JP2008023570A - Method for welding shroud of reactor core - Google Patents

Method for welding shroud of reactor core Download PDF

Info

Publication number
JP2008023570A
JP2008023570A JP2006200620A JP2006200620A JP2008023570A JP 2008023570 A JP2008023570 A JP 2008023570A JP 2006200620 A JP2006200620 A JP 2006200620A JP 2006200620 A JP2006200620 A JP 2006200620A JP 2008023570 A JP2008023570 A JP 2008023570A
Authority
JP
Japan
Prior art keywords
welding
shroud
core shroud
core
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006200620A
Other languages
Japanese (ja)
Other versions
JP4936813B2 (en
Inventor
Rie Sumiya
利恵 角谷
Toshiyuki Saito
利之 斎藤
Tatsuya Kubo
達也 久保
Masayuki Asano
政之 淺野
Minoru Obata
稔 小畑
Kiichi Ito
貴一 伊藤
Takeshi Okuda
健 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006200620A priority Critical patent/JP4936813B2/en
Publication of JP2008023570A publication Critical patent/JP2008023570A/en
Application granted granted Critical
Publication of JP4936813B2 publication Critical patent/JP4936813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for welding a weld structure, by which residual stress is changed into compressive stress by executing the treatment for improving the residual stress in the welded surface of the weld structure. <P>SOLUTION: The objective of the method for welding is a reactor core shroud 10, which is installed inside a reactor pressure vessel and surrounds a reactor core, piping or a vessel. The welding method for the reactor core shroud 10 is used for setting a new reactor core shroud 11 on a base reactor core shroud 12 by on-site welding when installing the reactor core shroud 10 to be welded. In the welding method for the reactor core shroud 10, after the new core shroud 11 is placed on the base core shroud 12, weld bead sequences 15 are sequentially formed by performing build-up welding of weld beads 16 by a plurality of passes from the outer or inner surface side of the shroud toward the reverse surface side thereof. In the formation of the weld bead sequences 15, welding conditions are selected according to the weld positions in the radial direction of the shroud so that the residual stress in the surface of the shroud becomes a compressive stress. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炉心シュラウドや配管・容器等の溶接構造物の溶接技術に係り、特に、炉心シュラウドを据え付けたり、主蒸気管や炉内配管等の各種配管や容器の構成メンバ同士を溶接する溶接構造物の溶接方法に関する。   The present invention relates to a welding technique for a welded structure such as a core shroud, pipes and containers, and in particular, welding for installing core shrouds and welding various pipes and container components such as main steam pipes and furnace pipes. The present invention relates to a method for welding a structure.

原子力発電プラント等の各種発電プラントには、炉心シュラウドや各種配管の構成メンバ同士の溶接に溶接構造物が採用されている。この溶接構造物の応力腐食割れ(SCC)の発生や進展、疲労強度の低下等の原因には、溶接による熱膨張と塑性ひずみの発生に起因する残留応力がある。   In various power plants such as nuclear power plants, welded structures are employed for welding core shrouds and members of various pipes. Causes of the occurrence and development of stress corrosion cracking (SCC) of the welded structure, a decrease in fatigue strength, and the like include residual stress resulting from thermal expansion and plastic strain caused by welding.

溶接構造物において、溶接による残留応力を低減する方法として、溶接後に冷却液を噴霧して材料に温度差を生じさせる方法(特許文献1参照)や残留応力解析により溶接構造物の溶接条件を求める方法(特許文献2参照)がある。   In a welded structure, as a method of reducing the residual stress due to welding, a welding solution is obtained by spraying a coolant after welding to generate a temperature difference in the material (see Patent Document 1) or by analyzing residual stress. There exists a method (refer patent document 2).

また、追加の溶接による残留応力を低減する方法として、配管の補強溶接部の残留応力を低減させる方法(特許文献3参照)や、付加物を溶着する角巻き溶接部の残留応力を低減させる方法(特許文献4参照)が提案されている。
特開2000−343270号公報 特開平9−1376号公報 特開平25−182393号公報 特開平4−371387号公報
Moreover, as a method of reducing the residual stress due to additional welding, a method of reducing the residual stress of the reinforcement welded portion of the pipe (see Patent Document 3), or a method of reducing the residual stress of the square winding welded portion where the additive is welded. (See Patent Document 4).
JP 2000-343270 A JP-A-9-1376 Japanese Patent Laid-Open No. 25-182393 JP-A-4-371387

各特許文献に開示された技術は、配管等の溶接構造物の溶接施工面の残留応力低減に関するものであり、溶接構造物の溶接施工裏面の残留応力低減は難しく、困難であるというものである。   The technology disclosed in each patent document relates to the reduction of residual stress on the welding surface of a welded structure such as a pipe, and it is difficult and difficult to reduce the residual stress on the back surface of the welded structure. .

本発明は、上述した課題を解決するために、溶接構造物の溶接施工面の残留応力改善処理を図り、残留応力を圧縮応力にする溶接構造物の溶接方法を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a welding method for a welded structure in which a residual stress improvement process is performed on a welding construction surface of the welded structure to make the residual stress a compressive stress.

本発明の他の目的は、炉心シュラウドや配管・容器等を溶接対象物とし、溶接される溶接対象物の軸方向残留応力成分および周方向残留応力成分を圧縮応力とし、応力腐食割れの発生を未然にかつ確実に防止することができる溶接構造物の溶接方法を提供する。   Another object of the present invention is to prevent stress corrosion cracking by using a core shroud, piping / vessel, etc. as an object to be welded, and axial residual stress component and circumferential residual stress component of the welded object to be welded as compressive stress. Provided is a welding method for a welded structure which can be prevented in advance and reliably.

本発明に係る炉心シュラウドの溶接方法は、上述した課題を解決するために、被溶接物を原子炉圧力容器内に据え付けられ炉心を取り囲む炉心シュラウドとし、上記炉心シュラウドを据え付ける際、新炉心シュラウドを基礎炉心シュラウド上に現地溶接にて設置する溶接方法において、前記新炉心シュラウドを基礎炉心シュラウド上に載置した後、シュラウド外面あるいはシュラウド内面側から反対側のシュラウド面に向って、複数パスの溶接ビードを周方向に肉盛りして溶接ビードシーケンスを順次形成していく際、シュラウド表面の残留応力が圧縮となるように、シュラウド半径方向の溶接位置に応じて溶接条件を選択する方法である。   In order to solve the above-described problems, a welding method for a core shroud according to the present invention uses a core shroud that is installed in a reactor pressure vessel and surrounds the core, and when the core shroud is installed, a new core shroud is used. In the welding method installed on the basic core shroud by on-site welding, after the new core shroud is placed on the basic core shroud, welding is performed in multiple passes from the outer surface of the shroud or from the inner surface side of the shroud to the opposite shroud surface. This is a method of selecting welding conditions according to the welding position in the radial direction of the shroud so that the residual stress on the surface of the shroud is compressed when the bead is piled up in the circumferential direction and the weld bead sequence is sequentially formed.

また、本発明に係る配管または容器の溶接方法は、上述した課題を解決するために、被溶接物を配管または容器とし、配管または容器の構成メンバ同士を突き合せてこの突合せ部を周方向に溶接して溶接ビードシーケンスを形成して一体化させる溶接方法において、前記配管または容器の構成メンバ同士を突き合せた後、構成メンバ突合せ部をその内面または外面側の一方向から反対方向の面に向けて複数の溶接ビードを周方向に順次肉盛りして溶接ビードシーケンスを形成していく際、前記配管または容器の構成メンバ表面溶接部の残留応力が圧縮となるように、溶接施工とメンバ外面側あるいはメンバ内面側から順次肉盛り溶接で行なう方法である。   Further, in order to solve the above-described problems, the pipe or container welding method according to the present invention uses a workpiece to be welded as a pipe or a container, but the constituent members of the pipe or container are butted together and this butted portion is in the circumferential direction. In a welding method in which welding is performed to form a weld bead sequence and integrated, the constituent members of the pipe or container are abutted with each other, and then the constituent member abutting portion is changed from one direction to the opposite direction on the inner surface or outer surface side. When welding a plurality of weld beads in the circumferential direction sequentially to form a weld bead sequence, the welding operation and the outer surface of the member are performed so that the residual stress of the welded surface of the member of the pipe or container is compressed. This is a method in which build-up welding is sequentially performed from the side or the inner surface of the member.

本発明に係る溶接構造物(炉心シュラウドや配管・容器)の溶接方法においては、溶接構造物の溶接施工面の残留応力改善処理を図り、残留応力を圧縮応力となるように構成したので、SCC対策を施すことができ、応力腐食割れの発生を防止する炉心シュラウドや配管・容器を提供することができる。   In the welding method for a welded structure (core shroud, pipe, or container) according to the present invention, since the residual stress improvement processing of the welding construction surface of the welded structure is attempted and the residual stress is a compressive stress, the SCC Measures can be taken, and a core shroud and piping / vessel that can prevent the occurrence of stress corrosion cracking can be provided.

また、本発明では、溶接構造物である炉心シュラウドや配管・容器の溶接部の軸方向残留応力成分および周方向残留応力成分を共に圧縮応力として応力腐食割れの発生を未然にかつ確実に防止することができる。   Further, in the present invention, the occurrence of stress corrosion cracking is prevented in advance by using both the axial residual stress component and the circumferential residual stress component of the welded portion of the core shroud, which is a welded structure, and the pipe / vessel as compressive stress. be able to.

本発明に係る溶接構造物の溶接方法の実施の形態について添付図面を参照して説明する。   An embodiment of a welding method for a welded structure according to the present invention will be described with reference to the accompanying drawings.

[第1実施形態]
図1および図2は、沸騰水型原子炉の原子炉圧力容器内に据え付けられ炉心を取り囲む炉心シュラウド10を溶接対象物とした例を示す。沸騰水型原子炉では、炉心シュラウド10を据え付けたり、取り替える際に、取り替える場合は新炉心シュラウド11を旧炉心シュラウド12上に、また新規に据え付ける場合は上部に配される炉心シュラウド(以下新炉心シュラウドと呼ぶ)11を下部に配される基礎炉心シュラウド12上に周方向の全周溶接13にて肉盛りし、据え付けるようになっている。旧炉心シュラウド12は基礎炉心シュラウドを構成している。
[First Embodiment]
1 and 2 show an example in which a core shroud 10 that is installed in a reactor pressure vessel of a boiling water reactor and surrounds the core is an object to be welded. In the boiling water reactor, when the core shroud 10 is installed or replaced, the new core shroud 11 is placed on the old core shroud 12 when replaced, and the core shroud (hereinafter referred to as the new core disposed below) when newly installed. (Referred to as a shroud) 11 is piled up and installed on a basic core shroud 12 disposed at the lower portion by circumferential all-around welding 13. The old core shroud 12 constitutes a basic core shroud.

旧炉心シュラウド12は、主にインコネル材料で形成されており、インコネル製の筒状体上に同径のトーラスおよびワッシャ状のステンレス鋼製リング体を溶接肉盛りして一体に構成される。旧炉心シュラウド12は原子炉圧力容器内設置のシュラウドサポートに据え付けられる。   The old core shroud 12 is mainly formed of an Inconel material, and is integrally formed by welding a torus and a washer-like stainless steel ring body having the same diameter on a cylindrical body made of Inconel. The old core shroud 12 is installed on a shroud support installed in the reactor pressure vessel.

新炉心シュラウド11は例えばステンレス鋼製で、旧炉心シュラウド12上に現地溶接にて据え付けられ、炉心シュラウド10が構成される。炉心シュラウド10は原子炉炉内に据え付けられ、数mφの直径を有し、シュラウド板厚(肉厚)は数10mm、好ましくは40mm〜50mm、炉心シュラウド10の軸方向高さは数m〜10mである。一例として、800MW、あるいは1100MWクラスの沸騰水型原子炉では、シュラウドの肉厚は40mm〜50mm程度であり、新炉心シュラウド11の軸方向高さが約7m程度である。旧炉心シュラウド12のリング体軸方向高さは数百mm、例えば300mm〜400mmである。   The new core shroud 11 is made of, for example, stainless steel, and is installed on the old core shroud 12 by field welding to constitute the core shroud 10. The core shroud 10 is installed in a nuclear reactor, has a diameter of several mφ, has a shroud plate thickness (wall thickness) of several tens mm, preferably 40 mm to 50 mm, and the axial height of the core shroud 10 is several m to 10 m. It is. As an example, in a 800 MW or 1100 MW class boiling water reactor, the thickness of the shroud is about 40 mm to 50 mm, and the axial height of the new core shroud 11 is about 7 m. The ring core axial height of the old core shroud 12 is several hundred mm, for example, 300 mm to 400 mm.

旧炉心シュラウド12上に新炉心シュラウド11を全周に亘り現地溶接し、肉盛りする作業を、図2では炉心シュラウド10の外周面(外面)側からシュラウド反対側の面である内周面(内面)側に向けて行ない据え付ける例を示す。炉心シュラウド10の溶接作業は、通常、図3に示すように、略180°離れて直径方向に対向する2台の溶接機14を用いて実施される。2台の溶接機14は炉心シュラウド12の内側に対向配置されるが、シュラウド外側に配置してもよい。   In FIG. 2, the work of welding the new core shroud 11 on the old core shroud 12 over the entire circumference and overlaying the inner core surface (the outer surface of the core shroud 10 from the outer surface (outer surface) side to the shroud opposite side) Shown below is an example of installation toward the inner surface) side. As shown in FIG. 3, the welding operation of the core shroud 10 is usually performed by using two welding machines 14 that are opposed to each other in the diametrical direction by approximately 180 °. The two welding machines 14 are arranged opposite to the inner side of the core shroud 12, but may be arranged outside the shroud.

炉心シュラウド10の据付作業は、全体的にはSCC発生防止対策を考慮したもので、数段階、例えば3段階の溶接施工にて行なわれる。新炉心シュラウド11を旧炉心シュラウド12上に据え付ける溶接作業は、図2の溶接ビードシーケンス15で示すように、シュラウド外面からその内面に溶接ビード16を順に盛っていくことで実施される。   The installation work of the core shroud 10 is generally performed in consideration of SCC generation prevention measures, and is performed by several stages, for example, three stages of welding work. The welding operation for installing the new core shroud 11 on the old core shroud 12 is performed by depositing the weld beads 16 in order from the outer surface of the shroud to the inner surface thereof, as shown by a weld bead sequence 15 in FIG.

溶接初期の第1ステップでは、複数パス、例えば1パス〜3パス溶接ビードが形成され、この溶接ビードの肉盛りで、シュラウド厚さの数分の1程度が溶着される。まず、1パス目の溶接(周方向の全周溶接)は、10KJ/cm以下の入熱量で、シュラウド内外面を大気環境下に露出した冷却環境状態で実施した。次に2パス目〜数パス、例えば3パス目の溶接は、1パス目と略同じ入熱量で溶接したが、シュラウド外面に強制的に空気を吹き付けて冷却し、シュラウド材料表面の温度が速く低下するように強制冷却しながら溶接を実施した。   In the first step in the initial stage of welding, a plurality of passes, for example, a 1 to 3 pass weld bead is formed, and about a fraction of the shroud thickness is welded by the build-up of the weld bead. First, welding in the first pass (circumferential welding in the circumferential direction) was performed in a cooling environment state in which the inner and outer surfaces of the shroud were exposed to the atmospheric environment with a heat input of 10 KJ / cm or less. Next, in the second pass to several passes, for example, the third pass, welding was performed with substantially the same heat input as in the first pass, but the outer surface of the shroud was forcedly blown to cool down, and the surface temperature of the shroud material was increased. Welding was performed with forced cooling to decrease.

ここで、入熱量は、溶接に使用される電流や電圧の大きさおよび溶接速度により決定される。   Here, the amount of heat input is determined by the magnitude of current and voltage used for welding and the welding speed.

数パス目、例えば3パス目の溶接終了後には、シュラウド内面とその外面との環境が溶接で隔離されていると確認した上で、被曝低減のため、炉心シュラウド10の外面に水を満たした。その後、シュラウド板厚(肉厚)の約1/4付近の位置まで、初期入熱量と略同じ低い入熱量で溶接を行なった。   After the completion of the welding in the third pass, for example, the third pass, it was confirmed that the environment between the inner surface of the shroud and the outer surface was isolated by welding, and the outer surface of the core shroud 10 was filled with water to reduce exposure. . Thereafter, welding was performed to a position near about ¼ of the shroud plate thickness (thickness) with a heat input as low as the initial heat input.

次に、溶接中期の第2ステップでは、シュラウド板厚の1/4以降の入熱量を10〜30KJ/cmの範囲で初期入熱量より大きくし、大きくした入熱条件でシュラウド板厚の約3/4まで溶接を実施した。具体例としては、シュラウド板厚の約1/4から中央付近までは10KJ/cmから徐々に入熱量を大きくし、中央付近では20〜30KJ/cm、例えば25KJ/cmで溶接を行ない、その後3/4付近までは中央領域(付近)より若干小さい入熱量で溶接を実施した。中間領域の溶接である溶接中期は、シュラウド板厚の1/4〜3/4の範囲を溶接するものであり、この溶接中期の第2ステップでは、初期入熱量より大きな中期入熱量で、かつこの入熱量は10〜30KJ/cmの範囲で段階的あるいは連続的に、または、中央領域が大きくなるように変化させたり、また、一定の入熱量で溶接を行なった。   Next, in the second step in the middle of welding, the heat input after 1/4 of the shroud plate thickness is made larger than the initial heat input in the range of 10 to 30 KJ / cm, and about 3% of the shroud plate thickness under the increased heat input condition. / 4 welding was carried out. As a specific example, the heat input is gradually increased from 10 KJ / cm from about 1/4 of the shroud plate thickness to near the center, welding is performed at 20 to 30 KJ / cm, for example, 25 KJ / cm near the center, and then 3 Up to about / 4, welding was performed with a heat input slightly smaller than the central region (near). In the middle stage of welding, which is the welding in the intermediate region, the range of 1/4 to 3/4 of the shroud plate thickness is welded. In the second step of this middle stage of welding, the middle stage heat input is larger than the initial heat input, and The amount of heat input was changed stepwise or continuously in the range of 10 to 30 KJ / cm, or the central region was increased, or welding was performed with a constant amount of heat input.

また、シュラウド板厚の約3/4以降を溶接する溶接後期の第3ステップでは、再び入熱量を中期入熱量より低くし、かつシュラウド内面の冷却速度が大気中で溶接するよりも速くなるように、シュラウド内面に強制的に空気を吹き付けたり、強制冷却環境下で溶接を実施した。シュラウド板厚の後期入熱量は、中期入熱量より低く、また、初期入熱量と同等あるいは初期入熱量より大きく、あるいは小さい所要の範囲で溶接を実施した。   Further, in the third step in the latter stage of welding in which about 3/4 or more of the shroud plate thickness is welded, the heat input amount is again made lower than the intermediate heat input amount, and the cooling rate of the inner surface of the shroud is faster than that in the atmosphere. In addition, air was forcibly blown to the inner surface of the shroud or welding was performed in a forced cooling environment. The late heat input of the shroud plate thickness was lower than the medium heat input, and welding was performed in a required range that was equal to, greater than, or smaller than the initial heat input.

新炉心シュラウド11を基礎炉心シュラウドである旧炉心シュラウド12上に据え付ける溶接作業を実施し、シュラウド内面と面一となる位置までシュラウド外面からシュラウド内面に向けて半径方向内方の一方向の溶接を行なった後、シュラウド内面を数パス、例えば3パス程度の全周肉盛り溶接を追加して実施し、追加溶接部17を数パスの周方向の溶接ビードで形成した。   Welding work to install the new core shroud 11 on the old core shroud 12, which is the basic core shroud, is performed in a radially inward direction from the outer surface of the shroud to the inner surface of the shroud to a position flush with the inner surface of the shroud. After this, the inner surface of the shroud was added with several passes, for example, 3 passes of all-around buildup welding, and the additional welded portion 17 was formed with several passes of circumferential weld beads.

この炉心シュラウド10の溶接方法において、シュラウド肉厚の約3/4以降では、SCC発生抑制あるいは防止対策から、シュラウド内面の冷却速度が大気中で溶接するよりも速くなるように、シュラウド内面に強制的に冷却空気を吹き付けることで、圧縮の残留応力が引張り側に変化するのを防止している。   In this method of welding the core shroud 10, the inner surface of the shroud is forced so that the cooling rate of the inner surface of the shroud is higher than that of welding in the atmosphere from the viewpoint of suppressing or preventing SCC from about 3/4 of the thickness of the shroud. By blowing the cooling air, the residual stress of compression is prevented from changing to the tension side.

図4(A)および(B)は、従来の炉心シュラウドの溶接方法と本発明による炉心シュラウドの溶接方法を実施して形成される炉心シュラウドのシュラウド外面の残留応力分布を比較したものである。   4A and 4B compare the residual stress distribution on the outer surface of the shroud of the core shroud formed by performing the conventional core shroud welding method and the core shroud welding method according to the present invention.

図4(A)に示される従来の炉心シュラウドの溶接方法では、SCC発生抑制対策が施されていない。従来の炉心シュラウドの溶接方法ではSCCの発生を抑制する見地から溶接の入熱条件を考慮した着想や発想は存在しない。従来の炉心シュラウドでは、溶接の冷却環境は、1〜3パスの溶接がシュラウド内外面が大気中に露出の環境下で行なわれ、4パス目以降にシュラウド外面側に水を入れ、シュラウド外面が水中で、シュラウド内面が大気中環境下で溶接を実施した。溶接の入熱条件の配慮は特にしていない。従来の炉心シュラウドの溶接方法で溶接した新炉心シュラウドと旧炉心シュラウドの溶接部近傍の軸方向残留応力成分は圧縮であったものの、周方向残留応力成分は引張りであり、SCC発生要因を作り出す原因となっている。   In the conventional core shroud welding method shown in FIG. 4A, no SCC generation suppression measures are taken. In the conventional core shroud welding method, there is no idea or idea considering the heat input condition of welding from the viewpoint of suppressing the occurrence of SCC. In a conventional core shroud, the welding cooling environment is such that welding of 1 to 3 passes is performed in an environment where the inner and outer surfaces of the shroud are exposed to the atmosphere, and water is poured into the outer surface of the shroud after the fourth pass. Welding was performed underwater in the atmosphere on the inner surface of the shroud. No special consideration is given to the heat input conditions of welding. The axial residual stress component in the vicinity of the welded area between the new core shroud and the old core shroud welded by the conventional core shroud welding method was compression, but the circumferential residual stress component was tensile, and this was the cause of SCC generation. It has become.

これに対し、図4(B)は本発明に係る炉心シュラウドの溶接方法を実施して得られるシュラウド外面の残留応力分布を示すものである。   On the other hand, FIG. 4B shows the residual stress distribution on the outer surface of the shroud obtained by performing the core shroud welding method according to the present invention.

SCC発生防止あるいは抑制対策を施した本発明の炉心シュラウド10の溶接方法では、第1ステップにおける1〜数パス、例えば3パス目の入熱量を低く、しかも、冷却速度を速くしてシュラウド外面に生じる引張残留応力の範囲を狭くし、かつその最大値を低く抑える。また、シュラウド板厚の中央付近では、溶接によりシュラウド外面の残留応力が圧縮になるため、入熱量(中期入熱量)を高くすることで圧縮の残留応力をより高くする。さらに、炉心シュラウド10の溶接の最後の方では、シュラウド外面の残留応力は再び引張り側になることから、SCC対策上溶接の悪影響を抑えるため、入熱量を低くかつ冷却速度を速くすることで、圧縮の残留応力が引張りに変化するのを防止する。   In the welding method of the core shroud 10 of the present invention in which the occurrence of SCC is prevented or suppressed, the heat input amount in one to several passes, for example, the third pass in the first step is reduced, and the cooling rate is increased to increase the outer surface of the shroud. The range of the tensile residual stress that occurs is narrowed and the maximum value is kept low. Further, since the residual stress on the outer surface of the shroud is compressed by welding in the vicinity of the center of the shroud plate thickness, the residual stress of compression is further increased by increasing the heat input (medium amount of heat input). Furthermore, in the last part of the welding of the core shroud 10, the residual stress on the outer surface of the shroud is on the tension side again, so in order to suppress the adverse effects of welding for SCC countermeasures, by lowering the heat input and increasing the cooling rate, Prevents compressive residual stress from changing to tension.

この結果として、炉心シュラウド10は、シュラウド表面側の溶接部の軸方向残留応力成分、および周方向残留応力成分を共に圧縮にすることが可能となり、引張応力が残留応力成分として残ることがない。   As a result, the core shroud 10 can compress both the axial residual stress component and the circumferential residual stress component of the welded portion on the shroud surface side, and tensile stress does not remain as a residual stress component.

そして、溶接後には、シュラウド内面の溶接部近傍の残留応力のみをピーニングまたは磨き加工で改善した。   After welding, only the residual stress in the vicinity of the welded portion on the inner surface of the shroud was improved by peening or polishing.

第1実施形態に示された炉心シュラウド10の溶接では、新炉心シュラウド11を旧炉心シュラウド11上に20数パスの溶接を施して据え付ける例を示したが、この溶接のパス数は10数パスであっても、あるいは20数パス以上、例えば50パスであってもよい。   In the welding of the core shroud 10 shown in the first embodiment, an example has been shown in which the new core shroud 11 is installed on the old core shroud 11 by welding 20 or more passes. Or 20 or more passes, for example, 50 passes.

また、第1実施形態では、新炉心シュラウド11を旧炉心シュラウド12上に据え付けるのに、シュラウド外面(外周)側からシュラウド内面(内周)側に全周に亘って順次肉盛り溶接を重ねていく例を示したが、この溶接は、シュラウド内面側からシュラウド外面側に向けて順次溶接を重ねる溶接ビードシーケンスを実施してもよい。   In the first embodiment, in order to install the new core shroud 11 on the old core shroud 12, build-up welding is sequentially repeated over the entire circumference from the shroud outer surface (outer periphery) side to the shroud inner surface (inner periphery) side. Although several examples have been shown, this welding may be performed by a weld bead sequence in which welding is sequentially repeated from the inner side of the shroud toward the outer side of the shroud.

[第2実施形態]
図5および図6は本発明に係る溶接構造物の溶接方法の第2実施形態を示すものである。
[Second Embodiment]
5 and 6 show a second embodiment of the welding method for a welded structure according to the present invention.

第2実施形態も沸騰水型原子炉の原子炉圧力容器内に据え付けられる炉心シュラウド10Aを対象とする溶接構造物とした例を示す。   2nd Embodiment also shows the example made into the welded structure which made object the core shroud 10A installed in the reactor pressure vessel of a boiling water reactor.

この炉心シュラウド10Aの溶接方法は、炉心シュラウド10Aのシュラウド内面(内周面)に溶接中心から所要の位置に数パス、例えば3パスの肉盛り溶接を全周に亘り実施したものである。他の構成および作用は、第1実施形態に示された溶接構造物の溶接方法と実質的に異ならないので同じ構成には同一符号を付して重複する説明を省略する。   This core shroud 10A welding method is a method in which build-up welding of several passes, for example, three passes, is performed on the inner surface (inner peripheral surface) of the core shroud 10A from the welding center to a required position over the entire circumference. Since other configurations and operations are not substantially different from the welding method of the welded structure shown in the first embodiment, the same components are denoted by the same reference numerals and redundant description is omitted.

この炉心シュラウド10Aにおいては、新炉心シュラウド11を旧炉心シュラウド12に据え付ける溶接を行なった後に、図5に示すようにシュラウド内面の溶接中心から数10mm離れた所要の位置、例えば約50mm離れた位置に、全周に亘り数パス、例えば3パスの追加溶接18を実施し、溶接ビードを全周に亘り形成した。   In this core shroud 10A, after welding to install the new core shroud 11 on the old core shroud 12, as shown in FIG. 5, a required position several tens of millimeters away from the welding center on the inner surface of the shroud, for example, a position separated by about 50 mm. In addition, several passes, for example, three passes of additional welding 18 were performed over the entire circumference, and a weld bead was formed over the entire circumference.

図6(A)および(B)は、従来の炉心シュラウドの溶接と本発明に係る炉心シュラウド10Aの溶接を実施した場合における溶接後のシュラウド外面の残留応力分布を比較したものである。   6 (A) and 6 (B) compare the residual stress distribution on the outer surface of the shroud after welding when welding of the conventional core shroud and the core shroud 10A according to the present invention are performed.

従来の炉心シュラウドの溶接方法では、図6(A)に示すように、炉心シュラウドは、シュラウド外面の溶接部の軸方向残留応力成分が圧縮であったものの、周方向残留応力成分は引張りとなり、SCC発生要因を作り出す結果となっている。図6(A)は図4(A)に対応する図となっている。   In the conventional core shroud welding method, as shown in FIG. 6 (A), the core shroud has a compressive axial residual stress component in the welded portion of the outer surface of the shroud, but the circumferential residual stress component becomes tensile, This is the result of creating the SCC generation factor. FIG. 6A corresponds to FIG.

これに対し、図6(B)に示すように、炉心シュラウド10Aはシュラウド外面の溶接部の軸方向残留応力成分および周方向残留応力成分が共に圧縮となり、溶接部にSCC対策を施すことができる。   In contrast, as shown in FIG. 6B, in the core shroud 10A, the axial residual stress component and the circumferential residual stress component of the welded portion on the outer surface of the shroud are both compressed, and an SCC measure can be taken on the welded portion. .

図5(B)では炉心シュラウド10Aのシュラウド内面の溶接中心から所要の位置、例えば約50mmの位置に追加溶接18を軸方向高さ10mm〜数10mm、好ましくは10〜20mmの範囲を、シュラウド内面側の入熱条件と同じ入熱条件で最適化して溶接することにより、シュラウド表面の溶接中心から所要の位置には引張の残留応力が生じるが溶接部近傍の引張りの残留応力は解消あるいは低減させることができる。   In FIG. 5 (B), an additional weld 18 is placed at a required position from the welding center of the inner surface of the shroud of the core shroud 10A, for example, at a position of about 50 mm, and the axial height ranges from 10 mm to several tens of mm, preferably 10 to 20 mm. By optimizing and welding under the same heat input condition as the side heat input condition, a residual tensile stress is generated at the required position from the welding center on the shroud surface, but the residual tensile stress near the weld is eliminated or reduced. be able to.

応力腐食割れ(SCC)の観点からは、溶接熱影響部である溶接部近傍の残留応力を低減あるいは解消でき、溶接後にシュラウド内面の溶接部近傍の残留応力のみをピーニングまたは磨きで改善することができる。   From the viewpoint of stress corrosion cracking (SCC), it is possible to reduce or eliminate the residual stress in the vicinity of the weld, which is the heat affected zone, and to improve only the residual stress near the weld on the inner surface of the shroud after welding by peening or polishing. it can.

[第3実施形態]
図7ないし図9は本発明に係る溶接構造物の溶接方法の第3実施形態を示すものである。
[Third Embodiment]
7 to 9 show a third embodiment of a welding method for a welded structure according to the present invention.

第3実施形態を説明するに当り、第1実施形態に示された溶接構造物の溶接方法と同じ構成には、同一符号を付して重複する説明を省略する。   In describing the third embodiment, the same components as those of the welding method of the welded structure shown in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

第3実施形態も沸騰水型原子炉の原子炉圧力容器内に据え付けられる炉心シュラウド10Bを対象とする溶接構造物とした例を示す。   3rd Embodiment also shows the example made into the welded structure which made object the core shroud 10B installed in the reactor pressure vessel of a boiling water reactor.

この炉心シュラウド10Bの溶接には、図7に示すように、4台の溶接機14,20が用いられる。4台の溶接機14,20は、通常の溶接と同様に180度離れた直径位置に2台が組をなして設置され、さらに残りの2台は、2台1組の溶接機14,14を追いかけて溶接するように設置される。溶接条件は通常の溶接条件とされ、通常の溶接を行なった後に、図8に示すように、シュラウド内面の溶接中心から炉心シュラウド10Bの軸方向両側に所要の範囲で2次元の追加溶接21を実施した。   For welding the core shroud 10B, as shown in FIG. 7, four welding machines 14 and 20 are used. The four welding machines 14 and 20 are installed in pairs at a diameter position 180 degrees apart as in normal welding, and the remaining two machines are two sets of welding machines 14 and 14. It is installed so as to chase and weld. The welding conditions are normal welding conditions, and after performing normal welding, as shown in FIG. 8, two-dimensional additional welding 21 is performed within a required range from the welding center on the inner surface of the shroud to both axial sides of the core shroud 10B. Carried out.

図9(A)および(B)は、従来の炉心シュラウドの溶接と、本実施形態のように2次元の追加溶接21を施した例における溶接後のシュラウド外面の残留応力分布を比較したものである。   FIGS. 9A and 9B compare the residual stress distribution on the outer surface of the shroud after welding in the example in which the conventional core shroud welding and the two-dimensional additional welding 21 as in this embodiment are performed. is there.

図9(A)は炉心シュラウドを通常の溶接条件を施した場合における炉心シュラウドのシュラウド外面の残留応力分布を示すものである。図9(A)に示すように、新炉心シュラウドを旧炉心シュラウド上に据え付ける通常の溶接条件では、シュラウド外面における溶接部近傍の軸方向残留応力成分は圧縮であるものの、周方向残留成分は引張応力となり、SCC発生の条件が生じてしまう。   FIG. 9A shows the residual stress distribution on the outer surface of the shroud of the core shroud when the core shroud is subjected to normal welding conditions. As shown in FIG. 9A, under normal welding conditions in which the new core shroud is installed on the old core shroud, the axial residual stress component in the vicinity of the weld on the outer surface of the shroud is compression, but the circumferential residual component is tensile. It becomes stress and the condition of SCC generation occurs.

これに対し、第3実施形態に示すように、新炉心シュラウド11を旧炉心シュラウド12上に据え付ける炉心シュラウド10Bにおいて、通常の溶接条件で溶接した後に、図9(B)に示すように、シュラウド内面(内周面)に溶接中心の両側(炉心シュラウド10Bの軸方向両側)に所要の範囲、例えば20mm〜数10mm、好ましくは50mmの範囲に2次元の追加溶接部21を施すことにより、シュラウド内面の溶接部近傍の残留応力を低下させることができた。2次元の追加溶接部21は、図9(B)に示すように炉心シュラウド10Bの下方から上方に向けて一方向の溶接施工で、所要の追加溶接の範囲に亘って実施できる。   On the other hand, as shown in FIG. 9 (B), after the core shroud 10B in which the new core shroud 11 is installed on the old core shroud 12 is welded under normal welding conditions as shown in the third embodiment. The inner surface (inner peripheral surface) is provided with a two-dimensional additional welded portion 21 on both sides of the welding center (both sides in the axial direction of the core shroud 10B) in a required range, for example, 20 mm to several tens of mm, preferably 50 mm, so The residual stress in the vicinity of the weld on the inner surface could be reduced. As shown in FIG. 9B, the two-dimensional additional welded portion 21 can be carried out over a range of required additional welding by welding in one direction from the lower side to the upper side of the core shroud 10B.

炉心シュラウド10Bの溶接作業に伴う応力腐食割れ(SCC)対策の観点からは、溶接熱影響部である溶接部近傍の残留応力を低減あるいは解消することができる。溶接後にシュラウド内面の溶接部近傍の残留応力のみをピーニングまたは磨き加工で改善することができる。   From the viewpoint of measures against stress corrosion cracking (SCC) associated with the welding operation of the core shroud 10B, the residual stress in the vicinity of the welded portion, which is the weld heat affected zone, can be reduced or eliminated. Only the residual stress in the vicinity of the welded portion on the inner surface of the shroud after welding can be improved by peening or polishing.

加えて、溶接機14,20を2台ずつ組をなして4台用いたため、シュラウド内面に2次元溶接(面溶接)を追加しても、正味の溶接時間は従来の炉心シュラウドと較べて長くならず、現状の溶接工程を大幅に変更することなく溶接作業を実施することができる。   In addition, since the four welding machines 14 and 20 are used in groups of two, even if two-dimensional welding (surface welding) is added to the inner surface of the shroud, the net welding time is longer than that of the conventional core shroud. In addition, the welding operation can be performed without significantly changing the current welding process.

[第4実施形態]
図10ないし図12は、本発明に係る溶接構造物の溶接方法の第4実施形態を示すものである。
[Fourth Embodiment]
10 to 12 show a fourth embodiment of a welding method for a welded structure according to the present invention.

第4実施形態は、原子力発電プラントの主蒸気管や炉内配管あるいは種々のプラントの各種配管を溶接対象物(被溶接物)とし、配管の構成メンバ同士を溶接肉盛りで一体に接続して溶接配管を構成する例を示す。   In the fourth embodiment, the main steam pipe of the nuclear power plant, the pipe in the furnace, or various pipes of various plants are welded objects (objects to be welded), and the constituent members of the pipes are integrally connected by welding overlay. The example which comprises welding piping is shown.

第4実施形態の配管の溶接方法を説明するに当り、第1実施形態に示された構成と同じ構成には同一符号を付して重複説明を省略する。第4実施形態は、各種配管の配管メンバ同士を突き合せて全周肉盛りにより一体化した配管の溶接技術を示している。   In describing the welding method for piping according to the fourth embodiment, the same components as those illustrated in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. 4th Embodiment has shown the welding technique of the piping which faced together the piping members of various piping, and was integrated by the whole circumference buildup.

図10および図11に示された配管25は、配管メンバ25a,25bの外径が150mmφ〜300mmφ、一例として外径約200mmφ、肉厚8mmの例を示す。この配管メンバ25a,25b同士を全周に亘り、配管内面側からその外面側に向けて数パス、例えば5パスの溶接ビード27を順次肉盛りし、接合した例である。   The piping 25 shown in FIGS. 10 and 11 shows an example in which the outer diameters of the piping members 25a and 25b are 150 mm to 300 mm, for example, the outer diameter is about 200 mm and the wall thickness is 8 mm. This pipe member 25a, 25b is an example in which several passes, for example, five passes of weld beads 27 are sequentially built up and joined over the entire circumference from the pipe inner surface side toward the outer surface side.

全5パスの配管溶接のうち、1パスから3パス目の溶接ビード27は、配管内外面を共に大気中に開放した環境下で溶接を実施し、残りの4パスおよび5パス目の溶接ビード27は、配管25の内側に水を入れた状態で全周に亘り肉盛り溶接を施した。   Among all five passes of pipe welding, the weld beads 27 in the first to third passes are welded in an environment in which both the inner and outer surfaces of the pipe are open to the atmosphere, and the remaining four and fifth pass weld beads are used. No. 27 was subjected to build-up welding over the entire circumference with water in the pipe 25.

配管25は、配管メンバ25a,25b同士を突き合せ、配管内側から外側への数パスの溶接ビードで溶接部26を形成し、接合される。この配管25の溶接作業では、配管メンバ25a,25b同士の溶接部26における配管内面の残留応力分布が図11に示すように表われる。   The pipe 25 is joined by joining the pipe members 25a and 25b to each other, forming a welded portion 26 with several passes of weld beads from the inside to the outside of the pipe. In the welding operation of the pipe 25, the residual stress distribution on the pipe inner surface in the welded portion 26 between the pipe members 25a and 25b appears as shown in FIG.

配管25の溶接部26における配管内面の残留応力分布では、図12に示されるように表われる。配管内面溶接部26は、軸方向残留応力成分および周方向残留応力成分とも圧縮となり、SCC対策上の問題は生じない。配管外面の溶接部近傍の残留応力のみをピーニング加工、例えばショットピーニングにより改善することで、耐SCC性を向上させることができる。   The residual stress distribution on the inner surface of the pipe in the welded portion 26 of the pipe 25 appears as shown in FIG. The pipe inner surface welded portion 26 is compressed with respect to both the axial residual stress component and the circumferential residual stress component, and there is no problem in SCC countermeasures. By improving only the residual stress in the vicinity of the welded portion on the outer surface of the pipe by peening, for example, shot peening, the SCC resistance can be improved.

なお、第4実施形態では、配管の溶接方法を説明したが、溶接構造物を配管に代えて容器とした場合も同様にして適用することができる。   In addition, although the welding method of piping was demonstrated in 4th Embodiment, it can apply similarly when it replaces with piping and uses it as a container.

また、変形例として、第4実施形態で示した配管に対して、必要に応じて第2実施形態に示した追加溶接部21を新たに行なって良いのは勿論である。   Moreover, as a modification, it is needless to say that the additional welded portion 21 shown in the second embodiment may be newly performed on the pipe shown in the fourth embodiment as necessary.

[第5実施形態]
図13ないし図15は本発明に係る溶接構造物の溶接方法の第5実施形態を説明する図である。
[Fifth Embodiment]
FIGS. 13 to 15 are views for explaining a fifth embodiment of the welding method for a welded structure according to the present invention.

第5実施形態は、第4実施形態に示されたものと同様に、配管25を溶接対象物(被溶接物)とする例であり、第4実施形態に示されたものと同じ構成には同一符号を付して重複説明を省略する。   The fifth embodiment is an example in which the pipe 25 is an object to be welded (object to be welded), similar to that shown in the fourth embodiment, and has the same configuration as that shown in the fourth embodiment. The same reference numerals are given and redundant description is omitted.

図13および図14は、例えば外径約200mmφ、肉厚8mmの配管25を溶接対象物とするものである。この配管25は、配管メンバ25a,5b同士の端面を合せ、全数パス、例えば5パスの溶接ビード27で溶接部26を構成し、配管メンバ25a,25b同士を一体接合させるものである。   13 and 14 show a pipe 25 having an outer diameter of about 200 mmφ and a wall thickness of 8 mm as an object to be welded. In this pipe 25, the end faces of the pipe members 25 a and 5 b are aligned, and the welded portion 26 is constituted by a total number of passes, for example, five-pass weld beads 27, and the pipe members 25 a and 25 b are integrally joined.

この配管25は、配管メンバ25a,25b同士を突き合せ、配管内側(内周側)からその外側に向って全周に亘り全数パスの溶接ビード27で順次肉盛り溶接を実施して溶接部26を構成し、配管メンバ25a,25b同士を互いに一体接合させたものである。配管25では、例えば、全5パスの溶接を配管内外面が大気中に開放した環境下で行なう。配管メンバ25a,25b同士を突き合せ、溶接接合した後、配管25の溶接中心から配管外面両側に数10mm、例えば約30mmの範囲を2次元の肉盛り溶接28を実施した。   In this pipe 25, the pipe members 25 a and 25 b are brought into contact with each other, and build-up welding is sequentially performed with the weld beads 27 of all passes from the inner side (inner peripheral side) to the outer side of the pipe 25 over the entire circumference. The piping members 25a and 25b are integrally joined to each other. In the pipe 25, for example, all five passes of welding are performed in an environment where the inner and outer surfaces of the pipe are open to the atmosphere. After the pipe members 25a and 25b were butted together and welded together, two-dimensional build-up welding 28 was performed over a range of several tens of mm, for example, about 30 mm, from the welding center of the pipe 25 to both sides of the pipe outer surface.

第5実施形態に示された配管25の肉厚は、炉心シュラウドの肉厚約40mm〜50mmに較べて約8mmと薄いため、溶接接合後の2次元の肉盛り溶接28の範囲も数10mm、例えば30mmとした。この追加肉盛り溶接28は全て配管25の接合部26を覆うように配管外面側から実施した。   Since the thickness of the pipe 25 shown in the fifth embodiment is about 8 mm, which is thinner than the thickness of the core shroud of about 40 mm to 50 mm, the range of the two-dimensional build-up welding 28 after welding is also several tens of mm. For example, it was 30 mm. The additional build-up welding 28 was performed from the pipe outer surface side so as to cover the joint portion 26 of the pipe 25.

配管メンバ25a,25b同士を溶接接合した後、配管25の接合部26を配管外面側で全周に亘り数パス〜10数パスの溶接ビードで肉盛り溶接を追加して施すと、配管内面の残留応力分布は図15に示すように表わされる。   After the pipe members 25a and 25b are welded together, the welded portion 26 of the pipe 25 is additionally welded with a weld bead of several passes to several dozen passes over the entire circumference on the pipe outer surface side. The residual stress distribution is expressed as shown in FIG.

この場合にも、配管25の内面の溶接部近傍の残留応力は圧縮となり、SCC対策が施される。このため、配管25の外面の溶接部近傍の残留応力のみをピーニング加工、例えばショットピーニングで改善することで、耐SCC性を向上させることができる。   Also in this case, the residual stress in the vicinity of the welded portion on the inner surface of the pipe 25 is compressed, and an SCC countermeasure is taken. For this reason, the SCC resistance can be improved by improving only the residual stress in the vicinity of the welded portion on the outer surface of the pipe 25 by peening, for example, shot peening.

本発明に係る溶接構造物の溶接方法の第1実施形態を示す構成図。The block diagram which shows 1st Embodiment of the welding method of the welded structure which concerns on this invention. 図1に示された炉心シュラウドの溶接部を示す部分的な縦断面図。FIG. 2 is a partial longitudinal sectional view showing a welded portion of the core shroud shown in FIG. 1. 炉心シュラウドを溶接する溶接機の配置例を例示する平面図。The top view which illustrates the example of arrangement | positioning of the welding machine which welds a core shroud. (A)および(B)は、炉心シュラウドの従来の溶接例と第1実施形態の溶接例とを比較して示す、溶接後のシュラウド外面の残留応力分布図。(A) And (B) is a residual-stress distribution map of the outer surface of the shroud after welding which compares and shows the conventional welding example of a core shroud, and the welding example of 1st Embodiment. 本発明に係る溶接構造物の溶接方法の第2実施形態を示す部分的な縦断面図。The fragmentary longitudinal cross-section which shows 2nd Embodiment of the welding method of the welded structure which concerns on this invention. (A)および(B)は、従来の炉心シュラウドの溶接例と第2実施形態における溶接例とを比較して示す、溶接後のシュラウド外面の残留応力分布図。(A) And (B) is the residual-stress distribution map of the outer surface of the shroud after welding which compares and shows the welding example of the conventional core shroud, and the welding example in 2nd Embodiment. 本発明に係る溶接構造物の溶接方法の第3実施形態を示す簡略的な平面図。The simplified top view which shows 3rd Embodiment of the welding method of the welded structure which concerns on this invention. 第3実施形態に示された炉心シュラウドの溶接部を部分的に示す縦断面図。The longitudinal cross-sectional view which shows partially the welding part of the core shroud shown by 3rd Embodiment. (A)および(B)は、炉心シュラウドの従来の溶接例と第3実施形態による溶接例とを比較して示す、溶接後のシュラウド外面の残留応力分布図。(A) And (B) is the residual-stress distribution map of the outer surface of the shroud after welding which compares and shows the conventional welding example of a core shroud, and the welding example by 3rd Embodiment. 本発明に係る溶接構造物の溶接方法の第4実施形態を示す構成図。The block diagram which shows 4th Embodiment of the welding method of the welded structure which concerns on this invention. 第4実施形態に示された配管溶接部を示す部分的縦断面図。The fragmentary longitudinal cross-section which shows the piping welding part shown by 4th Embodiment. 第4実施形態に示された溶接後の配管内面の残留応力分布図。The residual stress distribution map of the pipe inner surface after welding shown in the fourth embodiment. 本発明に係る溶接構造物の溶接方法の第5実施形態を示す構成図。The block diagram which shows 5th Embodiment of the welding method of the welded structure which concerns on this invention. 第5実施形態に示された配管溶接部を示す部分的縦断面図。The fragmentary longitudinal cross-section which shows the piping welding part shown by 5th Embodiment. 第5実施形態に示された溶接後の配管内面の残留応力分布図。The residual stress distribution map of the pipe inner surface after welding shown in the fifth embodiment.

符号の説明Explanation of symbols

10,10A,10B 炉心シュラウド(溶接構造物)
11 新炉心シュラウド
12 旧炉心シュラウド
13 溶接部
14,20 溶接機
15 溶接ビードシーケンス
16 溶接ビード
17,18,21 追加溶接部
25 配管
25a,25b 配管メンバ
26 溶接部
27 溶接ビード
28 追加溶接部
10, 10A, 10B Core shroud (welded structure)
11 New core shroud 12 Old core shroud 13 Welded part 14, 20 Welding machine 15 Weld bead sequence 16 Welded bead 17, 18, 21 Additional welded part 25 Pipe 25a, 25b Pipe member 26 Welded part 27 Welded bead 28 Additional welded part

Claims (10)

被溶接物を原子炉圧力容器内に据え付けられ炉心を取り囲む炉心シュラウドとし、上記炉心シュラウドを据え付ける際、新炉心シュラウドを基礎炉心シュラウド上に現地溶接にて設置する溶接方法において、
前記新炉心シュラウドを基礎炉心シュラウド上に載置した後、シュラウド外面あるいはシュラウド内面側から反対側のシュラウド面に向って、複数パスの溶接ビードを周方向に肉盛りして溶接ビードシーケンスを順次形成していく際、シュラウド表面の残留応力が圧縮となるように、シュラウド半径方向の溶接位置に応じて溶接条件を選択することを特徴とする炉心シュラウドの溶接方法。
In a welding method in which a workpiece is installed in a reactor pressure vessel and a core shroud surrounding the core, and when installing the core shroud, a new core shroud is installed on the basic core shroud by field welding.
After the new core shroud is placed on the basic core shroud, a weld bead sequence is sequentially formed by laminating multiple passes of weld beads in the circumferential direction from the outer surface of the shroud or the inner surface of the shroud to the opposite shroud surface. A welding method for a core shroud, wherein welding conditions are selected in accordance with a welding position in a radial direction of the shroud so that the residual stress on the surface of the shroud is compressed during the process.
前記基礎炉心シュラウド上に新炉心シュラウドを載置した後、シュラウド外面あるいはシュラウド内面側から反対側のシュラウド面に向けて複数パスの溶接ビードを周方向に肉盛りして溶接ビードシーケンスを順次形成していく際、シュラウド外面とシュラウド内面の冷却環境、または電流、電圧、溶接速度から決定される入熱量、もしくは冷却環境および入熱量の両方を、シュラウド半径方向の溶接位置に応じて変更させることを特徴とする請求項1記載の炉心シュラウドの溶接方法。 After placing the new core shroud on the basic core shroud, a weld bead sequence is sequentially formed by laminating a plurality of passes of weld beads in the circumferential direction from the outer surface of the shroud or the inner surface of the shroud to the opposite shroud surface. The cooling environment of the outer surface of the shroud and the inner surface of the shroud, or the heat input determined from the current, voltage, welding speed, or both the cooling environment and the heat input, can be changed according to the welding position in the radial direction of the shroud. The core shroud welding method according to claim 1, wherein the core shroud is welded. 前記基礎炉心シュラウド上に新炉心シュラウドを載置した後、シュラウド外面から反対側のシュラウド内面に向けて複数パスの溶接ビードで溶接ビードシーケンスを順次形成していく際、
初期の数パスのシュラウド外面の冷却環境を、冷却速度が空気中より速くなる環境下で溶接し、最終層のシュラウド内面側の冷却環境を冷却速度の空気中よりも速くなる環境下で溶接を実施する請求項1または2記載の炉心シュラウドの溶接方法。
When a new core shroud is placed on the basic core shroud, a welding bead sequence is sequentially formed with a plurality of weld beads from the outer surface of the shroud toward the inner surface of the opposite shroud.
Weld the cooling environment on the outer surface of the shroud in the first few passes in an environment where the cooling rate is faster than in the air, and weld the cooling environment on the inner surface side of the shroud in the final layer in an environment where the cooling rate is faster than in the air at the cooling rate. The core shroud welding method according to claim 1 or 2, wherein the core shroud is welded.
前記基礎炉心シュラウド上に新炉心シュラウドを載置した際、
溶接の初期の数パスでは入熱量を低く、
中間領域では溶接の初期より入熱量を高くし、
溶接の最後の方では入熱量を中間領域より低くして溶接を実施することを特徴とする請求項1または2記載の炉心シュラウドの溶接方法。
When a new core shroud is placed on the basic core shroud,
In the initial few passes of welding, the heat input is low,
In the middle region, the heat input is increased from the initial stage of welding,
3. The method for welding a core shroud according to claim 1, wherein the welding is performed with the heat input lower than that in the intermediate region at the end of welding.
前記溶接の入熱量を変更する位置を、溶接開始からシュラウド板厚の1/4付近と3/4付近を目安とする請求項4記載の炉心シュラウドの溶接方法。 The method for welding a core shroud according to claim 4, wherein the position of changing the heat input amount of welding is set to approximately ¼ and ¾ of the shroud plate thickness from the start of welding. 前記シュラウド外面とシュラウド内面とを複数パスの周方向の溶接ビードで封止した後、シュラウド外面側に水を入れてシュラウド内面側に向けて順次溶接を実施していき、この溶接終了後に、シュラウド内面の溶接中心から所要距離離れた位置を2次元肉盛りの追加溶接を実施することを特徴とする請求項1または2記載の炉心シュラウドの溶接方法。 After the outer surface of the shroud and the inner surface of the shroud are sealed with a plurality of circumferential weld beads, water is poured into the outer surface of the shroud and welding is sequentially performed toward the inner surface of the shroud. The method for welding a core shroud according to claim 1 or 2, wherein the additional welding of the two-dimensional build-up is performed at a position away from the welding center on the inner surface by a required distance. 前記シュラウド外面の冷却環境を、冷却速度が空気中より速くなる環境下とし、シュラウド外面からシュラウド内面に向けて溶接ビードを周方向に肉盛りして溶接ビードシーケンスを順次形成する溶接を実施した後、
シュラウド内面の溶接中心から両側に所要距離の範囲を2次元の追加溶接することを特徴とする請求項1または2記載の炉心シュラウドの溶接方法。
After performing the welding in which the cooling environment of the outer surface of the shroud is an environment in which the cooling rate is higher than in the air, and welding beads are sequentially piled from the outer surface of the shroud toward the inner surface of the shroud to sequentially form a weld bead sequence. ,
The method for welding a core shroud according to claim 1 or 2, wherein a two-dimensional additional welding is performed in a range of a required distance on both sides from the welding center of the inner surface of the shroud.
2台以上の溶接機を炉心シュラウドの内周側または外周側に配置し、2台以上の溶接機を使用してシュラウド外面側またはシュラウド内面側から反対側のシュラウド面に向けて溶接することを特徴とする請求項1または2記載の炉心シュラウドの溶接方法。 Two or more welding machines are arranged on the inner peripheral side or outer peripheral side of the core shroud, and welding is performed from the shroud outer surface side or the shroud inner surface side to the opposite shroud surface using the two or more welding machines. The core shroud welding method according to claim 1, wherein the core shroud is welded. 被溶接物を配管または容器とし、配管または容器の構成メンバ同士を突き合せてこの突合せ部を周方向に溶接して溶接ビードシーケンスを形成して一体化させる溶接方法において、
前記配管または容器の構成メンバ同士を突き合せた後、構成メンバ突合せ部をその内面または外面側の一方向から反対方向の面に向けて複数の溶接ビードを周方向に順次肉盛りして溶接ビードシーケンスを形成していく際、前記配管または容器の構成メンバ表面溶接部の残留応力が圧縮となるように、溶接施工とメンバ外面側あるいはメンバ内面側から順次肉盛り溶接で行なうことを特徴とする配管または容器の溶接方法。
In the welding method in which the work piece is a pipe or a container, the members of the pipe or container are butted together and the butted portion is welded in the circumferential direction to form a weld bead sequence and integrate them.
After butting together the constituent members of the pipe or container, a plurality of weld beads are sequentially built up in the circumferential direction with the constituent member butting portion directed from one direction to the opposite direction on the inner surface or outer surface side. When forming a sequence, welding is performed and build-up welding is sequentially performed from the outer surface side of the member or the inner surface side of the member so that the residual stress of the surface welding portion of the constituent member of the pipe or container is compressed. A method of welding pipes or containers.
前記被溶接物を配管または容器とし、上記配管または容器の構成メンバ同士を、その内面または外面の一方向から溶接施工を行ない、この溶接施工の構成メンバ裏面側の残留応力を圧縮するように、前記配管または容器の構成メンバ同士を一方向から溶接施工した後、構成メンバに追加溶接する位置または範囲を前記配管または容器の肉厚に応じて変更させることを特徴とする請求項9記載の配管または容器の溶接方法。 The welding object is a pipe or a container, and the members of the pipe or container are welded from one direction of the inner surface or the outer surface, and the residual stress on the back side of the member of the welding process is compressed, 10. The piping according to claim 9, wherein after the members of the pipe or container are welded from one direction, the position or range of additional welding to the members is changed in accordance with the thickness of the pipe or container. Or the welding method of the container.
JP2006200620A 2006-07-24 2006-07-24 Core shroud welding method Expired - Fee Related JP4936813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200620A JP4936813B2 (en) 2006-07-24 2006-07-24 Core shroud welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200620A JP4936813B2 (en) 2006-07-24 2006-07-24 Core shroud welding method

Publications (2)

Publication Number Publication Date
JP2008023570A true JP2008023570A (en) 2008-02-07
JP4936813B2 JP4936813B2 (en) 2012-05-23

Family

ID=39114745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200620A Expired - Fee Related JP4936813B2 (en) 2006-07-24 2006-07-24 Core shroud welding method

Country Status (1)

Country Link
JP (1) JP4936813B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185876A (en) * 2010-03-10 2011-09-22 Toshiba Corp Support structure for jet pump in boiling water reactor, and support structure for piping for measuring flow rate of jet pump
WO2013069484A1 (en) * 2011-11-09 2013-05-16 国立大学法人大阪大学 Welding method and weld joint

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584280A (en) * 1978-12-19 1980-06-25 Nippon Steel Corp Narrow groove submerged arc welding method
JPS58154487A (en) * 1982-03-01 1983-09-13 Toshiba Corp Method for welding tubular member
JPS63199075A (en) * 1987-02-13 1988-08-17 Ishikawajima Harima Heavy Ind Co Ltd Method for welding metallic pipe
JPH0857640A (en) * 1994-08-16 1996-03-05 Nippon Steel Corp Method for preventing folding of root toe of back bead multi-pass butt welding
JPH08211185A (en) * 1995-02-06 1996-08-20 Toshiba Corp Method for exchanging core shroud
JPH091376A (en) * 1995-06-14 1997-01-07 Hitachi Ltd Welding method with low residual stress structure
JPH09295136A (en) * 1996-05-01 1997-11-18 Mitsubishi Heavy Ind Ltd Lamination type welding method of steel tube
JP2000237869A (en) * 1999-02-17 2000-09-05 Ishikawajima Harima Heavy Ind Co Ltd Butt welding method for tubes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5584280A (en) * 1978-12-19 1980-06-25 Nippon Steel Corp Narrow groove submerged arc welding method
JPS58154487A (en) * 1982-03-01 1983-09-13 Toshiba Corp Method for welding tubular member
JPS63199075A (en) * 1987-02-13 1988-08-17 Ishikawajima Harima Heavy Ind Co Ltd Method for welding metallic pipe
JPH0857640A (en) * 1994-08-16 1996-03-05 Nippon Steel Corp Method for preventing folding of root toe of back bead multi-pass butt welding
JPH08211185A (en) * 1995-02-06 1996-08-20 Toshiba Corp Method for exchanging core shroud
JPH091376A (en) * 1995-06-14 1997-01-07 Hitachi Ltd Welding method with low residual stress structure
JPH09295136A (en) * 1996-05-01 1997-11-18 Mitsubishi Heavy Ind Ltd Lamination type welding method of steel tube
JP2000237869A (en) * 1999-02-17 2000-09-05 Ishikawajima Harima Heavy Ind Co Ltd Butt welding method for tubes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185876A (en) * 2010-03-10 2011-09-22 Toshiba Corp Support structure for jet pump in boiling water reactor, and support structure for piping for measuring flow rate of jet pump
WO2013069484A1 (en) * 2011-11-09 2013-05-16 国立大学法人大阪大学 Welding method and weld joint

Also Published As

Publication number Publication date
JP4936813B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5953272B2 (en) Preventive maintenance repair method for welded part of membrane panel for boiler
CN106624405B (en) Method and system for repairing damage of tube plate and tube hole of steam generator of nuclear power station
CN108994430B (en) Welding method of nickel-based alloy steel and carbon steel dissimilar material pipeline
JP5694564B2 (en) Reduction of residual stress in welding
JP4915251B2 (en) Clad welded structure of low alloy steel base metal
Huang et al. Design, manufacturing and repair of tube-to-tubesheet welds of steam generators of CPR1000 units
JP4936813B2 (en) Core shroud welding method
JP5304392B2 (en) Dissimilar joint structure and manufacturing method thereof
JP2007021530A (en) Method for repairing steel casting by welding and steel casting having part repaired by welding
US20190062857A1 (en) Process for forming a stainless steel weldment resistant to stress corrosion cracking
US20150013425A1 (en) Internal Mechanical Stress Improvement Method for Mitigating Stress Corrosion Cracking in Weld Areas of Nuclear Power Plant Piping
JP2005088048A (en) Flange for absorbing welding deformation for piping joint, and piping joint using the same
JP2010269330A (en) Tool for suppressing strain and method of repairing wall part made of steel
JP2013108918A (en) Nozzle welded part corrosion prevention and repair method
JP4929096B2 (en) Overlay welding method for piping
CN111015002A (en) Welding method for controlling welding restraint degree of floating head cover
KR101017648B1 (en) Tensile residual stresses reduction and removal method of welded pipes inside wall including different metal meterial
JP5896933B2 (en) How to repair welds
JP2009012030A (en) Method for improving residual stress in inner surface of pipe, and pipe improved in residual stress in inner surface thereof
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
JP2007092730A (en) Gas outflow preventing method of turbine casing
JP2006208227A (en) Repair method of nozzle of reactor pressure vessel
JPH02133191A (en) Preventing method for stress corrosion cracking of vessel through-pipe
JP2020183890A (en) Method for forming water cut-off wall within pressure suppression chamber, and structure of water cut-off wall
JP2011174541A (en) Method for preventing development of cracks of piping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees