JP2008021494A - Microwave utilization device - Google Patents
Microwave utilization device Download PDFInfo
- Publication number
- JP2008021494A JP2008021494A JP2006191402A JP2006191402A JP2008021494A JP 2008021494 A JP2008021494 A JP 2008021494A JP 2006191402 A JP2006191402 A JP 2006191402A JP 2006191402 A JP2006191402 A JP 2006191402A JP 2008021494 A JP2008021494 A JP 2008021494A
- Authority
- JP
- Japan
- Prior art keywords
- microwave
- output
- generation means
- generating means
- heating chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/66—Circuits
- H05B6/68—Circuits for monitoring or control
- H05B6/686—Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/705—Feed lines using microwave tuning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
- Constitution Of High-Frequency Heating (AREA)
Abstract
Description
本発明はマイクロ波を用いて被加熱物を誘電加熱するマイクロ波利用装置に関するものである。 The present invention relates to a microwave utilization apparatus that dielectrically heats an object to be heated using microwaves.
この種の代表的なマイクロ波利用装置は、家庭用の調理器として広く普及している電子レンジである。この電子レンジに搭載されているマイクロ波発生手段はマグネトロンであり、このマグネトロンはいわゆる真空管でありマイクロ波の出力を大きく取れ、さらにその動作効率が70%強と高い特徴がある。一方、マグネトロンは、発振周波数を自在に制御することができず、マグネトロン自身の発振周波数は被加熱物を含む負荷のインピーダンスによって変動する。このため、不適切な発振周波数での動作によって加熱室内に生じる定在波により被加熱物には不均一な加熱を生じる場合がある。 A typical microwave utilization apparatus of this type is a microwave oven that is widely used as a household cooking device. The microwave generating means mounted in the microwave oven is a magnetron, and this magnetron is a so-called vacuum tube, and can take a large microwave output, and has a high operating efficiency of over 70%. On the other hand, the magnetron cannot freely control the oscillation frequency, and the oscillation frequency of the magnetron itself varies depending on the impedance of the load including the object to be heated. For this reason, non-uniform heating may occur in the object to be heated due to standing waves generated in the heating chamber due to operation at an inappropriate oscillation frequency.
マグネトロンの発振周波数を可変制御する構成として、同軸型のマグネトロンなどがあるが周波数を可変制御する部品形状が大きいためマグネトロン自身が大型化することや非常に高価であることから、電子レンジの用途には適していない。 There is a coaxial type magnetron configuration that variably controls the oscillation frequency of the magnetron, but the size of the component that variably controls the frequency is large, so the magnetron itself is upsized and very expensive, so it can be used for microwave ovens. Is not suitable.
一方、近年の移動体通信の発展に伴うマイクロ波回路技術の進化により半導体素子の技術革新も進み、高周波動作可能な素子の実用化がなされ始めている。 On the other hand, with the advancement of microwave circuit technology accompanying the development of mobile communication in recent years, technological innovation of semiconductor devices has advanced, and devices capable of operating at high frequencies have begun to be put into practical use.
この半導体素子により構成されるマイクロ波発生手段は電圧制御型発振器や容量制御型発振器を発振源に用いることで、発振周波数を可変制御することができる。周波数自励式の固体化発振部を用い、加熱室への給電インピーダンスに応じて発振周波数を制御して最適な整合状態を形成し効率的に加熱を行うというものがある(例えば特許文献1参照)。
しかしながら、マグネトロンと同等以上のマイクロ波出力を半導体素子を発振源とするマイクロ波発生手段で得ようとした場合、単一のマイクロ波発生手段で構成すると、高周波動作に対応した半導体素子は素子の耐電圧が低いため電力を稼ぐためには通過する電流が自ずと大きくならざるを得ない。一方、通過電流によって生じる損失Pは抵抗成分Rと通過電流Iの2乗の積で表されるので電流の増加に対して損失Pの増加は大きなものとならざるを得ない。このため半導体素子での損失が非常に大きくなりマグネトロンと同等以上の出力を得ようとすると装置全体の効率が非常に悪化してしまうという課題がある。 However, when trying to obtain a microwave output equivalent to or higher than that of a magnetron by a microwave generation means using a semiconductor element as an oscillation source, if constituted by a single microwave generation means, a semiconductor element corresponding to high-frequency operation is Since the withstand voltage is low, in order to earn electric power, the passing current must be increased naturally. On the other hand, the loss P caused by the passing current is expressed by the product of the resistance component R and the square of the passing current I. Therefore, the increase in the loss P must be large with respect to the increase in current. For this reason, there is a problem that the loss in the semiconductor element becomes very large and the efficiency of the entire apparatus is extremely deteriorated when an output equal to or higher than that of the magnetron is obtained.
この課題を解決するためにマイクロ波発生手段を複数個に分割する方法が考えられるが、現存している半導体素子を用いてマイクロ波発生手段を構成すると各マイクロ波発生手段での発生損失をある程度冷却可能なまでに低減するにはマイクロ波発生手段の分割数が非常に多くなり、マグネトロンに対してマイクロ波発生手段の占有する体積が大きくなるため、電子レンジのように実装空間が限られた用途では実用に供さないという課題が生じる。 In order to solve this problem, a method of dividing the microwave generating means into a plurality of parts is conceivable. However, if the microwave generating means is configured using existing semiconductor elements, the generated loss in each microwave generating means is reduced to some extent. The number of divisions of the microwave generation means is extremely large to reduce it to the extent that it can be cooled, and the volume occupied by the microwave generation means increases with respect to the magnetron, so the mounting space is limited like a microwave oven. There is a problem that it is not practically used in applications.
本発明はかかる事情に鑑みてなされたものであり、バンドギャップの大きい半導体を使用する半導体素子を有するマイクロ波発生手段を用い、高い加熱効率を実現するマイクロ波利用装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a microwave utilization device that realizes high heating efficiency using a microwave generation means having a semiconductor element using a semiconductor having a large band gap. To do.
前記従来の課題を解決するために、本発明のマイクロ波利用装置はシリコンよりもバンドギャップの大きい半導体を使用する半導体素子を有する複数のマイクロ波発生手段と、マイクロ波を放射する放射手段と、加熱室と、制御部からなり、前記放射手段は前記マイクロ波発生手段から出力されるマイクロ波を加熱室内に放射し、前記制御部は前記マイクロ波発生手段の出力を制御するとともに、前記マイクロ波発生手段の各々の駆動電力は装置全体の最大供給電力の1/2以下としたものである。 In order to solve the above-described conventional problems, the microwave utilization apparatus of the present invention includes a plurality of microwave generation means having a semiconductor element using a semiconductor having a larger band gap than silicon, and a radiation means for radiating microwaves, The heating unit includes a control unit, the radiating unit radiates the microwave output from the microwave generating unit into the heating chamber, the control unit controls the output of the microwave generating unit, and the microwave The driving power of each of the generating means is set to 1/2 or less of the maximum supply power of the entire apparatus.
これにより、装置全体で所定の電力を得ようとした場合、シリコンよりもバンドギャップの広い半導体素子によってマイクロ波発生手段の駆動電圧を高くできるので同じ電力を得る場合の駆動電流を軽減できる。このため通過電流による損失を軽減できるため複数のマイクロ波発生手段の出力を合成する場合に各々のマイクロ波発生手段の出力を高く設定できるのでその分割数を軽減できる。また、マイクロ波発生手段を複数個配置することによって各々のマイクロ波発生手段での消費電流を軽減することができるので各々のマイクロ波発生手段での通過電流に起因する損失を軽減できるため、装置全体の総損失を軽減でき電力変換効率を改善することができる。 Thereby, when a predetermined power is to be obtained in the entire apparatus, the driving voltage of the microwave generating means can be increased by a semiconductor element having a wider band gap than that of silicon, so that the driving current for obtaining the same power can be reduced. For this reason, since the loss due to the passing current can be reduced, when the outputs of the plurality of microwave generating means are combined, the outputs of the respective microwave generating means can be set high, so that the number of divisions can be reduced. Moreover, since the consumption current in each microwave generation means can be reduced by arranging a plurality of microwave generation means, the loss due to the passing current in each microwave generation means can be reduced, so that the apparatus The total loss can be reduced and the power conversion efficiency can be improved.
本発明のマイクロ波利用装置によれば各々のマイクロ波発生手段の駆動電力は装置の総電力の1/2以下とすることで、各々のマイクロ波発生手段の通過電流を軽減しているため、装置全体の総損失を軽減でき電力変換効率を改善することができる。また、電力変換効率の改善による省エネ効果も期待できる。 According to the microwave utilization apparatus of the present invention, the driving power of each microwave generation means is reduced to 1/2 or less of the total power of the apparatus, thereby reducing the passing current of each microwave generation means. The total loss of the entire apparatus can be reduced and the power conversion efficiency can be improved. In addition, an energy saving effect can be expected by improving the power conversion efficiency.
第1の発明は、シリコンよりもバンドギャップの大きい半導体を使用する半導体素子を有する複数のマイクロ波発生手段と、マイクロ波を放射する放射手段と、加熱室と、制御部からなり、前記放射手段は前記マイクロ波発生手段から出力されるマイクロ波を加熱室内に放射し、前記制御部は前記マイクロ波発生手段の出力を制御するとともに、前記マイクロ波発生手段の各々の駆動電力は装置全体の最大供給電力の1/2以下とすることにより、各々のマイクロ波発生手段の通過電流を軽減できるため、マイクロ波発生手段での発生損失を軽減することができ装置全体の電力変換の効率を向上することができる。 The first invention comprises a plurality of microwave generating means having a semiconductor element using a semiconductor having a larger band gap than silicon, radiating means for radiating microwaves, a heating chamber, and a control unit, and the radiating means Radiates the microwave output from the microwave generating means into the heating chamber, the control unit controls the output of the microwave generating means, and the driving power of each of the microwave generating means is the maximum of the entire apparatus. Since the current passing through each microwave generator can be reduced by setting the power supply to ½ or less of the supplied power, the generation loss in the microwave generator can be reduced, and the power conversion efficiency of the entire apparatus can be improved. be able to.
第2の発明は、特に第1の発明の放射手段は複数配置し、各々のマイクロ波発生手段に1:1で接続する構成とすることにより、各々のマイクロ波発生手段の通過電流を軽減できるため、マイクロ波発生手段での発生損失を軽減することができ装置全体の電力変換の効率を向上することができる。また、各々のマクロは発生手段の出力はそれぞれに接続された放射手段から加熱室内に放射するので各々の出力を合成する際に生じる損失もなくなるのでより加熱効率を向上することが可能となる。 In the second invention, in particular, a plurality of radiation means according to the first invention are arranged and connected to each microwave generating means in a ratio of 1: 1, whereby the passing current of each microwave generating means can be reduced. Therefore, the loss generated in the microwave generation means can be reduced, and the power conversion efficiency of the entire apparatus can be improved. Further, since each macro radiates the output of the generating means into the heating chamber from the radiation means connected to each macro, it is possible to improve the heating efficiency because there is no loss caused when the respective outputs are combined.
第3の発明は、特に第2の発明の各々のマイクロ波発生手段の出力を時間的にランダムに変化させる構成とすることにより、各々のマイクロ波発生手段の通過電流を軽減できるため、マイクロ波発生手段での発生損失を軽減することができ装置全体の電力変換の効率を向上することが可能になると同時に、各々のマイクロ波発生手段の出力を時間的にランダムに変化させることによって被加熱物の昇温部位をランダムに変化させ加熱状態の均一化を促進させることが可能となる。 According to the third aspect of the invention, in particular, since the output of each microwave generation means of the second invention is changed randomly in time, the passing current of each microwave generation means can be reduced. The generated loss in the generating means can be reduced and the power conversion efficiency of the entire apparatus can be improved. At the same time, the output of each microwave generating means is changed randomly in time to be heated. It is possible to change the temperature rising portion of the material at random to promote uniform heating.
第4の発明は、特に第2の発明の各々のマイクロ波発生手段の出力は時間的に周期的に変化させる構成とすることにより、各々のマイクロ波発生手段の通過電流を軽減できるため、マイクロ波発生手段での発生損失を軽減することができ装置全体の電力変換の効率を向上することが可能になると同時に、各々のマイクロ波発生手段の出力を時間的にある周
期を持って変化させることによって被加熱物の昇温部位を変化させ加熱状態の均一化を促進させることが可能となる。
According to the fourth aspect of the invention, in particular, the output of each microwave generation means of the second invention can be periodically changed in time, so that the passing current of each microwave generation means can be reduced. The generation loss in the wave generating means can be reduced and the power conversion efficiency of the entire apparatus can be improved, and at the same time, the output of each microwave generating means can be changed with a certain period in time. Thus, it is possible to change the temperature rising portion of the object to be heated and promote uniformization of the heating state.
第5の発明は、特に第4の発明の各々のマイクロ波発生手段の出力が変化する周期はそれぞれ異なる構成とすることにより、各々のマイクロ波発生手段の通過電流を軽減できるため、マイクロ波発生手段での発生損失を軽減することができ装置全体の電力変換の効率を向上することが可能になると同時に、各々のマイクロ波発生手段の出力を時間的に異なった周期を持って変化させることによって被加熱物の昇温部位を変化させ加熱状態の均一化を促進させることが可能となる。 According to the fifth aspect of the invention, in particular, the period of change of the output of each microwave generation means of the fourth invention is different, so that the passing current of each microwave generation means can be reduced. It is possible to reduce the generation loss in the means and improve the power conversion efficiency of the entire apparatus, and at the same time, by changing the output of each microwave generation means with a different period in time. It becomes possible to change the temperature rising portion of the article to be heated and to promote uniformization of the heating state.
第6の発明は、特に第2から第5のいずれか1つの発明の加熱室内に載置された被加熱物の温度を検出する温度検出手段を備え、前記温度検出手段の情報を元に各々のマイクロ波発生手段の出力を制御する構成とすることにより、、各々のマイクロ波発生手段の通過電流を軽減できるため、マイクロ波発生手段での発生損失を軽減することができ装置全体の電力変換の効率を向上することが可能になると同時に、被加熱物の昇温状態を観測し、その情報に基づいて各々のマイクロ波発生手段の出力を制御し、昇温状態の不足している部位により強く電波が照射されるように各々のマイクロ波発生手段の出力を調整することによって被加熱物の加熱状態の均一化を促進させることができる。 The sixth aspect of the invention includes, in particular, temperature detection means for detecting the temperature of the object to be heated placed in the heating chamber of any one of the second to fifth aspects of the invention, each based on information of the temperature detection means. By controlling the output of the microwave generating means, the passing current of each microwave generating means can be reduced, so that the generation loss in the microwave generating means can be reduced and the power conversion of the entire apparatus The temperature of the object to be heated is observed and the output of each microwave generating means is controlled on the basis of the information. By adjusting the output of each microwave generating means so that the radio wave is strongly radiated, the heating state of the object to be heated can be made uniform.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.
(実施の形態1)
図1は本発明の第1の実施の形態におけるマイクロ波利用装置の構成図、図2は図1のマイクロ波発生手段の構成図である。
(Embodiment 1)
FIG. 1 is a block diagram of the microwave utilization apparatus according to the first embodiment of the present invention, and FIG. 2 is a block diagram of the microwave generation means of FIG.
図1〜図2において、被加熱物を収納する加熱室1は、被加熱物2を出し入れする扉(図示していない)を一面に配し、それ以外の壁面は金属材料で構成し、供給されるマイクロ波を内部に閉じ込めるように構成している。加熱室1内の下方には、加熱室1底壁面と所定の間隔をもって被加熱物2を載置する低誘電損失材料からなる載置板3を配する。また加熱室1の左右の壁面には、放射手段4、5を設けている。 1 to 2, a heating chamber 1 for storing an object to be heated is provided with a door (not shown) for taking in and out the object to be heated 2 on one side, and other wall surfaces are made of a metal material and supplied. It is configured to confine the microwave to be confined inside. A mounting plate 3 made of a low dielectric loss material on which the object to be heated 2 is mounted with a predetermined distance from the bottom wall surface of the heating chamber 1 is disposed below the heating chamber 1. Further, radiation means 4 and 5 are provided on the left and right wall surfaces of the heating chamber 1.
加熱室1の下側には、半導体素子を用いて構成したマイクロ波発生手段6、7を配する。このマイクロ波発生手段6、7は、2400MHzから2500MHzの周波数を発生する電圧可変型の周波数可変機能を備えた発振部9と、発振部9の出力を所定の電力に増幅する初段増幅部10と、初段増幅部10の出力を増幅する主増幅部11とから構成している。
Below the heating chamber 1, microwave generating means 6 and 7 configured using semiconductor elements are arranged. The microwave generating means 6 and 7 include an oscillating unit 9 having a voltage variable type frequency variable function for generating a frequency from 2400 MHz to 2500 MHz, an initial
また、主増幅部11のそれぞれの出力は、同軸線路を伝送させて対向配置の放射手段4、5に導いている。また、この初段増幅部10及び主増幅部11を構成する半導体素子は窒化ガリウム(以下GaNと称する)を半導体材料として用いてトランジスタを構成している。
Further, each output of the main amplifying
このGaN材料は一般に広く知られている半導体材料のシリコン(Si)と比べるとエネルギバンドギャップが広く、Si半導体素子に比べると高耐圧、高速動作、低損失に素子を構成することが可能となる。このためGaN半導体素子を初段増幅部10及び主増幅部11に用いることによってその駆動電圧を高めることができ、駆動電流の軽減を図ることができるようになる。
This GaN material has a wide energy band gap as compared with silicon (Si), which is a widely known semiconductor material, and it is possible to construct an element with higher breakdown voltage, higher speed operation, and lower loss than Si semiconductor elements. . Therefore, the driving voltage can be increased by using the GaN semiconductor element for the first
また、制御手段8はマイクロ波発生手段6、7の出力電力を所定の制御値になるように
駆動電源あるいは初段増幅器10、主増幅器11の増幅率を制御する。
Further, the control means 8 controls the amplification factor of the drive power source or the
以上のように構成されたマイクロ波利用装置について、以下その動作と作用を説明する。 About the microwave utilization apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
まず被加熱物2を加熱室1に収納し、その加熱条件を操作部(図示していない)から入力し、加熱開始キーを押す。加熱開始信号を受けた制御手段8の制御出力信号によりマイクロ波発生手段6、7が動作を開始する。制御手段8は、駆動電源を動作させて発振部9に電力を供給する。この時、発振部9の初期の発振周波数は、たとえば2450MHzに設定する電圧信号を供給し、発振が開始する。以降、駆動電源を制御して初段増幅部10を動作させ、次に主増幅部11を動作させる。
First, the object to be heated 2 is stored in the heating chamber 1, the heating condition is input from an operation unit (not shown), and the heating start key is pressed. In response to the control output signal of the control means 8 that has received the heating start signal, the microwave generating means 6 and 7 start operating. The control unit 8 operates the drive power supply to supply power to the oscillation unit 9. At this time, the initial oscillation frequency of the oscillation unit 9 is supplied with a voltage signal set to 2450 MHz, for example, and oscillation starts. Thereafter, the drive power supply is controlled to operate the first
加熱室1内に供給されるマイクロ波エネルギが被加熱物2に100%吸収されると加熱室1からの反射電力は無しになるが、被加熱物2の種類・形状・量が被加熱物2を含む加熱室1の電気的特性を決定し、マイクロ波発生手段6、7の出力インピーダンスと加熱室1のインピーダンスとに基づいて、加熱室1側から同軸線路を逆方向に伝送する反射電力が生じる。 When 100% of the microwave energy supplied into the heating chamber 1 is absorbed by the object to be heated 2, the reflected power from the heating chamber 1 is eliminated, but the type, shape, and amount of the object to be heated 2 are different. 2, and the reflected power that transmits the coaxial line in the reverse direction from the heating chamber 1 side based on the output impedance of the microwave generating means 6 and 7 and the impedance of the heating chamber 1. Occurs.
このマイクロ波は、同軸線路を伝送して一対の対向配置の放射手段4、5から被加熱物2が収納された加熱室1内に放射される。この放射されたマイクロ波によって加熱室1の所定の部位に電界集中領域が形成される。加熱室1に形成された電界集中領域により、被加熱物2が加熱室1内の電界集中領域に収納された場合に被加熱物2が強く加熱される。 This microwave is radiated into the heating chamber 1 in which the object to be heated 2 is accommodated from a pair of opposingly arranged radiation means 4 and 5 through a coaxial line. An electric field concentration region is formed in a predetermined portion of the heating chamber 1 by the emitted microwave. Due to the electric field concentration region formed in the heating chamber 1, the object to be heated 2 is strongly heated when the object to be heated 2 is stored in the electric field concentration region in the heating chamber 1.
このようにマイクロ波の供給を図1のように2箇所から分けてそれぞれのマイクロ波発生手段6、7の発生するマイクロ波の電力をおのおの総電力の1/2となるように給電した場合、それぞれのマイクロ波発生手段6、7の通過電流は総電力を単一のマイクロ波発生手段から給電した場合と比較すると略1/2に減ずることができる。 In this way, when the microwave supply is divided from two places as shown in FIG. 1 and the microwave power generated by the respective microwave generation means 6 and 7 is fed so as to be ½ of the total power, The passing current of each of the microwave generating means 6 and 7 can be reduced to about ½ as compared with the case where the total power is supplied from a single microwave generating means.
マイクロ波発生手段6、7で発生する損失Pは通過電流によって生じるオーミックな損失Paと周波数に起因する損失Pfに分類することができる。オーミックな損失Paは通過電流Iと内部抵抗Rを用いると次式、Pa=I2Rのように表現することができる。 The loss P generated by the microwave generation means 6 and 7 can be classified into an ohmic loss Pa caused by the passing current and a loss Pf caused by the frequency. The ohmic loss Pa can be expressed by the following equation, Pa = I 2 R, when the passing current I and the internal resistance R are used.
したがって通過電流を1/2に減ずることによってPaは1/4に低減することができる。このためマイクロ波発生手段6、7で発生する損失Pはトータルとして略1/2に軽減することができ装置としての効率を向上することが可能となる。 Therefore, Pa can be reduced to ¼ by reducing the passing current to ½. For this reason, the loss P generated in the microwave generating means 6 and 7 can be reduced to about ½ as a total, and the efficiency of the apparatus can be improved.
また、図3はそれぞれのマイクロ波発生手段6、7から放射されるマイクロ波電力P1、P2の時間的な変化を示した図である。制御手段8は、マイクロ波発生手段6、7の放射するマイクロ波電力を時間的にランダムに制御し、被加熱物2の加熱の均一化を図っている。このマイクロ波電力可変制御により、一対の対向配置した放射手段によって形成される電界集中領域は加熱室1内をランダムに移動し、被加熱物2の加熱部位を移動させて均一加熱を促進する。 FIG. 3 is a diagram showing temporal changes in the microwave powers P1 and P2 radiated from the microwave generation means 6 and 7, respectively. The control means 8 controls the microwave power radiated by the microwave generation means 6 and 7 randomly in terms of time to make the heating of the article to be heated 2 uniform. By this microwave power variable control, the electric field concentration region formed by a pair of opposedly arranged radiating means moves randomly in the heating chamber 1 and moves the heating part of the object to be heated 2 to promote uniform heating.
図3ではマイクロ波発生手段6、7の放射するマイクロ波電力P1、P2を時間的にランダムに制御する構成で示しているが、制御手段8によってある一定のパターンを持ち時間的にある周期を持たせて放射するマイクロ波電力を制御しても加熱室1内の電界集中領域は周期的な変化をするため被加熱物2の加熱部位を移動することができ均一加熱を促進することが可能である。また、上述の周期をそれぞれのマイクロ波発生手段で異なった周期で変動させるようにしてもなんら本発明の効果を損じるものではない。 FIG. 3 shows a configuration in which the microwave powers P1 and P2 radiated by the microwave generation means 6 and 7 are randomly controlled in time, but the control means 8 has a certain pattern and a certain period in time. Even if the microwave power to be radiated is controlled, the electric field concentration region in the heating chamber 1 changes periodically, so that the heating part of the object to be heated 2 can be moved and uniform heating can be promoted. It is. Further, the effect of the present invention is not impaired at all even if the above-described period is changed at different periods by the respective microwave generation means.
(実施の形態2)
図4は、本発明の第2の実施の形態のマイクロ波利用装置の構成図である。
(Embodiment 2)
FIG. 4 is a configuration diagram of the microwave utilization apparatus according to the second embodiment of the present invention.
本実施の形態が第1の実施の形態と相違する点は、温度検出手段12を設け被加熱物2の加熱状態を計測し、その情報に基づいてマイクロ波発生手段6、7の供給するマイクロ波電力を制御する構成とした点である。図4において、第1の実施の形態と同一構成あるいは略同一機能のものは同一番号で示す。 The difference between the present embodiment and the first embodiment is that the temperature detection means 12 is provided to measure the heating state of the article 2 to be heated, and the microwaves supplied by the microwave generation means 6 and 7 based on the information. This is a configuration that controls wave power. In FIG. 4, components having the same configuration or substantially the same function as those in the first embodiment are denoted by the same reference numerals.
図4において、被加熱物2を収納する加熱室1は、被加熱物2を出し入れする扉(図示していない)を一面に配し、それ以外の壁面は金属材料で構成し、供給されるマイクロ波を内部に閉じ込めるように構成している。加熱室1内の下方には、加熱室1底壁面と所定の間隔をもって被加熱物2を載置する低誘電損失材料からなる載置板3を配する。また加熱室1の左右の壁面には、放射手段4、5を設けている。 In FIG. 4, the heating chamber 1 for storing the object to be heated 2 is provided with a door (not shown) through which the object to be heated 2 is put in and out, and the other wall surfaces are made of a metal material and supplied. The microwave is confined inside. A mounting plate 3 made of a low dielectric loss material on which the object to be heated 2 is mounted with a predetermined distance from the bottom wall surface of the heating chamber 1 is disposed below the heating chamber 1. Further, radiation means 4 and 5 are provided on the left and right wall surfaces of the heating chamber 1.
加熱室1の下側には、半導体素子を用いて構成したマイクロ波発生手段6、7を配する。このマイクロ波発生手段6、7は、2400MHzから2500MHzの周波数を発生する電圧可変型の周波数可変機能を備えた発振部9と、発振部9の出力を所定の電力に増幅する初段増幅部10と、初段増幅部10の出力を増幅する主増幅部11とから構成している。また、主増幅部11のそれぞれの出力は、同軸線路を伝送させて対向配置の放射手段4、5に導いている。
Below the heating chamber 1, microwave generating means 6 and 7 configured using semiconductor elements are arranged. The microwave generating means 6 and 7 include an oscillating unit 9 having a voltage variable type frequency variable function for generating a frequency from 2400 MHz to 2500 MHz, an initial
また、制御手段8はマイクロ波発生手段6、7の出力電力を所定の制御値になるように駆動電源あるいは初段増幅器10、主増幅器11の増幅率を制御する。
Further, the control means 8 controls the amplification factor of the drive power source or the
また、温度検出手段12はマイクロ波発生手段6、7から照射されるマイクロ波電力によって加熱される被加熱物2の温度を逐次計測する。具体的な構成としては加熱室1外部から被加熱物2から放射される赤外線によって温度を検出する赤外線センサであってもよいし、直接被加熱物2と接触させることによって温度を計測する熱電対のような計測手段であっても良い。 Further, the temperature detection means 12 sequentially measures the temperature of the object to be heated 2 heated by the microwave power irradiated from the microwave generation means 6 and 7. As a specific configuration, an infrared sensor that detects the temperature by infrared rays emitted from the heated object 2 from the outside of the heating chamber 1 may be used, or a thermocouple that measures the temperature by directly contacting the heated object 2. Such a measuring means may be used.
以上のように構成されたマイクロ波利用装置において、以下その動作と作用を特に第1の実施形態と異なる点について説明する。 In the microwave utilization apparatus configured as described above, the operation and action thereof will be described below in particular on differences from the first embodiment.
温度計測手段12は被加熱物2の加熱状態を計測している。ここで、例えば被加熱物2の左右いずれか一方に温度上昇の不足している部分が計測されると、温度上昇の不足している部分に近い方のマイクロ波発生手段6または7のマイクロ波出力を高くし、反対に他方のマイクロ波出力を低くなるように制御する。このように制御することでマイクロ波出力が大きい方に加熱室1内での電界集中領域を移動させる。この結果、ある計測タイミングで被加熱物2の温度上昇が不足している部分に電界集中領域を移動させることによって被加熱物2全体の温度上昇の均一化を促進することができる。温度計測手段12は逐次被加熱物2の温度を計測し、その検出信号に基づき制御手段8によってマイクロ波発生手段6、7の供給するマイクロ波電力が決定されるので、被加熱物2の加熱は常に均一な温度上昇を保つことができ、均一な加熱を実現することが可能となる。 The temperature measuring means 12 measures the heating state of the article 2 to be heated. Here, for example, when a portion where the temperature rise is insufficient is measured on either the left or right side of the object to be heated 2, the microwave of the microwave generating means 6 or 7 closer to the portion where the temperature rise is insufficient The output is increased, and the other microwave output is controlled to be lower. By controlling in this way, the electric field concentration region in the heating chamber 1 is moved to the side where the microwave output is larger. As a result, it is possible to promote uniform temperature rise of the entire object to be heated 2 by moving the electric field concentration region to a portion where the temperature increase of the object to be heated 2 is insufficient at a certain measurement timing. The temperature measuring means 12 sequentially measures the temperature of the article 2 to be heated, and the microwave power supplied from the microwave generating means 6 and 7 is determined by the control means 8 based on the detection signal. Can always maintain a uniform temperature rise, and uniform heating can be realized.
以上のように本発明によれば、マイクロ波発生手段の駆動電力は装置の総電力の1/2以下とすることで、各々のマイクロ波発生手段の通過電流を軽減しているため、装置全体の総損失を軽減でき電力変換効率を改善することができ、省エネ機器として有用である。 As described above, according to the present invention, since the driving power of the microwave generating means is ½ or less of the total power of the apparatus, the passing current of each microwave generating means is reduced. It is possible to reduce the total loss and improve the power conversion efficiency, which is useful as an energy-saving device.
1 加熱室
2 被加熱物
4、5 放射手段
6、7 マイクロ波発生手段
8 制御手段
DESCRIPTION OF SYMBOLS 1 Heating chamber 2 Object to be heated 4, 5 Radiation means 6, 7 Microwave generation means 8 Control means
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006191402A JP2008021494A (en) | 2006-07-12 | 2006-07-12 | Microwave utilization device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006191402A JP2008021494A (en) | 2006-07-12 | 2006-07-12 | Microwave utilization device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008021494A true JP2008021494A (en) | 2008-01-31 |
Family
ID=39077304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006191402A Pending JP2008021494A (en) | 2006-07-12 | 2006-07-12 | Microwave utilization device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008021494A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009252346A (en) * | 2008-04-01 | 2009-10-29 | Panasonic Corp | Microwave treatment device |
JP2017162668A (en) * | 2016-03-09 | 2017-09-14 | 富士通株式会社 | Microwave heater |
-
2006
- 2006-07-12 JP JP2006191402A patent/JP2008021494A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009252346A (en) * | 2008-04-01 | 2009-10-29 | Panasonic Corp | Microwave treatment device |
JP2017162668A (en) * | 2016-03-09 | 2017-09-14 | 富士通株式会社 | Microwave heater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Atuonwu et al. | Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: A review | |
JP5167678B2 (en) | Microwave processing equipment | |
JP4995351B2 (en) | High frequency heating device | |
JP4935188B2 (en) | Microwave equipment | |
JP5286905B2 (en) | Microwave processing equipment | |
US20080266012A1 (en) | Method for controlling high-frequency radiator | |
JP2013201096A (en) | Microwave heating device | |
JP2009032638A (en) | Microwave processing device | |
JP5262250B2 (en) | Microwave processing equipment | |
JPWO2013038715A1 (en) | Microwave processing equipment | |
CN109587861A (en) | A kind of multifrequency solid state microwave furnace and the heating means using multifrequency solid state microwave furnace | |
JP5169371B2 (en) | Microwave processing equipment | |
JP2009252346A5 (en) | ||
JP4839994B2 (en) | Microwave equipment | |
Werner | RF Energy Systems: Realizing New Applications. | |
CN106255246B (en) | The electrical control method of electric power heating equipment | |
JP2014049276A (en) | Microwave processing device | |
JP2008021494A (en) | Microwave utilization device | |
JP2006156100A (en) | Large area plasma generator at atmospheric pressure | |
JP2007228219A (en) | Microwave device | |
JP2009181728A (en) | Microwave processing device | |
WO2018003546A1 (en) | High-frequency heating device | |
JP6807522B2 (en) | High frequency heating device | |
JP2008060016A (en) | Microwave utilization device | |
KR101748608B1 (en) | A cooking apparatus using microwave |