JP2009012030A - Method for improving residual stress in inner surface of pipe, and pipe improved in residual stress in inner surface thereof - Google Patents

Method for improving residual stress in inner surface of pipe, and pipe improved in residual stress in inner surface thereof Download PDF

Info

Publication number
JP2009012030A
JP2009012030A JP2007175440A JP2007175440A JP2009012030A JP 2009012030 A JP2009012030 A JP 2009012030A JP 2007175440 A JP2007175440 A JP 2007175440A JP 2007175440 A JP2007175440 A JP 2007175440A JP 2009012030 A JP2009012030 A JP 2009012030A
Authority
JP
Japan
Prior art keywords
pipe
stress
heat input
improving
residual stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007175440A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Yanagida
信義 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007175440A priority Critical patent/JP2009012030A/en
Publication of JP2009012030A publication Critical patent/JP2009012030A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving residual stresses in an inner surface of a pipe, in which the residual tensile stresses in the axial direction of the inner surface of the pipe at a part to be improved, can be improved, and a pipe improved in residual stresses in inner surface thereof. <P>SOLUTION: Stress improvement heat input areas L5-L7 are set by deviating the position in the axial direction of a pipe 20 with respect to the part O to be improved where the residual tensile stress in the inner surface of the pipe 20 must be improved. The welding heat input higher than those in areas L1-L4 including the part O for improvement is given to an outer surface of the pipe at the set stress improvement heat input areas L5-L7. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、配管内面の残留応力改善方法、内面の残留応力を改善した配管に関する。   The present invention relates to a method for improving residual stress on an inner surface of a pipe and a pipe having improved residual stress on the inner surface.

オーステナイト系ステンレス鋼や高ニッケル基合金の溶接部では、溶接熱によって結晶粒界にクロム炭化物が析出する。その結果、結晶粒界の極近傍にクロム欠乏層が形成され、このクロム欠乏層が鋭敏化する(腐食に対し感受性が高くなる)。また、溶接部近傍の表面には、一般に高い引張残留応力が存在する。高い引張残留応力が存在する材料が、鋭敏化した状態で厳しい腐食環境下で使用されれば応力腐食割れを起こすことがある。すなわち、材料の鋭敏化、高い引張残留応力、及び厳しい腐食環境の三因子が重畳すると、応力腐食割れが発生する危険性が高まる。   In the welded portion of austenitic stainless steel or high nickel base alloy, chromium carbide precipitates at the grain boundaries due to welding heat. As a result, a chromium-deficient layer is formed in the immediate vicinity of the crystal grain boundary, and this chromium-deficient layer becomes sensitized (sensitivity to corrosion). Further, generally high tensile residual stress exists on the surface in the vicinity of the weld. If a material with high tensile residual stress is used in a harsh corrosive environment in a sensitized state, stress corrosion cracking may occur. That is, when the three factors of material sensitization, high tensile residual stress, and severe corrosion environment overlap, the risk of stress corrosion cracking increases.

従来、オーステナイト系ステンレス鋼の応力腐食割れは、JIS規格のタイプ304ステンレス鋼等といった炭素含有量が高い材料の溶接熱影響部に発生すると考えられていた。そのため、タイプ304ステンレス鋼の溶接部位で腐食環境に曝される部位は、応力腐食割れを発生させる因子のうち、材料的因子の改善を目的として、炭素量が少なく鋭敏化し難い元素が付加されたJIS規格のタイプ316Lステンレス鋼に交換されてきた。   Conventionally, stress corrosion cracking of austenitic stainless steel has been considered to occur in the weld heat affected zone of materials having a high carbon content such as JIS type 304 stainless steel. Therefore, the part exposed to the corrosive environment at the welded part of type 304 stainless steel was added with an element that is low in carbon content and difficult to be sensitized for the purpose of improving material factors among the factors that cause stress corrosion cracking. It has been replaced with JIS standard type 316L stainless steel.

しかしながら、近年、タイプ316Lステンレス鋼の溶接部位の熱影響部から応力腐食割れが発生する可能性が否定しきれなくなってきた。時間の経過とともに、タイプ316Lステンレス鋼を用いる材料的因子の改善が必ずしも十分でないことが判明しつつある。さらに、従来の知見では割れが進展しないと考えられていたステンレス鋼の溶接金属が応力腐食割れを起こさないとも言い切れない。このような可能性から、応力腐食割れを抑制するためには、材料的な因子の改善だけでなく、残留応力因子や腐食環境因子の改善も急務となってきている。   However, in recent years, the possibility that stress corrosion cracking occurs from the heat-affected zone of the welded part of type 316L stainless steel cannot be denied. Over time, it is becoming clear that the improvement in material factors using Type 316L stainless steel is not always sufficient. Furthermore, it cannot be said that the weld metal of stainless steel, which has been considered that cracks do not progress in the conventional knowledge, does not cause stress corrosion cracking. From such a possibility, in order to suppress stress corrosion cracking, not only improvement of material factors but also improvement of residual stress factors and corrosion environment factors has become an urgent task.

それに対し、応力腐食割れの発生を抑制する方策の一つに、腐食環境に曝される領域の引張残留応力を低減させることが挙げられる。配管の溶接継手部の引張残留応力を緩和する方法としては、配管の既設溶接継手部を含めて配管の外側を覆うように肉盛溶接し、その後に配管を冷却して肉盛部を収縮させ、既設溶接継手部の内面に圧縮残留応力を生じさせる方法が提唱されている(特許文献1等参照)。   On the other hand, one measure for suppressing the occurrence of stress corrosion cracking is to reduce the tensile residual stress in a region exposed to a corrosive environment. As a method of relieving the tensile residual stress of the welded joint part of the pipe, build-up welding is performed so as to cover the outside of the pipe including the existing welded joint part of the pipe, and then the pipe is cooled to shrink the build-up part. A method of generating compressive residual stress on the inner surface of an existing welded joint has been proposed (see Patent Document 1).

特開2005−111513号公報JP 2005-111513 A

上記特許文献1に記載された技術のように配管の外面に肉盛溶接を行うと、肉盛溶接部の収縮により配管の周方向に収縮変形が起き、配管内面の周方向応力は圧縮応力になる。配管外面の肉盛溶接は周方向応力を圧縮化する場合には、非常に有効な方法である。   When overlay welding is performed on the outer surface of the pipe as in the technique described in Patent Document 1, shrinkage deformation occurs in the circumferential direction of the pipe due to shrinkage of the overlay welding portion, and the circumferential stress on the inner surface of the pipe is changed to compressive stress. Become. Overlay welding of the outer surface of the pipe is a very effective method when compressing the circumferential stress.

しかしながら、特許文献1には、肉盛溶接の入熱条件や肉盛溶接部の厚さ・位置等が特に規定されていない。肉盛溶接の幅や位置によっては配管内面に凸になる変形が生じる。この場合には、配管内面の軸方向応力は引張応力になってしまう。配管内面の突合せ溶接部付近に引張残留応力が残留していると、それが亀裂の発生を誘起する要因となる。そのため、亀裂の発生及び進展を抑制するためには、被改善箇所の周方向のみならず軸方向の引張り応力も改善する必要がある。   However, Patent Document 1 does not particularly define the heat input conditions for overlay welding, the thickness / position of the overlay weld, and the like. Depending on the width and position of build-up welding, deformation that protrudes on the inner surface of the pipe occurs. In this case, the axial stress on the inner surface of the pipe becomes a tensile stress. If tensile residual stress remains in the vicinity of the butt weld on the inner surface of the pipe, it becomes a factor inducing the occurrence of cracks. Therefore, in order to suppress the occurrence and development of cracks, it is necessary to improve not only the circumferential direction of the improved portion but also the tensile stress in the axial direction.

本発明は、被改善箇所の配管内面の軸方向にかかる残留引張り応力を改善することができる配管内面の残留応力改善方法及び内面の残留応力を改善した配管を提供することを目的とする。   An object of the present invention is to provide a method for improving the residual stress on the inner surface of a pipe that can improve the residual tensile stress in the axial direction of the inner surface of the pipe at the location to be improved, and a pipe with improved residual stress on the inner surface.

上記目的を達成するために、本発明は、配管内面の引張り残留応力を改善する必要がある被改善箇所に対して配管の軸方向に位置をずらして応力改善入熱領域を設定し、設定した応力改善入熱領域の配管外面に溶接入熱を与える。   In order to achieve the above object, the present invention sets and sets the stress improvement heat input region by shifting the position in the axial direction of the pipe with respect to the improved portion that needs to improve the tensile residual stress on the inner surface of the pipe. Apply welding heat to the outer surface of the pipe in the stress improvement heat input area.

本発明によれば、被改善箇所の配管内面の軸方向にかかる残留引張り応力を改善することができる。   ADVANTAGE OF THE INVENTION According to this invention, the residual tensile stress concerning the axial direction of the pipe inner surface of a to-be-improved location can be improved.

以下に図面を用いて本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、本願明細書において“被改善箇所”とは、配管内面の引張り残留応力を改善する必要がある箇所を意味し、代表的には、例えば配管接合部に代表される配管の溶接部や溶接部の近傍(例えば10mm以内)の領域である。また、“溶接入熱”とは、溶接を行なう際に発生するアークの発熱量を近似的に換算した値であり、溶接電流・溶接電圧・溶接速度により定まる。したがって、特に断らない場合、本願明細書において“溶接入熱を与える”という概念には、ワイヤー等の溶接金属を供給する(肉盛する)場合と溶接金属を供給しない場合の双方が含まれる。また、“応力改善入熱領域”とは、被改善箇所の残留応力の改善に寄与する溶接入熱を与える領域を意味し、当該領域よりも被改善箇所に近い領域(被改善箇所を包含する領域)に比較して高い溶接入熱が与えられる。また本願明細書において、“応力改善入熱領域に対して被改善箇所を含む領域よりも高い溶接入熱を与える”という概念には、被改善箇所を包含する領域に対して応力改善入熱領域よりも低い溶接入熱を与える場合と当該領域に溶接入熱を与えない場合が含まれる。これらを踏まえ、次に本発明の残留応力の改善原理を説明する。   First, in the present specification, “improved location” means a location where it is necessary to improve the tensile residual stress on the inner surface of the pipe. Typically, for example, a welded portion or welded pipe such as a pipe joint is used. This is an area in the vicinity of the part (for example, within 10 mm). “Welding heat input” is a value obtained by approximately converting the amount of heat generated by arc generated when welding is performed, and is determined by the welding current, welding voltage, and welding speed. Therefore, unless otherwise specified, the concept of “giving welding heat input” in the present specification includes both a case where a weld metal such as a wire is supplied (build-up) and a case where no weld metal is supplied. Further, the “stress improving heat input region” means a region that gives welding heat input that contributes to the improvement of the residual stress of the improved portion, and is a region closer to the improved portion than the region (including the improved portion). High welding heat input is given compared to (region). In the present specification, the concept of “giving higher heat input to the stress-improving heat input region than the region including the improved portion” includes the stress improving heat input region relative to the region including the improved portion. The case where a lower welding heat input is applied and the case where no welding heat input is applied to the region are included. Based on these, the principle of improving the residual stress of the present invention will be described next.

図1に示したような、外半径がR、管壁の厚さがtpの配管20の外面に、厚さがtw、片側長さがWの肉盛部(溶接金属部)30を積層する肉盛溶接を施工した場合の配管20の内面の残留応力分布について説明する。   As shown in FIG. 1, a build-up portion (welded metal portion) 30 having a thickness tw and a length W on one side is laminated on the outer surface of the pipe 20 having an outer radius R and a tube wall thickness tp. The residual stress distribution on the inner surface of the pipe 20 when overlay welding is performed will be described.

例えば、次に示した表1のように配管寸法や溶接条件の異なる4つのケースA−Dにつき、配管内面の周方向及び軸方向の応力分布を測定した結果を図2に示した。   For example, as shown in Table 1 below, the results of measuring the stress distribution in the circumferential direction and the axial direction of the inner surface of the pipe for four cases AD having different pipe dimensions and welding conditions are shown in FIG.

Figure 2009012030
Figure 2009012030

図2のグラフでは、残留応力(MPa)を縦軸に、肉盛部30の軸方向(配管20の中心軸方向)の中心位置Oから軸方向にとった距離(mm)を横軸にとっている。縦軸では、正の値が引張り残留応力、負の値が圧縮残留応力を表している。この図2から判るように、周方向残留応力・軸方向残留応力とも配管20の外半径Rと厚さtpによって分布が異なる。   In the graph of FIG. 2, the residual stress (MPa) is on the vertical axis, and the distance (mm) in the axial direction from the center position O in the axial direction (the central axis direction of the pipe 20) of the built-up portion 30 is on the horizontal axis. . On the vertical axis, a positive value represents tensile residual stress and a negative value represents compressive residual stress. As can be seen from FIG. 2, both the circumferential residual stress and the axial residual stress have different distributions depending on the outer radius R and the thickness tp of the pipe 20.

一方、図3は図2のグラフの横軸を配管20の外半径Rと板厚tpから計算される(Rtp)1/2で無次元化したグラフである。図3に示したように、内面の残留応力分布は各ケースA−Dで周方向残留応力・軸方向残留応力ともほぼ一致する。すなわち、肉盛部30の中心位置Oからの軸方向距離を(Rtp)1/2で無次元化して応力分布を求めておけば、配管20の外半径Rや厚さtpによらず配管内面の残留応力分布を算出することができる。 On the other hand, FIG. 3 is a graph obtained by making the horizontal axis of the graph of FIG. 2 dimensionless by (Rtp) 1/2 calculated from the outer radius R of the pipe 20 and the plate thickness tp. As shown in FIG. 3, the residual stress distribution on the inner surface almost coincides with the circumferential residual stress and the axial residual stress in each case AD. That is, if the stress distribution is obtained by making the axial distance from the center position O of the built-up portion 30 non-dimensional with (Rtp) 1/2 , the inner surface of the pipe can be obtained regardless of the outer radius R or the thickness tp of the pipe 20. The residual stress distribution can be calculated.

ここで、図3から判るように、配管内面の周方向応力は、僅かに引張り応力側に傾く領域もあるが概ね圧縮応力に傾いており、肉盛部30の中心位置Oから離れるにつれて0(ゼロ)に漸近していく。すなわち、肉盛溶接を配管20の外面に施工することにより配管内面の周方向応力は圧縮化され、応力腐食割れを起こし難い状態に改善される。   Here, as can be seen from FIG. 3, the circumferential stress on the inner surface of the pipe is slightly inclined to the compressive stress although there is a region slightly inclined to the tensile stress side, and becomes 0 (as the distance from the center position O of the built-up portion 30 increases. Asymptotically approaching zero). That is, by applying build-up welding to the outer surface of the pipe 20, the circumferential stress on the inner surface of the pipe is compressed and improved to a state in which stress corrosion cracking is unlikely to occur.

それに対し、配管内面の軸方向応力は、肉盛部30の中心位置Oの近辺で引張り応力になっている。つまり残留応力を改善したい箇所(被改善箇所)の外面に肉盛溶接を施工すると、配管内面の周方向応力は圧縮応力になるが、配管内面の軸方向応力は引張応力になってしまう。したがって、配管外面に肉盛溶接を施工して被改善箇所の応力腐食割れを抑制する上では、単に被改善箇所を含む領域の外面に肉盛部30を形成するのではなく、被改善箇所と肉盛部30との位置関係に配慮する必要がある。   On the other hand, the axial stress on the inner surface of the pipe is a tensile stress in the vicinity of the center position O of the built-up portion 30. In other words, when overlay welding is performed on the outer surface of the location where the residual stress is desired to be improved (the location to be improved), the circumferential stress on the inner surface of the pipe becomes compressive stress, but the axial stress on the inner surface of the pipe becomes tensile stress. Therefore, in order to suppress the stress corrosion cracking of the improved portion by performing build-up welding on the outer surface of the pipe, instead of simply forming the built-up portion 30 on the outer surface of the region including the improved portion, It is necessary to consider the positional relationship with the build-up part 30.

そこで図3を見ると、配管内面に作用する軸方向応力は、肉盛部30の中心位置Oの近くでは引張応力側に傾くが、中心位置Oから離れるにつれ、急激に圧縮応力側に傾いた後、約2.7(Rtp)1/2の位置で0になる。中心位置Oからの距離が2.7(Rtp)1/2以上の領域では、中心位置Oから離れるにつれ、僅かに引張応力側に傾いた後に0に漸近していく。このことから、配管外面に肉盛溶接をした場合、肉盛部30の中心位置Oからの距離が2.7(Rtp)1/2以上の領域には肉盛部30を形成したことによる熱的影響が殆どなく、被改善箇所から2.7(Rtp)1/2以上離れたところに肉盛部30を形成しても被改善箇所の残留応力の改善には作用しないことが判る。したがって、被改善箇所の軸方向応力の改善のためには、被改善箇所からの距離が2.7(Rtp)1/2以内の領域に肉盛部30を形成すれば足りる。 Accordingly, when viewing FIG. 3, the axial stress acting on the inner surface of the pipe is inclined toward the tensile stress side near the center position O of the built-up portion 30, but is rapidly inclined toward the compressive stress side as the distance from the center position O increases. Then, it becomes 0 at a position of about 2.7 (Rtp) 1/2 . The region having a distance of 2.7 (Rtp) 1/2 or more from the center position O, as the distance from the center position O, asymptotically approaches zero after inclined slightly tensile stress side. From this, when overlay welding is performed on the outer surface of the pipe, the heat generated by forming the overlay portion 30 in a region where the distance from the center position O of the overlay portion 30 is 2.7 (Rtp) 1/2 or more. It can be seen that there is little influence on the effect, and even if the build-up portion 30 is formed at a distance of 2.7 (Rtp) 1/2 or more from the improved portion, it does not affect the improvement of the residual stress at the improved portion. Therefore, in order to improve the axial stress of the improved portion, it is sufficient to form the built-up portion 30 in a region within a distance of 2.7 (Rtp) 1/2 from the improved portion.

次に、図4に例示した配管を対象に外面の肉盛形状と配管内面の軸方向残留応力の分布との関係を検討する。図4の配管は、例えば外径が609.6mm(外半径Rが304.8mm)、厚さtpが38.9mmであるとする。この図4の配管の外面に、図5に示すように厚さ0.5tp及びtpの肉盛部30を配管外面に形成する肉盛溶接を仮定して、領域L1を中心にして軸方向に連続する肉盛部30の幅0.25(Rtp)1/2の領域L1〜L7の配管内面の軸方向残留応力をロバスト設計手法により求めた。ロバスト設計手法は公知の方法である。配管外面の肉盛部30の各領域L1〜L7の肉盛厚さtwと配管内面の軸方向応力との関係のロバスト設計手法による評価結果を図6に示す。 Next, the relationship between the build-up shape on the outer surface and the distribution of the axial residual stress on the inner surface of the pipe will be examined for the pipe illustrated in FIG. 4 is assumed to have an outer diameter of 609.6 mm (outer radius R is 304.8 mm) and a thickness tp of 38.9 mm, for example. On the outer surface of the pipe shown in FIG. 4, it is assumed that build-up welding in which a build-up portion 30 having a thickness of 0.5 tp and tp is formed on the outer face of the pipe as shown in FIG. The axial residual stress of the pipe inner surface in the regions L1 to L7 having a width 0.25 (Rtp) 1/2 of the continuous built-up portion 30 was determined by a robust design method. The robust design method is a known method. The evaluation result by the robust design method of the relationship between the build-up thickness tw of each area | region L1-L7 of the build-up part 30 of a pipe outer surface and the axial direction stress of a pipe inner surface is shown in FIG.

図6において、肉盛部30の断面形状を領域L1〜L7のそれぞれにおいてtw=0,0.5tp,tpのうちで相対的に感度が高くなる溶接厚さに設定した場合が、配管20の被改善箇所(領域L1の中心、つまり中心位置Oとする)の内面に高い軸方向圧縮応力を発生させるのに好適な条件になると想定できる。領域L1〜L3は、tw=0が良好な条件である(つまり肉盛部30を形成すると被改善箇所Oの内面の軸方向応力が引張応力になることを示している)。領域L4では、溶接厚みtwが被改善箇所Oの内面の軸方向応力に与える影響が比較的小さい。領域L5〜L7では、tw=tpが良子な条件である(つまり肉盛部30を厚くすることで被改善箇所Oの内面の軸方向応力を圧縮側に傾けられることを示している)。この結果を基に設定された、被改善箇所Oに圧縮応力を付与するための肉盛部30の形状を図7に示す。図7から判るように被改善箇所Oの配管内面の軸方向応力を圧縮化するためには、被改善箇所Oから離れた領域に肉盛を行う必要がある。肉盛する必要があるのは被改善箇所Oから見て領域L4から遠い側の領域である。ここでは、例えば領域L4の中心部をとり被改善箇所Oから配管の軸方向距離が0.75(Rtp)1/2以上の領域とする。領域L4内の被改善箇所Oに最も近い位置を肉盛部30の開始点とし、0.625(Rtp)1/2以上の領域に肉盛部30を形成するようにしても良い。 In FIG. 6, the case where the cross-sectional shape of the built-up portion 30 is set to a welding thickness with relatively high sensitivity among tw = 0, 0.5 tp, and tp in each of the regions L1 to L7. It can be assumed that it is a suitable condition for generating a high axial compressive stress on the inner surface of the location to be improved (the center of the region L1, that is, the center position O). In the regions L1 to L3, tw = 0 is a favorable condition (that is, when the built-up portion 30 is formed, the axial stress on the inner surface of the improved portion O becomes tensile stress). In the region L4, the influence of the weld thickness tw on the axial stress on the inner surface of the improved portion O is relatively small. In the regions L5 to L7, tw = tp is a good condition (that is, the thickening of the built-up portion 30 indicates that the axial stress on the inner surface of the improved portion O can be inclined toward the compression side). FIG. 7 shows the shape of the built-up portion 30 for applying compressive stress to the improved portion O, which is set based on this result. As can be seen from FIG. 7, in order to compress the axial stress on the inner surface of the pipe of the improved portion O, it is necessary to build up a region away from the improved portion O. What needs to be built up is a region far from the region L4 when viewed from the improved portion O. Here, for example, the central portion of the region L4 is taken and the region in which the axial distance of the pipe from the improved portion O is 0.75 (Rtp) 1/2 or more. The position closest to the portion to be improved O in the region L4 may be the starting point of the build-up portion 30, and the build-up portion 30 may be formed in a region of 0.625 (Rtp) 1/2 or more.

以上のように、被改善箇所Oの配管内面の周方向残留応力及び軸方向残留応力を圧縮応力化し、被改善箇所Oの応力腐食割れを抑制するには、好ましくは被改善箇所Oから0.625(Rtp)1/2〜2.7(Rtp)1/2の領域、より好ましくは0.75(Rtp)1/2〜2.7(Rtp)1/2の領域を前出の応力改善入熱領域に設定し、この応力改善入熱領域に肉盛部30を形成することが有効である。このように、引張残留応力を抑制する必要がある被改善箇所から規定の範囲だけ軸方向に位置のずれた応力改善入熱領域の配管外面に肉盛溶接を行うことにより、被改善箇所の配管内面の周方向引張残留応力及び軸方向引張残留応力の抑制、さらには圧縮応力化が可能となる。 As described above, in order to make the circumferential residual stress and the axial residual stress on the inner surface of the pipe of the improved portion O compressive and to suppress the stress corrosion cracking of the improved portion O, it is preferable to reduce the stress from 0 O to 0. 625 (Rtp) 1/2 to 2.7 (Rtp) 1/2 region, more preferably 0.75 (Rtp) 1/2 to 2.7 (Rtp) 1/2 region It is effective to set the heat input region and form the built-up portion 30 in the stress improving heat input region. In this way, by performing overlay welding on the pipe outer surface of the stress-improving heat input region that is displaced in the axial direction by a specified range from the location to be improved that needs to suppress the tensile residual stress, the piping at the location to be improved It is possible to suppress the circumferential tensile residual stress and the axial tensile residual stress on the inner surface, and to achieve compression stress.

一般に、配管の継ぎ目部分の突合せ溶接部、若しくは突合せ溶接部の近傍(例えば10mm以内の部分)の内面に高い引張残留応力が作用していると、経年に伴って応力腐食割れの発生が懸念される。このような突合せ溶接部やその近傍を被改善箇所に位置付け、上記のように被改善箇所からずれた応力改善入熱領域に溶接入熱を与えることにより、被改善箇所の応力腐食割れを抑制することができる。応力改善入熱領域には、前出の各図で説明してきたように肉盛部30を形成しても良いが、溶接金属を供給せずに(肉盛部30を形成せずに)溶接入熱を与えるだけでも良い。   In general, if high tensile residual stress is applied to the inner surface of the butt-welded portion of the joint portion of the pipe or in the vicinity of the butt-welded portion (for example, a portion within 10 mm), there is a concern about the occurrence of stress corrosion cracking over time The By positioning such a butt weld or its vicinity in the improved area and applying welding heat to the stress improved heat input area deviated from the improved area as described above, the stress corrosion cracking of the improved area is suppressed. be able to. In the stress-improving heat input region, the build-up portion 30 may be formed as described in the previous drawings, but welding is performed without supplying weld metal (without forming the build-up portion 30). You may just give heat input.

次に、既に配管20にひび割れ箇所が発生している場合について説明する。   Next, the case where the crack part has already generate | occur | produced in the piping 20 is demonstrated.

例えば配管20の内面にひび割れ箇所が存在する場合、管壁のひび割れが進行しても溶接金属で強度を確保できるように、ひび割れ箇所を補修する必要がある。そのため、ひび割れ箇所を被改善箇所Oとした場合、被改善箇所Oを避けて肉盛溶接する訳にはいかない。そこで、配管内面にひびが検出された場合に、被改善箇所(ひび割れ箇所)Oを覆う領域の外面に肉盛部30を形成するウェルドオーバーレイ工法を応用した配管内面の軸方向の引張応力の改善について検討する。   For example, when a crack location exists on the inner surface of the pipe 20, it is necessary to repair the crack location so that the strength can be secured with the weld metal even if the crack of the tube wall progresses. For this reason, when the cracked portion is the improved portion O, it is impossible to build-up welding avoiding the improved portion O. Therefore, when cracks are detected on the inner surface of the pipe, the axial tensile stress on the inner surface of the pipe is improved by applying the weld overlay method in which the build-up portion 30 is formed on the outer surface of the region to be improved (cracked portion) O. To consider.

ウェルドオーバーレイ工法では、肉盛溶接した溶接金属部(肉盛部)を構造強度部材として位置付け、配管に発生した周方向亀裂が全周貫通しても十分な構造強度が補償されるように肉盛部の厚さを確保する。ウェルドオーバーレイ工法による肉盛溶接では、一般に図8のように厚みが軸方向に一定の肉盛部が形成される。それに対し、本発明の概念に基づき、応力改善入熱領域の配管外面に、それよりも被改善箇所Oに近い領域(被改善箇所Oを含む領域)に比較して高い溶接入熱を与えた場合の肉盛部の形状を図9に示す。図9では、被改善箇所(ひび割れ箇所)Oから応力改善入熱領域までを覆うようにして溶接金属を積層し、応力改善入熱領域には溶接金属をさらに重畳して肉盛部30が形成してある。   In the weld overlay method, the welded metal part (overlaying part) that has been welded and welded is positioned as a structural strength member, and overlaying is performed so that sufficient structural strength is compensated even if circumferential cracks that have occurred in the pipe penetrate the entire circumference. Ensure the thickness of the part. In overlay welding by the weld overlay method, generally, an overlay portion having a constant thickness in the axial direction is formed as shown in FIG. On the other hand, on the basis of the concept of the present invention, the pipe outer surface of the stress improving heat input region was given higher welding heat input than the region closer to the improved portion O (the region including the improved portion O). The shape of the built-up portion in this case is shown in FIG. In FIG. 9, the weld metal is laminated so as to cover the area to be improved (cracked area) O to the stress improvement heat input area, and the overlay 30 is formed by further superimposing the weld metal in the stress improvement heat input area. It is.

図10は図7、図8、図9に示した断面形状の肉盛溶接を配管外面に施工した場合の配管内面の軸方向応力分布を示す図である。図8に示した一般的なウェルドオーバーレイ工法による肉盛溶接では、被改善箇所Oの近辺の配管内面の引張応力が増加するのに対し、本発明の概念を応用した図9のウェルドオーバーレイ工法による肉盛溶接では、被改善箇所Oの近辺の配管内面の残留応力を圧縮側に傾けて軸方向残留応力を改善することができる。また、先に図7に示した肉盛溶接では、被改善箇所Oの近辺の配管内面の残留応力がより顕著に圧縮応力化されている。   FIG. 10 is a view showing the axial stress distribution on the inner surface of the pipe when the cross-sectional welding shown in FIGS. 7, 8, and 9 is applied to the outer surface of the pipe. In the overlay welding by the general weld overlay method shown in FIG. 8, the tensile stress on the inner surface of the pipe in the vicinity of the improved portion O increases, whereas the weld overlay method of FIG. 9 to which the concept of the present invention is applied. In overlay welding, the residual stress on the pipe inner surface in the vicinity of the portion to be improved O can be inclined to the compression side to improve the axial residual stress. Further, in the build-up welding shown in FIG. 7, the residual stress on the inner surface of the pipe in the vicinity of the improved portion O is more remarkably compressed.

次に施工後の肉盛箇所の定期検査に好適な例を説明する。   Next, an example suitable for regular inspection of the built-up location after construction will be described.

例えば上記のように被改善箇所や応力改善入熱領域に肉盛溶接した後、配管20の肉盛部30で被覆した部分におけるひび割れ等の欠陥の有無を超音波探傷により定期的に検査する場合、肉盛部30の厚さは一様である方が好ましい。しかし、図9に示した形状の肉盛溶接では、領域L5〜L7の溶接厚さが、領域L1〜L4の溶接厚さと異なっている。   For example, in the case where the welded portion or the stress improved heat input region is welded as described above and then periodically inspected by ultrasonic flaws for the presence of defects such as cracks in the portion covered with the cladding portion 30 of the pipe 20. The thickness of the built-up portion 30 is preferably uniform. However, in the overlay welding having the shape shown in FIG. 9, the weld thickness of the regions L5 to L7 is different from the weld thickness of the regions L1 to L4.

図9に示した例では、応力改善入熱領域の肉盛部30を厚く積層することにより、被改善箇所を含む領域に比べて応力改善入熱領域の肉盛部30の収縮力を強め、被改善箇所の内面の残留応力を改善した。これと同様の効果は、肉盛部30の肉厚を一定に保ちつつ、被改善箇所を含む領域に比べて応力改善入熱領域への溶接入熱の総入熱量を大きくすることでも得ることができる。肉盛部30の肉厚を一定に保ちつつ、被改善箇所Oを含む領域に比べて応力改善入熱領域への溶接入熱の総入熱量を大きくした本発明の一実施の形態を図11に示した。   In the example shown in FIG. 9, the build-up portion 30 in the stress-improving heat input region is thickly laminated, thereby strengthening the contraction force of the build-up portion 30 in the stress-improving heat input region as compared to the region including the improved portion. The residual stress on the inner surface of the improved area was improved. The same effect as this can be obtained by increasing the total heat input of the welding heat input to the stress improving heat input region as compared with the region including the improved portion while keeping the thickness of the built-up portion 30 constant. Can do. FIG. 11 shows an embodiment of the present invention in which the total heat input of welding heat input to the stress improving heat input region is made larger than that of the region including the improved portion O while keeping the thickness of the built-up portion 30 constant. It was shown to.

図11に示した例では、領域L5〜L7(L1〜L7は図5と同一スケールであるとする)を応力改善入熱領域1に設定し、領域L1〜L7に肉盛溶接する際、肉盛部30における当該応力改善入熱領域1の総入熱量が、被改善箇所Oを含む領域2(領域L1〜L4)の総入熱量よりも大きくなるように入熱を調整して溶接パスを積層してある。この場合、前に述べたように溶接電流・溶接電圧・溶接速度により溶接入熱が定まるので、例えば、応力改善入熱領域1では、溶接金属の送給速度を調整して肉盛部30の肉厚の変動を抑制しつつ、領域2の溶接パスに対して溶接速度を遅くしたり溶接電流・溶接栓圧を上昇させたりする。これにより、肉厚の変動が抑制された超音波探傷に好適な形状の肉盛部30を形成しつつ、配管20の内面の軸方向残留引張応力を抑制することができる。   In the example shown in FIG. 11, when the regions L5 to L7 (L1 to L7 are assumed to have the same scale as FIG. 5) are set as the stress improving heat input region 1 and overlay welding is performed on the regions L1 to L7, The welding pass is adjusted by adjusting the heat input so that the total heat input of the stress improving heat input region 1 at the raised portion 30 is larger than the total heat input of the region 2 (regions L1 to L4) including the improved portion O. They are stacked. In this case, since the welding heat input is determined by the welding current, welding voltage, and welding speed as described above, for example, in the stress improving heat input region 1, the feeding speed of the weld metal is adjusted to adjust the welding portion 30. While suppressing the fluctuation of the wall thickness, the welding speed is slowed or the welding current / welding plug pressure is increased with respect to the welding pass in the region 2. Thereby, the axial direction residual tensile stress of the inner surface of the pipe 20 can be suppressed while forming the built-up portion 30 having a shape suitable for ultrasonic flaw detection in which the variation in thickness is suppressed.

以上は、配管20の材料と肉盛部30(溶接金属)の材料が同じ場合に適用可能であるが、配管20と肉盛部30が異種材料である場合にも適用可能である。例えば、オーステナイト系ステンレス鋼は、炭素鋼よりも線膨張係数が大きい。そのため、配管20が炭素鋼である場合に配管20の外面にオーステナイト系ステンレス鋼の溶接金属を肉盛溶接すると、炭素鋼の溶接金属を使った場合よりも大きい収縮力を配管20に付与することができる。つまり、炭素鋼配管や低合金鋼配管に本発明の応力改善方法を適用する場合、オーステナイト系ステンレス鋼の溶接金属を肉盛溶接材として用いると配管内面の軸方向応力の圧縮化の効果がより高い。したがって、確保すべき収縮力に応じて溶接金属、或いは配管の材質を選択することにより、より効果的に応力改善の作用を得ることができる。   The above can be applied when the material of the pipe 20 and the material of the built-up portion 30 (welded metal) are the same, but can also be applied when the pipe 20 and the built-up portion 30 are different materials. For example, austenitic stainless steel has a larger coefficient of linear expansion than carbon steel. Therefore, when the weld metal of austenitic stainless steel is welded on the outer surface of the pipe 20 when the pipe 20 is carbon steel, a larger shrinkage force is applied to the pipe 20 than when the weld metal of carbon steel is used. Can do. In other words, when the stress improvement method of the present invention is applied to carbon steel pipes and low alloy steel pipes, the use of austenitic stainless steel weld metal as a build-up welding material will improve the effect of compressing the axial stress on the pipe inner surface. high. Therefore, by selecting the weld metal or the pipe material according to the contraction force to be ensured, it is possible to obtain the effect of improving the stress more effectively.

以上の知見を踏まえ、本発明の実施の形態の係る応力改善方法の実施例を幾つか例に挙げて説明していく。   Based on the above knowledge, several examples of the stress improvement method according to the embodiment of the present invention will be described.

図12は本発明に係る応力改善方法の実施例1の施工の様子を表した模式図である。   FIG. 12 is a schematic diagram showing the construction of Example 1 of the stress improvement method according to the present invention.

図12において、プラント等における既設の配管5の被改善部である突合せ溶接部6の配管内面の軸方向引張残留応力を低減する場合、例えば先に図7に示した領域L4〜L7に相当する領域に厚さtw=0.5tpの肉盛部3を積層し、領域L5〜L7に相当する領域に厚さtw=0.5tpの肉盛溶接を重畳して、厚さtw=tpの肉盛部3を形成する。配管5が既設のものなので配管5に対してTIGトーチ4を回転移動させて肉盛部3を積層していく。   In FIG. 12, when reducing the axial tensile residual stress of the pipe inner surface of the butt weld portion 6 which is an improved portion of the existing pipe 5 in a plant or the like, it corresponds to, for example, the regions L4 to L7 previously shown in FIG. A build-up portion 3 having a thickness tw = 0.5 tp is laminated in the region, and a build-up weld having a thickness tw = 0.5 tp is superimposed on the region corresponding to the regions L5 to L7, so that a build-up with a thickness tw = tp is made. A raised portion 3 is formed. Since the pipe 5 is an existing pipe, the TIG torch 4 is rotated and moved relative to the pipe 5 so that the built-up portion 3 is stacked.

溶接装置を配管5に設置する場合、まずTIGトーチ4の移動用のレール7を配管5の外周面に嵌める。レール7は半割れ構造であり、設置の際に既設の配管5を切断する必要はない。次に、TIGトーチ4を支持する移動機構8をレール7の上に設置する。移動機構8は、レール7を配管5の軸方向両側から挟持する車輪を有しており、図示しないモータで車輪を駆動することによりレール7に沿って配管5の外周面を周方向に走行する。また、TIGトーチ4を支持するアーム11は移動機構8に対して配管10の周方向にスライド可能に支持されており、TIGトーチ4を軸方向に移動させる機能を有する。TIGトーチ4にはケーブル9が接続されており、ケーブル9を介して図示しない溶接電源からの電力がTIGトーチ4にかけられ、これによりTIGトーチ4から配管5に向かってアークが発生する。本例では、こうした溶接装置を図12に示したように軸方向に2つ対向させて設置する。配管5はほぼ水平に配設されているが、これに限定されない。   When installing the welding apparatus on the pipe 5, first, the rail 7 for moving the TIG torch 4 is fitted on the outer peripheral surface of the pipe 5. The rail 7 has a half-crack structure, and it is not necessary to cut the existing pipe 5 at the time of installation. Next, the moving mechanism 8 that supports the TIG torch 4 is installed on the rail 7. The moving mechanism 8 has a wheel that clamps the rail 7 from both sides in the axial direction of the pipe 5, and travels in the circumferential direction along the rail 7 by driving the wheel with a motor (not shown). . The arm 11 that supports the TIG torch 4 is supported so as to be slidable in the circumferential direction of the pipe 10 with respect to the moving mechanism 8 and has a function of moving the TIG torch 4 in the axial direction. A cable 9 is connected to the TIG torch 4, and electric power from a welding power source (not shown) is applied to the TIG torch 4 via the cable 9, whereby an arc is generated from the TIG torch 4 toward the pipe 5. In this example, two such welding apparatuses are installed opposite to each other in the axial direction as shown in FIG. Although the piping 5 is arrange | positioned substantially horizontal, it is not limited to this.

図12の溶接装置を用いて肉盛溶接を施工する場合、溶接電流、溶接電圧、TIGトーチ4からの不活性ガスの流量、溶接金属の供給速度等の溶接条件は、図示しない制御装置に入力設定され、その制御装置によって制御される。制御装置に設定入力する溶接条件は、一般的なTIG溶接条件で構わない。運転開始後、アークがスタートしワイヤー(溶接金属)の供給が開始した後、移動機構8が配管5の周方向に走行し配管5の外周面にリング状の肉盛部3が形成され始める。このとき、本例では既設の配管5に対してTIGトーチ4を回転させるため、TIGトーチ4を同一方向に連続して回転させると、TIGトーチ4に接続したケーブル9が配管5の周囲に巻き付いてしまう。そのため、移動機構8が配管5の外面を1周してスタート位置に戻ったらアークをストップし、移動機構8を溶接時と逆方向に走行させてスタート位置まで戻す。次にアーム11を駆動してTIGトーチ4を軸方向に移動させ、後続パスの溶接を行う。後続パスの溶接は、TIGトーチ4の軸方向位置が異なる点を除いて1パス目と同様である。このようにして応力改善入熱領域に肉盛部3を形成する。   When overlay welding is performed using the welding apparatus of FIG. 12, welding conditions such as welding current, welding voltage, flow rate of inert gas from the TIG torch 4, and the supply speed of the weld metal are input to a control device (not shown). Set and controlled by its controller. The welding conditions set and input to the control device may be general TIG welding conditions. After the operation is started, after the arc is started and the supply of the wire (welded metal) is started, the moving mechanism 8 travels in the circumferential direction of the pipe 5 and the ring-shaped built-up portion 3 starts to be formed on the outer peripheral surface of the pipe 5. At this time, since the TIG torch 4 is rotated with respect to the existing pipe 5 in this example, when the TIG torch 4 is continuously rotated in the same direction, the cable 9 connected to the TIG torch 4 is wound around the pipe 5. End up. Therefore, when the moving mechanism 8 makes one round of the outer surface of the pipe 5 and returns to the start position, the arc is stopped, and the moving mechanism 8 travels in the direction opposite to that during welding and returns to the start position. Next, the arm 11 is driven to move the TIG torch 4 in the axial direction, and the subsequent pass is welded. The subsequent pass welding is the same as the first pass except that the axial position of the TIG torch 4 is different. In this way, the built-up portion 3 is formed in the stress improving heat input region.

なお、本実施例では、配管5に2組の溶接装置を設置して突合せ溶接部6を挟む2箇所の応力改善入熱領域に肉盛溶接を同時施工したが、1台の溶接装置で突合せ溶接部6を挟んで2つの肉盛部3を順次形成していく方法でも良い。但し、後者の方法は溶接装置が1台で済むメリットがあり、前者の方法は後者の方法に対して溶接施工の所要時間が1/2で済むメリットがある。   In this embodiment, two sets of welding devices are installed in the pipe 5 and overlay welding is simultaneously performed in two stress improving heat input regions sandwiching the butt weld 6. A method of sequentially forming the two built-up portions 3 with the weld 6 interposed therebetween may be used. However, the latter method has an advantage that only one welding apparatus is required, and the former method has an advantage that the time required for welding can be reduced to ½ compared to the latter method.

図13は本発明に係る応力改善方法の実施例2の施工の様子を表した模式図である。   FIG. 13 is a schematic diagram showing the construction of Example 2 of the stress improvement method according to the present invention.

本実施例で応力を改善する配管5は、プラント等に既に設置された配管ではなく、工場内で複数の配管を突合せ溶接して接合した配管であり、その両端は自由端である。本例における肉盛部3の形状は、例えば図12で説明した実施例1と同じで構わない。   The pipe 5 for improving the stress in this embodiment is not a pipe already installed in a plant or the like, but a pipe obtained by butt welding and joining a plurality of pipes in a factory, and both ends thereof are free ends. The shape of the built-up portion 3 in this example may be the same as that of the first embodiment described with reference to FIG.

本実施例の場合には、配管5を回転させることができるので、肉盛溶接に際しては、配管5にレールを設けて配管5に対してTIGトーチを周回させる必要がない。したがって、本例では配管5をポジショナー(回転チャック装置)10に設置し、TIGトーチ4に対して配管5を自転させ、配管5の外面に肉盛部3を形成していく。このとき、TIGトーチ4は配管5の天位置、すなわち配管5の中心線の鉛直上方位置に下向きに配置することで、溶接金属の溶着効率を大きくとることができる。肉盛溶接を1箇所ずつ行う場合には、1つのTIGトーチ4を設置し、そのTIGトーチ4のアークをスタートさせ、ワイヤー(溶接金属)の供給を開始する。次にポジショナー10を回転させつつ、TIGトーチ4を配管5の軸方向に移動させながら連続に溶接する。そして、所定の肉盛厚さになった段階で溶接を終了させる。TIGトーチ4に対して配管5が回転するため、TIGトーチ4のケーブル9が配管5に巻きつくことがない。   In the case of the present embodiment, since the pipe 5 can be rotated, it is not necessary to provide a rail in the pipe 5 and circulate the TIG torch around the pipe 5 during overlay welding. Therefore, in this example, the pipe 5 is installed in the positioner (rotary chuck device) 10, the pipe 5 is rotated with respect to the TIG torch 4, and the built-up portion 3 is formed on the outer surface of the pipe 5. At this time, by arranging the TIG torch 4 downward at the top position of the pipe 5, that is, the position vertically above the center line of the pipe 5, the welding efficiency of the weld metal can be increased. When overlay welding is performed one place at a time, one TIG torch 4 is installed, the arc of the TIG torch 4 is started, and the supply of wire (welded metal) is started. Next, the positioner 10 is rotated, and the TIG torch 4 is continuously welded while being moved in the axial direction of the pipe 5. And welding is complete | finished when it becomes the predetermined build-up thickness. Since the pipe 5 rotates with respect to the TIG torch 4, the cable 9 of the TIG torch 4 does not wind around the pipe 5.

図13のようにTIGトーチ4を2個設置できる場合には、被改善箇所である突合せ溶接部6を挟んで軸方向両側に2個のTIGトーチ4を設置し、同時に2箇所の肉盛部3を形成していく。2個のTIGトーチ4を用いる場合、1つのTIGトーチ4を用いる場合に比べて溶接施工の所要時間を1/2に短縮することができる。   When two TIG torches 4 can be installed as shown in FIG. 13, two TIG torches 4 are installed on both sides in the axial direction across the butt weld 6 which is an improved portion, and at the same time, two overlaid parts 3 is formed. When two TIG torches 4 are used, the time required for welding can be reduced to ½ compared to the case where one TIG torch 4 is used.

本発明に係る応力改善方法の実施例3を説明する。   Embodiment 3 of the stress improvement method according to the present invention will be described.

本実施例は、例えば図12又は図13において肉盛部3を形成せず、溶接金属を供給することなく配管5の外面に溶接入熱を与えて配管5の外表面を溶融させる例である。この場合、溶接入熱により配管5の外周部に収縮力を付与され、配管5の内面の軸方向応力が圧縮化されるような局所的な変形が発生する。これにより、軸方向引張残留応力を抑制し、さらには圧縮応力化が図られる。このように、肉盛部3を積層しなくても、溶接入熱のみによって配管5を収縮変形させることができる。本例は、図12又は図13に示した溶接装置をそのまま利用することできる。   In the present embodiment, for example, the overlaid portion 3 is not formed in FIG. 12 or FIG. 13, and welding heat is applied to the outer surface of the pipe 5 without supplying the weld metal to melt the outer surface of the pipe 5. . In this case, a contraction force is applied to the outer peripheral portion of the pipe 5 by welding heat input, and local deformation occurs such that the axial stress on the inner surface of the pipe 5 is compressed. Thereby, the axial tensile residual stress is suppressed, and further, compression stress is achieved. In this way, the pipe 5 can be contracted and deformed only by welding heat input without laminating the built-up portion 3. In this example, the welding apparatus shown in FIG. 12 or 13 can be used as it is.

本発明に係る応力改善方法の実施例4を説明する。   Embodiment 4 of the stress improvement method according to the present invention will be described.

本実施例は、突合せ溶接の溶接熱影響部にひびが発生した既設配管への適用例である。溶接装置は図12に示したものを用いれば足りる。   The present embodiment is an application example to an existing pipe in which a crack has occurred in the weld heat affected zone of butt welding. It is sufficient to use the welding apparatus shown in FIG.

例えば図12において、配管5にひびがある場合(便宜上、突合せ溶接部6がひび割れ箇所であるとする)、配管5のひび割れ箇所6を覆う配管外表面位置に肉盛部3を形成する。この場合、先に図8に示したように、ひび割れ箇所6を含む領域L1〜L4に相当する領域のみに一様に肉盛溶接したら、ひび割れ箇所6の配管内面の引張残留応力は却って増加する。それに対し、先に図9に示したように、領域L1〜L4に相当する領域に加えて領域L5〜L7に相当する応力改善入熱領域に、領域L1〜L4よりも肉厚の厚い肉盛部3を形成すると、ひび割れ箇所6の配管内面の引張残留応力を抑制することができる。この施工では、まず仮に配管5の全周にひび割れが成長しても必要な構造強度を確保することができる肉厚の肉盛部3を領域L1〜L7の配管外面に形成し、これにより配管5を補修する。次に、応力改善入熱領域となる領域L5〜L7の部分に肉盛部3を重畳し、ひび割れ部分の配管内面の引張残留応力を改善する。   For example, in FIG. 12, when the pipe 5 is cracked (for convenience, it is assumed that the butt weld 6 is a cracked part), the build-up part 3 is formed at the pipe outer surface position covering the cracked part 6 of the pipe 5. In this case, as shown in FIG. 8, if the weld welding is uniformly performed only in the region corresponding to the regions L1 to L4 including the cracked portion 6, the tensile residual stress on the inner surface of the pipe at the cracked portion 6 increases. . On the other hand, as shown in FIG. 9, in addition to the regions corresponding to the regions L1 to L4, the stress-improving heat input region corresponding to the regions L5 to L7 has a thicker thickness than the regions L1 to L4. If the part 3 is formed, the tensile residual stress of the pipe inner surface of the crack location 6 can be suppressed. In this construction, first, a thick built-up portion 3 that can ensure the necessary structural strength even if cracks grow around the entire circumference of the pipe 5 is formed on the outer surface of the pipe in the regions L1 to L7. Repair 5 Next, the built-up portion 3 is superimposed on the portions of the regions L5 to L7 that become the stress improving heat input region, and the tensile residual stress on the inner surface of the cracked portion of the pipe is improved.

図12の溶接装置を用いて本実施例を施工する場合、図12の実施例と同様にまず配管5にレール7、移動機構8を順次設置し、溶接開始後、移動機構8を走行させTIGトーチ4を配管5の周りに周回させ、肉盛部3を1パスずつ形成していく。溶接は配管5の天頂部から溶接を開始し、ケーブル9の巻き付きを防止するために、肉盛部3を1パス形成する度に移動機構8を逆回転に走行させて溶接開始点に戻した後に、TIGトーチ4を軸方向に移動させて次の溶接パスを形成する。こうして領域L1〜L7の肉盛部3を形成していき、領域L1〜L7の肉盛部3の厚さが所定厚さに到達したら、次に領域L5〜L7の応力改善入熱領域の肉盛部3を重畳し厚くする。図12に示したように2つの溶接装置を用いれば、2つの溶接装置を用いる場合に比して、施工に要する時間を1/2に短縮することができる。   When the present embodiment is constructed using the welding device of FIG. 12, first, the rail 7 and the moving mechanism 8 are sequentially installed on the pipe 5 in the same manner as in the embodiment of FIG. The torch 4 is circulated around the pipe 5 to form the built-up portion 3 by one pass. Welding is started from the zenith portion of the pipe 5, and in order to prevent the cable 9 from being wound, every time the built-up portion 3 is formed in one pass, the moving mechanism 8 is run in the reverse direction and returned to the welding start point. Later, the TIG torch 4 is moved in the axial direction to form the next welding pass. In this way, the build-up portion 3 of the regions L1 to L7 is formed, and when the thickness of the build-up portion 3 of the regions L1 to L7 reaches a predetermined thickness, the thickness of the stress improving heat input region of the regions L5 to L7 is next. Overlay the thickened portion 3 to make it thicker. If two welding apparatuses are used as shown in FIG. 12, the time required for construction can be shortened to ½ compared to the case where two welding apparatuses are used.

また、本実施例、或いは前の3つの実施例を施工する際、配管5内に冷却媒体(冷却水等)が存在する状態で溶接入熱を与えても良い。この場合、配管5の内部に冷却媒体を封入しておくことも考えられるし、配管5の内部に冷却媒体を流通させることも考えられる。例えば、実施例1,4のように対象が既設の配管5である場合には、その配管が構成しているプラントの冷却水を配管5に流通させれば良い。配管5の内側に冷却媒体がある場合、配管の内面側が冷却され、配管外面(高温側)と配管内面(低温)の温度差が拡大する。このように配管の内面と外面の温度差が大きい場合、配管内面が引張側で降伏して引張の塑性歪が発生し、結果として配管内面の残留応力は周方向・軸方向とも圧縮応力になる。なお、配管5の内面と外面の温度差は、配管5の内部に冷却媒体を封入する場合よりも流通させる場合の方が大きくなる。   Moreover, when constructing this embodiment or the previous three embodiments, welding heat input may be applied in a state where a cooling medium (cooling water or the like) is present in the pipe 5. In this case, it is conceivable to enclose a cooling medium in the pipe 5, or to circulate the cooling medium in the pipe 5. For example, when the target is the existing pipe 5 as in the first and fourth embodiments, the cooling water of the plant constituted by the pipe may be circulated through the pipe 5. When there is a cooling medium inside the pipe 5, the inner surface side of the pipe is cooled, and the temperature difference between the outer surface of the pipe (high temperature side) and the inner surface of the pipe (low temperature) increases. In this way, when the temperature difference between the inner surface and the outer surface of the pipe is large, the inner surface of the pipe yields on the tension side and tensile plastic strain occurs, and as a result, the residual stress on the inner surface of the pipe becomes compressive stress both in the circumferential direction and in the axial direction. . Note that the temperature difference between the inner surface and the outer surface of the pipe 5 is larger when the coolant is circulated than when the cooling medium is sealed inside the pipe 5.

本発明に係る応力改善方法の実施例5を説明する。   Embodiment 5 of the stress improvement method according to the present invention will be described.

本実施例は、配管5のひび割れ箇所の補修と超音波探傷法によるその後のひび割れの発生の有無の検査に好適な例であり、肉盛部3の被改善箇所を含む領域と応力改善入熱領域の厚さをほぼ同じにした例である。この場合、例えば先に図11に示したように、配管5の内面の軸方向応力が引張側に増加する領域L1〜L4への総入熱量に対して、配管内面の軸方向引張応力を改善する領域L5〜L7への総入熱を大きくする。その際、溶接金属の供給速度を調整して領域L1〜L7の肉盛厚さの変動を抑える。領域L5〜L7への総入熱量が他の領域L1〜L4に比べて大きくなることにより、被改善箇所の配管内面に残留する軸方向引張応力を改善することができる。   This embodiment is an example suitable for repairing a cracked portion of the pipe 5 and inspecting the presence or absence of subsequent cracking by the ultrasonic flaw detection method. The region including the improved portion of the build-up portion 3 and the stress improving heat input. This is an example in which the thicknesses of the regions are substantially the same. In this case, for example, as shown in FIG. 11, the axial tensile stress on the inner surface of the pipe is improved with respect to the total heat input to the regions L1 to L4 where the axial stress on the inner surface of the pipe 5 increases on the tension side. The total heat input to the areas L5 to L7 to be increased is increased. At that time, the supply speed of the weld metal is adjusted to suppress the variation in the build-up thickness in the regions L1 to L7. By increasing the total heat input to the regions L5 to L7 as compared with the other regions L1 to L4, it is possible to improve the axial tensile stress remaining on the inner surface of the pipe at the improved portion.

本実施例においても、実施例4と同様、配管5のひびを覆う配管外面に肉盛溶接する。このとき、図11における領域L1〜L4に相当する領域2のみの外面に肉盛溶接した場合には被改善箇所の内面の引張応力が増加してしまうので、領域L5〜L7に相当する応力改善入熱領域1の外面により高い溶接入熱を与えて肉盛溶接すると、被改善箇所の配管内面の引張残留応力を改善することができる。   Also in the present embodiment, as in the fourth embodiment, overlay welding is performed on the outer surface of the pipe covering the crack of the pipe 5. At this time, when overlay welding is performed only on the outer surface of the region 2 corresponding to the regions L1 to L4 in FIG. 11, the tensile stress on the inner surface of the improved portion increases, so that the stress improvement corresponding to the regions L5 to L7 is achieved. When high welding heat input is applied to the outer surface of the heat input region 1 and build-up welding is performed, the tensile residual stress on the inner surface of the pipe at the improved portion can be improved.

例えばTIG溶接の場合、ワイヤー(溶接金属)の供給量を調節することによって、同じ入熱量でも同じ積層量を溶接するのに要するパス数が異なってくる。入熱量と溶接速度が同じ場合、ワイヤー(溶接金属)の供給量が少なくなるほど同じ積層高さを溶接するのに必要となる溶接パス数が多くなる。溶接パス数の増加は、同じ積層高さを溶接するための総入熱量の増加を意味する。したがって、同じ肉盛厚さにするにしても、応力改善入熱領域2では溶接パス数が増加する条件で肉盛溶接することにより、被改善部の配管内面の引張残留応力を改善することができる。   For example, in the case of TIG welding, the number of passes required to weld the same amount of lamination varies with the same amount of heat input by adjusting the amount of wire (welded metal) supplied. When the heat input and the welding speed are the same, the number of welding passes required to weld the same stack height increases as the supply amount of the wire (welded metal) decreases. An increase in the number of welding passes means an increase in the total heat input for welding the same stack height. Therefore, even if the same build-up thickness is used, the tensile residual stress on the inner surface of the pipe to be improved can be improved by performing build-up welding in the stress improving heat input region 2 under the condition that the number of welding passes increases. it can.

また、本実施例も図12に示したような溶接装置により施工可能である。その場合、実施例4と同じ要領で領域L1〜L4に肉盛部3を形成した後、領域L5〜L7の肉盛部を単位長さ当たりの溶接パス数が増加するような条件で形成していく。例えば、応力改善入熱領域2では、溶接電流・溶接電圧・溶接速度を領域L1〜L4の肉盛溶接と同じ条件に設定し、単位時間当たりのワイヤー(溶接金属)の供給量を遅くする(例えば1/2程度にする)。溶接金属の供給量を1/2にした場合、応力改善入熱領域2において、領域L1〜L4と同じ厚さに肉盛溶接するのに要する溶接パス数は2倍になる。また、単位溶接幅当たりの総入熱量も2倍になる。   Further, this embodiment can also be constructed by a welding apparatus as shown in FIG. In that case, after forming the build-up portion 3 in the regions L1 to L4 in the same manner as in Example 4, the build-up portion of the regions L5 to L7 is formed under the condition that the number of welding passes per unit length is increased. To go. For example, in the stress improvement heat input region 2, the welding current, the welding voltage, and the welding speed are set to the same conditions as the overlay welding in the regions L1 to L4, and the supply amount of the wire (welded metal) per unit time is delayed ( For example, about 1/2). When the supply amount of the weld metal is halved, in the stress improving heat input region 2, the number of welding passes required for overlay welding to the same thickness as the regions L1 to L4 is doubled. In addition, the total heat input per unit weld width is doubled.

本実施例において、応力改善入熱領域2が領域L1〜L4よりも高い溶接入熱を与えられ高い収縮力を有していることを確認する方法として、領域L1〜L4と領域L5〜L7(応力改善入熱領域2)のデンドライト組織の大きさを比較する方法がある。より多くの熱を与えられた領域では、それだけデンドライト組織が広くなる。そこで、デンドライト組織の間隔から収縮力の大きさを判定することが可能となる。   In this example, as a method for confirming that the stress improving heat input region 2 is given higher welding heat input than the regions L1 to L4 and has a high shrinkage force, the regions L1 to L4 and the regions L5 to L7 ( There is a method of comparing the size of the dendrite structure in the stress improving heat input region 2). In the region where more heat is applied, the dendrite structure becomes wider accordingly. Therefore, it is possible to determine the magnitude of the contraction force from the interval between the dendrite structures.

本発明に係る応力改善方法の実施例6を説明する。   Embodiment 6 of the stress improvement method according to the present invention will be described.

本発明は、既設配管に適用可能な前出の実施例1,3−5を沸騰水型原子力発電プラントの冷却水配管に適用する例である。この場合、図12又は図13の配管5が沸騰水型原子力発電プラントの既設の冷却水配管(再循環系配管等)であるとして、定期検査等でプラントを停止させた後、配管5の外面に肉盛溶接を行うことにより、被改善箇所の配管内面に圧縮残留応力を付与し応力腐食割れを抑制することができる。本実施の形態では特に、配管5が冷却水配管であるため、流通する冷却水により配管5の内面を効率的に冷却することができる。他の実施例と同様の効果の他、冷却に追加の装置を設定する必要がない点も大きなメリットである。勿論、冷却水の循環にもプラントに設置されている再循環ポンプが利用できるため、施工に際して用意する機材が少なく段取り時間が短時間で済む点もメリットが高い。   The present invention is an example in which the first and third embodiments, which can be applied to existing piping, are applied to the cooling water piping of a boiling water nuclear power plant. In this case, assuming that the pipe 5 in FIG. 12 or FIG. 13 is an existing cooling water pipe (recirculation pipe etc.) of the boiling water nuclear power plant, the outer surface of the pipe 5 is stopped after the plant is stopped by periodic inspection or the like. By performing overlay welding, it is possible to impart compressive residual stress to the inner surface of the pipe at the improved location and suppress stress corrosion cracking. Especially in this Embodiment, since the piping 5 is a cooling water piping, the inner surface of the piping 5 can be efficiently cooled with the circulating cooling water. In addition to the same effects as those of the other embodiments, there is a great merit that it is not necessary to set an additional device for cooling. Of course, since the recirculation pump installed in the plant can also be used for the circulation of the cooling water, there is a great merit in that the number of equipments required for construction is small and the setup time is short.

外面に肉盛溶接した配管のモデル図である。It is a model figure of piping pipe-welded on the outer surface. 配管寸法や溶接条件の異なる4つのケースにつき配管内面の周方向及び軸方向の応力分布を測定した結果を示す図である。It is a figure which shows the result of having measured the stress distribution of the circumferential direction of a pipe inner surface, and an axial direction about four cases from which piping dimensions and welding conditions differ. 図2のグラフの横軸を配管の外半径と板厚を用いて無次元化したグラフである。It is the graph which made the horizontal axis of the graph of FIG. 2 dimensionless using the outer radius and thickness of piping. 配管のモデル図である。It is a model figure of piping. 配管外面の肉盛溶接のモデル図である。It is a model figure of the overlay welding of the piping outer surface. 肉盛溶接と残留応力の関係を示した要因効果図である。It is the factor effect figure which showed the relationship between overlay welding and a residual stress. 配管内面の軸方向の引張応力を改善するための最適な肉盛溶接のモデル図である。It is a model figure of the optimum overlay welding for improving the axial tensile stress of the pipe inner surface. ウェルドオーバーレイ工法で用いられる一般的な肉盛溶接のモデル図である。It is a model figure of general overlay welding used with a weld overlay method. 本発明の概念に基づいて施工したウェルドオーバーレイ工法による肉盛溶接のモデル図である。It is a model figure of overlay welding by the weld overlay method constructed based on the concept of the present invention. 図7、図8、図9に示した断面形状の肉盛溶接を配管外面に施工した場合の配管内面の軸方向応力分布を示す図である。It is a figure which shows the axial direction stress distribution of the pipe inner surface at the time of constructing the welding of the cross-sectional shape shown in FIG. 7, FIG. 8, FIG. 9 on the pipe outer surface. 本発明の概念に基づいて施工したウェルドオーバーレイ工法の他の例による肉盛溶接のモデル図である。It is a model figure of the overlay welding by the other example of the weld overlay method constructed based on the concept of this invention. 本発明に係る応力改善方法の実施例1の施工の様子を表した模式図である。It is the schematic diagram showing the mode of construction of Example 1 of the stress improvement method which concerns on this invention. 本発明に係る応力改善方法の実施例2の施工の様子を表した模式図である。It is the schematic diagram showing the mode of construction of Example 2 of the stress improvement method which concerns on this invention.

符号の説明Explanation of symbols

1 応力改善入熱領域
2 被改善箇所を含む領域
4 TIGトーチ
5 配管
6 被改善箇所
7 レール
8 移動機構
9 ケーブル
20 配管
O 被改善箇所
L1〜4 被改善箇所を含む領域
L5〜7 応力改善入熱領域
R 配管の外半径
tp 配管の厚さ
DESCRIPTION OF SYMBOLS 1 Stress improvement heat input area | region 2 Area | region including a to-be-improved part 4 TIG torch 5 Piping 6 To-be-improved part 7 Rail 8 Moving mechanism 9 Cable 20 Piping O To-be-improved part L1-4 To-be-improved part area L5-7 Thermal zone R Outer radius of pipe tp Thickness of pipe

Claims (21)

配管内面の引張り残留応力を改善する必要がある被改善箇所に対して配管の軸方向に位置をずらして応力改善入熱領域を設定し、設定した応力改善入熱領域の配管外面に、前記被改善箇所を含む領域に比較して高い溶接入熱を与えることを特徴とする配管内面の残留応力改善方法。   A stress-improving heat input region is set by shifting the position in the axial direction of the pipe with respect to the portion to be improved that needs to improve the tensile residual stress on the inner surface of the pipe. A method for improving residual stress on an inner surface of a pipe, characterized by providing a higher welding heat input compared to a region including an improved portion. 請求項1の配管内面の残留応力改善方法において、配管の外半径をR、配管の厚さをtpとした場合、前記応力改善入熱領域は、前記被改善箇所から配管の軸方向にとった距離が0.75(Rtp)1/2以上の領域であることを特徴とする配管内面の残留応力改善方法。 2. The method for improving residual stress in an inner surface of a pipe according to claim 1, wherein when the outer radius of the pipe is R and the thickness of the pipe is tp, the stress improving heat input region is taken from the improved portion in the axial direction of the pipe. A method for improving residual stress on an inner surface of a pipe, wherein the distance is a region of 0.75 (Rtp) 1/2 or more. 請求項1の配管内面の残留応力改善方法において、配管の外半径をR、配管の厚さをtpとした場合、前記応力改善入熱領域は、前記被改善箇所から配管の軸方向にとった距離が2.7(Rtp)1/2以下の領域であることを特徴とする配管内面の残留応力改善方法。 2. The method for improving residual stress in an inner surface of a pipe according to claim 1, wherein when the outer radius of the pipe is R and the thickness of the pipe is tp, the stress improving heat input region is taken from the improved portion in the axial direction of the pipe. A method for improving residual stress on an inner surface of a pipe, characterized in that the distance is an area of 2.7 (Rtp) 1/2 or less. 請求項1の配管内面の残留応力改善方法において、溶接金属を供給することなく少なくとも前記応力改善入熱領域の配管外面に溶接入熱を与えることを特徴とする配管内面の残留応力改善方法。   2. The method for improving residual stress of an inner surface of a pipe according to claim 1, wherein welding heat input is applied to at least the outer surface of the pipe in the stress improving heat input region without supplying weld metal. 請求項4の配管内面の残留応力改善方法において、TIG溶接により溶接入熱を与える行うことを特徴とする配管内面の残留応力改善方法。   5. The method for improving residual stress on an inner surface of a pipe according to claim 4, wherein welding heat input is applied by TIG welding. 請求項1の配管内面の残留応力改善方法において、溶接金属を供給しつつ溶接入熱を与え、少なくとも前記応力改善入熱領域の配管外面に溶接金属を積層することを特徴とする配管内面の残留応力改善方法。   2. The method for improving residual stress in an inner surface of a pipe according to claim 1, wherein welding heat is applied while supplying the weld metal, and the weld metal is laminated at least on the outer surface of the pipe in the stress improving heat input region. Stress improvement method. 請求項1の配管内面の残留応力改善方法において、被改善箇所が溶接部であることを特徴とする配管内面の残留応力改善方法。   2. The method for improving residual stress on an inner surface of a pipe according to claim 1, wherein the part to be improved is a welded portion. 請求項1の配管内面の残留応力改善方法において、前記被改善箇所を含む領域に溶接入熱を与えることなく、前記応力改善入熱領域の配管外面にのみ溶接入熱を与えることを特徴とする配管内面の残留応力改善方法。   2. The method for improving residual stress in an inner surface of a pipe according to claim 1, wherein welding heat is applied only to the outer surface of the pipe in the stress-improving heat input region without applying welding heat to the region including the improved portion. A method for improving residual stress on the inner surface of pipes. 請求項1の配管内面の残留応力改善方法において、配管の外半径をR、配管の厚さをtpとし、配管内面にひび割れ箇所がある場合、前記ひび割れ箇所を覆うようにして該配管の外面に溶接金属を積層し、さらに前記ひび割れ箇所から軸方向に0.75(Rtp)1/2以上離れた前記応力改善入熱領域に溶接金属を重畳することを特徴とする配管内面の残留応力改善方法。 2. The method for improving residual stress in an inner surface of a pipe according to claim 1, wherein when the outer radius of the pipe is R, the thickness of the pipe is tp, and there is a cracked portion on the inner surface of the pipe, the outer surface of the pipe is covered so as to cover the cracked portion. A method for improving residual stress on an inner surface of a pipe, characterized by laminating a weld metal and further superimposing the weld metal on the stress improvement heat input region separated from the crack location by 0.75 (Rtp) 1/2 or more in the axial direction. . 請求項1の配管内面の残留応力改善方法において、配管の外半径をR、配管の厚さをtpと、配管内面にひび割れ箇所がある場合、前記ひび割れ箇所を覆うようにして該配管の外面に溶接金属を積層する際、該溶接金属のうち前記ひび割れ箇所から軸方向に0.75(Rtp)1/2以上離れた前記応力改善入熱領域ではそれよりも前記ひび割れ箇所側の領域よりも総入熱量を大きくすることを特徴とする配管内面の残留応力改善方法。 2. The method for improving residual stress in an inner surface of a pipe according to claim 1, wherein if the outer radius of the pipe is R, the thickness of the pipe is tp, and there is a cracked portion on the inner surface of the pipe, the outer surface of the pipe is covered so as to cover the cracked portion. When laminating the weld metal, the stress-improving heat input region that is more than 0.75 (Rtp) 1/2 in the axial direction from the cracked portion of the weld metal is more than the region closer to the cracked portion than that. A method for improving residual stress on the inner surface of a pipe, characterized by increasing the amount of heat input. 請求項1の配管内面の残留応力改善方法において、配管内に冷却媒体がある状態で応力改善入熱領域の配管外面に溶接入熱を与えることを特徴とする配管内面の残留応力改善方法。   2. A method for improving residual stress on an inner surface of a pipe according to claim 1, wherein welding heat is applied to the outer surface of the pipe in the stress improving heat input region in a state where there is a cooling medium in the pipe. 内面の引張り残留応力を改善する必要がある被改善箇所に対して軸方向に位置がずれた応力改善入熱領域の外面に、前記被改善箇所を含む領域に比較して高い溶接入熱が与えられていることを特徴とする配管。   The outer surface of the stress-improving heat input region shifted in the axial direction with respect to the improved portion that needs to improve the tensile residual stress on the inner surface is given higher welding heat input than the region including the improved portion. Piping characterized by being. 請求項12の配管において、外半径をR、厚さをtpとした場合、前記応力改善入熱領域は、前記被改善箇所から軸方向にとった距離が0.75(Rtp)1/2以上の領域であることを特徴とする配管。 In the piping according to claim 12, when the outer radius is R and the thickness is tp, the stress improving heat input region has a distance taken in the axial direction from the improved portion of 0.75 (Rtp) 1/2 or more. Piping characterized by being an area of 請求項12の配管において、外半径をR、厚さをtpとした場合、前記応力改善入熱領域は、前記被改善箇所から軸方向にとった距離が2.7(Rtp)1/2以下の領域であることを特徴とする配管。 In the pipe of claim 12, when the outer radius is R and the thickness is tp, the stress improving heat input region has a distance taken in the axial direction from the improved portion of 2.7 (Rtp) 1/2 or less. Piping characterized by being an area of 請求項12の配管において、前記被改善箇所が溶接部であることを特徴とする配管。   The piping according to claim 12, wherein the improved portion is a welded portion. 請求項12の配管において、前記被改善箇所がひび割れ箇所であることを特徴とする配管。   The piping according to claim 12, wherein the improved portion is a cracked portion. 請求項16の配管において、外半径をR、厚さをtpとした場合、前記ひび割れ箇所を覆うようにして外面に溶接金属が積層され、さらに前記ひび割れ箇所から軸方向に0.75(Rtp)1/2以上離れた前記応力改善入熱領域に溶接金属が重畳されていることを特徴とする配管。 In the pipe of claim 16, when the outer radius is R and the thickness is tp, weld metal is laminated on the outer surface so as to cover the cracked part, and further, 0.75 (Rtp) in the axial direction from the cracked part. A pipe characterized in that a weld metal is superimposed on the stress-improving heat input region separated by ½ or more. 請求項16の配管において、外半径をR、厚さをtpとした場合、前記ひび割れ箇所を覆うようにして外面に溶接金属が積層され、該溶接金属のうち前記ひび割れ箇所から軸方向に0.75(Rtp)1/2以上離れた前記応力改善入熱領域ではそれよりも前記ひび割れ箇所側の領域より総入熱量が大きいことを特徴とする配管。 The pipe according to claim 16, wherein when the outer radius is R and the thickness is tp, a weld metal is laminated on the outer surface so as to cover the cracked portion, and the weld metal has a thickness of 0. 0 in the axial direction from the cracked portion. 75 (Rtp) Piping characterized in that the total heat input is larger in the stress-improving heat input region separated by 1/2 or more than in the region on the cracked part side. 請求項18の配管において、前記応力改善入熱領域の溶接金属のデンドライト組織が、それよりも前記ひび割れ箇所側の領域よりも開いていることを特徴とする配管。   19. The pipe according to claim 18, wherein a dendrite structure of the weld metal in the stress-improving heat input region is opened more than a region closer to the crack portion. プラントの配管であって、内部に冷却媒体がある状態で応力改善入熱領域の配管外面に溶接入熱を与えたことを特徴とする請求項12の配管。   13. The piping according to claim 12, wherein the piping is a plant piping, and welding heat is applied to an outer surface of the piping in the stress-improving heat input region with a cooling medium inside. 沸騰水型原子力発電プラントの冷却水配管であることを特徴とする請求項20の配管。   21. The piping according to claim 20, which is a cooling water piping for a boiling water nuclear power plant.
JP2007175440A 2007-07-03 2007-07-03 Method for improving residual stress in inner surface of pipe, and pipe improved in residual stress in inner surface thereof Abandoned JP2009012030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175440A JP2009012030A (en) 2007-07-03 2007-07-03 Method for improving residual stress in inner surface of pipe, and pipe improved in residual stress in inner surface thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175440A JP2009012030A (en) 2007-07-03 2007-07-03 Method for improving residual stress in inner surface of pipe, and pipe improved in residual stress in inner surface thereof

Publications (1)

Publication Number Publication Date
JP2009012030A true JP2009012030A (en) 2009-01-22

Family

ID=40353589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175440A Abandoned JP2009012030A (en) 2007-07-03 2007-07-03 Method for improving residual stress in inner surface of pipe, and pipe improved in residual stress in inner surface thereof

Country Status (1)

Country Link
JP (1) JP2009012030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453529B2 (en) 2020-04-01 2024-03-21 日本製鉄株式会社 How to repair/reinforce the cylinder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141140A (en) * 1977-05-16 1978-12-08 Hitachi Ltd Process for forming weld joint of pipeline or vessel
JPS6263620A (en) * 1985-09-13 1987-03-20 Hokkaido Electric Power Co Inc:The Method for improving residual stress of hollow body
JPH04135067A (en) * 1990-09-25 1992-05-08 Ishikawajima Harima Heavy Ind Co Ltd Residual stress reducing method for tube inside fitting weld zone
JPH07116886A (en) * 1993-08-30 1995-05-09 Hitachi Ltd Method for improving quality of metal member by dot welding
JP2003053533A (en) * 2001-08-09 2003-02-26 Toshiba Corp Method of repairing structure and repair welding equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141140A (en) * 1977-05-16 1978-12-08 Hitachi Ltd Process for forming weld joint of pipeline or vessel
JPS6263620A (en) * 1985-09-13 1987-03-20 Hokkaido Electric Power Co Inc:The Method for improving residual stress of hollow body
JPH04135067A (en) * 1990-09-25 1992-05-08 Ishikawajima Harima Heavy Ind Co Ltd Residual stress reducing method for tube inside fitting weld zone
JPH07116886A (en) * 1993-08-30 1995-05-09 Hitachi Ltd Method for improving quality of metal member by dot welding
JP2003053533A (en) * 2001-08-09 2003-02-26 Toshiba Corp Method of repairing structure and repair welding equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453529B2 (en) 2020-04-01 2024-03-21 日本製鉄株式会社 How to repair/reinforce the cylinder

Similar Documents

Publication Publication Date Title
CN106002008B (en) A kind of ultralow temperature high-power wind turbine tower door frame welding method
EP2696138A2 (en) Preventive maintenance repairing method for welded parts of boiler membrane panels and boiler equipment on which preventive maintenance repairing has been performed
WO2015147684A1 (en) Method for welding pipelines from high-strength pipes with controllable heat input
JP5471380B2 (en) High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers
JP2013154359A (en) Method for manufacturing water-cooling wall panel
JP4912097B2 (en) MULTILAYER WELDING METHOD FOR STAINLESS STEEL PIPE AND MULTILAYER WELDING
CN105945407A (en) Method for welding and winding cylinder by large high-strength steel
JP4915251B2 (en) Clad welded structure of low alloy steel base metal
JP2013158774A (en) Welding method, weld bonding structure and stainless steel welded structure
JP4951488B2 (en) Steam turbine rotor and manufacturing method thereof
JP2009012030A (en) Method for improving residual stress in inner surface of pipe, and pipe improved in residual stress in inner surface thereof
JP2007021516A (en) Narrow bevel welding method, welded structure, and welding apparatus therefor
CN105127557B (en) The medicine core gas shielded arc welding Rework Technics of marine engineering large thick steel plate under low temperature environment
JP6200410B2 (en) Repair welding method, plug for repair welding, and reactor vessel
JP2010000543A (en) Method for suppressing generation of stress corrosion cracking
CN102500886A (en) High-strength nickel-iron-chromium alloy and chromium-nickel stainless steel plate welding method and application to preparation of polysilicon cold hydrogenation reactors
JP4929096B2 (en) Overlay welding method for piping
JP2013108918A (en) Nozzle welded part corrosion prevention and repair method
CN116060796A (en) Device for controlling welding deformation of thin-wall cylinder circular seam through thermal field regulation
CN111336349B (en) Base for supporting seawater lift pump and processing method thereof
JP2004130314A (en) Method for suppressing occurrence of stress corrosion cracking
JP2007083263A (en) Residual stress-improving welding method, and welded structure
JP2005111513A (en) Method for reluxing residual tensile stress, and welding apparatus
RU2532577C2 (en) Elimination of metal structure damages
JP6581777B2 (en) Welded joint structure and welded joint method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110721