JP2008029994A - Ventilation gas cleaning apparatus and its cleaning method - Google Patents

Ventilation gas cleaning apparatus and its cleaning method Download PDF

Info

Publication number
JP2008029994A
JP2008029994A JP2006208723A JP2006208723A JP2008029994A JP 2008029994 A JP2008029994 A JP 2008029994A JP 2006208723 A JP2006208723 A JP 2006208723A JP 2006208723 A JP2006208723 A JP 2006208723A JP 2008029994 A JP2008029994 A JP 2008029994A
Authority
JP
Japan
Prior art keywords
gas
discharge
adsorption
ventilation
ventilation gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006208723A
Other languages
Japanese (ja)
Other versions
JP4751264B2 (en
Inventor
Sukeyuki Yasui
祐之 安井
Masao Takahashi
正雄 高橋
Hiroyuki Tokimoto
寛幸 時本
Yoshiro Seki
義朗 関
Kazuchika Nagao
一親 永尾
Toshiaki Adachi
俊朗 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006208723A priority Critical patent/JP4751264B2/en
Publication of JP2008029994A publication Critical patent/JP2008029994A/en
Application granted granted Critical
Publication of JP4751264B2 publication Critical patent/JP4751264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ventilation gas cleaning apparatus which realizes regeneration of an adsorbing part and surely cleans a ventilation gas without carrying out a troubling operation control. <P>SOLUTION: The ventilation gas cleaning apparatus has an electric charging part 11 which introduces the ventilation gas (X) coexisting with oxygen and oxidizes NO, which is a constituent component of NO<SB>x</SB>contained in the ventilation gas by electric discharging treatment, the adsorbing part 12, which adsorption removes the produced NO<SB>2</SB>to discharge the clean gas cleaned, a reduction gas supplying apparatus 16 which is arranged on a bypass pipe passage 15 arranged over the electric discharging part and the adsorbing part to produce the reduction gas without oxygen, and a switch controlling means 17a, 17b, 18a, 18b, 21, 22 which introduces the ventilation gas (X) and the reduction gas (Y) in turn to the electric discharging part 11 by selecting a gas discharging passage and a reduction gas passage, and reduction decomposes a harmful gas, which is adsorbed on the adsorbing part by electric discharging treatment due to the electric discharging part in introducing of the reduction gas (Y), to produce a harmless gas, while circulating it through the reduction gas supplying apparatus 16, to regenerate the adsorbing part 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有害物質を含む換気ガスを浄化する換気ガス浄化装置およびその浄化方法に係り、特にトンネルや地下駐車場等の換気ガス、車両の多い交差点の沿道排ガス等のごとく常温・低濃度の有害物質を含む換気ガスを浄化する換気ガス浄化装置およびその浄化方法に関する。   The present invention relates to a ventilation gas purification apparatus and purification method for purifying a ventilation gas containing harmful substances, and in particular, a normal temperature / low concentration such as ventilation gas for tunnels and underground parking lots, roadside exhaust gas at intersections with many vehicles, etc. The present invention relates to a ventilation gas purification device for purifying ventilation gas containing harmful substances and a purification method thereof.

近年、酸性雨等による周辺環境汚染が問題となりつつあるが、これに伴ってトンネルや地下駐車場等の換気ガス、車両の多い交差点の沿道排ガスなどに含まれる窒素酸化物(以下、NOxと呼ぶ)などの有害物質の排出規制が次第に強化されてきている。   In recent years, environmental pollution due to acid rain and the like has become a problem, and along with this, nitrogen oxides (hereinafter referred to as NOx) contained in ventilation gas in tunnels and underground parking lots, roadside exhaust gas at intersections with many vehicles, etc. ) And other harmful substances have been increasingly regulated.

しかし、現状の沿道排ガスを含む換気ガスはガス性状が常温の空気となっている。その結果、従来一般に使用されている燃焼排ガス中のNOx浄化触媒は、ガス温度が低いために活性化しないことから、前述した換気ガスの浄化には使用できない。   However, the ventilation gas including the current roadside exhaust gas is air having a normal temperature. As a result, the NOx purification catalyst in combustion exhaust gas generally used conventionally cannot be activated because the gas temperature is low, and therefore cannot be used for the purification of the ventilation gas described above.

そこで、従来、常温の酸素共存下における換気ガス中に含まれるNOx等を除去する方法として、主として2つの浄化方法が提案されている。   Thus, conventionally, two purification methods have been proposed mainly as methods for removing NOx and the like contained in ventilation gas in the presence of oxygen at room temperature.

その1つの浄化方法は、換気ガス中のNOx(構成成分は一酸化窒素NOと二酸化窒素NO2)を吸着剤で吸着し除去する乾式のNOx吸着除去法が使用されている。特に、NOx中のNO2が吸着され易い性質をもっているので、換気ガス中のNO2を容易に吸着除去することが可能である。このNOx吸着除去法は、NO2の吸着飽和前に新たな吸着剤を交換することにより、NOxの除去性能を維持することができる。 As one of the purification methods, a dry NOx adsorption / removal method is used, in which NOx (components are nitrogen monoxide NO and nitrogen dioxide NO 2 ) in the ventilation gas is adsorbed and removed by an adsorbent. In particular, since the NO 2 in NOx has a property of easily adsorbed, it is possible to easily adsorb and remove NO 2 in the ventilation gas. In this NOx adsorption removal method, the NOx removal performance can be maintained by exchanging a new adsorbent before the adsorption saturation of NO 2 .

しかし、換気ガス中のNOxは、通常,約9割のNOと残り1割のNO2との構成成分からなるため、吸着剤によるNO2の吸着除去だけではNOxとしての除去効率が悪い。 However, NOx in the ventilation gas is usually composed of about 90% of NO and the remaining 10% of NO 2 , so that removal efficiency as NOx is poor only by adsorption removal of NO 2 by the adsorbent.

そこで、この乾式のNOx吸着除去法は、吸着剤に吸着させる前に換気ガス中にオゾンO3を添加してNOをNO2に変換し、吸着剤によるNOx除去量を増やしている。 Therefore, in this dry NOx adsorption / removal method, ozone O 3 is added to the ventilation gas before it is adsorbed by the adsorbent to convert NO into NO 2 , thereby increasing the amount of NOx removed by the adsorbent.

また、乾式のNOx吸着除去法は、NO2を十分に吸着した使用済みの吸着剤を、一旦別の再生工場に運び込んだ後、高温加熱処理や薬剤洗浄などを行って再使用可能な状態に再生し、新たに再利用する方法が考えられている(特許文献1参照)。 Also, the dry NOx adsorption removal method is a state where the used adsorbent that has sufficiently adsorbed NO 2 is once transported to another regeneration plant, and then subjected to high-temperature heat treatment, chemical cleaning, etc. so that it can be reused. A method of reproducing and newly reusing is considered (see Patent Document 1).

他のもう1つの浄化方法は、NOxをアルカリ溶液で吸収して除去する湿式のNOx吸収除去法が使用されている。この湿式のNOx吸収除去法は、換気ガス中にアルカリ溶液を噴霧したり、換気ガスをアルカリ溶液中に送り込んでバブリングさせることにより、酸性ガスであるNOxを吸収除去する方法である(特許文献2参照)。
特開平8−24579号公報(図1) 特開平6−99030号公報(図1)
As another purification method, a wet NOx absorption and removal method in which NOx is absorbed and removed by an alkaline solution is used. This wet NOx absorption and removal method is a method of absorbing and removing NOx which is an acidic gas by spraying an alkali solution into a ventilation gas or sending a ventilation gas into an alkali solution and causing it to bubble (Patent Document 2). reference).
JP-A-8-24579 (FIG. 1) JP-A-6-99030 (FIG. 1)

ところで、以上のような乾式のNOx吸着除去法や湿式のNOx吸収除去法を用いた浄化方法では、比較的手軽に吸着剤を使用することができ、またNOxをアルカリ溶液に吸収させて大気中に出さないこと等から実用化されつつある。   By the way, in the purification method using the dry NOx adsorption / removal method as described above or the wet NOx absorption / removal method, the adsorbent can be used relatively easily, and the NOx is absorbed in the alkaline solution in the atmosphere. It is being put into practical use because it does not come out.

しかしながら、乾式のNOx吸着除去法は、再生工場による吸着剤の新たな再生処理やNO2の吸着飽和前の吸着剤の交換処理が必要となるので、運転管理やメンテナンスが煩雑、かつ、コスト高となる問題がある。 However, the dry NOx adsorption / removal method requires a new regeneration process for the adsorbent by the regeneration plant and the replacement process for the adsorbent before the adsorption saturation of NO 2 , so that operation management and maintenance are complicated and costly. There is a problem.

また、湿式のNOx吸収除去方法は、湿式処理であることから、NOx吸収液の新たな配水処理設備が必要となり、また配水処理設備の運転管理、設備コスト、設置スペースの増加などの問題が出てくる。   In addition, since the wet NOx absorption and removal method is a wet process, a new water distribution treatment facility for the NOx absorption liquid is required, and problems such as operation management of the water distribution treatment facility, equipment cost, and an increase in installation space arise. Come.

本発明は上記事情に鑑みてなされたもので、簡素な構成で吸着部の再生処理を実現し、長期にわたって安定、かつ、煩雑な運転管理を行うことなく有害物質を含む換気ガスを確実に浄化する換気ガス浄化装置およびその浄化方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, realizes regeneration processing of the adsorption unit with a simple configuration, and reliably purifies ventilation gas containing harmful substances without performing stable and complicated operation management over a long period of time. An object of the present invention is to provide a ventilation gas purification device and a purification method thereof.

(1) 上記課題を解決するために、本発明に係る換気ガス浄化装置は、 酸素の共存する換気ガスのガス排出路上に設けられ、放電処理により当該換気ガス中に含むNOxの構成成分であるNOを酸化させてNO2を生成する放電部と、この放電部によって生成されたNO2を吸着除去し、浄化された浄化ガスを排出する吸着部と、前記放電部及び前記吸着部に跨って設けた還元ガス流路上に設けられ、酸素を含まない還元ガスを生成する還元ガス供給装置と、前記ガス排出路と前記還元ガス流路との選択によって前記換気ガスと前記還元ガスとを交互に前記放電部に導入し、当該還元ガスの導入時に前記放電部による放電処理により前記吸着部に吸着されている有害物質であるNO2を、無害なガスに還元分解させつつ前記還元ガス供給装置に通して循環させて前記吸着部を再生する切替え制御手段とを備えた構成である。 (1) In order to solve the above-mentioned problem, the ventilation gas purification apparatus according to the present invention is a constituent component of NOx that is provided on the gas discharge path of the ventilation gas coexisting with oxygen and is contained in the ventilation gas by discharge treatment. a discharge unit for NO and by oxidizing to generate NO 2, the discharge portion of the NO 2 produced is adsorbed removed by a suction unit to discharge the cleaned purge gas, across the discharge portion and the suction portion A reductive gas supply device that generates a reductive gas that does not contain oxygen and is provided on the reductive gas flow path provided, and the ventilation gas and the reductive gas are alternately selected by selecting the gas discharge path and the reductive gas flow path. Introducing into the discharge part, NO 2 which is a harmful substance adsorbed in the adsorption part by the discharge treatment by the discharge part when the reducing gas is introduced into the reducing gas supply device while reducing and decomposing it into harmless gas Through And a switching control unit that circulates and regenerates the adsorption unit.

なお、前記放電部の電極構成としては、第1の導体電極と、この第1の導体電極に対向する第2の導体電極と、少なくとも一方の導体電極を覆う誘電体とからなり、これら第1の導体電極と第2の導体電極との距離をd(cm)、当該第1および第2の導体電極間の印加ピーク電圧の絶対値をVp(kv)とした場合、距離的平均電界強度E=Vp/dに基づき、当該距離的平均電界強度EがE>40(kv/d)を満足するように設定するのが好ましい。また、前記還元ガス供給装置で生成する還元ガスは酸素を含まないN2が好ましい。 In addition, the electrode configuration of the discharge portion includes a first conductor electrode, a second conductor electrode facing the first conductor electrode, and a dielectric covering at least one of the conductor electrodes. When the distance between the first conductor electrode and the second conductor electrode is d (cm) and the absolute value of the applied peak voltage between the first and second conductor electrodes is Vp (kv), the distance average electric field strength E = Based on Vp / d, it is preferable that the distance average electric field intensity E is set so as to satisfy E> 40 (kv / d). The reducing gas produced by the reducing gas supply device is preferably N 2 containing no oxygen.

(2) また、本発明に係る換気ガス浄化装置は、前述した(1)項の構成に新たに、前記放電部の入側に接続されるガス排出路にNOx濃度センサを設け、また、前記切替え制御手段としては、前記換気ガスの放電部への導入時に前記NOx濃度センサで測定されたNOx量を積算し、この積算NOx量が予め定める前記吸着部の吸着飽和前の規定量に達したときに前記還元ガス流路を選択し、前記還元ガス供給装置から還元ガスを放電部に導入する構成である。 (2) Further, the ventilation gas purification apparatus according to the present invention is provided with a NOx concentration sensor in the gas discharge path connected to the inlet side of the discharge part, in addition to the configuration of the above item (1), As the switching control means, the NOx amount measured by the NOx concentration sensor at the time of introduction of the ventilation gas into the discharge portion is integrated, and this integrated NOx amount reaches a predetermined amount before the adsorption saturation of the adsorption portion. Sometimes, the reducing gas flow path is selected, and the reducing gas is introduced from the reducing gas supply device into the discharge section.

また、前記吸着部もしくは還元ガス流路中に加熱手段を設ければ、当該吸着部に吸着されている有害物質を離脱させることができる。   Moreover, if a heating means is provided in the adsorption part or the reducing gas flow path, harmful substances adsorbed on the adsorption part can be separated.

(3) さらに、本発明に係る換気ガス浄化方法は、酸素の共存する換気ガスに対して放電部で放電処理を実施し、当該換気ガス中のNOxの構成成分であるNOを酸化させてNO2を生成する放電ステップと、この放電ステップにより生成されたNO2を吸着部で吸着除去し、浄化された浄化ガスを排出する吸着ステップと、前記換気ガスの前記放電部への導入時にNOx量を積算し、この積算NOx量が前記吸着部の吸着飽和前の規定量に達したか否かを吸着量判断ステップと、前記積算NOx量が前記吸着部の吸着飽和前の規定量に達したに還元ガス供給系に切替え、当該還元ガス供給系から酸素の含まない還元ガスを放電処理中の前記放電部に導入し、前記吸着部に吸着されている有害物質を還元分解しつつ当該吸着部を再生する再生処理ステップとを有する方法である。 (3) Further, in the ventilation gas purification method according to the present invention, a discharge treatment is performed on the ventilation gas coexisting with oxygen in the discharge section, and NO, which is a constituent component of NOx in the ventilation gas, is oxidized to NO2. NOx generated by this discharge step is adsorbed and removed by the adsorption unit, and the purified gas is discharged, and the amount of NOx is integrated when the ventilation gas is introduced into the discharge unit Then, it is determined whether or not the accumulated NOx amount has reached a prescribed amount before the adsorption saturation of the adsorption portion, and the accumulated NOx amount is reduced to the prescribed amount before the adsorption saturation of the adsorption portion. Switch to a gas supply system, introduce a reducing gas that does not contain oxygen from the reducing gas supply system into the discharge part during discharge treatment, and regenerate the adsorption part while reducing and decomposing harmful substances adsorbed on the adsorption part Play A method and a management step.

本発明によれば、簡素な構成で吸着部の再生処理を実現でき、長期にわたって安定、かつ、煩雑な運転管理を行うことなく有害物質を含む換気ガスを確実に浄化できる換気ガス浄化装置およびその浄化方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the ventilation | gas_gas purification apparatus which can implement | achieve the regeneration process of an adsorption | suction part with a simple structure, can purify the ventilation gas containing a toxic substance reliably for a long time, and without performing complicated operation management, and its A purification method can be provided.

以下、本発明の実施形態について図面を参照して説明する。
図1は本発明に係る換気ガス浄化装置の一実施の形態を示す構成図である。
換気ガス浄化装置1は、酸素と共存する換気ガス(X)中に含まれるNOx(窒素酸化物)などの有害物質を浄化するものであって、換気ガス(X)を浄化して排出するガス排出路2の適宜な個所に設置される。ここで、換気ガス(X)とは、トンネルや地下駐車場等の換気ガス、車両の多い交差点の沿道排ガス等のごとく常温・低濃度の有害物質を含む換気ガスその他有害物質を含む各種の換気ガスである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram showing an embodiment of a ventilation gas purifying apparatus according to the present invention.
The ventilation gas purification apparatus 1 purifies harmful substances such as NOx (nitrogen oxide) contained in the ventilation gas (X) coexisting with oxygen, and purifies the ventilation gas (X) and discharges it. It is installed at an appropriate location in the discharge path 2. Here, the ventilation gas (X) is a ventilation gas including tunnels and underground parking lots, exhaust gas along roads at intersections with many vehicles, etc. Gas.

換気ガス浄化装置1は、ガス排出路2の上流側から放電部11及び吸着部12の順序で配置され、この放電部11には所望の放電用電圧を供給するために高圧ケーブル線13を介して放電用電源14が接続される。   The ventilation gas purification apparatus 1 is arranged in the order of the discharge part 11 and the adsorption part 12 from the upstream side of the gas discharge path 2, and a high-voltage cable line 13 is supplied to the discharge part 11 in order to supply a desired discharge voltage. The discharge power supply 14 is connected.

放電部11は、ガス排出路2から流入される換気ガス(X)に対して放電処理を行うことにより、有害物質であるNOxの構成成分であるNOを酸化しNO2を生成する機能を有し、内部的には図2に示すように導体電極11aとこの導体電極11aに対向する対向導体電極11bとが所定の距離を隔てて配置される。放電部11の電極構成は後記する。 The discharge unit 11 has a function of generating NO 2 by oxidizing NO, which is a constituent of NOx, which is a harmful substance, by performing a discharge process on the ventilation gas (X) flowing in from the gas discharge path 2. Internally, as shown in FIG. 2, the conductor electrode 11a and the opposing conductor electrode 11b opposed to the conductor electrode 11a are arranged at a predetermined distance. The electrode configuration of the discharge part 11 will be described later.

放電用電源14は、放電部11内に収納される導体電極11aと対向導体電極11bとに対し、正負極性を反転させつつ所望の電圧を加えることにより、放電部11の放電処理に必要な電力供給を行う。例えば、放電部11を構成する対向導体電極11bを零電位とし、導体電極11aに対して交流的に交互に+Vから−V、−Vから+Vと極性を変えながら印加する。Vとしては、例えば5kv〜10kvの放電用電圧が用いられる。   The discharge power source 14 applies a desired voltage to the conductor electrode 11a and the counter conductor electrode 11b accommodated in the discharge part 11 while inverting the positive / negative polarity, thereby providing electric power necessary for the discharge process of the discharge part 11. Supply. For example, the counter conductor electrode 11b that constitutes the discharge unit 11 is set to a zero potential, and is applied to the conductor electrode 11a alternately with alternating polarity from + V to -V and from -V to + V. As V, for example, a discharge voltage of 5 kv to 10 kv is used.

すなわち、放電部11は、放電用電圧の供給を受けている放電処理中に導体電極11aと対向導体電極11bと通る際、NOを酸化させてNO2を生成し、下流側の吸着部12に導入する。 That is, the discharge unit 11 generates NO 2 by oxidizing NO when passing through the conductor electrode 11a and the counter conductor electrode 11b during the discharge process in which the supply of the discharge voltage is supplied. Introduce.

吸着部12は、放電部11で生成されたNO2を効率良く吸着し補足し、結果として浄化された浄化ガス(Z)を取り出し、吸着部12の出側に接続されるガス排出路2を介して外部に排出する。吸着部12の吸着剤としては、ゼオライト系、貴金属系、活性炭素系、アルカリ金属系、アルカリ土類金属系、活性アルミナ系、シリカ系、マンガン酸化物系などの粒状体を積層して用いる。これら吸着剤のうち、特にゼオライト系や活性アルミナ系が望ましい。 The adsorption unit 12 efficiently adsorbs and supplements NO 2 generated in the discharge unit 11, takes out the purified gas (Z) purified as a result, and connects the gas discharge path 2 connected to the outlet side of the adsorption unit 12. To the outside. As the adsorbent of the adsorbing portion 12, granular materials such as zeolite, noble metal, activated carbon, alkali metal, alkaline earth metal, activated alumina, silica, and manganese oxide are laminated and used. Of these adsorbents, zeolite and activated alumina are particularly desirable.

また、換気ガス浄化装置1は、放電部11及び吸着部12を跨ぐようにバイパス管路(還元ガス流路)15が接続され、当該バイパス管路15には還元ガス供給装置16が設けられている。還元ガス供給装置16は、放電処理中の放電部11に還元ガス(Y)を導入し、吸着部12に吸着されている有害物質を放電処理の効果で還元分解しつつ、放電部11及び吸着部12を通して循環させることにより、有害物質をより還元分解していき、吸着部12を再生する機能を有する。   Further, the ventilation gas purification apparatus 1 is connected to a bypass pipe (reducing gas flow path) 15 so as to straddle the discharge section 11 and the adsorption section 12, and the bypass pipe 15 is provided with a reducing gas supply device 16. Yes. The reducing gas supply device 16 introduces the reducing gas (Y) into the discharge unit 11 during the discharge process, and reduces and decomposes harmful substances adsorbed on the adsorption unit 12 by the effect of the discharge process, while the discharge unit 11 and the adsorption unit By circulating through the part 12, the harmful substance is further reduced and decomposed to regenerate the adsorption part 12.

前記ガス排出路2とバイパス管路15は交互に切替えて換気ガス(X)及び還元ガス(Y)を放電部11に導入するために、ガス排出路2及びバイパス管路15の所定位置にそれぞれ切替え弁17a,17b及び18a,18bが取り付けられている。   In order to introduce the ventilation gas (X) and the reducing gas (Y) into the discharge part 11 by alternately switching the gas discharge path 2 and the bypass pipe 15, the gas discharge path 2 and the bypass pipe 15 are respectively provided at predetermined positions of the gas discharge path 2 and the bypass pipe 15. Switching valves 17a, 17b and 18a, 18b are attached.

図2(a)〜(c)は、図1に示す放電部11の詳細な電極構成例を示す図である。
図2(a)に示す放電部11は、棒状(丸棒、角材)の導体電極11aと対向導体電極11bが交互に所望の間隔をもって配置される。例えば2つの導体電極11a,11aに対し、当該2つの導体電極11a,11aの中間位置及び各導体電極11a,11aの外側となる所定位置に列状をなすごとく3つの対向導体電極11b,11b,11bが配置される。そして、これら導体電極11a及び対向導体電極11bのうち、少なくとも一方の電極側には誘電体11cが覆われている。導体電極11aまたは対向導体電極11bを誘電体11cで覆う理由は、放電の安定性を確保することにある。偏った不安定な集中アーク放電をなくすことにある。
2A to 2C are diagrams showing detailed electrode configuration examples of the discharge unit 11 shown in FIG.
In the discharge section 11 shown in FIG. 2A, rod-shaped (round bars, square bars) conductor electrodes 11a and counter conductor electrodes 11b are alternately arranged at a desired interval. For example, with respect to the two conductor electrodes 11a and 11a, three counter conductor electrodes 11b, 11b, and so on form a line at an intermediate position between the two conductor electrodes 11a and 11a and a predetermined position outside the conductor electrodes 11a and 11a. 11b is arranged. A dielectric 11c is covered on at least one of the conductor electrode 11a and the counter conductor electrode 11b. The reason for covering the conductor electrode 11a or the counter conductor electrode 11b with the dielectric 11c is to ensure the stability of discharge. The purpose is to eliminate biased and unstable concentrated arc discharge.

このような電極の配置構成とすることにより、導体電極11aと対向導体電極11bが誘電体11cを介して仕切られた空間を形成し、この空間部分が換気ガス(X)または還元ガス(Y)の流路となる。そして、ガス流路の下流側に吸着部12が設置される。   By adopting such an electrode arrangement configuration, a space in which the conductor electrode 11a and the counter conductor electrode 11b are partitioned through the dielectric 11c is formed, and this space portion is a ventilation gas (X) or a reducing gas (Y). It becomes this flow path. And the adsorption | suction part 12 is installed in the downstream of a gas flow path.

図2(b)に示す放電部11は、棒状の導体電極11aに代えて、板状の導体電極11aを設けたものであり、その他の構成は図2(a)と同様である。   The discharge part 11 shown in FIG. 2 (b) is provided with a plate-like conductor electrode 11a instead of the rod-like conductor electrode 11a, and the other configuration is the same as FIG. 2 (a).

図2(c)に示す放電部11は、導体電極11a及び対向導体電極11bの両方を誘電体11cで覆った構成である。   The discharge part 11 shown in FIG.2 (c) is the structure which covered both the conductor electrode 11a and the opposing conductor electrode 11b with the dielectric material 11c.

次に以上のように構成された換気ガス浄化装置の作用について説明する。
換気ガス浄化装置1は、切替え弁17a,17bを開、切替え弁18a,18bを閉とするとともに、放電用電源14から放電部11内の各導体電極11aと各対向導体電極11bとに対し、交互に正負極性を切替えて所定の放電用電圧を印加し、各対をなす導体電極11aと各対向導体電極11bとの間で放電処理を行う。
Next, the operation of the ventilation gas purification apparatus configured as described above will be described.
The ventilation gas purifying apparatus 1 opens the switching valves 17a and 17b and closes the switching valves 18a and 18b, and from the discharge power supply 14 to each conductor electrode 11a and each counter conductor electrode 11b in the discharge unit 11, A predetermined discharge voltage is applied by alternately switching between positive and negative polarities, and a discharge treatment is performed between each pair of conductor electrode 11a and each counter conductor electrode 11b.

このとき、換気ガス(X)がガス排出路2を通って放電部11内に導入されると、換気ガス(X)に含まれる有害物質であるNOxの構成成分であるNOは放電処理により酸化されてNO2(二酸化窒素)に生成され、下流側の吸着部12に流れる。 At this time, when the ventilation gas (X) is introduced into the discharge part 11 through the gas discharge path 2, NO which is a constituent of NOx, which is a harmful substance contained in the ventilation gas (X), is oxidized by the discharge treatment. Is produced into NO 2 (nitrogen dioxide) and flows to the adsorption section 12 on the downstream side.

吸着部12では、放電部11から送られてくるNO2を効率良く吸着し補足することにより、浄化されたガス(Z)だけを取り出し、吸着部12の出側に接続されるガス排出路2から排出するが、吸着部12の吸着飽和となる前に放電部11の放電処理を続けた状態で切替え弁17a,17bを閉、切替え弁18a,18bを開とする。 In the adsorption unit 12, the NO 2 sent from the discharge unit 11 is efficiently adsorbed and supplemented to take out only the purified gas (Z), and the gas discharge path 2 connected to the outlet side of the adsorption unit 12. However, the switching valves 17a and 17b are closed and the switching valves 18a and 18b are opened while the discharging process of the discharging unit 11 is continued before the adsorption of the suction unit 12 is saturated.

その結果、吸着部12から排出された浄化ガス(Z)はバイパス管路15を通って還元ガス供給装置16に供給される。還元ガス供給装置16は、吸着部12からバイパス管路15を通って入力される浄化ガス(Z)を取り込んで酸素の含まない還元ガス(Y)に生成し、バイパス管路15及びガス排出路2を通して放電部11に供給する。   As a result, the purified gas (Z) discharged from the adsorption unit 12 is supplied to the reducing gas supply device 16 through the bypass line 15. The reducing gas supply device 16 takes in the purified gas (Z) that is input from the adsorption unit 12 through the bypass pipe 15 and generates the reduced gas (Y) that does not contain oxygen, and the bypass pipe 15 and the gas discharge path. 2 to the discharge unit 11.

放電部11では、還元ガス(Y)雰囲気下で放電処理を行いつつ当該還元ガス(Y)を吸着部12に送り込むことにより、吸着部12に吸着していたNO2がNO,N2に分解され、還元ガス供給装置16を通って放電部11及び吸着部12を循環することにより、有害物質を含まない完全に無害な還元雰囲気(N2)となって吸着部12が再生していく。つまり、吸着部12に吸着したNO2がN2へ還元分解する。完全な還元雰囲気(N2)となった後、還元ガス供給装置16の本来の生成機能を停止させてN2を循環させるだけで吸着部12を再生可能となる。 In the discharge unit 11, NO 2 adsorbed on the adsorption unit 12 is decomposed into NO and N 2 by feeding the reduction gas (Y) to the adsorption unit 12 while performing discharge treatment in a reducing gas (Y) atmosphere. Then, by circulating the discharge unit 11 and the adsorption unit 12 through the reducing gas supply device 16, the adsorption unit 12 is regenerated with a completely harmless reducing atmosphere (N 2 ) that does not contain harmful substances. That is, NO 2 adsorbed on the adsorption unit 12 is reduced and decomposed into N 2 . After the complete reducing atmosphere (N 2 ) is reached, the adsorption unit 12 can be regenerated by simply stopping the original generation function of the reducing gas supply device 16 and circulating N 2 .

図3は本発明に係る換気ガス浄化装置の他の実施の形態を示す構成図である。なお、同図において、図1と同一部分については同一符号を付し、その詳しい説明は省略する。
この換気ガス浄化装置1において、図1と比較して特に異なるところは、放電部11内に吸着部12を収納させた構成としたことにある。その他の構成は図1と同様であるので、図1の説明に譲る。
FIG. 3 is a block diagram showing another embodiment of the ventilation gas purifying apparatus according to the present invention. In the figure, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
In this ventilation gas purification apparatus 1, the difference from FIG. 1 is that the adsorption unit 12 is accommodated in the discharge unit 11. Since other configurations are the same as those in FIG. 1, the description will be given with reference to FIG.

図4(a)〜(c)は、吸着部12を収納した放電部11の詳細な構成例を示す図である。
図4(a)に示す吸着部12を含む放電部11は、例えば3個の導体電極11aと4個の対向導体電極11bとが千鳥状に配置され、そのうち導体電極11aが誘電体11cで覆われている。そして、これら3個の導体電極11aと4個の対向導体電極11bとの間に吸着部12が配置されている。なお、導体電極11aに代えて対向導体電極11b側を誘電体11cで覆う構成でもよい。
4A to 4C are diagrams illustrating a detailed configuration example of the discharge unit 11 in which the suction unit 12 is housed.
In the discharge part 11 including the attracting part 12 shown in FIG. 4A, for example, three conductor electrodes 11a and four counter conductor electrodes 11b are arranged in a staggered pattern, and the conductor electrode 11a is covered with a dielectric 11c. It has been broken. And the adsorption | suction part 12 is arrange | positioned between these three conductor electrodes 11a and the four opposing conductor electrodes 11b. In addition, it may replace with the conductor electrode 11a and the structure which covers the opposing conductor electrode 11b side with the dielectric material 11c may be sufficient.

図4(b)に示す吸着部12を含む放電部11は、3個の導体電極11a,11a,11aに対して、所定の距離を隔てて1個の平板状対向導体電極11bを対向させるように配置した例である。複数の導体電極11a,11a,11aと平板状の対向導体電極11bとの間に吸着部12が配置されている。   The discharge part 11 including the adsorbing part 12 shown in FIG. 4B is configured so that one flat counter conductor electrode 11b is opposed to the three conductor electrodes 11a, 11a, 11a at a predetermined distance. This is an example of arrangement. The adsorption portion 12 is disposed between the plurality of conductor electrodes 11a, 11a, 11a and the flat opposing conductor electrode 11b.

図4(c)に示す吸着部12を含む放電部11は、図4(a)と同様に複数の導体電極11aと複数の対向導体電極11bとを千鳥状に配置するとともに、これら導体電極11a及び対向導体電極11bの双方を誘電体11cで覆ってなる構成である。吸着部12の配置は図4(a)と同じである。   The discharge part 11 including the adsorption part 12 shown in FIG. 4C has a plurality of conductor electrodes 11a and a plurality of counter conductor electrodes 11b arranged in a staggered manner as in FIG. 4A, and these conductor electrodes 11a. The counter conductor electrode 11b is covered with a dielectric 11c. The arrangement of the suction unit 12 is the same as that in FIG.

このような電極の配置構成とすることにより、導体電極11aと対向導体電極11bが誘電体11cを介して仕切られた空間を形成し、この空間部分が換気ガス(X)または還元ガス(Y)の流路となるので、この流路部分に吸着部12を設置すれば、対をなす導体電極11aと各対向導体電極11bとの間で放電処理を行うことにより、換気ガス(X)に含まれる有害物質であるNO(窒素酸化物)を酸化させてNO2(二酸化窒素)を生成し、吸着部12に吸着させることができる。なお、還元分解作用については図1と同様であるので、省略する。 By adopting such an electrode arrangement configuration, a space in which the conductor electrode 11a and the counter conductor electrode 11b are partitioned through the dielectric 11c is formed, and this space portion is a ventilation gas (X) or a reducing gas (Y). Therefore, if the adsorption part 12 is installed in this flow path portion, it is included in the ventilation gas (X) by performing a discharge treatment between the paired conductor electrode 11a and each opposing conductor electrode 11b. NO (nitrogen oxide), which is a harmful substance, is oxidized to generate NO 2 (nitrogen dioxide), which can be adsorbed by the adsorption unit 12. The reductive decomposition action is the same as in FIG.

図5は本発明に係る換気ガス浄化装置1における放電部11内の距離的平均電界強度における滞留時間とオゾン発生量との関係を示す実験例である。なお、滞留時間とはガスが放電領域を通過する時間を意味する。   FIG. 5 is an experimental example showing the relationship between the residence time and the ozone generation amount in the distance average electric field strength in the discharge section 11 in the ventilation gas purification apparatus 1 according to the present invention. The residence time means the time for the gas to pass through the discharge region.

今、換気ガス浄化装置1の放電部11の電極構成として、誘電体11cを介して導体電極11aと対向導体電極11bとの電極間距離=d(cm)、印加ピーク電圧=Vp(kv)とした場合、距離的平均電界強度Eは、
E=Vp/d(kv/cm)で表せる。ここで、「距離的」とは、印加ピーク電圧を電極間距離で割ったことを表している。
Now, as the electrode configuration of the discharge unit 11 of the ventilation gas purification apparatus 1, the distance between the electrode 11a and the counter conductor electrode 11b via the dielectric 11c = d (cm), and the applied peak voltage = Vp (kv). The distance average electric field strength E is
E = Vp / d (kv / cm). Here, “distance” means that the applied peak voltage is divided by the interelectrode distance.

そこで、このような電極構成に基づき、距離的平均電界強度Eとして、25(kv/cm)と50〜60(kv/cm)に設定した場合、同一放電入力に対し、距離的平均電界強度E=50〜60(kv/cm)に設定した場合に25(kv/cm)と比較して明らかにオゾンO3の発生量が多くなることが判る。ここで、放電入力とは、単位時間当たりのガス量である1m3/h当りに必要な電力(w)を表している。 Therefore, based on such an electrode configuration, when the distance average electric field intensity E is set to 25 (kv / cm) and 50 to 60 (kv / cm), the distance average electric field intensity E for the same discharge input. It can be seen that the amount of ozone O 3 generated is clearly increased when it is set to 50 to 60 (kv / cm) as compared with 25 (kv / cm). Here, the discharge input represents the electric power (w) required per 1 m 3 / h, which is the amount of gas per unit time.

この実験結果から明らかなように、距離的平均電界強度としては少なくともE>40(kv/cm)とし、放電部11内のガス滞留時間を短くすれば、オゾンO3の発生量を増加させることが可能となる。また、距離的平均電界強度を大きくすれば、オゾンO3の発生量を増加させるだけでなく、コンパクトかつ高効率な放電部11を実現できる。 As is clear from this experimental result, if the distance average electric field strength is at least E> 40 (kv / cm) and the gas residence time in the discharge part 11 is shortened, the amount of ozone O 3 generated can be increased. Is possible. Further, if the distance average electric field strength is increased, not only the amount of ozone O 3 generated can be increased, but also a compact and highly efficient discharge unit 11 can be realized.

また、NOxの酸化プロセスは、放電部11内の放電処理で生成されたオゾン(〇3)とNOとの酸化反応によってNO2を生成することから、如何に効率良くオゾンO3を発生させるかが重要な因子となる。よって、距離的平均電界強度は、50(kv/cm)以上とするのがより望ましい。 Further, since the NOx oxidation process generates NO 2 by the oxidation reaction between ozone (◯ 3 ) generated by the discharge treatment in the discharge section 11 and NO, how efficiently ozone O 3 is generated. Is an important factor. Therefore, the distance average electric field strength is more preferably 50 (kv / cm) or more.

図6及び図7は本発明に係る換気ガス浄化装置1におけるNOx浄化特性を説明する図である。
図6は換気ガス浄化装置1に換気ガス(X)を導入したときの放電部11でのNO酸化による吸着除去プロセスを示す図である。放電部11の放電処理により、酸化雰囲気の状態にすると、ガス排出路2から導入される換気ガス(X)中のNOが酸化されてNO2を生成する。このときに放電入力を増加させていくと、その増加に伴ってNO2へ酸化量が増加していく。よって、望ましい所定の放電入力値とすれば、吸着部12へのNOx吸着量、ひいてはNOx除去量を大幅に増加させることが可能となる。
6 and 7 are diagrams for explaining the NOx purification characteristics in the ventilation gas purification apparatus 1 according to the present invention.
FIG. 6 is a diagram showing an adsorption removal process by NO oxidation in the discharge unit 11 when the ventilation gas (X) is introduced into the ventilation gas purification device 1. The discharge treatment of the discharge unit 11, when the state of oxidizing atmosphere, NO in the ventilation gas (X) to be introduced from the gas discharge passage 2 is oxidized to form NO 2. If the discharge input is increased at this time, the oxidation amount increases to NO 2 with the increase. Therefore, if the desired predetermined discharge input value is set, it is possible to greatly increase the NOx adsorption amount to the adsorption unit 12 and, in turn, the NOx removal amount.

図7は換気ガス浄化装置1に還元ガス(Y)を導入したときの放電部11でのNOx分解プロセスを示す図である。酸素の含まない還元ガス(Y)を導入した状態で放電処理すると、吸着部12が還元雰囲気となり、当該吸着部12に吸着されているNO2がNO、N2に還元分解される。このとき、放電入力を増加させていくと、その増加に伴ってN2の還元量も増加する。これにより、吸着部12が還元分解によって徐々に再生させることが可能となる。 FIG. 7 is a diagram showing a NOx decomposition process in the discharge unit 11 when reducing gas (Y) is introduced into the ventilation gas purification device 1. When the discharge treatment is performed in a state where the reducing gas (Y) containing no oxygen is introduced, the adsorption unit 12 becomes a reducing atmosphere, and NO 2 adsorbed on the adsorption unit 12 is reduced and decomposed into NO and N 2 . At this time, if the discharge input is increased, the reduction amount of N 2 is also increased with the increase. Thereby, the adsorption unit 12 can be gradually regenerated by reductive decomposition.

図8は換気ガス浄化装置1を運転する場合における切替え弁17a,17bと18a,18bとの切替え制御の一例を説明する図である。   FIG. 8 is a diagram for explaining an example of switching control between the switching valves 17a, 17b and 18a, 18b when the ventilation gas purification apparatus 1 is operated.

この換気ガス浄化装置1は、新たに放電部11の入側に近いガス排出路2にNOx濃度を測定するNOx濃度センサ21と、演算制御部22が設けられている。   The ventilation gas purification apparatus 1 is newly provided with a NOx concentration sensor 21 for measuring the NOx concentration and a calculation control unit 22 in the gas discharge path 2 near the entry side of the discharge unit 11.

演算制御部22には、過去の経験や実際の計測に基づいて吸着部12の吸着飽和となる前のNOx濃度規定値が設定され、さらに、吸着部12へのNOx吸着量判断手段及び判断結果に基づいて切替え弁17a,17bと18a,18bを切替え制御する切替え制御手段が設けられている。   The calculation control unit 22 is set with a NOx concentration regulation value before the adsorption saturation of the adsorption unit 12 based on past experience and actual measurement, and further, NOx adsorption amount judgment means and judgment results to the adsorption unit 12. Is provided with a switching control means for switching and controlling the switching valves 17a, 17b and 18a, 18b.

この状態において、演算制御部22は、切替え制御手段を介して切替え弁17a,17bを開、切替え弁18a,18bを閉とすると、換気ガス(X)が放電部11に導入される。この換気ガス導入時、換気ガス(X)中の単位時間当たりの流量をQ、NOx濃度センサ21で測定されたNOx濃度を取り込み、NOx濃度センサ21から所定の周期ごとに取り込んだ積算NOx濃度をX、ガス導入時間をTとすると、Q・X・Tの演算式からおおよその吸着部12への積算吸着NOx量を予測できる。そこで、前述したNOx吸着量判断手段は、測定された積算吸着NOx量と吸着飽和となる前のNOx濃度規定値とを比較し、測定された積算吸着NOx量がNOx濃度規定値に達したとき、吸着部12へのNOx吸着飽和と判断し、切替え制御手段を介して切替え弁17a,17bを閉、切替え弁18a,18bを開とし、換気ガス(X)の放電部11への導入から還元ガス(Y)の放電部11への導入に切替える、
その結果、還元ガス供給装置16は、吸着部12の出側の浄化ガス(Z)を取り込んで酸素の含まない還元ガス(Y)である例えばN2に生成し、放電部11及び吸着部12を窒素雰囲気下に設定し、放電処理を行うと、吸着部12に吸着しているNO2がNO、N2に還元分解され、還元ガス供給装置16に入っていく。ここで、再度N2の還元ガス(Y)に変換し、放電部11及び吸着部12を循環させると、吸着部12で分解されるNOが減少し、最終的にはN2の雰囲気となり、吸着部12が再生する。
In this state, when the arithmetic control unit 22 opens the switching valves 17 a and 17 b and closes the switching valves 18 a and 18 b via the switching control unit, the ventilation gas (X) is introduced into the discharge unit 11. When the ventilation gas is introduced, the flow rate per unit time in the ventilation gas (X) is Q, the NOx concentration measured by the NOx concentration sensor 21 is taken in, and the integrated NOx concentration taken in from the NOx concentration sensor 21 every predetermined cycle is obtained. If X and the gas introduction time are T, the approximate amount of accumulated NOx adsorbed to the adsorption unit 12 can be predicted from the calculation formula of Q, X, and T. Therefore, the NOx adsorption amount determination means described above compares the measured integrated adsorption NOx amount with the NOx concentration prescribed value before the adsorption saturation, and when the measured accumulated adsorption NOx amount reaches the NOx concentration prescribed value. The NOx adsorption saturation to the adsorption unit 12 is determined, the switching valves 17a and 17b are closed and the switching valves 18a and 18b are opened via the switching control means, and the ventilation gas (X) is reduced from the introduction to the discharge unit 11 Switching to introduction of the gas (Y) into the discharge part 11;
As a result, the reducing gas supply device 16 takes in the purified gas (Z) on the outlet side of the adsorption unit 12 to generate, for example, N 2 which is a reducing gas (Y) containing no oxygen, and discharge unit 11 and adsorption unit 12. Is set in a nitrogen atmosphere and discharge treatment is performed, NO 2 adsorbed on the adsorption unit 12 is reduced and decomposed into NO and N 2 and enters the reducing gas supply device 16. Here, when converted again to N 2 reducing gas (Y) and circulated through the discharge unit 11 and the adsorption unit 12, NO decomposed in the adsorption unit 12 decreases, and finally an N 2 atmosphere is obtained. The adsorption unit 12 is regenerated.

ところで、この還元ガス導入時、演算制御部22は、NOx濃度センサ21で測定させるNOx濃度を取り込み、当該NOx濃度が予め設定されたNOx濃度規定値以下となったか否かを判定し、NOx濃度がNOx濃度規定値以下となった時点で切替え制御信号を送出し、切替え弁17a,17bを開、切替え弁18a,18bを閉とし、本来の換気ガスの浄化処理に移行する。 By the way, at the time of introducing the reducing gas, the calculation control unit 22 takes in the NOx concentration measured by the NOx concentration sensor 21, determines whether or not the NOx concentration is equal to or lower than a preset NOx concentration prescribed value, and the NOx concentration. When the value becomes equal to or less than the NOx concentration regulation value, a switching control signal is sent, the switching valves 17a and 17b are opened, the switching valves 18a and 18b are closed, and the process proceeds to the original ventilation gas purification process.

従って、以上のように換気ガス(X)導入と還元ガス(Y)導入の切替え弁17a,17bと18a,18bとの切替え制御を実施することにより、換気ガス中のNOx除去と吸着部12の再生を繰り返しつつ、長期間にわたって安定、かつ、煩雑な運転管理をすることなく有害物質を含む換気ガス(Z)を確実に浄化し排出できる。   Therefore, by performing the switching control of the switching valves 17a, 17b and 18a, 18b for introducing the ventilation gas (X) and the reducing gas (Y) as described above, the NOx removal in the ventilation gas and the adsorption unit 12 are performed. While repeating regeneration, the ventilation gas (Z) containing harmful substances can be reliably purified and discharged without stable and complicated operation management over a long period of time.

図9は空気を取り込んで還元ガス供給装置16がN2を抽出して還元ガス(Y)とする他の実施の形態を示す構成図である。   FIG. 9 is a block diagram showing another embodiment in which air is taken in and the reducing gas supply device 16 extracts N2 to obtain reducing gas (Y).

この換気ガス浄化装置1は、還元ガスを循環させるバイパス管路(還元ガス流路)15に複数台並設される。バイパス管路(還元ガス流路)15の所定個所には還元ガス供給装置16が設置される。   A plurality of the ventilation gas purification apparatuses 1 are arranged in parallel in a bypass pipe (reducing gas channel) 15 for circulating the reducing gas. A reducing gas supply device 16 is installed at a predetermined location of the bypass conduit (reducing gas passage) 15.

これら複数の換気ガス浄化装置1,…のうち、例えば図示左側から2つ目の換気ガス浄化装置1の吸着部12がNOx吸着飽和前の所定の規定値に達したとき、該当する換気ガス浄化装置1の放電部11入側に設けた切替え弁18を開とし、かつ、換気ガス(X)のガス排出路2の入出力側の切替え弁17a,17b(図示せず)を閉とした後、還元ガス供給装置16を動作させる。   Among the plurality of ventilation gas purification devices 1,..., For example, when the adsorption unit 12 of the second ventilation gas purification device 1 from the left side in the figure reaches a predetermined specified value before NOx adsorption saturation, the corresponding ventilation gas purification is performed. After opening the switching valve 18 provided on the inlet side of the discharge unit 11 of the apparatus 1 and closing the switching valves 17a and 17b (not shown) on the input / output side of the gas exhaust path 2 of the ventilation gas (X) Then, the reducing gas supply device 16 is operated.

還元ガス供給装置16は、前述する実施の形態と異なり、大気中の空気を取り込んでN2を生成し、NOx吸着飽和前の所定の規定値に達する吸着部12と対の関係にある放電部11に供給し、還元ガス供給装置16−供給側バイパス管路15−放電部11−吸着部12−リターン側バイパス管15を循環させる。その結果、放電部11及び吸着部12がN2による還元雰囲気となり、吸着部12に吸着されているNO2がN2などに還元分解され、当該吸着部12が徐々再生していく。そして、図8で説明したように、NOx濃度センサ21から取得するNOx濃度が規定値以下になったとき、切替え弁18を閉とし、かつ、ガス排出路2入出力側の切替え弁17a,17bを開とし、換気ガス(X)を導入する。 Unlike the embodiment described above, the reducing gas supply device 16 takes in air in the atmosphere to generate N 2 , and has a discharge unit that is paired with the adsorption unit 12 that reaches a predetermined specified value before NOx adsorption saturation. 11, the reducing gas supply device 16 -the supply side bypass line 15 -the discharge part 11 -the adsorption part 12 -the return side bypass pipe 15 is circulated. As a result, the discharge unit 11 and the suction unit 12 is a reductive atmosphere by the N 2, is NO 2 adsorbed in the adsorption unit 12 is reduced and decomposed into such N 2, the suction unit 12 is gradually gradual regeneration. Then, as described in FIG. 8, when the NOx concentration acquired from the NOx concentration sensor 21 becomes equal to or less than the specified value, the switching valve 18 is closed and the switching valves 17a and 17b on the input / output side of the gas discharge path 2 are closed. Open and ventilating gas (X) is introduced.

なお、還元ガス供給装置16としては、例えばPSA(Pressure Swing Adsorption)式窒素発生器が挙げられる。PSA式窒素発生器内には、適当な細孔径を持つ吸着剤が充填されており、空気中のガス成分から窒素のみ分離し抽出する機能を持っている。   Examples of the reducing gas supply device 16 include a PSA (Pressure Swing Adsorption) type nitrogen generator. The PSA type nitrogen generator is filled with an adsorbent having an appropriate pore size, and has a function of separating and extracting only nitrogen from gas components in the air.

図10は換気ガス浄化装置1を構成する吸着部12に吸着しているN02を離脱を促進する手段を設けた例である。
この換気ガス浄化装置1は、具体的には吸着部12内または還元ガス流路15に加熱手段23を設け、還元ガス導入時の吸着部再生運転時、吸着部12内を加熱雰囲気とし、吸着部12に吸着しているNOxの構成成分であるNO2を効率よく離脱を促し、還元分解反応を促進させるものである。すなわち、加熱雰囲気下において、吸着部12のNOxを離脱させて還元ガス(Y)に放出させることにより、放電部11による放電処理により効率良くNOxの還元分解が行われ、吸着部12を速やかに再生させることが可能である。
FIG. 10 shows an example in which means for promoting detachment of N02 adsorbed by the adsorbing portion 12 constituting the ventilation gas purification apparatus 1 is provided.
Specifically, the ventilation gas purification apparatus 1 is provided with a heating means 23 in the adsorption unit 12 or in the reducing gas flow path 15, and during the adsorption unit regeneration operation when reducing gas is introduced, the inside of the adsorption unit 12 is used as a heating atmosphere to perform adsorption. NO 2 which is a constituent component of NOx adsorbed on the portion 12 is efficiently promoted to promote the reductive decomposition reaction. That is, in a heated atmosphere, NOx in the adsorption unit 12 is released and released to the reducing gas (Y), whereby NOx is efficiently reduced and decomposed by the discharge treatment by the discharge unit 11, and the adsorption unit 12 is promptly moved. It is possible to reproduce.

従って、以上のような各実施の形態によれば、換気ガス導入時、放電部11の放電処理による酸化雰囲気によってNOxの構成成分であるNOをNO2に酸化処理するので、吸着部12により多量のNOxを吸着させて除去できる。また、吸着部12のNOx吸着飽和前に切替え弁17a,17bと18a,18bとを切替えて還元ガス(Y)を導入し、吸着NO2を還元雰囲気で放電処理することにより、吸着部12の吸着NO2をNへ還元分解させるので、吸着部12を容易に再生できる。よって、長期にわたって安定、かつ、煩雑な運転管理を行うことなく有害物質を含む換気ガスを確実に浄化できる。 Therefore, according to each embodiment as described above, NO is a constituent component of NOx to NO 2 by the oxidizing atmosphere by the discharge process of the discharge unit 11 when introducing the ventilation gas. NOx can be adsorbed and removed. In addition, before the NOx adsorption saturation of the adsorption unit 12, the switching valves 17a, 17b and 18a, 18b are switched to introduce reducing gas (Y), and the adsorbed NO 2 is discharged in a reducing atmosphere, so that the adsorption unit 12 Since the adsorption NO 2 is reduced and decomposed into N 2 , the adsorption unit 12 can be easily regenerated. Therefore, it is possible to reliably purify the ventilation gas containing harmful substances without performing stable and complicated operation management over a long period of time.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

本発明に係る換気ガス浄化装置の一実施の形態を示す構成図。The block diagram which shows one Embodiment of the ventilation gas purification apparatus which concerns on this invention. 図1に示す放電部内の複数の電極構成例を示す図。The figure which shows the some example electrode structure in the discharge part shown in FIG. 本発明に係る換気ガス浄化装置の他の実施の形態を示す構成図。The block diagram which shows other embodiment of the ventilation gas purification apparatus which concerns on this invention. 図3に示す放電部内の複数の電極構成例を示す図。The figure which shows the example of a some electrode structure in the discharge part shown in FIG. 放電部内の距離的平均電界強度におけるガス滞留時間とオゾン発生量との関係を説明する図。The figure explaining the relationship between the gas residence time in the distance average electric field strength in a discharge part, and ozone generation amount. NOからNO2への酸化特性を示す図。It shows the oxidation characteristic to NO 2 from NO. NO2からN2への還元分解特性を説明する図。Diagram illustrating the reductive decomposition characteristic of the NO 2 to N 2. 換気ガス浄化装置に設けられている各切替え弁の切替え制御及び本発明に係る換気ガス浄化方法を説明する図。The figure explaining the switching control of each switching valve provided in the ventilation gas purification apparatus, and the ventilation gas purification method which concerns on this invention. 本発明に係る換気ガス浄化装置のさらに他の実施の形態を示す構成図。The block diagram which shows other embodiment of the ventilation gas purification apparatus which concerns on this invention. 本発明に係る換気ガス浄化装置のさらに別の他の実施の形態を示す構成図。The block diagram which shows other another embodiment of the ventilation gas purification apparatus which concerns on this invention.

符号の説明Explanation of symbols

1…換気ガス浄化装置、2…ガス排出路、11…放電部、11a…導体電極、11b…対向導体電極、11c…誘電体、12…吸着部、14…放電用電源、15…バイパス管路(還元ガス流路)、16…還元ガス供給装置、17a,17b,18a,18b,18…切替え弁、21…NOx濃度センサ、22…演算制御部、23…加熱手段。   DESCRIPTION OF SYMBOLS 1 ... Ventilation gas purification apparatus, 2 ... Gas discharge path, 11 ... Discharge part, 11a ... Conductor electrode, 11b ... Opposite conductor electrode, 11c ... Dielectric, 12 ... Adsorption part, 14 ... Power supply for discharge, 15 ... Bypass line (Reducing gas flow path), 16 ... reducing gas supply device, 17a, 17b, 18a, 18b, 18 ... switching valve, 21 ... NOx concentration sensor, 22 ... arithmetic control unit, 23 ... heating means.

Claims (6)

酸素の共存する換気ガスのガス排出路上に設けられ、放電処理により当該換気ガス中に含むNOx(窒素酸化物)の構成成分であるNO(一酸化窒素)を酸化させてNO2(2酸化窒素)を生成する放電部と、
この放電部によって生成されたNO2を吸着除去し、浄化された浄化ガスを排出する吸着部と、
前記放電部及び前記吸着部に跨って設けた還元ガス流路上に設けられ、酸素を含まない還元ガスを生成する還元ガス供給装置と、
前記ガス排出路と前記還元ガス流路との選択によって前記換気ガスと前記還元ガスとを交互に前記放電部に導入し、当該還元ガスの導入時に前記放電部による放電処理により前記吸着部に吸着されている有害物質であるNOを、無害なガスへ還元分解させつつ前記還元ガス供給装置に通して循環させて前記吸着部を再生する切替え制御手段とを備えたことを特徴とする換気ガス浄化装置。
Provided in the gas discharge path of the ventilation gas of oxygen coexist, discharge treatment by the a component of the NOx included in the ventilation gas (nitrogen oxides) NO (nitrogen monoxide) is oxidized to NO 2 (2 nitric oxide ) Generating a discharge part;
An adsorption unit that adsorbs and removes NO 2 generated by the discharge unit and discharges purified purified gas;
A reducing gas supply device that generates a reducing gas that does not contain oxygen, provided on a reducing gas flow path provided across the discharge unit and the adsorption unit;
The ventilation gas and the reducing gas are alternately introduced into the discharge unit by selecting the gas discharge path and the reducing gas channel, and are adsorbed on the adsorption unit by a discharge process by the discharge unit when the reducing gas is introduced. A ventilation gas comprising switching control means for recirculating the NO 2 , which is a harmful substance, into a harmless gas and circulating it through the reducing gas supply device to regenerate the adsorption unit Purification equipment.
請求項1に記載の換気ガス浄化装置において、
前記放電部の電極構成は、第1の導体電極と、この第1の導体電極に対向する第2の導体電極と、少なくとも一方の導体電極を覆う誘電体とからなり、
これら第1の導体電極と第2の導体電極との距離をd(cm)、当該第1および第2の導体電極間の印加ピーク電圧の絶対値をVp(kv)とした場合、
距離的平均電界強度E=Vp/dに基づき、当該距離的平均電界強度EがE>40(kv/d)を満足するように設定することを特徴とする換気ガス浄化装置。
In the ventilation gas purification apparatus of Claim 1,
The electrode configuration of the discharge part is composed of a first conductor electrode, a second conductor electrode facing the first conductor electrode, and a dielectric covering at least one of the conductor electrodes,
When the distance between the first conductor electrode and the second conductor electrode is d (cm) and the absolute value of the applied peak voltage between the first and second conductor electrodes is Vp (kv),
A ventilation gas purifying apparatus characterized in that, based on the distance average electric field strength E = Vp / d, the distance average electric field strength E is set to satisfy E> 40 (kv / d).
請求項1に記載の換気ガス浄化装置において、
前記還元ガス供給装置で生成して前記放電部に導入する還元ガスはN2(窒素ガス)であることを特徴とする換気ガス浄化装置。
In the ventilation gas purification apparatus of Claim 1,
A ventilation gas purifying device, wherein the reducing gas produced by the reducing gas supply device and introduced into the discharge section is N 2 (nitrogen gas).
請求項1ないし請求項3の何れか一項に記載の換気ガス浄化装置において、
前記放電部の入側に接続されるガス排出路にNOx濃度センサを設け、
前記切替え制御手段は、前記換気ガスの放電部への導入時に前記NOx濃度センサで測定されたNOx量を積算し、この積算NOx量が予め定める前記吸着部の吸着飽和前の規定量に達したときに前記還元ガス流路を選択し、前記還元ガス供給装置から還元ガスを放電部に導入することを特徴とする換気ガス浄化装置。
In the ventilation gas purification apparatus as described in any one of Claims 1 thru | or 3,
A NOx concentration sensor is provided in the gas discharge path connected to the entry side of the discharge unit,
The switching control unit integrates the NOx amount measured by the NOx concentration sensor when the ventilation gas is introduced into the discharge unit, and the accumulated NOx amount reaches a predetermined amount before adsorption saturation of the adsorption unit. The ventilation gas purification apparatus characterized by sometimes selecting the reducing gas flow path and introducing the reducing gas from the reducing gas supply apparatus to the discharge section.
請求項1ないし請求項4の何れか一項に記載の換気ガス浄化装置において、
前記吸着部もしくは還元ガス流路中に、当該吸着部に吸着されている有害物質を離脱させるための加熱手段を設けたことを特徴とする換気ガス浄化装置。
In the ventilation gas purification apparatus as described in any one of Claims 1 thru | or 4,
A ventilation gas purifying apparatus, characterized in that a heating means is provided in the adsorbing part or the reducing gas flow path for separating harmful substances adsorbed on the adsorbing part.
酸素の共存する換気ガスに対して放電部で放電処理を実施し、当該換気ガス中のNOxの構成成分であるNOを酸化させてNO2を生成する放電ステップと、
この放電ステップにより生成されたNO2を吸着部で吸着除去し、浄化された浄化ガスを排出する吸着ステップと、
前記換気ガスの前記放電部への導入時にNOx量を積算し、この積算NOx量が前記吸着部の吸着飽和前の規定量に達したか否かを吸着量判断ステップと、
前記積算NOx量が前記吸着部の吸着飽和前の規定量に達したに還元ガス供給系に切替え、当該還元ガス供給系から酸素の含まない還元ガスを放電処理中の前記放電部に導入し、前記吸着部に吸着されている有害物質を還元分解しつつ当該吸着部を再生する再生処理ステップとを有することを特徴とする換気ガス浄化方法。
A discharge step of performing discharge treatment in the discharge section on the ventilation gas coexisting with oxygen, and oxidizing NO that is a constituent of NOx in the ventilation gas to generate NO2;
An adsorption step of adsorbing and removing NO2 generated by this discharge step at the adsorption unit and discharging the purified gas after purification,
An amount of NOx is integrated when the ventilation gas is introduced into the discharge unit, and an adsorption amount determination step of whether or not the integrated NOx amount has reached a predetermined amount before the adsorption saturation of the adsorption unit;
When the accumulated NOx amount reaches a specified amount before the adsorption saturation of the adsorption unit, it is switched to a reducing gas supply system, and a reducing gas not containing oxygen is introduced from the reducing gas supply system into the discharge unit during the discharge process, And a regeneration process step of regenerating the adsorbing part while reducing and decomposing the harmful substances adsorbed on the adsorbing part.
JP2006208723A 2006-07-31 2006-07-31 Ventilation gas purification device and purification method thereof Expired - Fee Related JP4751264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208723A JP4751264B2 (en) 2006-07-31 2006-07-31 Ventilation gas purification device and purification method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208723A JP4751264B2 (en) 2006-07-31 2006-07-31 Ventilation gas purification device and purification method thereof

Publications (2)

Publication Number Publication Date
JP2008029994A true JP2008029994A (en) 2008-02-14
JP4751264B2 JP4751264B2 (en) 2011-08-17

Family

ID=39119967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208723A Expired - Fee Related JP4751264B2 (en) 2006-07-31 2006-07-31 Ventilation gas purification device and purification method thereof

Country Status (1)

Country Link
JP (1) JP4751264B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162059A (en) * 2007-12-28 2009-07-23 Toyota Industries Corp Exhaust gas treatment system of internal combustion engine
JP2009285592A (en) * 2008-05-30 2009-12-10 Panasonic Corp Denitrification apparatus
JP2010064044A (en) * 2008-09-12 2010-03-25 Toshiba Corp Nox removal apparatus
JP2012040496A (en) * 2010-08-19 2012-03-01 Panasonic Corp Nitrogen oxide removal system
JP2017148748A (en) * 2016-02-25 2017-08-31 西松建設株式会社 Atmospheric purification system and atmospheric purification method
JP7253021B1 (en) 2021-10-07 2023-04-05 オリエンタル技研工業株式会社 Exhaust gas purification treatment device and purification treatment method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229345A (en) * 1995-02-28 1996-09-10 Mitsubishi Electric Corp Gas treating device
JP2001300249A (en) * 2000-04-25 2001-10-30 Natl Inst Of Advanced Industrial Science & Technology Meti Electrical discharge gas treatment method combined with use of adsorbent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229345A (en) * 1995-02-28 1996-09-10 Mitsubishi Electric Corp Gas treating device
JP2001300249A (en) * 2000-04-25 2001-10-30 Natl Inst Of Advanced Industrial Science & Technology Meti Electrical discharge gas treatment method combined with use of adsorbent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162059A (en) * 2007-12-28 2009-07-23 Toyota Industries Corp Exhaust gas treatment system of internal combustion engine
JP2009285592A (en) * 2008-05-30 2009-12-10 Panasonic Corp Denitrification apparatus
JP2010064044A (en) * 2008-09-12 2010-03-25 Toshiba Corp Nox removal apparatus
JP2012040496A (en) * 2010-08-19 2012-03-01 Panasonic Corp Nitrogen oxide removal system
JP2017148748A (en) * 2016-02-25 2017-08-31 西松建設株式会社 Atmospheric purification system and atmospheric purification method
JP7253021B1 (en) 2021-10-07 2023-04-05 オリエンタル技研工業株式会社 Exhaust gas purification treatment device and purification treatment method using the same
JP2023056084A (en) * 2021-10-07 2023-04-19 オリエンタル技研工業株式会社 Exhaust gas purification processing device, and purification processing method using the same

Also Published As

Publication number Publication date
JP4751264B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4590618B2 (en) Exhaust gas treatment method and treatment apparatus
JP4751264B2 (en) Ventilation gas purification device and purification method thereof
US20100254868A1 (en) Purification of a fluid using ozone with an adsorbent and/or a particle filter
WO2008046306A1 (en) Air purifier
JP4411432B2 (en) Method and apparatus for purifying exhaust gas using low temperature plasma
JP2004351312A (en) Method and apparatus for regenerating activated carbon and air purifying system with the activated carbon incorporated
JP5881872B1 (en) Decomposing apparatus and operating method thereof
JP2008231731A (en) Tunnel ventilation control system
JP4457603B2 (en) Gas purification device
JP2007000733A (en) Treatment method and treatment apparatus of gas
CN206184229U (en) Low temperature plasma ultraviolet photolysis exhaust gas cleaner
JPH08229345A (en) Gas treating device
KR20140100806A (en) Air cleaner apparatus for construction like tunnel
CN102772988A (en) Energy-efficient purification treatment device for odorous waste gases
JP2001046906A (en) Air cleaning device
JP2018202377A (en) Vehicle atmosphere purifier and hybrid motor vehicle
CN204543809U (en) Special-purpose air clarifier
CN209771789U (en) Electrochemical synergistic photocatalytic organic waste gas treatment device
JP4751270B2 (en) Low concentration NOx and SPM purifier
KR100527209B1 (en) Concurrent reducing device of fine particles and hazardous gas
JP2010029865A (en) Gas purifying apparatus
JP2004329499A (en) Air cleaning device and method for cleaning air using the same
JP4828056B2 (en) Reduction device and denitration device
JP5058107B2 (en) NOx purification device
KR101398348B1 (en) Apparatus for treating waste water enable of preventing scum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R151 Written notification of patent or utility model registration

Ref document number: 4751264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees