JP2005088048A - Flange for absorbing welding deformation for piping joint, and piping joint using the same - Google Patents

Flange for absorbing welding deformation for piping joint, and piping joint using the same Download PDF

Info

Publication number
JP2005088048A
JP2005088048A JP2003325127A JP2003325127A JP2005088048A JP 2005088048 A JP2005088048 A JP 2005088048A JP 2003325127 A JP2003325127 A JP 2003325127A JP 2003325127 A JP2003325127 A JP 2003325127A JP 2005088048 A JP2005088048 A JP 2005088048A
Authority
JP
Japan
Prior art keywords
flange
welding
pipe
strain
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003325127A
Other languages
Japanese (ja)
Inventor
Yukio Horikiri
幸夫 堀切
Masakazu Kageyama
雅一 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2003325127A priority Critical patent/JP2005088048A/en
Publication of JP2005088048A publication Critical patent/JP2005088048A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To dispense with useless correction of deformation in welding a flange to piping, to eliminate press equipment as well as training or the like that requires skill, and to attain improved quality and large reduction in manufacturing cost. <P>SOLUTION: This is a circular flange for piping joint, a flange which has a hole opening 12 for inserting piping in the center and which is welded to the tip end of the piping 13 inserted in the opening. In the direction opposite to the welding deformation which is assumed to be generated at the time of welding of the flange to the piping 13, counter deformation is provided in the same quantity as the assumed welding deformation. As a result, in a pre-welding state, flange planes 11a, 11b are formed that are not vertical to the axial center of the piping. In the actual welding, the counter deformation is negated by the welding deformation, making the flange plane vertical to the axial center of the piping 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発電プラント、化学プラント等の各種工業用プラントに適用される配管継手用フランジに係り、特に配管との溶接時に発生する溶接歪を溶接前に施した逆歪により吸収して品質向上等を図った配管継手用溶接歪吸収フランジおよび同フランジを使用した配管継手に関する。   The present invention relates to a flange for a pipe joint applied to various industrial plants such as a power plant and a chemical plant, and in particular, improves the quality by absorbing the weld distortion generated at the time of welding with the pipe by the reverse distortion applied before welding. The present invention relates to a welded joint that absorbs a weld strain and a pipe joint using the flange.

従来技術について、図6〜図8を参照して説明する。図6は、溶接前における従来の溶接継手用フランジと、このフランジが溶接される配管とを示す断面図であり、図6は、図5に示したフランジの右側面図である。図8は、溶接直後における配管とフランジとの接合状態を示す断面図である。   The prior art will be described with reference to FIGS. FIG. 6 is a cross-sectional view showing a conventional welded joint flange and a pipe to which the flange is welded before welding, and FIG. 6 is a right side view of the flange shown in FIG. FIG. 8 is a cross-sectional view showing a joined state between the pipe and the flange immediately after welding.

図6および図7に示すように、プラント配管の継手用として適用されている従来のJIS規格化フランジ1は、円盤状で、両側のフランジ面1a,1bが平行かつ歪曲等のない平板状をなしている。このフランジ1の中心部に、配管3を挿入するための開口孔2が穿設されている。   As shown in FIGS. 6 and 7, the conventional JIS standardized flange 1 applied as a joint for plant piping has a disk shape, and the flat flanges 1a and 1b on both sides are parallel and have no distortion. There is no. An opening hole 2 for inserting the pipe 3 is formed in the center of the flange 1.

配管継手の製造時においては、図8に示すように、配管3の先端部がフランジ1の開口孔2に未貫通位置まで挿入され、第1の溶接部4として、配管3の先端面の外周付近とフランジ1の開口孔2の内周面とが周方向に沿って溶接され、第2の溶接部5として、配管3の線端部付近の外周面とフランジ1の一方のフランジ面1aとが周方向に沿って溶接される。   At the time of manufacturing the pipe joint, as shown in FIG. 8, the distal end portion of the pipe 3 is inserted into the opening hole 2 of the flange 1 to the non-penetrating position, and the outer periphery of the distal end surface of the pipe 3 is used as the first welded portion 4. The vicinity and the inner peripheral surface of the opening hole 2 of the flange 1 are welded along the circumferential direction. As the second welded portion 5, an outer peripheral surface near the line end of the pipe 3 and one flange surface 1a of the flange 1 Are welded along the circumferential direction.

このような従来の配管継手6においては、第1の溶接部4がフランジ1の開口孔2の内周面内に位置しており、第2の溶接部5がフランジ1の一方のフランジ面1a側に位置しているので、溶接熱は一方のフランジ面1aに多量に供給され、これと反対側の他方のフランジ面1bに与えられる熱量は相対的に少ない。   In such a conventional pipe joint 6, the first welded portion 4 is located in the inner peripheral surface of the opening hole 2 of the flange 1, and the second welded portion 5 is one flange surface 1 a of the flange 1. Since it is located on the side, a large amount of welding heat is supplied to one flange surface 1a, and the amount of heat given to the other flange surface 1b on the opposite side is relatively small.

したがって、この配管継手6においては、溶接時に多量の熱量が供給された一方のフランジ面1a側の冷却による収縮が多くなり、溶接歪が発生する。この溶接歪により、フランジ1には配管挿入側の一方のフランジ面1a側が凹形状となり、他方のフランジ面(シール面)1b側が凸側となるような弓なりの変形が発生する。すなわち、従来技術では、溶接作業が完了して、常温まで自然冷却されるに伴い、溶接部4,5に熱収縮による溶接歪が発生し、溶接後のフランジ1が変形する。   Therefore, in this pipe joint 6, shrinkage due to cooling on the one flange surface 1a side to which a large amount of heat is supplied during welding increases, and welding distortion occurs. Due to this welding distortion, the flange 1 is deformed in a bow shape such that one flange surface 1a side on the pipe insertion side is concave and the other flange surface (seal surface) 1b side is convex. That is, in the prior art, as the welding operation is completed and naturally cooled to room temperature, welding distortion occurs due to thermal contraction in the welded portions 4 and 5, and the welded flange 1 is deformed.

なお、フランジ継手溶接方法としては、TIG溶接法、MAG/MIG溶接法、または被覆アーク溶接法が適用され、これらの溶接方法により施工することが行われているが、いずれの溶接方法においても上述した溶接歪による変形現象が発生する。また、この溶接歪(変形)は、熱伝導が小さく熱がこもり易いステンレス鋼材の場合に特に大きい傾向を示すが、ステンレス鋼材に限らず、炭素鋼材のほとんどの材質においても発生する。   In addition, as a flange joint welding method, the TIG welding method, the MAG / MIG welding method, or the covering arc welding method is applied, and it is performed by these welding methods. Deformation phenomenon due to weld distortion. In addition, this weld distortion (deformation) tends to be particularly large in the case of a stainless steel material that has a small thermal conductivity and tends to accumulate heat, but is not limited to the stainless steel material and also occurs in almost all carbon steel materials.

この溶接歪の発生を防止する方法として、これまでには、フランジ1の接合面(シール面)となる片面(他方のフランジ面1b)側に板厚方向の変形防止用円板を抱き合わせ、互いの外周部を仮溶接して、フランジ継手溶接を行う方法、あるいはペアとなるフランジ継手6同士の接触面に数mmの円板を挟み、互いのフランジをボルトで締め上げて、逆歪(予想される溶接変形側の反対側に向けた溶接前の変形)を施した状態でフランジ継手溶接を行う方法等が行われている。   As a method for preventing the occurrence of this welding distortion, until now, a deformation preventing disk in the thickness direction is tangled on one side (the other flange surface 1b) side which becomes the joint surface (seal surface) of the flange 1, and each other. A method in which the outer periphery of the steel plate is temporarily welded and flange joint welding is performed, or a disk of several millimeters is sandwiched between the contact surfaces of the paired flange joints 6 and the flanges are tightened with bolts to reverse strain (expected A method of performing flange joint welding in a state in which deformation before welding toward the opposite side of the weld deformation side is performed.

しかし、これらの方法では治具の製作手間が掛かる割りに、十分な変形防止が図れない場合が多く、また均一な溶接入熱量とする技能を必要とする。さらに、母材に対しては、強制拘束による残留応力増大、あるいは硬度上昇などの品質低下、および製造コストの上昇を招く要因となっている。   However, these methods often do not allow sufficient prevention of deformation for the time required to manufacture jigs, and require a technique for achieving uniform welding heat input. Furthermore, the base metal is a factor that causes an increase in residual stress due to forced restraint, a decrease in quality such as an increase in hardness, and an increase in manufacturing cost.

一方、このような歪防止方法を講じない状態で、フランジ継手溶接を行い、発生した溶接歪をプレス修正する方法や、ガスバーナーで加熱し、いわゆる「灸法」によって修正する方法も知られている。ところが、前者のプレス修正による方法では、配管形状やサイズに制約を受け、後者の灸法による修正方法は、オーステナイト系ステンレス鋼等には採用できないなどの問題がある。   On the other hand, there is also known a method of performing flange joint welding without pressurizing such a distortion prevention method and correcting the generated welding distortion by press, or a method of heating by a gas burner and correcting by a so-called “saddle method”. Yes. However, the former method of press correction is limited by the piping shape and size, and the latter method of correction has a problem that it cannot be applied to austenitic stainless steel or the like.

このため、これまで最も多く採用されているのは、変形部分を機械加工によって除去する方法(くるい取り方法)である。しかし、この方法では、修正加工をする熟練技能を必要とし、しかも無駄な追加工程により加工工程が増大する。   For this reason, the most frequently used method so far is a method of removing the deformed portion by machining (ie, a crushing method). However, this method requires skilled skills for correction processing, and increases the number of processing steps due to unnecessary additional steps.

なお、配管継手以外の技術分野、例えばコ字型素材と蓋板とを溶接する角形鋼管の製造技術分野においては、蓋板溶接による鋼管の軸直角方向への歪である弓なり変形を防止して真直な角形鋼管を製造することを目的として、蓋板をコ字型素材に溶接する前に、予めコ字型素材に溶接変形に見合う逆歪を付与しておき、蓋板溶接時の熱吸収量とキャンセルさせることが提案されている(特許文献1参照)。   In technical fields other than pipe joints, for example, in the manufacturing technical field of square steel pipes that weld U-shaped materials and lid plates, bow deformation, which is distortion in the direction perpendicular to the axis of the steel pipe, is prevented by lid plate welding. For the purpose of manufacturing a straight square steel pipe, before welding the cover plate to the U-shaped material, the U-shaped material is preliminarily subjected to reverse distortion corresponding to the welding deformation, and heat absorption during the cover plate welding is performed. It has been proposed to cancel the amount (see Patent Document 1).

しかし、この方法は、単に角形鋼管が長手方向に沿って歪む単純な弓なり変形を全体的に防止するだけであり、部分的かつ複雑なフランジ溶接の変形防止には適用することができない。
特開平7−314171号公報
However, this method merely prevents the simple bow-shaped deformation of the square steel pipe along the longitudinal direction as a whole, and cannot be applied to prevent the deformation of the partial and complicated flange welding.
JP-A-7-314171

上述したように、従来の技術では、均一な溶接入熱量とする技能や、修正加工をする熟練技能を必要とし、しかも無駄な追加工程により加工工程が増大する。さらに、母材に対しては、強制拘束による残留応力増大、あるいは硬度上昇などの品質低下、および製造コストの上昇を招く要因となっている。   As described above, the conventional technique requires a technique for obtaining a uniform welding heat input amount and a skill for performing a correction process, and the number of processing steps increases due to useless additional steps. Furthermore, the base metal is a factor that causes an increase in residual stress due to forced restraint, a decrease in quality such as an increase in hardness, and an increase in manufacturing cost.

本発明は、このような事情に鑑みてなされたものであり、上述の要因を排除し、品質の向上と同時に、製造コストの低減を図り、有効に溶接歪を吸収することができる配管継手用溶接歪吸収フランジを提供することを目的とする。   The present invention has been made in view of such circumstances, and eliminates the above-mentioned factors, and at the same time as improving quality, reduces manufacturing costs and effectively absorbs welding distortion. An object is to provide a weld strain absorbing flange.

また、本発明はフランジ部の残留応力が小さく高品質の配管継手を提供することを目的とする。   Another object of the present invention is to provide a high-quality pipe joint with a small residual stress in the flange portion.

前記の目的を達成するために、請求項1に係る発明では、中心部に配管挿入用の開口孔を有し、この開口孔に挿入される配管の先端に溶接される円盤状の配管継手用フランジであって、前記配管との溶接時に発生が想定される溶接歪の向きと反対の向きに、前記想定される溶接歪と同量の逆歪が施され、これにより溶接前状態において前記配管の軸心に対し非垂直となるフランジ面が形成され、実溶接時には溶接歪により前記逆歪が打消されて前記フランジ面が前記配管の軸心に対し垂直となる構成としたことを特徴とする配管継手用溶接歪吸収フランジを提供する。   In order to achieve the above object, in the invention according to claim 1, for a disk-shaped pipe joint having an opening hole for pipe insertion at the center and welded to the tip of the pipe inserted into the opening hole. The flange is subjected to reverse strain of the same amount as the assumed welding strain in a direction opposite to the direction of the welding strain assumed to occur during welding with the pipe, and thereby the pipe in the pre-weld state. A flange surface that is non-perpendicular to the axial center of the pipe is formed, and the reverse strain is canceled by welding strain during actual welding, and the flange surface is perpendicular to the axial center of the pipe. A weld strain absorbing flange for a pipe joint is provided.

すなわち、溶接時に発生が想定される溶接歪の向きおよび量は、配管とフランジとの溶接箇所および溶接熱量によって特定することができる。配管の端部がフランジの一方のフランジ面側から接合される場合、上述した従来例により説明したように、一方のフランジ面側への入熱量が多いことから、溶接歪の発生によるフランジの変形は、冷却時の収縮が大きく作用する一方のフランジ面側である。したがって、一方のフランジ面側が溶接部付近において凹となるような変形が発生する。そこで、本発明においては、逆歪として、他方のフランジ面側が溶接部付近を境として凹となるような傾斜変形を予め施すものである。   That is, the direction and amount of welding distortion that is assumed to occur during welding can be specified by the welding location between the pipe and the flange and the amount of welding heat. When the end of the pipe is joined from one flange surface side of the flange, as explained in the above-mentioned conventional example, the amount of heat input to one flange surface side is large. Is one flange surface side on which contraction during cooling acts greatly. Therefore, deformation occurs such that one flange surface side is concave in the vicinity of the weld. Therefore, in the present invention, as the reverse strain, an inclined deformation is performed in advance so that the other flange surface side is concave with the vicinity of the welded portion as a boundary.

また、多くの試験の結果、溶接歪は、フランジの径方向における略1箇所を基点として発生することが確認された。この溶接歪発生基点は、配管挿入用の開口孔の径よりも数mm大径側の位置である。したがって、フランジにおける溶接歪発生基点よりも内径側のフランジ面の部分には逆歪を施す必要がない。そこで、逆歪により変形を生じさせる部位は、溶接歪発生基点よりも外径側の範囲とするものである。   Further, as a result of many tests, it was confirmed that the weld distortion was generated with the base point being approximately one place in the radial direction of the flange. This welding strain generation base point is a position on the diameter side several mm larger than the diameter of the opening hole for pipe insertion. Therefore, it is not necessary to apply reverse strain to the portion of the flange surface on the inner diameter side of the weld strain generation base point in the flange. Therefore, the portion where deformation is caused by reverse strain is a range on the outer diameter side from the welding strain generation base point.

この点に鑑み、請求項2に係る発明では、前記逆歪は、前記フランジの開口孔の径よりも数mm大径側の位置に発生する溶接歪発生起点を折曲点とする板厚方向に沿う一定角度の傾斜であり、前記溶接歪発生基点から内径側のフランジ面が前記配管の軸心に対し垂直面とされ、前記溶接歪発生起点から外径側のフランジ面が前記配管の軸心に対し傾斜面とされている請求項1記載の配管継手用溶接歪吸収フランジを提供する。   In view of this point, in the invention according to claim 2, the reverse strain is a plate thickness direction in which a welding strain generation starting point that is generated at a position several mm larger than the diameter of the opening hole of the flange is a bending point. The flange surface on the inner diameter side from the welding strain generation base point is a vertical surface with respect to the axis of the pipe, and the flange surface on the outer diameter side from the welding strain generation point is the axis of the pipe. The weld strain absorbing flange for a pipe joint according to claim 1, wherein the weld strain absorbing flange is inclined with respect to the center.

なお、プラントに応じ、配管継手用フランジの材料にはステンレス鋼または炭素鋼等が適用される。そして、継手溶接時に発生するフランジの溶接歪による傾斜角度の大きさは、材質によって相違することから、逆歪の角度は材質に応じて特定することが望ましい。   Depending on the plant, stainless steel, carbon steel, or the like is applied as the material for the flange for the pipe joint. And since the magnitude | size of the inclination angle by the welding distortion of the flange which generate | occur | produces at the time of joint welding changes with materials, it is desirable to specify the angle of reverse distortion according to a material.

請求項3に係る発明では、前記フランジはステンレス鋼製であり、前記溶接歪発生起点におけるフランジ面の傾斜角度は前記配管の軸心に対し90.5°〜93°に設定されている請求項2記載の配管継手用溶接歪吸収フランジを提供する。   In the invention according to claim 3, the flange is made of stainless steel, and the inclination angle of the flange surface at the welding strain starting point is set to 90.5 ° to 93 ° with respect to the axis of the pipe. A weld strain absorbing flange for a pipe joint according to 2, is provided.

請求項4に係る発明では、前記フランジは炭素鋼であり、前記溶接歪発生起点におけるフランジ面の傾斜角度は前記配管の軸心に対し90.5°〜92°に設定されている請求項2記載の配管継手用溶接歪吸収フランジを提供する。   In the invention according to claim 4, the flange is made of carbon steel, and the inclination angle of the flange surface at the welding strain occurrence starting point is set to 90.5 ° to 92 ° with respect to the axis of the pipe. A weld strain absorbing flange for a pipe joint as described is provided.

上述した請求項2〜4の発明において付与された逆歪が、実溶接時の溶接歪により打消され、全てのフランジ面が配管の軸心に対して垂直となった場合、多くの試験の結果、溶接前には凹側面であったフランジ面の溶接歪発生起点に、平坦面の一部が隆起するような変形が発生することが認められた。この隆起状の変形が存在したままでは、ペアとなる他の継手用フランジと接合する場合に、隆起状変形部分同士の接合によりシール性が低下する可能性がある。この場合、変形部分を後の機械加工等によって除去すると、余分な追加工程が必要となる。そこで、予め隆起状の変形が発生するフランジ面にリング状の凹溝を形成しておくことにより、フランジの周方向全体に亘って隆起状の変形の発生を防止することができる。このような処理を施しておくことにより、シール性能の優れたフランジを得ることができ、追加工程も不要となる。また、溶接歪発生起点にリング状の凹溝を形成することにより、実溶接時に発生する曲げ応力が凹溝の表面部分において拡散状態となり、応力の1点集中状態が解消される。この結果、予め施した逆歪を打消してフランジ面が平坦となる際のフランジ材の曲げ作用が一様に行われるようになる。これにより、溶接後のフランジ面の配管軸心に対する垂直度の設定が高精度で行えるようになるとともに、残留応力の減少も図れるようになる。   When the reverse strain applied in the above inventions of claims 2 to 4 is canceled by the weld strain at the time of actual welding and all flange surfaces are perpendicular to the axis of the pipe, the results of many tests It was confirmed that a deformation such that a part of the flat surface was raised at the starting point of the welding strain on the flange surface which was a concave side surface before welding. If this raised deformation remains, when joining with other joint flanges that form a pair, there is a possibility that the sealing performance may deteriorate due to the joining of the raised deformed parts. In this case, if the deformed portion is removed by subsequent machining or the like, an extra additional step is required. Therefore, by forming a ring-shaped concave groove on the flange surface where the bulging deformation occurs in advance, it is possible to prevent the bulging deformation from occurring over the entire circumferential direction of the flange. By performing such treatment, a flange having excellent sealing performance can be obtained, and an additional process is not required. Further, by forming the ring-shaped concave groove at the welding strain generation starting point, the bending stress generated during actual welding becomes a diffusion state in the surface portion of the concave groove, and the one-point concentration state of the stress is eliminated. As a result, the bending action of the flange material is uniformly performed when the reverse distortion applied in advance is canceled and the flange surface becomes flat. As a result, the perpendicularity of the flange surface after welding with respect to the pipe axis can be set with high accuracy and the residual stress can be reduced.

そこで、請求項5に係る発明では、前記フランジの傾斜方向におけるフランジ面上に、前記溶接歪発生起点を通り、かつ前記フランジの中心と同心円上に沿う配置でリング状の凹溝が形成されている請求項2から4までのいずれかに記載の配管継手用溶接歪吸収フランジを提供する。   Therefore, in the invention according to claim 5, a ring-shaped concave groove is formed on the flange surface in the inclined direction of the flange so as to pass through the welding strain starting point and along a concentric circle with the center of the flange. A weld strain absorbing flange for a pipe joint according to any one of claims 2 to 4 is provided.

上述したフランジの適用により、残留応力が小さく高品質の配管継手を構成することが可能となる。   By applying the flange described above, it is possible to configure a high-quality pipe joint with a small residual stress.

そこで、請求項6に係る発明では、請求項1から4までのいずれかに記載の配管継手用溶接歪吸収フランジを用いて構成した配管継手を提供する。   In view of this, the invention according to claim 6 provides a pipe joint configured by using the weld strain absorbing flange for pipe joint according to any one of claims 1 to 4.

本発明によれば、フランジに予め付与された部分的な逆歪によって、実溶接時にフランジの一部に発生する溶接歪が打消され、冷却後は全く歪曲のない状態でフランジが配管の軸心に対して垂直に接合される。したがって、均一な溶接入熱量とする技能や、修正加工をする熟練技能等を必要とすることなく、また無駄な追加工程による加工工程が増大することもなく、しかも母材に対して強制拘束による残留応力増大、あるいは硬度上昇などの品質低下、および製造コストの上昇を招くことなく溶接歪を吸収することができ、配管継手の品質向上と同時に、製造コストの低減が図れるようになる。   According to the present invention, the partial reverse strain preliminarily applied to the flange cancels out the weld strain generated in a part of the flange during actual welding, and the flange is axially centered without any distortion after cooling. Is perpendicularly bonded. Therefore, there is no need for skills to make uniform welding heat input, skilled skills for correction processing, etc., and there is no increase in processing steps due to unnecessary additional steps, and due to forced restraint on the base material. It is possible to absorb welding distortion without causing an increase in residual stress or a decrease in quality such as an increase in hardness and an increase in manufacturing cost, and at the same time as improving the quality of the pipe joint, the manufacturing cost can be reduced.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態による配管継手用溶接歪吸収フランジの中央部拡大断面図である。図2は、同フランジとこれに溶接される配管とを示す部分断面図であり、図3は、図2に示したフランジの右側面図である。図4は、フランジと配管との溶接直後の状態(配管継手として構成された状態)を示す断面図である。   FIG. 1 is an enlarged cross-sectional view of a central portion of a welded strain absorbing flange for a pipe joint according to the present embodiment. FIG. 2 is a partial cross-sectional view showing the flange and a pipe welded thereto, and FIG. 3 is a right side view of the flange shown in FIG. FIG. 4 is a cross-sectional view showing a state immediately after welding of the flange and the pipe (a state configured as a pipe joint).

図1〜図3に示すように、本実施形態のフランジ11は基本的には従来と同様に、円盤状で、中心部に配管13を挿入するための開口孔12を有するものである。但し、本実施形態のフランジ11は、従来の全体的に平坦な構造と異なり、配管13との溶接時に発生が想定される溶接歪の向きと反対の向きに、想定される溶接歪と同量の逆歪が予め施され、実溶接時には溶接歪により逆歪が打消されてフランジ面が配管の軸心に対し垂直となる構成とされている。   As shown in FIG. 1 to FIG. 3, the flange 11 of the present embodiment is basically disc-shaped and has an opening hole 12 for inserting a pipe 13 in the center as in the conventional case. However, unlike the conventional generally flat structure, the flange 11 of the present embodiment has the same amount as the assumed welding strain in the direction opposite to the direction of the welding strain that is assumed to occur during welding with the pipe 13. The reverse strain is applied in advance, and the reverse strain is canceled by the weld strain during actual welding so that the flange surface is perpendicular to the axis of the pipe.

このフランジ11の逆歪は、従来のJIS規格化されたフランジに発生する溶接歪の観察結果に基づいて定めたものであり、本実施形態では具体的に、フランジ11の径方向の一部を基点とし、その基点よりも外径側の部分を板厚方向に所定角θだけ度傾斜させることによって施されている。   The reverse distortion of the flange 11 is determined based on the observation result of the welding distortion generated in the conventional JIS standardized flange. In the present embodiment, a part of the flange 11 in the radial direction is specifically described. The base point is applied by inclining a portion on the outer diameter side of the base point by a predetermined angle θ in the plate thickness direction.

詳述すると、溶接歪は、上述した従来例において示したように、配管の先端面の外周付近とフランジの開口孔の内周面とが周方向に沿って溶接される第1の溶接部と、配管のフランジから外部に出た部分における外周面とフランジの一方の側面であるフランジ面とが周方向に沿って溶接される第2の溶接部とに基づいて発生する。そして、これらの溶接部は、フランジの一方の側面側に多くの溶接熱を供給するため、各フランジ面に与えられる熱量が偏在し、フランジに溶接歪による変形が生じていたものであった。そして、この結果として、フランジには配管挿入側の一方のフランジ面側に傾くような弓なりの変形が発生していた。   More specifically, as shown in the above-described conventional example, the weld distortion is the first welded portion where the vicinity of the outer periphery of the front end surface of the pipe and the inner peripheral surface of the opening hole of the flange are welded along the circumferential direction. It is generated based on the second welded portion in which the outer peripheral surface of the portion of the pipe that protrudes to the outside and the flange surface that is one side surface of the flange are welded along the circumferential direction. And since these welding parts supply much welding heat to the one side surface side of a flange, the calorie | heat amount given to each flange surface was unevenly distributed, and the deformation | transformation by the welding distortion had arisen in the flange. As a result, a bow-like deformation is generated in the flange so as to be inclined toward one flange surface on the pipe insertion side.

そこで、本実施形態では、このような溶接歪の逆歪として、フランジ11の径方向における1点を基点として、それよりも外径側におけるフランジ面11a,11bを、配管13が挿入される側と反対側に向けて、溶接歪と同量の逆歪として、配管13の軸心Oに対し一定角度θの傾斜を与えている。   Therefore, in this embodiment, as a reverse strain of such welding strain, the flange surface 11a, 11b on the outer diameter side from the one point in the radial direction of the flange 11 is the side where the pipe 13 is inserted. Toward the opposite side, an inclination of a certain angle θ is given to the axis O of the pipe 13 as a reverse strain having the same amount as the welding strain.

この傾斜の基点として、本実施形態では試験の結果に基づき、フランジ11における「溶接歪発生起点P」を求めた。すなわち、多くの試験の結果、フランジ11は口径に応じてそれぞれ略一定の径方向位置に溶接歪が発生する基点を有することがわかった。この溶接歪が発生する起点は、配管挿入用の開口孔12の直径D0よりも一定長さδ(数mm(3〜8mm))の大径側位置に存在していた。この溶接歪の発生する基点Pを、以下、「溶接歪発生起点P」という。   In this embodiment, the “welding strain generation starting point P” of the flange 11 is obtained as the base point of this inclination based on the result of the test. That is, as a result of many tests, it has been found that the flange 11 has a base point at which welding distortion occurs at a substantially constant radial position according to the diameter. The starting point at which this welding distortion occurs was present at a position on the large-diameter side having a fixed length δ (several mm (3 to 8 mm)) from the diameter D0 of the opening hole 12 for pipe insertion. The base point P at which this welding strain occurs is hereinafter referred to as “welding strain generation starting point P”.

この溶接歪発生起点Pから外径側のフランジ面11a,11bを、配管の軸心Oに対し一定角度θ傾斜させた逆歪を設定すると、実溶接時の溶接歪を打消すことができることがわかった。この結果に基づき、本実施形態のフランジ11は、配管挿入用の開口孔12の直径D0よりも一定長さδだけ大径側の位置に、溶接歪発生起点Pを有し、この溶接歪発生起点Pから内径側のフランジ面11c,11dは、配管の軸心Oに対し垂直とされており、溶接歪発生起点Pから外径側のフランジ面11a,11bは、配管11の軸心Oに対し一定角度θだけ傾斜しているものとした。このような逆歪の加工には、NC旋盤、マシニングセンターなど、種々の手段を適用することが可能である。   By setting a reverse strain in which the flange surfaces 11a and 11b on the outer diameter side from the welding strain generation starting point P are inclined by a certain angle θ with respect to the axis O of the pipe, the welding strain at the time of actual welding can be canceled. all right. Based on this result, the flange 11 of the present embodiment has a welding strain generation starting point P at a position larger than the diameter D0 of the opening hole 12 for pipe insertion by a fixed length δ, and this weld strain generation. The flange surfaces 11c and 11d on the inner diameter side from the starting point P are perpendicular to the axis O of the piping, and the flange surfaces 11a and 11b on the outer diameter side from the welding strain generation starting point P are on the axis O of the piping 11. On the other hand, it is assumed that it is inclined by a certain angle θ. Various means such as an NC lathe and a machining center can be applied to such reverse strain machining.

図5は、本実施形態における逆歪を与えるための歪角度と、配管13の口径についての材質別グラフを示したものであり、ステンレス鋼と炭素鋼とについて、歪角度(縦軸)と口径(横軸)とを変化させた場合を示している。   FIG. 5 shows a graph for each material regarding the strain angle for applying reverse strain and the diameter of the pipe 13 in this embodiment, and the strain angle (vertical axis) and the diameter for stainless steel and carbon steel. (Horizontal axis) is changed.

この図5に示すように、ステンレス鋼製のフランジ11の場合には、対応する配管口径規格100A〜400A(フランジの開口孔径100mm〜400mm)について、90.5°〜93°の溶接歪発生起点におけるフランジ面の溶接歪角度の変化が見られた。また、炭素鋼製のフランジ11の場合には、対応する配管口径規格100A〜400A(フランジの開口孔径100mm〜400mm)について、90.5°〜92°の溶接歪発生起点におけるフランジ面の溶接歪角度の変化が見られた。すなわち、ステンレス鋼製のフランジ11の溶接歪角度の変化が炭素鋼に比して大きいことが分かる。   As shown in FIG. 5, in the case of the stainless steel flange 11, the welding strain generation starting point of 90.5 ° to 93 ° with respect to the corresponding pipe diameter standard 100A to 400A (opening hole diameter of the flange 100 mm to 400 mm). The change of the welding distortion angle of the flange surface was observed. Further, in the case of the flange 11 made of carbon steel, the welding strain of the flange surface at the origin of welding strain generation of 90.5 ° to 92 ° for the corresponding pipe diameter standards 100A to 400A (flange opening hole diameter 100 mm to 400 mm). A change in angle was observed. That is, it can be seen that the change in the welding strain angle of the stainless steel flange 11 is larger than that of the carbon steel.

これに対応して、本実施形態では、フランジ11がステンレス鋼製の場合には、溶接歪発生起点Pにおけるフランジ面の傾斜角度θが、配管の軸心Oに対し90.5°〜93°に設定されている。また、フランジが炭素鋼製の場合には、溶接歪発生起点Pにおけるフランジ面の傾斜角度θが配管の軸心Oに対し90.5°〜92°に設定されている。   Correspondingly, in the present embodiment, when the flange 11 is made of stainless steel, the inclination angle θ of the flange surface at the welding strain generation point P is 90.5 ° to 93 ° with respect to the axis O of the pipe. Is set to Further, when the flange is made of carbon steel, the inclination angle θ of the flange surface at the welding strain starting point P is set to 90.5 ° to 92 ° with respect to the axis O of the pipe.

次に、本実施形態では、フランジ11の傾斜方向におけるフランジ面11b上に、溶接歪発生起点Pを通り、かつフランジの中心と同心円上に沿う配置でリング状の凹溝14が形成されている
この凹溝14の断面形状は、図1に示したように、応力が緩和されるR加工(円形加工)により、緩やかな曲面とすることが望ましい。但し、図示しないが緩やかな曲面であれば断面角形の溝としてもよい。
Next, in the present embodiment, the ring-shaped concave groove 14 is formed on the flange surface 11b in the inclination direction of the flange 11 so as to pass through the welding strain starting point P and along a concentric circle with the center of the flange. As shown in FIG. 1, the cross-sectional shape of the concave groove 14 is preferably a gentle curved surface by R processing (circular processing) in which stress is relaxed. However, although not shown, a groove having a square cross section may be used as long as it is a gentle curved surface.

図4は、フランジ1と配管2とが、溶接部15,16により溶接された後の状態を示している。この図4に示すように、溶接後の配管継手17においては、実溶接歪により逆歪が打消されてフランジ11の傾斜が戻され、ほぼ垂直なフランジ面11a,11bが得られた。すなわち、従来例のような溶接部の溶接後の冷却によるフランジの片側(非溶接端面側)が凸側となるような弓なり変形が発生しない。この場合、フランジ継手溶接の工程において、フランジ11の開口孔12内に配管13を挿通して溶接し、自然冷却後、溶接歪により、対をなすフランジ同士が平行な角度となり、歪修正工程が不要となった。   FIG. 4 shows a state after the flange 1 and the pipe 2 are welded by the welded portions 15 and 16. As shown in FIG. 4, in the pipe joint 17 after welding, the reverse strain was canceled by the actual welding strain, and the inclination of the flange 11 was returned, so that substantially vertical flange surfaces 11a and 11b were obtained. That is, no bowing deformation occurs such that one side (non-welded end face side) of the flange becomes a convex side due to cooling after welding of the welded portion as in the conventional example. In this case, in the flange joint welding process, the pipe 13 is inserted into the opening hole 12 of the flange 11 and welded. After natural cooling, the paired flanges have parallel angles due to welding distortion, and the distortion correction process is performed. It became unnecessary.

本実施形態におけるフランジ加工角度は、管口径、材質、板厚により異なるが、予め溶接試験により付与すべき角度と範囲とを決定することができる。   Although the flange processing angle in this embodiment changes with pipe diameters, materials, and plate thicknesses, the angle and range that should be given in advance by a welding test can be determined.

以上のように、本実施形態によれば、フランジ11の予想される歪の発生方向と反対の方向に逆歪を施し、実溶接時に発生する溶接歪により逆歪としての傾斜を打消し、ほぼ垂直なフランジ面11a,11bを得るようにし、フランジ11の中央からシール面における数mmの範囲までが垂直平面で、変形が想定される外周範囲に逆歪角度が施され、フランジ11における、溶接歪発生起点Pとなる位置に、リング状の凹溝14を形成したことにより、実溶接時に発生する溶接歪を利用して形状を戻し、溶接後のフランジ面11a,11bを垂直状態とするようにしたことにより、従来行われていた無駄な歪修正が不要となった。したがって、プレス設備や技能を要する修業等が不要となり、品質の向上および製造コストの大幅な低減が図れるようになった。   As described above, according to the present embodiment, reverse strain is applied in the direction opposite to the expected strain generation direction of the flange 11, and the inclination as reverse strain is canceled by the weld strain generated during actual welding. The vertical flange surfaces 11a and 11b are obtained. The vertical plane extends from the center of the flange 11 to a range of several mm on the seal surface, and a reverse strain angle is applied to the outer peripheral range where deformation is assumed. By forming the ring-shaped concave groove 14 at the position where the strain generation starting point P is formed, the shape is restored using welding strain generated during actual welding so that the flange surfaces 11a and 11b after welding are in a vertical state. As a result, unnecessary distortion correction, which has been conventionally performed, is no longer necessary. This eliminates the need for press facilities and skill-intensive repairs, thereby improving quality and significantly reducing manufacturing costs.

また、本実施形態の配管継手用溶接歪吸収フランジを用いて構成した配管継17は、溶接時の残留応力が低減し、極めて高品質となった。   Moreover, the pipe joint 17 comprised using the welding distortion absorption flange for pipe joints of this embodiment reduced the residual stress at the time of welding, and became very high quality.

以上のように、本発明によれば、フランジを予め予想される試験データより、サイズ毎に逆歪を施し、実溶接時に発生する溶接歪を利用して、形状を戻し、溶接後のフランジ面を垂直に近い状態にするようにして逆歪付き溶接フランジを製造することができる。したがって、無駄な歪修正が不要となるため、プレス設備や技能を要する修業等が不要となり、品質の向上および製造コストの大幅な低減が図れるようになる。   As described above, according to the present invention, the flange surface is subjected to reverse distortion for each size from the test data predicted in advance, and the shape is restored using the welding distortion generated during actual welding, and the flange surface after welding It is possible to manufacture a welded flange with reverse strain by making the state close to vertical. Therefore, since unnecessary distortion correction is not required, press facilities and skill-intensive repairs are not required, and quality can be improved and manufacturing costs can be greatly reduced.

本発明の一実施形態による溶接前フランジ形状を示す拡大断面図。The expanded sectional view which shows the flange shape before welding by one Embodiment of this invention. 本発明の一実施形態による溶接前フランジおよび配管の溶接前状態を示す断面図。Sectional drawing which shows the state before welding of the flange before welding by one Embodiment of this invention, and piping. 図1に示したフランジの右側面図。The right view of the flange shown in FIG. 本発明の一実施形態による溶接後におけるフランジ形状を示す断面図。Sectional drawing which shows the flange shape after the welding by one Embodiment of this invention. 本発明の一実施形態による歪角度と口径の材質別グラフ。The distortion according to one embodiment of the present invention, and a graph according to material of a diameter. 従来例による溶接前フランジ形状を示す断面図。Sectional drawing which shows the flange shape before welding by a prior art example. 図6に示したフランジの右側面図。The right view of the flange shown in FIG. 従来例による溶接後のフランジ形状を示す断面図。Sectional drawing which shows the flange shape after the welding by a prior art example.

符号の説明Explanation of symbols

11 フランジ
11a,11b フランジ面
12 開口孔
13 配管
14 リング状凹溝
15 溶接部
16 溶接部
17 配管継手
O 配管の軸心
P 溶接歪発生起点
11 Flange 11a, 11b Flange surface 12 Opening hole 13 Pipe 14 Ring-shaped concave groove 15 Welded portion 16 Welded portion 17 Pipe joint O Pipe shaft center P Welding strain starting point

Claims (6)

中心部に配管挿入用の開口孔を有し、この開口孔に挿入される配管の先端に溶接される円盤状の配管継手用フランジであって、前記配管との溶接時に発生が想定される溶接歪の向きと反対の向きに、前記想定される溶接歪と同量の逆歪が施され、これにより溶接前状態において前記配管の軸心に対し非垂直となるフランジ面が形成され、実溶接時には溶接歪により前記逆歪が打消されて前記フランジ面が前記配管の軸心に対し垂直となる構成としたことを特徴とする配管継手用溶接歪吸収フランジ。 A disc-shaped flange for a pipe joint that has an opening hole for pipe insertion in the center and is welded to the tip of the pipe inserted into the opening hole, and is assumed to occur during welding with the pipe The reverse strain of the same amount as the assumed welding strain is applied in the direction opposite to the direction of the strain, thereby forming a flange surface that is non-perpendicular to the axis of the pipe in the pre-weld state. A welding strain absorbing flange for a pipe joint, characterized in that the reverse strain is sometimes canceled by welding strain and the flange surface is perpendicular to the axis of the pipe. 前記逆歪は、前記フランジの開口孔の径よりも数mm大径側の位置に発生する溶接歪発生起点を折曲点とする板厚方向に沿う一定角度の傾斜であり、前記溶接歪発生基点から内径側のフランジ面が前記配管の軸心に対し垂直面とされ、前記溶接歪発生起点から外径側のフランジ面が前記配管の軸心に対し傾斜面とされている請求項1記載の配管継手用溶接歪吸収フランジ。 The reverse strain is an inclination of a constant angle along the plate thickness direction with a bending strain starting point generated at a position several mm larger than the diameter of the opening hole of the flange as a bending point. The flange surface on the inner diameter side from the base point is a vertical surface with respect to the axis of the pipe, and the flange surface on the outer diameter side from the welding strain generation point is an inclined surface with respect to the axis of the pipe. Welding strain absorbing flange for pipe joints. 前記フランジはステンレス鋼製であり、前記溶接歪発生起点におけるフランジ面の傾斜角度は前記配管の軸心に対し90.5°〜93°に設定されている請求項2記載の配管継手用溶接歪吸収フランジ。 3. The weld distortion for a pipe joint according to claim 2, wherein the flange is made of stainless steel, and an inclination angle of the flange surface at the welding strain starting point is set to 90.5 ° to 93 ° with respect to the axis of the pipe. Absorption flange. 前記フランジは炭素鋼であり、前記溶接歪発生起点におけるフランジ面の傾斜角度は前記配管の軸心に対し90.5°〜92°に設定されている請求項2記載の配管継手用溶接歪吸収フランジ。 3. The weld strain absorption for pipe joints according to claim 2, wherein the flange is made of carbon steel, and an inclination angle of the flange surface at the welding strain generation starting point is set to 90.5 ° to 92 ° with respect to the axis of the pipe. Flange. 前記フランジの傾斜方向におけるフランジ面上に、前記溶接歪発生起点を通り、かつ前記フランジの中心と同心円上に沿う配置でリング状の凹溝が形成されている請求項2から4までのいずれかに記載の配管継手用溶接歪吸収フランジ。 5. The ring-shaped concave groove is formed on the flange surface in the inclined direction of the flange so as to pass through the welding strain starting point and along a concentric circle with the center of the flange. A weld strain absorbing flange for pipe joints as described in 1. 請求項1から5までのいずれかに記載の配管継手用溶接歪吸収フランジを用いて構成した配管継手。 A pipe joint constituted by using the welded strain absorbing flange for a pipe joint according to any one of claims 1 to 5.
JP2003325127A 2003-09-17 2003-09-17 Flange for absorbing welding deformation for piping joint, and piping joint using the same Pending JP2005088048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325127A JP2005088048A (en) 2003-09-17 2003-09-17 Flange for absorbing welding deformation for piping joint, and piping joint using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325127A JP2005088048A (en) 2003-09-17 2003-09-17 Flange for absorbing welding deformation for piping joint, and piping joint using the same

Publications (1)

Publication Number Publication Date
JP2005088048A true JP2005088048A (en) 2005-04-07

Family

ID=34455665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325127A Pending JP2005088048A (en) 2003-09-17 2003-09-17 Flange for absorbing welding deformation for piping joint, and piping joint using the same

Country Status (1)

Country Link
JP (1) JP2005088048A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050896A (en) * 2007-08-28 2009-03-12 Jatco Ltd Welding method and welding jig
WO2009115050A1 (en) * 2008-03-20 2009-09-24 浙江盛达铁塔有限公司 Plane-welding flange pre-deforming mechanism
JP2009234412A (en) * 2008-03-27 2009-10-15 Hosei Brake Ind Ltd Part mounting structure
JP2011000624A (en) * 2009-06-19 2011-01-06 Toyota Motor Corp Welding method between members
WO2012114540A1 (en) * 2011-02-25 2012-08-30 三菱重工業株式会社 Pressure container
CN102837145A (en) * 2012-09-04 2012-12-26 芜湖中集瑞江汽车有限公司 Counter deformation process for welding base plate of front top embedded dump truck
EP2695700A4 (en) * 2011-04-08 2015-12-09 Toyota Motor Co Ltd Double sided welding method
EP3572182A1 (en) * 2018-04-24 2019-11-27 Miele & Cie. KG Method of producing a joint for an assembly and method of manufacturing an assembly consisting of a joint and at least one further joint

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050896A (en) * 2007-08-28 2009-03-12 Jatco Ltd Welding method and welding jig
WO2009115050A1 (en) * 2008-03-20 2009-09-24 浙江盛达铁塔有限公司 Plane-welding flange pre-deforming mechanism
JP2009234412A (en) * 2008-03-27 2009-10-15 Hosei Brake Ind Ltd Part mounting structure
JP2011000624A (en) * 2009-06-19 2011-01-06 Toyota Motor Corp Welding method between members
WO2012114540A1 (en) * 2011-02-25 2012-08-30 三菱重工業株式会社 Pressure container
JP2012177432A (en) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd Pressure container
CN102893064A (en) * 2011-02-25 2013-01-23 三菱重工业株式会社 Pressure container
US9028234B2 (en) 2011-02-25 2015-05-12 Mitsubishi Heavy Industries Machinery Technology Corporation Pressure vessel
EP2695700A4 (en) * 2011-04-08 2015-12-09 Toyota Motor Co Ltd Double sided welding method
US10213874B2 (en) 2011-04-08 2019-02-26 Aisin Seiki Kabushiki Kaisha Double sided welding method
CN102837145A (en) * 2012-09-04 2012-12-26 芜湖中集瑞江汽车有限公司 Counter deformation process for welding base plate of front top embedded dump truck
EP3572182A1 (en) * 2018-04-24 2019-11-27 Miele & Cie. KG Method of producing a joint for an assembly and method of manufacturing an assembly consisting of a joint and at least one further joint

Similar Documents

Publication Publication Date Title
JP5953272B2 (en) Preventive maintenance repair method for welded part of membrane panel for boiler
JP2005088048A (en) Flange for absorbing welding deformation for piping joint, and piping joint using the same
CN112059527A (en) Welding protection device and method for thin-walled tube
US5431517A (en) Apparatus and method for securing a bracket to a fixed member
JP2009072795A (en) Welding tool
JP2007021530A (en) Method for repairing steel casting by welding and steel casting having part repaired by welding
JP2008260987A (en) Heat-treatment method and heat-treatment apparatus for welded steel pipe
JPH05293661A (en) Production of clad steel tube excellent in corrosion resistance
US4209123A (en) Prevention of sensitization of welded-heat affected zones in structures primarily made from austenitic stainless steel
JP3746949B2 (en) Elbow pipe manufacturing method
US20190062857A1 (en) Process for forming a stainless steel weldment resistant to stress corrosion cracking
RU2194909C1 (en) Method of manufacture of pipe line unit and pipe line unit used for realization of this method
JP2006021206A (en) Steel casting having part repaired by welding, and method for repairing steel casting by welding
JPH0244627B2 (en) DENKIONSUIKITONOKANTAINOSEIZOHOHO
JP5594814B2 (en) Tube welding method to circumferentially curved surface
JP5833904B2 (en) Fast reactor trumpet tube and its joining method
US20240117964A1 (en) Method for fabrication of corrosion-resistant tubing using minimal quantities of specialized material
JP7493737B1 (en) Manufacturing method of half pipe joint
JPS6192795A (en) Production of thin-walled pipe
KR100537248B1 (en) Molding method of nozzle sleeve for chemistry fluid tank made of high quality
KR102521687B1 (en) Equalization method for metallic
JP2006208227A (en) Repair method of nozzle of reactor pressure vessel
JPH08152290A (en) Method for welding different metals and welded structure thereof
JP2004050286A (en) Method and structure for welding steel pipe of different thickness
JP2014077588A (en) Reinforcement tool for boiler tube, manufacturing method thereof and reinforcement method of boiler tube