JP2008023452A - Method for evaluating hydrogenation catalyst - Google Patents

Method for evaluating hydrogenation catalyst Download PDF

Info

Publication number
JP2008023452A
JP2008023452A JP2006198525A JP2006198525A JP2008023452A JP 2008023452 A JP2008023452 A JP 2008023452A JP 2006198525 A JP2006198525 A JP 2006198525A JP 2006198525 A JP2006198525 A JP 2006198525A JP 2008023452 A JP2008023452 A JP 2008023452A
Authority
JP
Japan
Prior art keywords
hydrogenation
catalyst
hydrogenation catalyst
hydrogen
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006198525A
Other languages
Japanese (ja)
Inventor
Hiroshi Hasegawa
浩 長谷川
Katsuhiro Iura
克弘 井浦
Isao Hagiwara
猪佐夫 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006198525A priority Critical patent/JP2008023452A/en
Publication of JP2008023452A publication Critical patent/JP2008023452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply, quickly and simultaneously evaluating the activity and hydrogenation selectivity of a hydrogenation catalyst which is used in hydrogen peroxide production by means of an anthraquinone method. <P>SOLUTION: While a hydraulic solution is being added at a certain flow rate and hydrogen is also being added to a mixture of a hydrogenation catalyst, which is used in hydrogen peroxide production by means of an anthraquinone method, and a solvent used in the hydraulic solution, a hydrogenation reaction is carried out, so that hydrogen absorption per time unit may be constant, to evaluate not only the activity of the hydrogenation from an amount of a catalyst and an amount of absorbed hydrogen but also the selectivity from a change in the reaction solution component. Thus, a hydrogenation catalyst used in hydrogen peroxide production by means of an anthraquinone method is evaluated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アントラキノン法の過酸化水素製造に用いられる水素化触媒の活性と水素化の選択性を同時に簡便かつ迅速に評価する方法に関するものである。   The present invention relates to a method for simultaneously and simply evaluating the activity and hydrogenation selectivity of a hydrogenation catalyst used for anthraquinone method hydrogen peroxide production.

現在、工業的な過酸化水素の主な製造方法は、アントラキノン類を反応媒体に用いる方法でアントラキノン法と呼ばれる。一般にアントラキノン類は、適当な有機溶媒に溶解して使用される。有機溶媒は単独または混合物として用いられるが、通常は2種類の有機溶媒の混合物が使用される。アントラキノン類を有機溶媒に溶かして調製した溶液は作動溶液と呼ばれる。   At present, the main production method of industrial hydrogen peroxide is a method using anthraquinones as a reaction medium and is called an anthraquinone method. In general, anthraquinones are used after being dissolved in a suitable organic solvent. The organic solvent is used alone or as a mixture, but usually a mixture of two organic solvents is used. A solution prepared by dissolving anthraquinones in an organic solvent is called a working solution.

作動溶液は、循環再利用されるため、アントラキノン類の水素化で生成したアルキルオキシアンスロン、アルキルテトラヒドロアントラキノンエポキシド等の過酸化水素を生成しない副生成物が作動溶液中に徐々に蓄積される。これらの副生成物の生成は、供給した水素を損失するだけでなく、高価なアントラキノン類を損失するため、過酸化水素の製造コストを上昇させる好ましくない反応である。従って、アントラキノン類の水素化に使用される触媒には、触媒活性や水素化の選択性が重要であるが、その中でも水素化の選択性は特に重要な要素となる。   Since the working solution is recycled and reused, by-products that do not produce hydrogen peroxide such as alkyloxyanthrone and alkyltetrahydroanthraquinone epoxide produced by hydrogenation of anthraquinones are gradually accumulated in the working solution. The production of these by-products is an undesirable reaction that not only loses the supplied hydrogen but also loses expensive anthraquinones, thereby increasing the production cost of hydrogen peroxide. Therefore, catalyst activity and hydrogenation selectivity are important for a catalyst used for hydrogenation of anthraquinones. Among them, hydrogenation selectivity is a particularly important factor.

水素化触媒の触媒性能を評価する方法として、ジイソブチルカルビノールと混合アルキル芳香族類とからなる溶媒に、2-アルキルアントラキノン類と2-アルキルテトラヒドロアントラキノン類を溶解した溶液を少量の触媒と接触させた時の溶液の水素吸収量を測定する方法(特許文献1参照)、アルキルアントラキノンの混合物を含む有機溶媒混合物と水素化触媒を含む作動溶液を攪拌反応器の中で反応させる方法(特許文献2参照)、2-エチルアントラキノンを含む有機溶媒混合物及び水素化触媒を含有する作動溶液を用いて反応させ、作動溶液より回収した過酸化水素量により評価する方法(特許文献3参照)、反応器内に作動溶液と水素化触媒を投入して、アントラキノンのハイドロアントラキノンへの還元水準を追跡することにより触媒活性を評価する方法(特許文献4参照)が開示されている。これらの方法では水素化触媒の触媒活性だけしか評価することができない。   As a method for evaluating the catalytic performance of a hydrogenation catalyst, a solution of 2-alkylanthraquinones and 2-alkyltetrahydroanthraquinones dissolved in a solvent composed of diisobutylcarbinol and mixed alkyl aromatics is contacted with a small amount of catalyst. A method of measuring a hydrogen absorption amount of a solution at the time of heating (see Patent Document 1), a method of reacting an organic solvent mixture containing a mixture of alkylanthraquinone and a working solution containing a hydrogenation catalyst in a stirred reactor (Patent Document 2) And a method in which the reaction is carried out using a working solution containing an organic solvent mixture containing 2-ethylanthraquinone and a hydrogenation catalyst, and the amount of hydrogen peroxide recovered from the working solution is evaluated (see Patent Document 3), in the reactor The working solution and hydrogenation catalyst were added to the catalyst to monitor the reduction level of anthraquinone to hydroanthraquinone. How to evaluate the activity (see Patent Document 4) are disclosed. In these methods, only the catalytic activity of the hydrogenation catalyst can be evaluated.

特許文献5及び6では、工業化されたアントラキノン法と同様の作動溶液を循環する装置を用いた方法が開示されている。これらの方法では、水素分圧より触媒活性が、副生成物の濃度より水素化の選択性が、フィルター差圧より触媒強度がプラントに近い条件で同時に評価することができる。しかし、本装置を用いた評価をするためにはある程度の纏まった量の作動溶液と水素化触媒を準備する必要がある上、評価結果を得るためには数日から数週間を運転する必要がある。また、装置が複雑なため運転管理に多大な労力を必要とする。
特公昭63-29588号公報 特開平5-238703号公報 特開平6-292830号公報 特開平10-510796号公報 特開平9-271671号公報 特開2001-170485号公報
Patent Documents 5 and 6 disclose a method using a device for circulating a working solution similar to the industrialized anthraquinone method. In these methods, the catalytic activity can be evaluated simultaneously with the hydrogen partial pressure, the hydrogenation selectivity based on the by-product concentration, and the catalyst strength closer to the plant than the filter differential pressure. However, in order to evaluate using this apparatus, it is necessary to prepare a certain amount of working solution and hydrogenation catalyst, and in order to obtain the evaluation result, it is necessary to operate for several days to several weeks. is there. Further, since the apparatus is complicated, a great deal of labor is required for operation management.
Japanese Patent Publication No.63-29588 JP-A-5-238703 JP-A-6-292830 Japanese Patent Laid-Open No. 10-510796 JP-A-9-271671 Japanese Patent Laid-Open No. 2001-170485

本発明の目的は、従来技術における上記に記したような課題を解決し、新たなに開発した水素化触媒及びプラントで連続繰り返し使用中又は使用後の水素化触媒の活性と水素化の選択性を同時に簡便かつ迅速に評価する方法を提供することである。   The object of the present invention is to solve the above-mentioned problems in the prior art, and newly developed hydrogenation catalysts and hydrogenation catalyst activity and hydrogenation selectivity during or after continuous use in plants. It is intended to provide a method for simultaneously and simply evaluating the above.

本発明者らは、上記の課題を解決するために鋭意検討した結果、予め溶媒に分散させた水素化触媒に添加するアントラキノン類を含む溶媒の添加速度を単位時間当たりの水素吸収量が一定となるように調整し、添加したアントラキノン類のうち水素化される比率(以下、水添率と称す)を溶媒に分散させる水素化触媒量で調整することを特徴とする水素化触媒の活性と水素化の選択性を同時に簡便かつ迅速に評価する方法を見出し本発明に到達した。 As a result of diligent studies to solve the above problems, the present inventors have determined that the hydrogen absorption amount per unit time is constant for the addition rate of the solvent containing anthraquinones added to the hydrogenation catalyst dispersed in the solvent in advance. The hydrogenation catalyst activity and hydrogen are characterized by adjusting the ratio of hydrogenation among the added anthraquinones (hereinafter referred to as hydrogenation ratio) by the amount of hydrogenation catalyst dispersed in the solvent. The present inventors have found a method for simultaneously and rapidly evaluating the selectivity of crystallization, and have reached the present invention.

すなわち、本発明は、アントラキノン法の過酸化水素製造に使用される水素化触媒と、作動溶液に用いる溶媒との混合溶液に対して、作動溶液を一定流量で添加し、且つ水素を添加しながら、単位時間当たりの水素吸収量が一定となるように水素化反応をさせて、触媒量と水素吸収量より水素化の活性を評価し、反応液組成の変化より選択性を評価することを特徴とする アントラキノン法の過酸化水素製造に用いられる水素化触媒の評価方法に関するものである。   That is, the present invention adds a working solution at a constant flow rate to a mixed solution of a hydrogenation catalyst used for the production of hydrogen peroxide by the anthraquinone method and a solvent used for the working solution, and while adding hydrogen. The hydrogenation reaction is performed so that the hydrogen absorption amount per unit time is constant, the hydrogenation activity is evaluated from the catalyst amount and the hydrogen absorption amount, and the selectivity is evaluated from the change in the reaction solution composition. The present invention relates to a method for evaluating a hydrogenation catalyst used for hydrogen peroxide production by the anthraquinone method.

本発明の評価方法により、工業化された複雑な循環装置を用いて測定を行う前に、水素化触媒の活性と水素化の選択性を同時に簡便かつ迅速に評価でき、触媒開発にかかるコストダウンと開発の迅速化を図ることができる。また、本発明により、循環プロセスで連続繰り返し使用中、又は使用後の水素化触媒の活性と水素化の選択性を評価することにより、プラントの維持管理にも役立てることができる。また、本発明により、作動溶液を構成する有機溶媒の組み合わせを変えて水素化触媒の活性と水素化の選択性を評価することにより、溶媒種の検討にも役立てることができる。 According to the evaluation method of the present invention, the activity of the hydrogenation catalyst and the selectivity of the hydrogenation can be simultaneously and simply evaluated before performing the measurement using an industrially complex circulation device, and the cost for catalyst development can be reduced. Development can be accelerated. In addition, according to the present invention, by evaluating the activity and hydrogenation selectivity of the hydrogenation catalyst during or after continuous use in the circulation process, it can be used for plant maintenance. In addition, according to the present invention, the combination of organic solvents constituting the working solution can be changed to evaluate the activity of the hydrogenation catalyst and the selectivity of hydrogenation, which can also be used for studying solvent types.

本発明において水素化触媒の形態には特に制限はない。均一触媒としてはラネーニッケル 触媒やPd黒など水素化活性を有するものが例示される。金属化合物が担体に担持された不均一触媒において、触媒担体としてシリカ、アルミナ、チタニア、ジルコニア、シリカ・アルミナ複合酸化物、シリカ・チタニア複合酸化物、シリカ・アルミナ・チタニア複合酸化物及びこれらの物理的混合物からなる群より選ばれた少なくとも一つの酸化物などが例示される。また、担持された金属化合物は、通常水素化活性を有するものであればよく特に規定はされないが、パラジウム、ロジウム、ルテニウムあるいは白金を含む1種類以上を含む金属化合物などが例示される。   In the present invention, the form of the hydrogenation catalyst is not particularly limited. Examples of the homogeneous catalyst include those having hydrogenation activity such as Raney nickel catalyst and Pd black. In a heterogeneous catalyst in which a metal compound is supported on a support, silica, alumina, titania, zirconia, silica-alumina composite oxide, silica-titania composite oxide, silica-alumina-titania composite oxide and their physics are used as the catalyst support. And at least one oxide selected from the group consisting of chemical mixtures. Further, the supported metal compound is not particularly limited as long as it usually has hydrogenation activity, but examples thereof include metal compounds including one or more kinds including palladium, rhodium, ruthenium or platinum.

本発明において、水素化触媒は予め測定装置に溶媒中に分散され、これにアントラキノン類を含む溶媒(以下、作動溶液と称す)が添加される。この添加速度は、単位時間当たりの水素吸収量が一定となるように調整される。添加したアントラキノン類のうち水素化される比率(以下水添率と称す)は予め溶媒に分散させる水素化触媒量により調整される。また、溶媒は、好ましい有機溶媒としては、芳香族炭化水素と高級アルコールとの組み合わせ、芳香族炭化水素とシクロヘキサノールもしくはアルキルシクロヘキサノールのカルボン酸エステルとの 組み合わせ、芳香族炭化水素と四置換尿素またはリン酸トリス(2-エチルヘキシル)との組み合わせなどが例示される。   In the present invention, the hydrogenation catalyst is previously dispersed in a solvent in a measuring apparatus, and a solvent containing anthraquinones (hereinafter referred to as a working solution) is added thereto. This addition rate is adjusted so that the amount of hydrogen absorbed per unit time is constant. The ratio of hydrogenation among the added anthraquinones (hereinafter referred to as hydrogenation ratio) is adjusted by the amount of hydrogenation catalyst dispersed in the solvent in advance. The solvent is preferably a combination of an aromatic hydrocarbon and a higher alcohol, a combination of an aromatic hydrocarbon and a cyclohexanol or a carboxylic acid ester of an alkylcyclohexanol, an aromatic hydrocarbon and a tetrasubstituted urea, or a preferable organic solvent. A combination with trisphosphate (2-ethylhexyl) phosphate is exemplified.

本発明において、作動溶液中のアントラキノン類の濃度及び水素化触媒を分散するのに用いられる溶媒と作動溶液の液量比には特に制限はないが、アントラキノン類や反応物の溶媒に対する溶解度を基準に規定することが望ましい。また、水素化触媒を分散するのに用いられる溶媒とアントラキノン類を含む溶媒は同じであっても異なっていても良い。 In the present invention, the concentration of anthraquinones in the working solution and the ratio of the solvent used to disperse the hydrogenation catalyst and the working solution are not particularly limited, but the solubility of the anthraquinones and reactants in the solvent is a standard. It is desirable to specify. The solvent used for dispersing the hydrogenation catalyst and the solvent containing anthraquinones may be the same or different.

本発明において水素化の反応時間には特に規定はないが、好適は0.1〜10時間、より好適は0.3〜3時間である。24時間以上では本評価法の利点はあまり得られない。また、水素化の反応温度及び圧力には特に規定はないが、好適は商業プロセスで用いられている温度及び圧力が好適である。なお、本発明においては水素化の反応圧力は常圧でも十分に評価が可能である。   In the present invention, the reaction time for hydrogenation is not particularly limited, but is preferably 0.1 to 10 hours, more preferably 0.3 to 3 hours. The advantage of this evaluation method is not obtained much over 24 hours. The reaction temperature and pressure for hydrogenation are not particularly specified, but the temperature and pressure used in commercial processes are preferred. In the present invention, the hydrogenation reaction pressure can be sufficiently evaluated even at normal pressure.

本発明において評価装置は、系内をガス置換ができ、水素化反応を迅速に行うため攪拌羽が設置されているバッチ反応形式であることが望ましい。作動溶液の添加速度は、水素化反応量を制御するうえで重要である。従って、作動溶液の添加速度を精密に制御できる高性能精密ポンプやマイクロシリンジポンプなどが望ましい。   In the present invention, the evaluation apparatus is preferably a batch reaction type in which the inside of the system can be replaced with gas and a stirring blade is provided in order to perform the hydrogenation reaction quickly. The rate of addition of the working solution is important in controlling the amount of hydrogenation reaction. Therefore, a high-performance precision pump or a micro syringe pump that can precisely control the addition rate of the working solution is desirable.

水添率は、水素吸収量と反応器に添加した作動溶液量より求められるアントラキノン類の理論添加量より求められる理論水素吸収量との比である。本発明において、1試料について水素化触媒量変えて、即ち水添率を変えて複数点測定を行い、水添率と触媒量当たりの水素 吸収量および水素化の選択性の近似式を作成して水素化の触媒の性能を評価するのが好ましい。そのため1試料につき3点以上測定するのがより好ましい。   The hydrogenation rate is a ratio between the hydrogen absorption amount and the theoretical hydrogen absorption amount obtained from the theoretical addition amount of anthraquinones obtained from the working solution amount added to the reactor. In the present invention, the hydrogenation catalyst amount is changed for one sample, that is, the hydrogenation rate is changed, multiple points are measured, and an approximate expression of the hydrogenation rate, the amount of hydrogen absorbed per catalyst amount, and the selectivity of hydrogenation is prepared. It is preferable to evaluate the performance of the hydrogenation catalyst. Therefore, it is more preferable to measure 3 or more points per sample.

触媒活性は、反応後の水素吸収量と触媒量より得られる単位触媒量当たりの水素吸収量で評価される。触媒間における触媒活性の比較は、反応終了後の水添率と触媒量当たりの水素吸収量との近似式を作成し、同じ水添率でこの近似式より得られた単位触媒量当たりの水素吸収量を比較することにより行われる。   The catalytic activity is evaluated by the hydrogen absorption amount per unit catalyst amount obtained from the hydrogen absorption amount after the reaction and the catalyst amount. To compare the catalyst activity between the catalysts, an approximate expression between the hydrogenation rate after the reaction and the hydrogen absorption amount per catalyst amount was prepared, and the hydrogen per unit catalyst amount obtained from this approximate equation at the same hydrogenation rate was obtained. This is done by comparing the amount of absorption.

水素化の選択性は、反応後の作動溶液中の副生成物濃度を測定し、反応後の副生成物の生成量と水添されたアントラキノン類と比で評価される。これらアントラキノン類は高速液体クロマトグラフィーなどの分析装置で測定される。触媒間における水素化の選択性の比較は、反応終了後の水添率と副生成物の生成量/アントラキノン類の比との近似式を作成し、同じ水添率でこの近似式より得られた副生成物の生成量/アントラキノン類の比を比較することにより行われる。   The selectivity of hydrogenation is evaluated by measuring the concentration of by-products in the working solution after the reaction and comparing the amount of by-products after the reaction with the hydrogenated anthraquinones. These anthraquinones are measured with an analyzer such as high performance liquid chromatography. Comparison of hydrogenation selectivity between catalysts is obtained from this approximate expression by preparing an approximate expression between the hydrogenation rate after the reaction and the ratio of by-products / anthraquinones, and the same hydrogenation rate. This is done by comparing the ratio of the amount of by-products produced / anthraquinones.

本発明は以下の実施例により詳細に説明する。実施例中、「%」は特に指定のない限り「重量%」を意味する。
過酸化水素の製造に使用される水素化触媒を用いて行った。以下にその評価方法を説明する。バッチ式の測定装置(SUS製300cc)に溶媒60重量部と所定の水添率を得るのに必要な量の水素化触媒を投入した。水素化触媒を分散させる溶媒及びアントラキノン類を含む作動溶液(以下作動溶液と称す)を構成する溶媒は1,2,4-トリメチルベンゼン60容量%とジイソブチルカルビノール40容量%からなる混合溶媒とした。反応槽にSUS製の攪拌羽、作動溶液を投入用のテフロン(登録商標)チューブ(φ3mm)、水素導入用のSUS管を取り付け、気密した後、反応系内を水素置換した。水素は1000CCの容積を持つ2cc毎の目盛付きのガラス製容器に予め入れておき水素導入用のSUS管を通して反応槽へ供給した。
The invention is illustrated in detail by the following examples. In the examples, “%” means “% by weight” unless otherwise specified.
The hydrogenation catalyst used for the production of hydrogen peroxide was used. The evaluation method will be described below. A batch type measuring apparatus (SUS 300 cc) was charged with 60 parts by weight of a solvent and an amount of hydrogenation catalyst necessary to obtain a predetermined hydrogenation rate. The solvent for dispersing the hydrogenation catalyst and the working solution containing the anthraquinones (hereinafter referred to as working solution) was a mixed solvent consisting of 60% by volume of 1,2,4-trimethylbenzene and 40% by volume of diisobutylcarbinol. . A SUS stirring blade, a Teflon (registered trademark) tube (φ3 mm) for charging the working solution, and a SUS tube for introducing hydrogen were attached to the reaction vessel, and the reaction system was purged with hydrogen. Hydrogen was previously placed in a glass container with a scale of 2 cc and having a scale of 2 cc, and supplied to the reaction tank through a SUS tube for introducing hydrogen.

次に、1,2,4-トリメチルベンゼン60容量%とジイソブチルカルビノール40容量%からなる混合溶媒にアミルアントラキノンの濃度が1.5mol/Lとなるように溶解した作動溶液を精密定量ポンプ〔日本精密科学(株)ケミカルポンプSP-Y-3201〕を用いて5重量部/分で添加し、1100rpmで攪拌しながら60分間反応した。反応温度は30℃、反応圧力は常圧に制御した。   Next, a precision metering pump [Nippon Seimitsu Co., Ltd.] was prepared by dissolving a working solution dissolved in a mixed solvent of 60% by volume of 1,2,4-trimethylbenzene and 40% by volume of diisobutylcarbinol so that the concentration of amylanthraquinone was 1.5 mol / L. Using a chemical pump SP-Y-3201], it was added at a rate of 5 parts by weight and reacted for 60 minutes while stirring at 1100 rpm. The reaction temperature was controlled at 30 ° C., and the reaction pressure was controlled at normal pressure.

実施例1
上記のバッチ式の測定装置に循環プロセスで連続繰り返し使用されたシリカ担持パラジウム触媒(特許文献1参照)1.0重量部と作動溶液を構成する溶媒60重量部を投入した。反応槽にSUS製の攪拌羽と作動溶液を投入用のテフロン(登録商標)チューブを取り付け、気密した後、反応系内を水素置換した。アミルアントラキノンの濃度が1.5mol/Lである作動溶液を5重量部/分で添加し、1100rpmで攪拌しながら60分間反応した。反応温度は30℃、反応圧力は常圧に制御した。水添率は87.4%、触媒活性は44.0Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/130であった。評価に掛かった全反応時間は3時間であった。
Example 1
1.0 part by weight of a silica-supported palladium catalyst (see Patent Document 1) continuously used in the circulation process and 60 parts by weight of a solvent constituting the working solution were added to the batch type measuring apparatus. A SUS stirrer blade and a Teflon (registered trademark) tube for charging the working solution were attached to the reaction tank, and the reaction system was purged with hydrogen. A working solution having an amylanthraquinone concentration of 1.5 mol / L was added at 5 parts by weight / minute, and the mixture was reacted for 60 minutes while stirring at 1100 rpm. The reaction temperature was controlled at 30 ° C., and the reaction pressure was controlled at normal pressure. The hydrogenation rate was 87.4%, the catalytic activity was 44.0 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/130. The total reaction time for the evaluation was 3 hours.

実施例2
実施例1と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用された同じシリカ担持パラジウム触媒(特許文献1参照)0.35重量部を用いた。水添率は66.3%、触媒活性は110.1Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/530であった。評価に掛かった全反応時間は3時間であった。
Example 2
The hydrogenation catalyst was evaluated in the same manner as in Example 1. However, 0.35 parts by weight of the same silica-supported palladium catalyst (see Patent Document 1) used continuously and repeatedly in the circulation process was used. The hydrogenation rate was 66.3%, the catalytic activity was 110.1 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/530. The total reaction time for the evaluation was 3 hours.

実施例3
実施例1と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用された同じシリカ担持パラジウム触媒(特許文献1参照)0.15重量部を用いた。水添率は44.7%、触媒活性は149.8Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/1340であった。評価に掛かった全反応時間は3時間であった。
Example 3
The hydrogenation catalyst was evaluated in the same manner as in Example 1. However, 0.15 parts by weight of the same silica-supported palladium catalyst (see Patent Document 1) used continuously and repeatedly in the circulation process was used. The hydrogenation rate was 44.7%, the catalytic activity was 149.8 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/1340. The total reaction time for the evaluation was 3 hours.

実施例4
実施例1と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用され、実施例1とは別の時期に採取されたシリカ担持パラジウム触媒(特許文献1参照)1.0重量部を用いた。水添率は81.9%、触媒活性は41.3Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/200であった。評価に掛かった全反応時間は3時間であった。
Example 4
The hydrogenation catalyst was evaluated in the same manner as in Example 1. However, 1.0 part by weight of a silica-supported palladium catalyst (see Patent Document 1) that was continuously used in a circulation process and collected at a different time from Example 1 was used. The hydrogenation rate was 81.9%, the catalytic activity was 41.3 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/200. The total reaction time for the evaluation was 3 hours.

実施例5
実施例4と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用されたシリカ担持パラジウム触媒(特許文献1参照)0.35重量部を用いた。水添率は57.9%、触媒活性は83.3Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/550であった。評価に掛かった全反応時間は3時間であった。
Example 5
The hydrogenation catalyst was evaluated in the same manner as in Example 4. However, 0.35 parts by weight of a silica-supported palladium catalyst (see Patent Document 1) used continuously and repeatedly in the circulation process was used. The hydrogenation rate was 57.9%, the catalytic activity was 83.3 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/550. The total reaction time for the evaluation was 3 hours.

実施例6
実施例4と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用されたシリカ担持パラジウム触媒(特許文献1参照)0.22重量部を用いた。水添率は39.2%、触媒活性は89.6Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/1350であった。評価に掛かった全反応時間は3時間であった。
Example 6
The hydrogenation catalyst was evaluated in the same manner as in Example 4. However, 0.22 parts by weight of a silica-supported palladium catalyst (see Patent Document 1) used continuously and repeatedly in the circulation process was used. The hydrogenation rate was 39.2%, the catalytic activity was 89.6 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/1350. The total reaction time for the evaluation was 3 hours.

実施例7
実施例1と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用され、実施例1および4とは異なる時期に採取されたシリカ担持パラジウム触媒(特許文献1参照)1.2重量部を用いた。水添率は87.5%、触媒活性は36.7Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/130であった。評価に掛かった全反応時間は3時間であった。
Example 7
The hydrogenation catalyst was evaluated in the same manner as in Example 1. However, 1.2 parts by weight of a silica-supported palladium catalyst (see Patent Document 1) that was continuously used in a circulation process and collected at a different time from Examples 1 and 4 was used. The hydrogenation rate was 87.5%, the catalytic activity was 36.7 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/130. The total reaction time for the evaluation was 3 hours.

実施例8
実施例7と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用されたシリカ担持パラジウム触媒(特許文献1参照)0.35重量部を用いた。水添率は62.6%、触媒活性は90.1Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/420であった。評価に掛かった全反応時間は3時間であった。
Example 8
The hydrogenation catalyst was evaluated in the same manner as in Example 7. However, 0.35 parts by weight of a silica-supported palladium catalyst (see Patent Document 1) used continuously and repeatedly in the circulation process was used. The hydrogenation rate was 62.6%, the catalytic activity was 90.1 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/420. The total reaction time for the evaluation was 3 hours.

実施例9
実施例7と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用され、実施例1および4とは異なる時期に採取されたシリカ担持パラジウム触媒(特許文献1参照)0.18重量部を用いた。水添率は41.8%、触媒活性は116.4Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/970であった。評価に掛かった全反応時間は3時間であった。
Example 9
The hydrogenation catalyst was evaluated in the same manner as in Example 7. However, 0.18 parts by weight of a silica-supported palladium catalyst (see Patent Document 1) that was continuously used in a circulation process and collected at a different time from Examples 1 and 4 was used. The hydrogenation rate was 41.8%, the catalytic activity was 116.4 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/970. The total reaction time for the evaluation was 3 hours.

実施例10
実施例1と同じ方法で水素化触媒を評価した。但し、水素化触媒にはシリカ担持パラジウム触媒(特許文献1参照)の新触媒0.80重量部を用いた。水添率は94.8%、触媒活性は59.7Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/260であった。評価に掛かった全反応時間は3時間であった。
Example 10
The hydrogenation catalyst was evaluated in the same manner as in Example 1. However, 0.80 parts by weight of a new catalyst of silica-supported palladium catalyst (see Patent Document 1) was used as the hydrogenation catalyst. The hydrogenation rate was 94.8%, the catalytic activity was 59.7 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/260. The total reaction time for the evaluation was 3 hours.

実施例11
実施例10と同じ方法で水素化触媒を評価した。但し、水素化触媒にはシリカ担持パラジウム触媒(特許文献1参照)の新触媒0.50重量部を用いた。水添率は88.6%、触媒活性は89.2Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/690であった。評価に掛かった全反応時間は3時間であった。
Example 11
The hydrogenation catalyst was evaluated in the same manner as in Example 10. However, 0.50 part by weight of a new catalyst of silica-supported palladium catalyst (see Patent Document 1) was used as the hydrogenation catalyst. The hydrogenation rate was 88.6%, the catalytic activity was 89.2 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/690. The total reaction time for the evaluation was 3 hours.

実施例12
実施例10と同じ方法で水素化触媒を評価した。但し、水素化触媒にはシリカ担持パラジウム触媒(特許文献1参照)の新触媒0.18重量部を用いた。水添率は71.8%、触媒活性は200.6Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/1680であった。評価に掛かった全反応時間は3時間であった。
Example 12
The hydrogenation catalyst was evaluated in the same manner as in Example 10. However, 0.18 parts by weight of a new catalyst of a silica-supported palladium catalyst (see Patent Document 1) was used as the hydrogenation catalyst. The hydrogenation rate was 71.8%, the catalytic activity was 200.6 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/1680. The total reaction time for the evaluation was 3 hours.

実施例13
実施例1と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用されたシリカ担持パラジウム触媒(特許文献1参照)の代わりに同様に循環プロセスで連続繰り返し使用されたシリカ・アルミナ担持パラジウム触媒〔Heraeus(株)製K-0290〕1.0重量部を用いた。水添率は81.5%、触媒活性は82.0Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/470であった。評価に掛かった全反応時間は3時間であった。
Example 13
The hydrogenation catalyst was evaluated in the same manner as in Example 1. However, instead of the silica-supported palladium catalyst continuously used in the circulation process (see Patent Document 1), the silica-alumina-supported palladium catalyst [K-0290 manufactured by Heraeus Co., Ltd.] 1.0 used in the circulation process in the same manner. Part by weight was used. The hydrogenation rate was 81.5%, the catalytic activity was 82.0 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/470. The total reaction time for the evaluation was 3 hours.

実施例14
実施例13と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用されたシリカ担持パラジウム触媒(特許文献1参照)の代わりに同様に循環プロセスで連続繰り返し使用されたシリカ・アルミナ担持パラジウム触媒〔Heraeus(株)製K-0290〕0.50重量部を用いた。水添率は64.0%、触媒活性は128.8Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/1160であった。評価に掛かった全反応時間は3時間であった。
Example 14
The hydrogenation catalyst was evaluated in the same manner as in Example 13. However, instead of the silica-supported palladium catalyst continuously used in the circulation process (see Patent Document 1), the silica-alumina-supported palladium catalyst [K-0290 manufactured by Heraeus Co., Ltd.] 0.50 which was also used repeatedly in the circulation process was similarly used. Part by weight was used. The hydrogenation rate was 64.0%, the catalytic activity was 128.8 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/1160. The total reaction time for the evaluation was 3 hours.

実施例15
実施例13と同じ方法で水素化触媒を評価した。但し、循環プロセスで連続繰り返し使用されたシリカ担持パラジウム触媒(特許文献1参照)の代わりに同様に循環プロセスで連続繰り返し使用されたシリカ・アルミナ担持パラジウム触媒〔Heraeus(株)製K-0290〕0.30重量部を用いた。水添率は42.8%、触媒活性は143.3Nml/mg-Pd*hr、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/3050であった。評価に掛かった全反応時間は3時間であった。
Example 15
The hydrogenation catalyst was evaluated in the same manner as in Example 13. However, instead of the silica-supported palladium catalyst continuously used in the circulation process (see Patent Document 1), the silica-alumina-supported palladium catalyst [K-0290 manufactured by Heraeus Co., Ltd.] 0.30 which was used continuously and repeatedly in the circulation process. Part by weight was used. The hydrogenation rate was 42.8%, the catalytic activity was 143.3 Nml / mg-Pd * hr, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/3050. The total reaction time for the evaluation was 3 hours.

比較例1
バッチ式の反応槽(SUS製100cc)を用いて行った。反応槽に、実施例1で使用した触媒0.1重量部と作動溶液20重量部を投入した。反応槽にSUS製の攪拌羽を取り付け、気密した後、反応系内を水素置換した。1000rpmで攪拌して30分間、単位触媒量当たりの水素吸収量を測定した。反応温度は30℃、反応圧力は常圧に制御した。水素は500CCの容積を持つ2cc毎の目盛付きのガラス製容器に予め入れておき水素導入用のSUS管を通して反応槽へ供給した。
水素化触媒の水素化選択性の評価は、反応溶媒が還元工程、酸化工程及び抽出工程を循環して過酸化水素を生成する循環装置で行った。循環装置の還元工程の水素化反応器に実施例1で 使用した水素化触媒200重量部を投入し、連続的にアントラキノン類の水素化を行い、過酸化水素を製造した。水素化反応器内の作動溶液は約4リットルに保たれ、0.25リットル/分の作動溶液と1.8リットル/分の水素が供給された。アントラキノン類が水素化された作動溶液は、キャンドルフィルターを通して触媒から分離されて水素化反応器から抜き出された。攪拌は、傾斜したタービン翼にて行われ、反応器内壁に取り付けたバッフルによって十分な混合が得られるようにした。水素化反応の反応温度は40℃とした。作動溶液は、1,2,4-トリメチルベンゼン60容量%とジイソブチルカルビノール40容量%からなる混合溶媒に、アミルアントラキノンの濃度が0.6mol/Lとなるように溶解したものを用いた。循環装置内の作動溶液の全量は約40リットルとした。水素化の選択性は循環反応器で200時間過酸化水素の製造を行った後に、液体クロマトグラフィーを用いて作動溶液中のアミルアントラキノン、アミルテトラヒドロアントラキノンの濃度を測定し、得られた濃度から還元工程におけるアミルアントラキノン、アミルテトラヒドロアントラキノン及びその他の副生成物の生成量を算出し、主生成物の生成量に対する比として求めた。
水添率は48%、触媒活性は82.8Nml/mg-Pd*30min、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/1150であった。評価に掛かった全反応時間は200時間であった。
Comparative Example 1
The reaction was performed using a batch-type reaction tank (SUS 100 cc). The reaction vessel was charged with 0.1 parts by weight of the catalyst used in Example 1 and 20 parts by weight of the working solution. A SUS stirring blade was attached to the reaction vessel, and after air-tightness, the reaction system was replaced with hydrogen. The amount of hydrogen absorbed per unit catalyst amount was measured for 30 minutes with stirring at 1000 rpm. The reaction temperature was controlled at 30 ° C., and the reaction pressure was controlled at normal pressure. Hydrogen was put in advance in a glass container with a scale of 2 cc and having a capacity of 500 CC, and supplied to the reaction tank through a SUS tube for introducing hydrogen.
The hydrogenation selectivity of the hydrogenation catalyst was evaluated by a circulation device in which the reaction solvent circulates the reduction process, the oxidation process, and the extraction process to generate hydrogen peroxide. 200 parts by weight of the hydrogenation catalyst used in Example 1 was charged into the hydrogenation reactor in the reduction process of the circulation device, and anthraquinones were continuously hydrogenated to produce hydrogen peroxide. The working solution in the hydrogenation reactor was kept at about 4 liters, and 0.25 liter / min working solution and 1.8 liter / min hydrogen were supplied. The working solution in which anthraquinones were hydrogenated was separated from the catalyst through a candle filter and extracted from the hydrogenation reactor. Stirring was performed with inclined turbine blades so that sufficient mixing was obtained by baffles attached to the inner wall of the reactor. The reaction temperature of the hydrogenation reaction was 40 ° C. The working solution used was a solution prepared by dissolving 60% by volume of 1,2,4-trimethylbenzene and 40% by volume of diisobutylcarbinol so that the concentration of amylanthraquinone was 0.6 mol / L. The total amount of working solution in the circulation device was about 40 liters. The hydrogenation selectivity was determined by measuring the concentration of amylanthraquinone and amyltetrahydroanthraquinone in the working solution using liquid chromatography after producing hydrogen peroxide in a circulating reactor for 200 hours. The production amount of amylanthraquinone, amyltetrahydroanthraquinone and other by-products in the process was calculated and obtained as a ratio to the production amount of the main product.
The hydrogenation rate was 48%, the catalytic activity was 82.8 Nml / mg-Pd * 30 min, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/1150. The total reaction time for the evaluation was 200 hours.

比較例2
比較例1と同じ方法で水素化触媒を評価した。但し、水素化触媒には実施例4で用いたシリカ担持パラジウム触媒(特許文献1参照)200重量部を用いた。水添率は41%、触媒活性は57.4Nml/mg-Pd*30min、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/1420であった。評価に掛かった全反応時間は200時間であった。
Comparative Example 2
The hydrogenation catalyst was evaluated in the same manner as in Comparative Example 1. However, 200 parts by weight of the silica-supported palladium catalyst used in Example 4 (see Patent Document 1) was used as the hydrogenation catalyst. The hydrogenation rate was 41%, the catalytic activity was 57.4 Nml / mg-Pd * 30 min, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/1420. The total reaction time for the evaluation was 200 hours.

比較例3
比較例1と同じ方法で水素化触媒を評価した。但し、水素化触媒には実施例7で使用したシリカ担持パラジウム触媒(特許文献1参照)200重量部を用いた。水添率は46%、触媒活性は69.3Nml/mg-Pd*30min、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/890であった。評価に掛かった全反応時間は200時間であった。
Comparative Example 3
The hydrogenation catalyst was evaluated in the same manner as in Comparative Example 1. However, 200 parts by weight of the silica-supported palladium catalyst used in Example 7 (see Patent Document 1) was used as the hydrogenation catalyst. The hydrogenation rate was 46%, the catalytic activity was 69.3 Nml / mg-Pd * 30 min, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/890. The total reaction time for the evaluation was 200 hours.

比較例4
比較例1と同じ方法で水素化触媒を評価した。但し、水素化触媒は実施例10で使用したシリカ担持パラジウム触媒(特許文献1参照)の新触媒100重量部を用いた。水添率は50%、触媒活性は162.0Nml/mg-Pd*30min、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は<1/5000であった。評価に掛かった全反応時間は200時間であった。
Comparative Example 4
The hydrogenation catalyst was evaluated in the same manner as in Comparative Example 1. However, as a hydrogenation catalyst, 100 parts by weight of a new catalyst of the silica-supported palladium catalyst used in Example 10 (see Patent Document 1) was used. The hydrogenation rate was 50%, the catalytic activity was 162.0 Nml / mg-Pd * 30 min, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was <1/5000. The total reaction time for the evaluation was 200 hours.

比較例5
比較例1と同じ方法で水素化触媒を評価した。但し、水素化触媒は実施例13で使用したシリカ・アルミナ担持パラジウム触媒〔Heraeus(株)製K-0290〕200重量部を用いた。水添率は38%、触媒活性38.2Nml/mg-Pd*30min、アミルテトラヒドロアントラキノン/アミルアントラヒドロキノンの比は1/4100であった。評価に掛かった全反応時間は200時間であった。
本発明の評価方法では、従来の水素化触媒の活性と水素化の選択性の測定方法と比べて短時間でほぼ同じ結果を同時に得ることができた。
Comparative Example 5
The hydrogenation catalyst was evaluated in the same manner as in Comparative Example 1. However, the hydrogenation catalyst used was 200 parts by weight of the silica / alumina supported palladium catalyst used in Example 13 [K-0290 manufactured by Heraeus Co., Ltd.]. The hydrogenation rate was 38%, the catalytic activity was 38.2 Nml / mg-Pd * 30 min, and the ratio of amyltetrahydroanthraquinone / amylanthrahydroquinone was 1/4100. The total reaction time for the evaluation was 200 hours.
In the evaluation method of the present invention, almost the same result could be obtained simultaneously in a short time compared with the conventional method for measuring the activity of hydrogenation catalyst and hydrogenation selectivity.

Claims (3)

アントラキノン法の過酸化水素製造に使用される水素化触媒と、作動溶液に用いる溶媒との混合溶液に対して、作動溶液を一定流量で添加し、且つ水素を添加しながら、単位時間当たりの水素吸収量が一定となるように水素化反応をさせて分析を行うことを特徴とするアントラキノン法の過酸化水素製造に用いられる水素化触媒の評価方法。   While adding the working solution at a constant flow rate to the mixed solution of the hydrogenation catalyst used for the production of hydrogen peroxide by the anthraquinone method and the solvent used for the working solution, hydrogen per unit time is added while adding hydrogen. A method for evaluating a hydrogenation catalyst used in hydrogen peroxide production by an anthraquinone method, wherein the analysis is carried out by performing a hydrogenation reaction so that the amount of absorption is constant. 触媒量と水素吸収量より水素化の活性を評価する請求項1記載のアントラキノン法の過酸化水素製造に用いられる水素化触媒の評価方法。   2. The method for evaluating a hydrogenation catalyst used in the production of hydrogen peroxide by the anthraquinone method according to claim 1, wherein the hydrogenation activity is evaluated from the catalyst amount and the hydrogen absorption amount. 反応液組成の変化より選択性を評価する請求項1記載のアントラキノン法の過酸化水素製造に用いられる水素化触媒の評価方法。
The method for evaluating a hydrogenation catalyst for use in the production of hydrogen peroxide by the anthraquinone method according to claim 1, wherein the selectivity is evaluated from a change in the composition of the reaction solution.
JP2006198525A 2006-07-20 2006-07-20 Method for evaluating hydrogenation catalyst Pending JP2008023452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198525A JP2008023452A (en) 2006-07-20 2006-07-20 Method for evaluating hydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198525A JP2008023452A (en) 2006-07-20 2006-07-20 Method for evaluating hydrogenation catalyst

Publications (1)

Publication Number Publication Date
JP2008023452A true JP2008023452A (en) 2008-02-07

Family

ID=39114643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198525A Pending JP2008023452A (en) 2006-07-20 2006-07-20 Method for evaluating hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP2008023452A (en)

Similar Documents

Publication Publication Date Title
Devetta et al. Kinetic experiments and modeling of a three-phase catalytic hydrogenation reaction in supercritical CO2
CN108586203A (en) Hydrogenation method for preparing hydrogenated type propylene diphenol with high trans/trans isomer ratio
JPWO2005073151A1 (en) Catalytic reaction method using microreactor
SG185374A1 (en) Process for preparing tolylenediamine by hydrogenation of dinitrotoluene
EP1878699A2 (en) Method for producing hydrogen peroxide
KR101770439B1 (en) Method for producing aromatic amines in the liquid phase
RU2245320C2 (en) Method for hydrogenation of acetone to isopropanol
CN103449381A (en) Process for suspended hydrogenating of anthraquinone compound
US10793433B2 (en) Process for producing hydrogen peroxide
JP2008023452A (en) Method for evaluating hydrogenation catalyst
JP4980753B2 (en) Method for stopping liquid phase reaction
CN106146276B (en) A kind of method of phenol compound catalysis oxidation synthesis benzoquinone compound
JP2018154540A (en) Manufacturing method of hydrogen peroxide
JP3035641B2 (en) Method for producing acetic acid by carbonylation of methanol
CN114032565B (en) Preparation method and application of anhydrous peroxycarboxylic acid
RU2692764C1 (en) Method of producing tadalafil
CN101980997A (en) Process for production of high-purity trimellitic acid
CN111825526B (en) Process for the preparation of 1, 4-cyclohexanedimethanol
CN104039143A (en) Process For Preparing Choline Hydroxide From Trimethylamine And Ethylene Oxide
CN107176943A (en) Formates is method and the application of Material synthesis glycolaldehyde dimer and its derivative
JP2015117199A (en) Production method of diisobutyl carbinol by hydrogenation of diisobutyl ketone
EP0502070B1 (en) Process for oxidising 2-hydroxy ethyl phosphonic acid diesters
JP5010312B2 (en) Reaction initiation method for liquid phase reaction
CN114105846B (en) Hydrofining method and device for caprolactam
CN214051620U (en) Simple device for raising reaction temperature of mixed system under normal pressure