JP2009285592A - Denitrification apparatus - Google Patents

Denitrification apparatus Download PDF

Info

Publication number
JP2009285592A
JP2009285592A JP2008141936A JP2008141936A JP2009285592A JP 2009285592 A JP2009285592 A JP 2009285592A JP 2008141936 A JP2008141936 A JP 2008141936A JP 2008141936 A JP2008141936 A JP 2008141936A JP 2009285592 A JP2009285592 A JP 2009285592A
Authority
JP
Japan
Prior art keywords
nitrogen dioxide
duct
dioxide concentration
adsorbent
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008141936A
Other languages
Japanese (ja)
Other versions
JP5104552B2 (en
Inventor
Atsushi Kataya
篤史 片谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008141936A priority Critical patent/JP5104552B2/en
Publication of JP2009285592A publication Critical patent/JP2009285592A/en
Application granted granted Critical
Publication of JP5104552B2 publication Critical patent/JP5104552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein large cost is required for regeneration of an absorbent or an adsorbent since the removal capacity is lowered when continuously removing NO<SB>2</SB>by air-blowing to the absorbent or adsorbent. <P>SOLUTION: The denitrification apparatus is composed of a cleaning duct 13 removing nitrogen oxides from contaminated air through the absorbent or adsorbent 5; a bypass duct 6 provided in parallel with the cleaning duct 13; an opening-controllable bypass damper 7 provided at least one of the cleaning duct 13 and the bypass duct 6; an exhaust fan 8; and a nitrogen dioxide concentration analyzer 9 with a measuring terminal 10 provided near the outlet of an exhaust tower 4 in the exhaust tower 4. The opening of the bypass damper 7 is controlled by the nitrogen dioxide concentration detected by the nitrogen dioxide concentration analyzer 9, to elongate the regeneration cycle of the absorbent or adsorbent 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車道路トンネルの排ガス中の二酸化窒素(NO2)を除去する脱硝装置に関する。 The present invention relates to a denitration apparatus that removes nitrogen dioxide (NO 2 ) in exhaust gas from an automobile road tunnel.

近年、環境意識の高揚から、自動車道路トンネルの排ガス中の二酸化窒素(NO2)を除去するニーズが高まっている。 In recent years, needs for removing nitrogen dioxide (NO 2 ) in exhaust gas from motorway tunnels are increasing due to the heightened environmental awareness.

未公開の自社特許出願「特願2007−157230」では、アルカリ系の吸収剤を用いた脱硝装置に触れており、そのNO2除去率は90%以上という高い除去率が達成できることが示されている。 The unpublished in-house patent application “Japanese Patent Application No. 2007-157230” touches a denitration apparatus using an alkaline absorbent, and shows that its NO 2 removal rate can achieve a high removal rate of 90% or more. Yes.

また、特許文献1では、活性炭系の吸着剤を用いた脱硝装置が示されている。   Patent Document 1 discloses a denitration apparatus using an activated carbon-based adsorbent.

トンネルの換気所に設けられる脱硝装置においては、前述のように各種方式があるが、トンネル内の汚染空気を排気ファンで、吸収剤または吸着剤に通風してNO2を除去した後に、換気所の排気塔から大気に排気放出している。 There are various types of denitration devices installed in tunnel ventilators as described above, but after ventilating the polluted air in the tunnel with an exhaust fan through an absorbent or adsorbent to remove NO 2 , the ventilator Exhaust gas from the exhaust tower is released into the atmosphere.

脱硝装置のNO2除去率は、吸収剤または吸着剤の入口側(風上側)直近に設けた二酸化窒素濃度分析計と、出口側(風下側)直近に設けた二酸化窒素濃度分析計とにより、次式により計算できる。 The NO 2 removal rate of the denitration device is determined by the nitrogen dioxide concentration analyzer provided in the immediate vicinity of the inlet side (windward side) of the absorbent or the adsorbent and the nitrogen dioxide concentration analyzer provided in the immediate vicinity of the outlet side (leeward side). It can be calculated by the following formula.

除去率[%] = ( 1 − 出口NO2濃度 ÷ 入口NO2濃度 ) × 100%
特開2004−121902号公報
Removal rate [%] = (1-outlet NO 2 concentration ÷ inlet NO 2 concentration) × 100%
JP 2004-121902 A

吸収剤または吸着剤に通風してNO2を除去し続けると、NO2の除去能力が低下し、NO2除去率が仕様値の90%を下回るので、吸収剤または吸着剤を再生する必要がある。しかしながら、この再生には多大なコストを要する。従って、吸収剤または吸着剤の再生コストを低減しなければならないという課題があった。 Continuing to remove NO 2 and air to absorbent or adsorbent, removal capability of NO 2 is lowered, since the NO 2 removal ratio is below 90% of the specified value, is necessary to reproduce the absorbent or adsorbent is there. However, this regeneration requires a great deal of cost. Therefore, there has been a problem that the regeneration cost of the absorbent or adsorbent must be reduced.

請求項1記載の本発明の脱硝装置は、道路トンネルなどから汚染空気を吸引し、吸収剤または吸着剤を通じて窒素酸化物を除去した後排気塔から屋外へ排出する脱硝装置であって、吸収剤または吸着剤を通じて汚染空気から窒素酸化物を除去する浄化ダクトと、この浄化ダクトと並列に設けたバイパスダクトと、前記浄化ダクト、前記バイパスダクトの少なくとも一方に設けられ、開度制御が可能なバイパスダンパと、排気ファンと、計測端を排気塔内の排気塔出口近傍に設けた二酸化窒素濃度分析計により構成され、この二酸化窒素濃度分析計によって検出された二酸化窒素濃度によって前記バイパスダンパの開度を制御することを特徴とするものである。   The denitration apparatus of the present invention according to claim 1 is a denitration apparatus that sucks polluted air from a road tunnel or the like, removes nitrogen oxides through an absorbent or an adsorbent, and then discharges the air from an exhaust tower to the outside. Alternatively, a purification duct that removes nitrogen oxides from contaminated air through an adsorbent, a bypass duct provided in parallel with the purification duct, and a bypass that is provided in at least one of the purification duct and the bypass duct and capable of opening degree control. It is composed of a damper, an exhaust fan, and a nitrogen dioxide concentration analyzer having a measuring end provided near the outlet of the exhaust tower in the exhaust tower. The opening degree of the bypass damper is determined by the nitrogen dioxide concentration detected by the nitrogen dioxide concentration analyzer. It is characterized by controlling.

請求項2記載の本発明の脱硝装置は、計測端を排気塔外の出口近傍に設けた第2の二酸化窒素濃度分析計を配置したことを特徴とする。   The denitration apparatus of the present invention according to claim 2 is characterized in that a second nitrogen dioxide concentration analyzer having a measuring end provided near the outlet outside the exhaust tower is arranged.

バイパスダクトと、開度制御が可能なダンパとを用いることにより、吸収剤または吸着剤に、必用以上に通風することを避けることができるので、吸収剤または吸着剤の性能低下を長期化(再生インターバルを長期化)することができる。即ち再生コストを低減することができる。   By using a bypass duct and a damper whose opening degree can be controlled, it is possible to avoid venting the absorbent or adsorbent more than necessary, so that the performance degradation of the absorbent or adsorbent is prolonged (regeneration). The interval can be extended). That is, the reproduction cost can be reduced.

本発明の第1の実施の形態による脱硝装置は、道路トンネルなどから汚染空気を吸引し、吸収剤または吸着剤を通じて窒素酸化物を除去した後排気塔から屋外へ排出する脱硝装置であって、吸収剤または吸着剤を通じて汚染空気から窒素酸化物を除去する浄化ダクトと、この浄化ダクトと並列に設けたバイパスダクトと、前記浄化ダクト、前記バイパスダクトの少なくとも一方に設けられ、開度制御が可能なバイパスダンパと、排気ファンと、計測端を排気塔内の排気塔出口近傍に設けた二酸化窒素濃度分析計により構成され、この二酸化窒素濃度分析計によって検出された二酸化窒素濃度によって前記バイパスダンパの開度を制御することを特徴とするものである。窒素酸化物を吸収あるいは吸着する吸収剤または吸着剤は、長期間に使用により窒素酸化物の吸収・吸着が飽和する。飽和したときには吸収剤または吸着剤の再生処理を行うが、再生インターバルを長期化するために、吸収剤または吸着剤の通風路(以下、浄化ダクトと呼ぶ)と並列にバイパスダクトを配置し、このバイパスダクトの通風量を、開度制御が可能なダンパを用いて制御する。即ち、吸収剤または吸着剤に、必用以上に通風することを避けることができる。浄化ダクトを経て、充分にNO2が除去された空気と、バイパスダクトを経てNO2が除去されない空気とが充分に混合するのは、換気所の排気塔内の出口である。従って、排気塔内の排気塔出口に計測端を設けた二酸化窒素濃度分析により、排気中のNO2濃度を計測することができる。排気中のNO2濃度を、設定値以下(例えば環境基準における二酸化窒素の規制値「0.04ppmから0.06ppmのゾーン以下」)になるように、ダンパの開度制御を行なえば、吸収剤または吸着剤の再生インターバルを長期化することができる。 The denitration apparatus according to the first embodiment of the present invention is a denitration apparatus that sucks polluted air from a road tunnel or the like, removes nitrogen oxides through an absorbent or an adsorbent, and then discharges it from an exhaust tower to the outside. A purification duct that removes nitrogen oxides from polluted air through an absorbent or an adsorbent, a bypass duct provided in parallel with the purification duct, and at least one of the purification duct and the bypass duct, the opening degree can be controlled. A bypass damper, an exhaust fan, and a nitrogen dioxide concentration analyzer having a measuring end provided in the vicinity of the outlet of the exhaust tower in the exhaust tower, and the bypass damper is configured according to the nitrogen dioxide concentration detected by the nitrogen dioxide concentration analyzer. The opening degree is controlled. Absorbents or adsorbents that absorb or adsorb nitrogen oxides saturate the absorption and adsorption of nitrogen oxides over long periods of use. When saturated, the absorbent or adsorbent is regenerated, but in order to extend the regeneration interval, a bypass duct is arranged in parallel with the absorbent or adsorbent ventilation path (hereinafter referred to as a purification duct). The air flow rate of the bypass duct is controlled using a damper whose opening degree can be controlled. That is, it is possible to avoid excessive ventilation of the absorbent or the adsorbent. It is at the outlet in the exhaust tower of the ventilator that the air from which NO 2 has been sufficiently removed through the purification duct and the air from which NO 2 has not been removed through the bypass duct are sufficiently mixed. Therefore, the NO 2 concentration in the exhaust gas can be measured by nitrogen dioxide concentration analysis in which a measurement end is provided at the exhaust tower outlet in the exhaust tower. If the opening degree of the damper is controlled so that the NO 2 concentration in the exhaust gas is less than the set value (for example, the regulation value of nitrogen dioxide in the environmental standard “below the zone of 0.04 ppm to 0.06 ppm”), the absorbent Alternatively, the adsorbent regeneration interval can be extended.

本発明の第2の実施の形態による脱硝装置は、計測端を排気塔外の出口近傍に設けた第2の二酸化窒素濃度分析計を配置したことを特徴とするものである。排気塔内の排気塔出口に計測端を設けた二酸化窒素濃度分析により計測された排気中のNO2濃度値が、排気塔外の出口近傍に設けた二酸化窒素濃度分析計により計測された外気のNO2濃度値を上回らないように、バイパスダクトの通風量を、開度制御できるダンパを用いて制御することが可能である。 The denitration apparatus according to the second embodiment of the present invention is characterized in that a second nitrogen dioxide concentration analyzer having a measurement end provided near the outlet outside the exhaust tower is arranged. The NO 2 concentration value in the exhaust gas measured by nitrogen dioxide concentration analysis with a measuring end provided at the exhaust tower outlet in the exhaust tower is measured by the nitrogen dioxide concentration analyzer provided near the outlet outside the exhaust tower. The air flow rate of the bypass duct can be controlled using a damper whose opening degree can be controlled so as not to exceed the NO 2 concentration value.

以下、本発明の実施例について図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
図1は本実施例による脱硝装置システム系統図である。トンネル換気所の脱硝装置1は、車道トンネル2の上部に位置する。排気ファン8により、車道上部の開口部3から吸い込まれたトンネル排気ガス(汚染空気)は、最終的には排気塔4から大気に排出されている。車道上部の開口部3から吸い込まれたトンネル排気ガス(汚染空気)の一部は、浄化ダクト13に導かれ、吸収剤または吸着剤5を通過することによって、二酸化窒素が90%除去される。一方、開口部3から吸い込まれたトンネル排気ガス(汚染空気)の残りは、二酸化窒素が除去されることなくバイパスダクト6を通過する。浄化ダクト13を通過した空気と、バイパスダクト6を通過した空気は、排気ファン8を経て、混合された後に、大気に放出される。排気塔4の出口には、計測端10を有する二酸化窒素濃度分析計9が配置され、大気に放出される空気中の二酸化窒素濃度を監視している。排気ファン8により、車道上部の開口部3から吸い込まれるトンネル排気ガス流量Qは、浄化ダクト13のガス流量Q1と、バイパスダクト6のガス流量Q2との和で表される(Q=Q1+Q2)。ここで、バイパスダンパ7の開度を調節することにより、Q1を大きくしてQ2を小さくすることができるし、また、Q1を小さくしてQ2を大きくすることもできる。今、例えば、トンネル排気ガスのNO2濃度が0.2ppmであったとする。バイパスダンパ7を閉じて、Q1を100%、Q2を0%になるようにすると、Qに含まれる二酸化窒素の9割が吸収剤または吸着剤5で除去されるので、大気に放出されるNO2濃度は0.02ppmとなり、この濃度は二酸化窒素濃度分析計9により計測される。ここで、環境基準の二酸化窒素濃度規制値0.04ppmよりも低い濃度0.02ppmになるまで、必要以上に二酸化窒素を除去しているという課題に気づく。即ち、排気塔から大気に放出される二酸化窒素濃度が0.04ppmになるように、バイパスダンパ7の開度調節を行なう(余分なトンネル排気ガスはバイパスダクト6から逃がす)ことにより、吸収剤または吸着剤5の再生インターバルを長くすることができ、再生コストを低減できる。それでは、大気に放出されるNO2濃度を0.04ppmにしたい場合は、本例の場合Q1=8Q2とすればよいことは、単純な算術計算により得られる。
(Example 1)
FIG. 1 is a system diagram of a denitration system according to this embodiment. The denitration device 1 in the tunnel ventilation station is located in the upper part of the roadway tunnel 2. Tunnel exhaust gas (contaminated air) sucked from the opening 3 at the upper part of the roadway by the exhaust fan 8 is finally discharged from the exhaust tower 4 to the atmosphere. Part of the tunnel exhaust gas (contaminated air) sucked from the opening 3 at the upper part of the roadway is guided to the purification duct 13 and passes through the absorbent or adsorbent 5, whereby 90% of nitrogen dioxide is removed. On the other hand, the remainder of the tunnel exhaust gas (contaminated air) sucked from the opening 3 passes through the bypass duct 6 without removing nitrogen dioxide. The air that has passed through the purification duct 13 and the air that has passed through the bypass duct 6 are mixed through the exhaust fan 8 and then released to the atmosphere. A nitrogen dioxide concentration analyzer 9 having a measuring end 10 is disposed at the outlet of the exhaust tower 4 to monitor the nitrogen dioxide concentration in the air released to the atmosphere. The exhaust fan 8, the tunnel exhaust gas flow is sucked from the opening 3 of the road upper Q is the gas flow rate to Q 1 purification duct 13 is represented by the sum of the gas flow rate Q 2 of the bypass duct 6 (Q = Q 1 + Q 2 ). Here, by adjusting the degree of opening of the bypass damper 7, it can be reduced Q 2 to increase the Q 1, it can also be increased Q 2 by reducing the Q 1. Now, for example, it is assumed that the NO 2 concentration of the tunnel exhaust gas is 0.2 ppm. When the bypass damper 7 is closed so that Q 1 becomes 100% and Q 2 becomes 0%, 90% of the nitrogen dioxide contained in Q is removed by the absorbent or adsorbent 5, and thus released into the atmosphere. The NO 2 concentration is 0.02 ppm, and this concentration is measured by the nitrogen dioxide concentration analyzer 9. Here, we notice the problem of removing nitrogen dioxide more than necessary until the concentration becomes 0.02 ppm, which is lower than the environmental standard nitrogen dioxide concentration regulation value of 0.04 ppm. That is, by adjusting the opening degree of the bypass damper 7 so that the concentration of nitrogen dioxide released from the exhaust tower to the atmosphere becomes 0.04 ppm (excess tunnel exhaust gas escapes from the bypass duct 6), the absorbent or The regeneration interval of the adsorbent 5 can be lengthened and the regeneration cost can be reduced. Then, when it is desired to set the NO 2 concentration released to the atmosphere to 0.04 ppm, in this example, Q 1 = 8Q 2 can be obtained by simple arithmetic calculation.

尚、本実施例では、排気ファン8の位置を浄化ダクト13とバイパスダクト6の後流側としたが、前流側にしてもよい。   In the present embodiment, the position of the exhaust fan 8 is on the downstream side of the purification duct 13 and the bypass duct 6, but may be on the upstream side.

尚、本実施例では、バイパスダンパ7の位置をバイパスダクト6側としたが、浄化ダクト13側にしてもよいし、バイパスダクト6側と浄化ダクト13側の両者に設けても良い。   In the present embodiment, the position of the bypass damper 7 is on the bypass duct 6 side, but may be on the purification duct 13 side, or may be provided on both the bypass duct 6 side and the purification duct 13 side.

尚、本実施例では、バイパスダンパ7の開度を任意で可変できるようにしたが、バイパスダンパ7を複数台設けて、ダンパの開閉をダンパの台数により制御して流量調節してもよい。   In the present embodiment, the opening degree of the bypass damper 7 can be arbitrarily changed. However, a plurality of bypass dampers 7 may be provided, and the flow rate may be adjusted by controlling the opening / closing of the damper according to the number of dampers.

(実施例2)
図2は本実施例による脱硝装置システム系統図である。基本的な機器構成は実施例1と同じであるが、一点、排気塔外の出口近傍に、二酸化窒素濃度分析計11を配置したことが異なる。実施例1では、排気塔4からの二酸化窒素排出濃度を環境基準値以下にするようにしたが、本実施例では、排気塔4からの二酸化窒素排出濃度を、排気塔外の出口近傍の二酸化窒素濃度値にするようにした。(外気と同レベル以上に排気空気を浄化する必要性は低いという考え方に基づく。)バイパスダンパ7の開度調節の考え方は、実施例1の場合と同様である。
(Example 2)
FIG. 2 is a system diagram of a denitration system according to this embodiment. The basic equipment configuration is the same as that of the first embodiment, except that the nitrogen dioxide concentration analyzer 11 is arranged near the outlet outside the exhaust tower. In the first embodiment, the nitrogen dioxide discharge concentration from the exhaust tower 4 is set to be equal to or lower than the environmental standard value. However, in this embodiment, the nitrogen dioxide discharge concentration from the exhaust tower 4 is reduced to the vicinity of the outlet outside the exhaust tower. The nitrogen concentration value was set. (Based on the idea that it is less necessary to purify the exhaust air to the same level or more as the outside air.) The way of adjusting the opening degree of the bypass damper 7 is the same as in the first embodiment.

本発明は、吸収剤または吸着剤と、バイパスダクトと、開度制御が可能なダンパと、排気ファンと、計測端を排気塔内の排気塔出口に設けた二酸化窒素濃度分析とからなる脱硝装置であって、自動車道路トンネルの排気ガスの浄化に適している。   The present invention relates to a denitration apparatus comprising an absorbent or an adsorbent, a bypass duct, a damper capable of opening control, an exhaust fan, and a nitrogen dioxide concentration analysis in which a measurement end is provided at an exhaust tower outlet in the exhaust tower. Therefore, it is suitable for purification of exhaust gas from a motorway tunnel.

本発明の第1の実施例を示す脱硝装置システム系統図Denitration system diagram showing the first embodiment of the present invention 本発明の第2の実施例を示す脱硝装置システム系統図Denitration system diagram showing the second embodiment of the present invention

符号の説明Explanation of symbols

1 脱硝装置
2 車道トンネル
3 開口部
4 排気塔
5 吸収剤または吸着剤
6 バイパスダクト
7 バイパスダンパ
8 排気ファン
9 二酸化窒素濃度分析計
10 計測端
11 二酸化窒素濃度分析計
12 計測端
13 浄化ダクト
DESCRIPTION OF SYMBOLS 1 Denitration device 2 Roadway tunnel 3 Opening part 4 Exhaust tower 5 Absorbent or adsorbent 6 Bypass duct 7 Bypass damper 8 Exhaust fan 9 Nitrogen dioxide concentration analyzer 10 Measuring end 11 Nitrogen dioxide concentration analyzer 12 Measuring end 13 Purification duct

Claims (2)

道路トンネルなどから汚染空気を吸引し、吸収剤または吸着剤を通じて窒素酸化物を除去した後排気塔から屋外へ排出する脱硝装置において、吸収剤または吸着剤を通じて汚染空気から窒素酸化物を除去する浄化ダクトと、この浄化ダクトと並列に設けたバイパスダクトと、前記浄化ダクト、前記バイパスダクトの少なくとも一方に設けられ、開度制御が可能なバイパスダンパと、排気ファンと、計測端を排気塔内の排気塔出口近傍に設けた二酸化窒素濃度分析計により構成され、この二酸化窒素濃度分析計によって検出された二酸化窒素濃度によって前記バイパスダンパの開度を制御することを特徴とする脱硝装置。 Purification that removes nitrogen oxides from contaminated air through absorbents or adsorbents in a denitration device that sucks contaminated air from road tunnels, removes nitrogen oxides through absorbents or adsorbents, and then discharges them from the exhaust tower to the outside. A duct, a bypass duct provided in parallel with the purification duct, the purification duct, a bypass damper capable of controlling the opening degree, an exhaust fan, and a measurement end disposed in the exhaust tower. A denitration apparatus comprising a nitrogen dioxide concentration analyzer provided near an outlet of an exhaust tower, wherein the opening degree of the bypass damper is controlled by the nitrogen dioxide concentration detected by the nitrogen dioxide concentration analyzer. 計測端を排気塔外の出口近傍に設けた第2の二酸化窒素濃度分析計を配置したことを特徴とする請求項1記載の脱硝装置。 2. The denitration apparatus according to claim 1, wherein a second nitrogen dioxide concentration analyzer having a measuring end provided near the outlet outside the exhaust tower is disposed.
JP2008141936A 2008-05-30 2008-05-30 Denitration equipment Expired - Fee Related JP5104552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141936A JP5104552B2 (en) 2008-05-30 2008-05-30 Denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141936A JP5104552B2 (en) 2008-05-30 2008-05-30 Denitration equipment

Publications (2)

Publication Number Publication Date
JP2009285592A true JP2009285592A (en) 2009-12-10
JP5104552B2 JP5104552B2 (en) 2012-12-19

Family

ID=41455341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141936A Expired - Fee Related JP5104552B2 (en) 2008-05-30 2008-05-30 Denitration equipment

Country Status (1)

Country Link
JP (1) JP5104552B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011393A1 (en) * 2010-07-23 2012-01-26 三菱重工メカトロシステムズ株式会社 Facility for treatment of gas in tunnel
JP2013180257A (en) * 2012-03-02 2013-09-12 Nishimatsu Constr Co Ltd Air cleaning apparatus and ventilation system
JP2017148748A (en) * 2016-02-25 2017-08-31 西松建設株式会社 Atmospheric purification system and atmospheric purification method
CN112423861A (en) * 2018-07-17 2021-02-26 奥迪股份公司 Utilization of nitrogen oxides from ambient air

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241529A (en) * 1986-04-10 1987-10-22 Babcock Hitachi Kk Exhaust gas treating device
JPH01296000A (en) * 1988-05-20 1989-11-29 Shimizu Corp Treatment of tunnel waste gas
JPH0339833A (en) * 1989-07-06 1991-02-20 Hitachi Plant Eng & Constr Co Ltd Noxious gas removing device for air purifying conditioning room
JP2003053136A (en) * 2001-08-23 2003-02-25 Mitsubishi Heavy Ind Ltd Denitration apparatus and denitrating method
JP2008029994A (en) * 2006-07-31 2008-02-14 Toshiba Corp Ventilation gas cleaning apparatus and its cleaning method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241529A (en) * 1986-04-10 1987-10-22 Babcock Hitachi Kk Exhaust gas treating device
JPH01296000A (en) * 1988-05-20 1989-11-29 Shimizu Corp Treatment of tunnel waste gas
JPH0339833A (en) * 1989-07-06 1991-02-20 Hitachi Plant Eng & Constr Co Ltd Noxious gas removing device for air purifying conditioning room
JP2003053136A (en) * 2001-08-23 2003-02-25 Mitsubishi Heavy Ind Ltd Denitration apparatus and denitrating method
JP2008029994A (en) * 2006-07-31 2008-02-14 Toshiba Corp Ventilation gas cleaning apparatus and its cleaning method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011393A1 (en) * 2010-07-23 2012-01-26 三菱重工メカトロシステムズ株式会社 Facility for treatment of gas in tunnel
JP2012024688A (en) * 2010-07-23 2012-02-09 Mitsubishi Heavy Industries Mechatronics Systems Ltd Facility for treatment of gas in tunnel
JP2013180257A (en) * 2012-03-02 2013-09-12 Nishimatsu Constr Co Ltd Air cleaning apparatus and ventilation system
JP2017148748A (en) * 2016-02-25 2017-08-31 西松建設株式会社 Atmospheric purification system and atmospheric purification method
CN112423861A (en) * 2018-07-17 2021-02-26 奥迪股份公司 Utilization of nitrogen oxides from ambient air
US11826693B2 (en) 2018-07-17 2023-11-28 Audi Ag Utilization of nitrogen oxides from ambient air

Also Published As

Publication number Publication date
JP5104552B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
US9375670B2 (en) Air purification system
KR101472538B1 (en) Controlling system for controlling an air handling system
US20160271550A1 (en) Air Purification System
CN109668261B (en) Control method and device for air conditioning device and air conditioning device
US20150086457A1 (en) System and method for treating mercury in flue gas
RU2010134000A (en) FUEL GAS CLEANING PLANT
JP5104552B2 (en) Denitration equipment
JP5881872B1 (en) Decomposing apparatus and operating method thereof
JP2011247566A (en) Desiccant air conditioner
KR101800630B1 (en) System for treating of harmful gas of tunnel inside
JP4751264B2 (en) Ventilation gas purification device and purification method thereof
JP2008231731A (en) Tunnel ventilation control system
KR102260168B1 (en) Low Concentration Air Pollutants Detection Kit
JP6084072B2 (en) Toxic substance adsorption device
FI92290B (en) Smoking room
CN102614734A (en) Smog purification device
JP2012225113A (en) Tunnel ventilation control system
WO2007114292A1 (en) Denitrification apparatus and denirification equipment for tunnel
JP2012211471A (en) Road tunnel ventilation controller
CN207230785U (en) Ceiling mounting type tunnel automatic purification device
KR100697305B1 (en) Air purification system for the polluted air in a main tunnel
JP2001090498A (en) Ventilation system, method and equipment for road tunnel
KR20160132573A (en) The method and apparatus for absoption for VOCs(volatile organic compound) in engine room of ship
JP2000186498A (en) Tunnel ventilation controller
JP2014070382A (en) Tunnel ventilation control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R151 Written notification of patent or utility model registration

Ref document number: 5104552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees