例)
熱処理炉内に配置する複合材は作製せず(用いることなく)、後述のろう付け評価を実施した。
Thereafter, the composite material was repeatedly rolled to produce a 1.0 mm composite material. The produced composite material was placed in a heat treatment furnace, and brazing evaluation described later was performed.
(Conventional example)
A composite material to be placed in the heat treatment furnace was not produced (not used), and brazing evaluation described later was performed.

実施例1,2、比較例1〜4、及び従来例記載の各複合材を用い、ろう付け用複合材のろう付け試験を行った(従来例は複合材なし)。ろう付け用複合材として、SUS304(JIS規格)からなり、厚さ2.5mmのステンレス鋼条材の表面に、そのステンレス鋼条材側から順に、厚さ0.72mmのTi条材、厚さ0.6mmのNi条材を圧延法によりクラッドし、積層構造がNi/Ti/SUS304、Ni/Ti層に対するTi層の重量比率が38mass%(板厚比率が39%)であるろう付け用複合材を作製し、それに対して圧延を繰り返し行い、1.0mmのろう付け用複合材を作製した。   Using the composite materials described in Examples 1 and 2, Comparative Examples 1 to 4, and the conventional example, a brazing test of the composite material for brazing was performed (the conventional example has no composite material). As a brazing composite material, it is made of SUS304 (JIS standard), and on the surface of a stainless steel strip having a thickness of 2.5 mm, a Ti strip having a thickness of 0.72 mm in order from the stainless steel strip side. A 0.6 mm Ni strip is clad by a rolling method, the laminated structure is Ni / Ti / SUS304, and the weight ratio of the Ti layer to the Ni / Ti layer is 38 mass% (plate thickness ratio is 39%). A material was prepared, and rolling was repeated on the material to produce a 1.0 mm brazing composite material.

図3に示すように、得られたろう付け用複合材30を40mm×50mmに切り分け、そのろう付け層側の上面に、SUS304からなるステンレス鋼パイプ(直径10mm×長さ30mm)14を載せた。その後、図4に示すように、複合材10(25mm×40mmを2枚、25mm×50mmを2枚)を、ろう付け用複合材30の前後左右に、治具などを用いて立てて配置した。その際、複合材10におけるガス吸着層15のNi面を、それぞれろう付け用複合材30側に向けて配置した。   As shown in FIG. 3, the obtained brazing composite material 30 was cut into 40 mm × 50 mm, and a stainless steel pipe (diameter 10 mm × length 30 mm) 14 made of SUS304 was placed on the upper surface on the brazing layer side. Thereafter, as shown in FIG. 4, the composite material 10 (two pieces of 25 mm × 40 mm and two pieces of 25 mm × 50 mm) was placed up and down using a jig or the like on the front, rear, left and right of the brazing composite material 30. . At that time, the Ni surface of the gas adsorbing layer 15 in the composite material 10 was arranged toward the brazing composite material 30 side.

ろう付け熱処理は、先ず、980℃(予熱処理温度)で15min保持した後、1200℃(ろう付け温度)に加熱、昇温して15min保持した後、冷却した。熱処理雰囲気条件は、8.0×10-2Paであった。 The brazing heat treatment was first held at 980 ° C. (pre-heat treatment temperature) for 15 min, then heated to 1200 ° C. (brazing temperature), heated to 15 min, and then cooled. The heat treatment atmosphere condition was 8.0 × 10 −2 Pa.

得られたろう付け製品(ろう付け用複合材30とステンレス鋼パイプ14のろう付け接合品)について、特性の評価、具体的には、表面の変色状態、フィレット形成状態(湯流れ性)、及びこれらの特性の総合評価を行った。ろう付け特性の評価結果を表1に示す。評価は、良好なものを◎、不良なものを×とした。   Regarding the obtained brazed product (brazed joint of the brazing composite material 30 and the stainless steel pipe 14), evaluation of characteristics, specifically, discoloration state of the surface, fillet formation state (water flowability), and these A comprehensive evaluation of the characteristics was performed. The evaluation results of the brazing characteristics are shown in Table 1. In the evaluation, “Good” indicates “good” and “Poor” indicates “poor”.

ここで、湯流れ性の評価は、得られたろう付け製品のろう付け接合部のフィレット形状及びフィレットの断面積によって評価を行った。   Here, the evaluation of the hot water flowability was performed by the fillet shape of the brazed joint of the obtained brazed product and the cross-sectional area of the fillet.

Figure 2008030102
Figure 2008030102

ろう付け製品の評価の結果、実施例1,2の複合材は、いずれもろうの湯流れ性が良好で、フィレット形状、量ともに良好であった。また、表面の変色も少なかった。よって、総合評価はいずれも良好であった。   As a result of the evaluation of the brazed product, the composite materials of Examples 1 and 2 both had good hot metal flowability and good fillet shape and amount. Moreover, there was little discoloration of the surface. Therefore, the overall evaluation was good.

これに対して、比較例1〜4の複合材については、いずれも複合材のNi/Ti層の融点が1100℃を超えるため、予熱処理温度の980℃ではNi/Ti層が溶融せず、炉内に残留する雰囲気ガスのガス成分と十分に反応しなかった。そのため、ろう付け温度の1200℃において、ろう付け用複合材のろう材部と炉内のガス成分が優先的に反応し、ろう材の表面は変色し、湯流れが阻害された為、フィレットの形状、量ともに不十分であった。以上より、総合評価は不良であった。   On the other hand, for the composite materials of Comparative Examples 1 to 4, since the melting point of the Ni / Ti layer of the composite material exceeds 1100 ° C., the Ni / Ti layer does not melt at the pre-heat treatment temperature of 980 ° C. It did not react sufficiently with the gas components of the atmospheric gas remaining in the furnace. Therefore, at a brazing temperature of 1200 ° C., the brazing filler metal part of the brazing composite material and the gas components in the furnace react preferentially, the surface of the brazing material is discolored, and the hot water flow is obstructed. Both shape and quantity were insufficient. From the above, the overall evaluation was poor.

複合材を用いずにろう付け熱処理を行った従来例では、ろう材の表面の変色が著しく、かつろうの湯流れ性が十分でなかった。その結果、総合評価は不良であった。   In the conventional example in which the brazing heat treatment was performed without using the composite material, the discoloration of the surface of the brazing material was remarkable, and the flowing property of the brazing metal was not sufficient. As a result, the overall evaluation was poor.

以上、実施例1および2の複合材を用いてろう付け接合を行った本発明に係るろう付け用複合材のろう付け接合方法によれば、表面変色が少なく、ろうの湯流れ性が良好であることから、ろう付け接合部の信頼性に優れたろう付け接合方法であることがわかる。   As described above, according to the brazing joint method of the composite material for brazing according to the present invention in which the brazing joint is performed using the composite materials of Examples 1 and 2, the surface discoloration is small and the brazing metal flowability is good. From this, it can be seen that this is a brazing joint method with excellent brazing joint reliability.

本発明の好適一実施の形態に係るろう付け接合方法に用いるガス吸着用複合材の断面図である。It is sectional drawing of the composite material for gas adsorption | suction used for the brazing joining method which concerns on one preferred embodiment of this invention. 図1の変形例である。It is a modification of FIG. ろう付け用複合材と被ろう付け材とを組み合わせた状態を示す図である。It is a figure which shows the state which combined the composite material for brazing and the to-be-brazed material. 図3の組み合わせ体の周りにガス吸着用複合材を配置した状態を示す図である。It is a figure which shows the state which has arrange | positioned the gas adsorption composite material around the combination of FIG.

符号の説明Explanation of symbols

10 ガス吸着用複合材
15 ガス吸着層
30 ろう付け用複合材
10 Gas Adsorbing Composite Material 15 Gas Adsorbing Layer 30 Brazing Composite Material

Claims (11)

複数の金属層からなるろう材部を有するろう付け用複合材をろう付け接合する方法において、閉空間のろう付け熱処理炉内に、前記ろう付け用複合材のろう材部より融点が低く、かつ熱処理炉内の雰囲気ガス中の酸素、窒素などのガス成分と反応性が高いガス吸着層を有するガス吸着用複合材を配置し、その後、前記ガス吸着層を溶融させてガス吸着層に前記ガス成分を吸着させて除去し、その後、ろう付け熱処理を行い、前記ろう材部を溶融させてろう付けを行うことを特徴とするろう付け用複合材のろう付け接合方法。   In a method for brazing and joining a brazing composite material having a brazing material portion composed of a plurality of metal layers, the melting point is lower than that of the brazing composite material in the brazing heat treatment furnace in a closed space, and A gas adsorbing composite material having a gas adsorbing layer that is highly reactive with gas components such as oxygen and nitrogen in the atmosphere gas in the heat treatment furnace is disposed, and then the gas adsorbing layer is melted to form the gas in the gas adsorbing layer. A brazing and joining method for a brazing composite material, wherein components are adsorbed and removed, followed by brazing heat treatment to melt the brazing material portion and brazing. 前記ガス吸着層のみが溶融し、前記ろう材部は溶融しない温度で所定時間保持し、ガス吸着層を溶融させてガス吸着層に前記ガス成分を吸着させて除去し、その後、ろう付け温度まで昇温してろう付け熱処理を行い、ろう材部を溶融させてろう付けを行う請求項1記載のろう付け用複合材のろう付け接合方法。   Only the gas adsorption layer is melted and the brazing filler metal part is held at a temperature that does not melt for a predetermined time, the gas adsorption layer is melted and the gas component is adsorbed and removed by the gas adsorption layer, and then the brazing temperature is reached. The brazing and joining method for a brazing composite material according to claim 1, wherein the brazing heat treatment is performed by raising the temperature and the brazing material portion is melted to perform brazing. 前記ガス吸着用複合材が、基材表面にTi又はTi合金層とNi又はNi合金層とからなるガス吸着層を重ねた複層構造である請求項1又は2記載のろう付け用複合材のろう付け接合方法。   3. The brazing composite material according to claim 1, wherein the gas adsorption composite material has a multilayer structure in which a gas adsorption layer composed of a Ti or Ti alloy layer and a Ni or Ni alloy layer is stacked on a substrate surface. Brazing joining method. 前記ガス吸着用複合材のTi層とNi層の層厚和に対するTi層の層厚比が、70%以上82%以下である請求項1〜3いずれかに記載のろう付け用複合材のろう付け接合方法。   The brazing composite brazing material according to any one of claims 1 to 3, wherein a layer thickness ratio of the Ti layer to a sum of thicknesses of the Ti layer and the Ni layer of the gas adsorbing composite material is 70% or more and 82% or less. Bonding method. 前記ろう付け用複合材が、基材表面にTi又はTi合金層とNi又はNi合金層とからなる前記ろう材部を重ねた複層構造である請求項1〜4いずれかに記載のろう付け用複合材のろう付け接合方法。   The brazing material according to any one of claims 1 to 4, wherein the brazing composite material has a multilayer structure in which the brazing material portion composed of a Ti or Ti alloy layer and a Ni or Ni alloy layer is stacked on a substrate surface. Brazing method for composite materials. 前記ろう付け用複合材のTi層とNi層の層厚和に対するTi層の層厚比が、56%以下である請求項1〜5いずれかに記載のろう付け用複合材のろう付け接合方法。   The brazing composite brazing method according to any one of claims 1 to 5, wherein a layer thickness ratio of the Ti layer to a sum of thicknesses of the Ti layer and the Ni layer of the brazing composite material is 56% or less. . 前記ガス吸着用複合材のガス吸着層を構成するTi層及びNi層の内、少なくとも一方の層がPを含む請求項1〜6いずれかに記載のろう付け用複合材のろう付け接合方法。   The brazing / bonding method for a brazing composite material according to claim 1, wherein at least one of the Ti layer and the Ni layer constituting the gas adsorption layer of the gas adsorption composite material contains P. 8. 前記ガス吸着用複合材のガス吸着層中に含まれるP濃度が、0.02〜10wt%である請求項7記載のろう付け用複合材のろう付け接合方法。   The brazing / bonding method for a brazing composite material according to claim 7, wherein the P concentration contained in the gas adsorption layer of the gas adsorption composite material is 0.02 to 10 wt%. 前記ガス吸着用複合材のガス吸着層を構成するTi層及びNi層の内、少なくとも一方の層がCu、Mn、Al、又はCrの内の少なくとも1種を含む請求項1〜8いずれかに記載のろう付け用複合材のろう付け接合方法。   The Ti layer and the Ni layer constituting the gas adsorption layer of the gas adsorption composite material, wherein at least one layer includes at least one of Cu, Mn, Al, or Cr. A brazing and joining method for the brazing composite as described. 前記ガス吸着用複合材のガス吸着層中に含まれるCu濃度が、0.2〜30wt%である請求項9記載のろう付け用複合材のろう付け接合方法。   The brazing / bonding method for a brazing composite material according to claim 9, wherein the concentration of Cu contained in the gas adsorption layer of the gas adsorption composite material is 0.2 to 30 wt%. 請求項1〜10いずれかに記載のろう付け用複合材のろう付け接合方法を用い、ろう付け用複合材と被ろう付け部材とをろう付け接合してなることを特徴とするろう付け製品。
A brazed product obtained by brazing a brazing composite material and a member to be brazed by using the brazing composite brazing method according to claim 1.
JP2006208361A 2006-07-31 2006-07-31 Brazing method of composite material for brazing, and brazed product Pending JP2008030102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208361A JP2008030102A (en) 2006-07-31 2006-07-31 Brazing method of composite material for brazing, and brazed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208361A JP2008030102A (en) 2006-07-31 2006-07-31 Brazing method of composite material for brazing, and brazed product

Publications (1)

Publication Number Publication Date
JP2008030102A true JP2008030102A (en) 2008-02-14

Family

ID=39120053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208361A Pending JP2008030102A (en) 2006-07-31 2006-07-31 Brazing method of composite material for brazing, and brazed product

Country Status (1)

Country Link
JP (1) JP2008030102A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658409A (en) * 2012-05-31 2012-09-12 中国电子科技集团公司第四十三研究所 Method for welding titanium alloy ring frame for electronic packaging shell
CN102673027A (en) * 2012-03-28 2012-09-19 泰州市永昌冶金科技有限公司 Abrasion-resistant composite of cellular structure and preparation method thereof
CN103341674A (en) * 2013-06-26 2013-10-09 哈尔滨工业大学 Graphene auxiliary brazing method for ceramic matrix composite material and metal material
CN104096939A (en) * 2014-07-23 2014-10-15 哈尔滨工业大学 Novel low-temperature surface-carburizing assisted brazing method for ceramic matrix composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102673027A (en) * 2012-03-28 2012-09-19 泰州市永昌冶金科技有限公司 Abrasion-resistant composite of cellular structure and preparation method thereof
CN102658409A (en) * 2012-05-31 2012-09-12 中国电子科技集团公司第四十三研究所 Method for welding titanium alloy ring frame for electronic packaging shell
CN103341674A (en) * 2013-06-26 2013-10-09 哈尔滨工业大学 Graphene auxiliary brazing method for ceramic matrix composite material and metal material
CN104096939A (en) * 2014-07-23 2014-10-15 哈尔滨工业大学 Novel low-temperature surface-carburizing assisted brazing method for ceramic matrix composite
CN104096939B (en) * 2014-07-23 2016-02-03 哈尔滨工业大学 A kind of ceramic matric composite low-temperature surface carburizing assisted brazing method

Similar Documents

Publication Publication Date Title
KR20060123217A (en) Aluminium alloy strip for welding
JP2013123749A (en) Fluxless brazing method for aluminum material and brazing sheet used for the same
JP2012061483A (en) Flux-less brazing method of aluminum material
JP2012050993A (en) Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
JP2008030102A (en) Brazing method of composite material for brazing, and brazed product
JP5713451B2 (en) Aluminum alloy brazing sheet and manufacturing method thereof, and brazing method of aluminum heat exchanger
JP5490603B2 (en) Brazing method of aluminum member
KR100625090B1 (en) Adhesive sheet for brazing magnesium alloy and method for brazing magnesium and aluminum alloy
TWI465308B (en) Aluminum alloy welding method
JP2013086103A (en) Aluminum alloy brazing sheet
JP2006334603A (en) Composite material for brazing, and brazed product using the same
JP5713452B2 (en) Aluminum alloy brazing sheet and manufacturing method thereof, and brazing method of aluminum heat exchanger
JP2013146756A (en) Aluminum alloy brazing sheet and method for manufacturing the same, and method for brazing aluminum-made heat exchanger
JP2004291076A (en) Composite material, for brazing and brazed product using the same
JP2003117686A (en) Composite material for brazing, and brazed product obtained by using the composite material
JP6282444B2 (en) Aluminum alloy brazing sheet, aluminum alloy assembly for brazing, and method of brazing aluminum alloy material
JP6819393B2 (en) How to make a heat exchanger
JP2003117685A (en) Composite brazing filler metal, composite material for brazing, and brazed product
JP4239764B2 (en) Brazing composite material and brazing method using the same
WO2014128880A1 (en) Aluminum alloy brazing sheet, method for producing same, and method for brazing heat exchanger formed of aluminum
JP2005088071A (en) Composite material for brazing and brazed product using the same
JP4107206B2 (en) Brazing method using a brazing composite material
JP4461809B2 (en) Brazing method and brazed product using the method
JP2006272364A (en) Clad metal for brazing, and brazed product using the same
JP2005111548A (en) Composite material for brazing, and brazing method using the same