JP2008019862A - Low pressure turbine driving method and low pressure turbine driving apparatus therefor - Google Patents

Low pressure turbine driving method and low pressure turbine driving apparatus therefor Download PDF

Info

Publication number
JP2008019862A
JP2008019862A JP2007168410A JP2007168410A JP2008019862A JP 2008019862 A JP2008019862 A JP 2008019862A JP 2007168410 A JP2007168410 A JP 2007168410A JP 2007168410 A JP2007168410 A JP 2007168410A JP 2008019862 A JP2008019862 A JP 2008019862A
Authority
JP
Japan
Prior art keywords
propeller
blade
fluid
pressure turbine
moving blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007168410A
Other languages
Japanese (ja)
Inventor
Yasuo Matsuura
康夫 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSURA MATSUE
MATSUURA MATSUE
Original Assignee
MATSURA MATSUE
MATSUURA MATSUE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSURA MATSUE, MATSUURA MATSUE filed Critical MATSURA MATSUE
Priority to JP2007168410A priority Critical patent/JP2008019862A/en
Publication of JP2008019862A publication Critical patent/JP2008019862A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for driving a mechanism provided with a plurality of propellers being adjusted in diameter, the number of revolution, and the number of blades, which provides greater thrust with less propeller driving power corresponding to torque varying according to thrust. <P>SOLUTION: Air or water is blown to the vicinity of leading ends of propellers of a first moving vane at an angle of the fluid entering with respect to the blade section through fluid blowing nozzles to the propellers of the first moving vane from an air blowing blower or a water blowing pump, to thereby rotate the propellers of the first moving vane. The accelerated fluid is blown to propellers of a second moving vane which are greater in diameter than the propellers 3 of the first moving vane, to thereby rotate the propellers of the second moving vane. Air or water is blown to the vicinity of leading ends of the propellers of the second moving vane at an angle of the fluid entering with respect to the blade section through fluid blowing nozzles to the propellers of the second moving vane from an air blowing blower for the second moving vane, or from a water blowing pump for the second moving vane, to thereby rotate the propellers of the second moving vane. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高温高圧の燃焼ガスもしくは蒸気を駆動流体とする高圧タービンに代え、常温常圧の空気もしくは常温の水を駆動流体に複数プロペラの組合せでタービンを構成し、個々プロペラの口径、回転数、ブレード枚数と回転方法により発生推力およびトルクを調整し、少ない動力で大きな推力をつくり、航空機もしくは船舶の推進用動力、ないし推力をプロペラ風車もしくは水車に受け、トルクに転換し発電をおこなう発電用動力として使用する低圧タービン駆動方法とその低圧タービン駆動装置に関するものである。   In the present invention, instead of a high-pressure turbine using high-temperature and high-pressure combustion gas or steam as a driving fluid, a turbine is configured by combining a plurality of propellers with normal-temperature normal-pressure air or normal-temperature water as a driving fluid, and the diameter and rotation of each propeller The generated thrust and torque are adjusted according to the number, number of blades and rotation method, and a large thrust is generated with a small amount of power. The propulsion power or thrust of the aircraft or ship is received by the propeller wind turbine or turbine, and converted into torque to generate power TECHNICAL FIELD The present invention relates to a low-pressure turbine driving method used as motive power and a low-pressure turbine driving apparatus.

一般に用いられるタービンは低圧タービンである風車、およびスチームタービンならびにガスタービンなどの高圧タービンである。このうち風車は自然の風を駆動流体とするため熱効率は良いが稼動率は低く、また、プロペラの回転で発生する反転後流のため複数の風車を回転軸で連結できず、風のエネルギーを大きなトルクに転換するためには低速回転且つ大口径とならざるを得ず、規模は大きくなる。一方、高圧タービンは回転翼である動翼の回転で発生した反転後流の回転方向を固定翼である静翼で補正することにより複数動翼を連結し回転数を速め、風車に比べ小さな規模で大きなトルクを発生するが、機構的に複雑であり、また、蒸気もしくは燃焼ガスなどの駆動流体を高温高圧にせざるを得ず、稼動率は高いものの駆動流体を高温高圧にするために使用した熱量の殆どをタービン外に排出するため熱効率は低い。   Commonly used turbines are wind turbines that are low pressure turbines, and high pressure turbines such as steam turbines and gas turbines. Of these, wind turbines use natural wind as the driving fluid, so heat efficiency is good, but the operation rate is low, and because of the reverse wake generated by the rotation of the propeller, multiple wind turbines cannot be connected by the rotating shaft, and wind energy is saved. In order to convert to a large torque, the rotation speed must be low and the diameter must be large, and the scale becomes large. On the other hand, a high-pressure turbine has a smaller scale than a wind turbine by connecting multiple rotor blades and speeding up rotation by correcting the rotating direction of the reverse wake generated by the rotation of rotor blades, which are rotor blades. It generates a large torque, but it is mechanically complex, and the driving fluid such as steam or combustion gas has to be at high temperature and high pressure. The heat efficiency is low because most of the heat is discharged outside the turbine.

したがって、タービンには高圧タービンの稼動率と装置規模、風車の熱効率を持つものが望まれ、また、地球温暖化防止のため二酸化炭素の発生抑制が要請されており、二酸化炭素の発生しない駆動流体を使用するタービンが望まれている。このような状況のなかで、これまで大きな推力を得るための技術は公開されている。   Therefore, it is desirable for the turbine to have a high-pressure turbine operating rate, equipment scale, and wind turbine thermal efficiency, and to suppress the generation of carbon dioxide in order to prevent global warming. Turbines that use are desired. Under such circumstances, techniques for obtaining a large thrust have been disclosed so far.

例えば、特許文献1には「二重プロペラ装置」として、船体から突出するプロペラ軸に二枚のプロペラを取付け、前プロペラと後プロペラの間のプロペラボスの支持材にフィンを装着することにより、前プロペラの回転による発生する反転後流の回転方向をフィンで補正し、後プロペラの回転方向に合わせ、推力を大きくしようとするものである。   For example, in Patent Document 1, as a “double propeller device”, two propellers are attached to a propeller shaft protruding from a hull, and a fin is attached to a propeller boss support material between a front propeller and a rear propeller, The rotation direction of the reverse wake generated by the rotation of the front propeller is corrected by the fin, and the thrust is increased in accordance with the rotation direction of the rear propeller.

また、特許文献2には「二重プロペラ推進装置」として、動力装置から動力を伝達する回転軸を前方プロペラの回転軸を外軸に、後方プロペラの回転軸を内軸とする二重軸とし、前方プロペラの回転で発生する反転後流に後方プロペラの回転方向を合わせ回転させることにより、推力を大きくしようとするものである。   In Patent Document 2, as a “double propeller propulsion device”, a rotary shaft that transmits power from a power unit is a double shaft having a front propeller rotary shaft as an outer shaft and a rear propeller rotary shaft as an inner shaft. The thrust is increased by rotating the rear propeller in accordance with the direction of the reverse propeller generated by the rotation of the front propeller.

特許公開平11―034981号公報Japanese Patent Publication No. 11-034981 特許公開平7―33084号公報Japanese Patent Publication No. 7-33084

しかしながら、上述の特許文献1に開示された発明においては、前部プロペラと後部プロペラが同じ回転軸で連結されており、プロペラの直径および回転数の調整が難しく、また、密度・粘度が高く非圧縮性の流体である水の流れをフィンで補正する方法では高い効率は得られず、大きな推力を得ることは難しい。   However, in the invention disclosed in the above-mentioned Patent Document 1, the front propeller and the rear propeller are connected by the same rotating shaft, and it is difficult to adjust the diameter and rotational speed of the propeller, and the density and viscosity are high. High efficiency cannot be obtained by the method of correcting the flow of water, which is a compressible fluid, with fins, and it is difficult to obtain a large thrust.

また、上述の特許文献2に開示された発明においては、回転軸を二重軸とし前方プロペラの回転による反転後流に後方プロペラの回転に合わせる方法では、反転歯車や軸継手などの動力伝達機構、もしくは駆動装置を2個設けるなどの複雑な装置になる。   In the invention disclosed in Patent Document 2 described above, in the method in which the rotation shaft is a double shaft and the rotation of the rear propeller is adjusted to the reverse flow by the rotation of the front propeller, the power transmission mechanism such as a reverse gear or a shaft coupling is used. Or, it becomes a complicated device such as providing two driving devices.

本発明においては、駆動流体を空気もしくは水とし、複数プロペラの回転で大きな推力を得るために、予定推力に見合う複数プロペラの配置と個々プロペラの口径、回転数、ブレード枚数の調整と推力に併行して変化するトルクに対応するプロペラ駆動用動力が少なく、大きな推力が得られる簡素な機構の駆動装置の選定を課題とする。   In the present invention, the driving fluid is air or water, and in order to obtain a large thrust by the rotation of the plurality of propellers, the arrangement of the plurality of propellers suitable for the planned thrust and the adjustment and thrust of the propeller aperture, the number of rotations, the number of blades are performed in parallel. Therefore, it is an object of the present invention to select a driving device having a simple mechanism that has a small propeller driving power corresponding to the changing torque and can obtain a large thrust.

本発明の請求項1に記載の低圧タービンの駆動方法は、第1の動翼のプロペラを駆動し回転させることにより流体である空気もしくは水を吸引し加速する工程と、プロペラはブレード断面が回転軸を中心に非対称ラセン状となる複数のブレードで構成され、ブレード断面に対する流体の流入角度が回転による位相で変移し、前方からの加速された流体で回転すること、および流体が常温常圧の空気もしくは常温の水であれば、プロペラが発生する推力はそのプロペラの直径、回転数、ブレード枚数により設定され、大きな推力をつくるにはプロペラの直径を大きくし、回転数、ブレード枚数を増やせばよいことが知られていることから、第1の動翼のプロペラで加速された流体の流れ方向に、間隔を置いて直列に配置した第1の動翼のプロペラより直径の大きな第2の動翼のプロペラに、第1の動翼のプロペラで加速した流体を吹込みプロペラを回転させる工程と、この回転方向に合わせ第2の動翼のプロペラを駆動し回転させることにより、流体をさらに吸引し加速する工程からなり、大きな推力を得る作用を有している。   The method for driving a low-pressure turbine according to claim 1 of the present invention includes a step of sucking and accelerating air or water as a fluid by driving and rotating a propeller of a first moving blade, and a blade section of the propeller is rotated. It consists of a plurality of blades that are asymmetrical spirals around the axis, and the fluid inflow angle with respect to the blade cross section changes with the phase due to rotation, and it rotates with the accelerated fluid from the front, and the fluid is at normal temperature and normal pressure For air or water at normal temperature, the thrust generated by the propeller is set by the propeller diameter, number of revolutions, and number of blades. To create a large thrust, the propeller diameter must be increased and the number of revolutions and number of blades increased. It is known that the first blade propellers arranged in series at intervals in the direction of fluid flow accelerated by the first blade propeller are known. The step of rotating the propeller by injecting the fluid accelerated by the propeller of the first rotor blade into the propeller of the second rotor blade having a larger diameter, and driving and rotating the propeller of the second rotor blade in accordance with this rotation direction Thus, the process further includes a step of sucking and accelerating the fluid, and has a function of obtaining a large thrust.

請求項2に記載の低圧タービン駆動方法は、プロペラに回転軸から動力を与え回転させる場合、プロペラを構成するブレード断面に流体が流入する角度に対し直角に発生する揚力が、ブレード断面が流体の流入する角度の延長上に発生する抗力より大きくなるように動力を与えプロペラを回転させる。このことはプロペラを構成するブレード断面に流体が流入する角度に流体を吹込むに等しく、この角度による流体の吹込みによりプロペラが回転すること、およびプロペラのブレード上での推力およびトルクの発生分布は先端付近で高く、局所的に推力およびトルクの発生分布の高いブレード先端付近に吹込むことにより、プロペラに回転軸から動力を与え流体を捲込み回転させる場合に比べ抗力は減少し、より少ない動力でプロペラを回転させることは実験的に確認される。したがって、第1の動翼のプロペラおよび第2の動翼のプロペラは、プロペラの回転により流体である空気もしくは水がプロペラを構成するブレード断面へ流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ先端付近に流体を吹込みプロペラを回転させる工程を有するものであり、プロペラに回転軸から動力を与え回転させる場合に比べ少ない動力と複数のプロペラを個々独立させ、回転軸で連結せず、もしくは二重の回転軸としない簡素な機構で回転させる作用を有している。   In the low-pressure turbine driving method according to claim 2, when the propeller is rotated by applying power from the rotating shaft, the lift generated at right angles to the angle at which the fluid flows into the blade cross section constituting the propeller is Power is applied to rotate the propeller so that it is greater than the drag generated on the extension of the incoming angle. This is equivalent to blowing the fluid at an angle at which the fluid flows into the blade cross section constituting the propeller, and the propeller is rotated by the fluid blowing at this angle, and the thrust and torque generation distribution on the blade of the propeller Is high near the tip, and by blowing near the tip of the blade where the thrust and torque generation distribution is locally high, the drag is reduced and less than when the propeller is powered from the rotating shaft and the fluid is swallowed and rotated. It is experimentally confirmed that the propeller is rotated by power. Accordingly, the propeller of the first blade and the propeller of the second blade generate thrust and torque locally at an angle at which air or water as a fluid flows into the blade cross section constituting the propeller by rotation of the propeller. It has a step of rotating the propeller by blowing a fluid near the tip of the propeller with high distribution, and compared with the case where the propeller is rotated by applying power from the rotating shaft, the power and multiple propellers are made independent and connected by the rotating shaft. It has the effect | action made to rotate by the simple mechanism which does not make it into a double rotating shaft.

請求項3に記載の低圧タービンの駆動装置は請求項1に記載の低圧タービンの駆動方法を駆動装置として捉えたものであり、第1の動翼のプロペラと第1の動翼のプロペラで加速された流体の流れ方向に直列に間隔おいて配置した第1の動翼のプロペラより直径の大きな第2の動翼のプロペラよりなり、第1の動翼装置のプロペラの回転により発生する推力で第2動翼のプロペラを回転させるとともに、この回転に方向を合わせ第2の動翼のプロペラをさらに駆動し回転させ、流体を吸引し加速することによって大きな推力を得るものであり、本請求項記載の発明の作用は請求項1の発明と同様である。   A driving apparatus for a low-pressure turbine according to a third aspect captures the driving method for the low-pressure turbine according to the first aspect as a driving apparatus, and is accelerated by the propeller of the first moving blade and the propeller of the first moving blade. A propeller of a second blade having a larger diameter than the propeller of the first blade disposed in series in the flow direction of the generated fluid, and a thrust generated by the rotation of the propeller of the first blade device The propeller of the second moving blade is rotated, and the direction of this rotation is adjusted to further drive and rotate the propeller of the second moving blade to suck and accelerate the fluid, thereby obtaining a large thrust. The operation of the described invention is the same as that of the first invention.

請求項4に記載の低圧タービンの駆動装置は請求項2に記載の低圧タービンの駆動方法を駆動装置として捉えたものであり、第1の動翼のプロペラおよび第2の動翼のプロペラは、プロペラの回転により流体である空気もしくは水がプロペラを構成するブレード断面へ流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ先端付近に流体を吹込みプロペラを回転させる手段により、少ない動力と簡素な機構でプロペラを回転させるものであり、本請求項記載の発明の作用は請求項2の発明と同様である。   The drive device for the low pressure turbine according to claim 4 is obtained by capturing the drive method for the low pressure turbine according to claim 2 as a drive device, and the propeller of the first moving blade and the propeller of the second moving blade are: By means of rotating the propeller by blowing fluid into the vicinity of the propeller tip where the distribution of thrust and torque is locally high at an angle at which air or water as fluid flows into the blade cross section constituting the propeller by rotation of the propeller The propeller is rotated by power and a simple mechanism, and the operation of the present invention is the same as that of the second invention.

請求項5に記載の低圧タービンの駆動装置は、第1の動翼と第2の動翼の間を第2の動翼の口径と同じ口径の円筒形外殻を設けることにより、第1の動翼を等間隔に設けた支持材で固定し第2の動翼の吸引する流体を偏流させず、また低圧タービン駆動装置の外囲流体の流向および流速の変化により、第1の動翼のプロペラで加速した流体および第2の動翼のプロペラで吸引する流体を偏流させない作用を有している。   According to a fifth aspect of the present invention, there is provided the driving apparatus for the low-pressure turbine by providing a cylindrical outer shell having the same diameter as the second moving blade between the first moving blade and the second moving blade. The moving blade is fixed by a support member provided at equal intervals so that the fluid sucked by the second moving blade does not drift, and the flow direction and flow velocity of the surrounding fluid of the low-pressure turbine drive device change, so that the first moving blade The fluid accelerated by the propeller and the fluid sucked by the propeller of the second blade are prevented from drifting.

本発明は第1の動翼のプロペラを、局所的に推力およびトルク発生分布の高いプロペラ先端付近に、駆動流体である空気もしくは水をプロペラを構成するブレード断面へ流入する角度に吹込み回転させ、周辺の流体を吸引し加速する。加速した流体をその流れ方向に直列に間隔を置き配置した第1の動翼のプロペラより直径の大きな第2の動翼のプロペラに吹付け回転させる。この回転方向に合わせ第2の動翼のプロペラを第1の動翼のプロペラと同じ方法で回転させ、さらに流体を吸引し加速することにより大きな推力を得る低圧タービンの駆動方法とその低圧タービン駆動装置である。   In the present invention, the propeller of the first rotor blade is blown and rotated near the tip of the propeller where the thrust and torque generation distribution is locally high at an angle at which air or water as a driving fluid flows into the blade cross section constituting the propeller. , Suck up and accelerate the surrounding fluid. The accelerated fluid is sprayed and rotated on a propeller of a second blade having a larger diameter than the propeller of the first blade that is spaced in series in the flow direction. A method for driving a low-pressure turbine that obtains a large thrust by rotating the propeller of the second blade in accordance with this rotational direction in the same manner as the propeller of the first blade and further sucking and accelerating the fluid, and the low-pressure turbine drive Device.

この方法による場合、圧縮性流体である空気ではプロペラの回転により発生する推力およびトルクは風速に制約され、プロペラの直径と風量による風速はラバールノズルなどの特殊な装置によらない限り音速を限界とし、また、非圧縮性流体である水ではプロペラの直径と流量による静圧に制約される。この制約のもとで駆動流体を空気とする場合、プロペラの回転により発生する推力およびトルクとプロペラの直径、回転数、ブレード枚数との関係は、回転数およびブレード枚数を一定としプロペラ直径をn倍にすれば推力およびトルクはn4倍、また、プロペラ直径およびブレード枚数を一定とし回転数をn倍にすれば推力はn2倍、トルクはn3倍、プロペラ直径および回転数を一定としブレード枚数をn倍にすれば発生する推力およびトルクはn倍前後となり、駆動流体を水とする場合もプロペラの回転により発生する推力およびトルクとプロペラ直径、回転数、ブレード枚数との関係は同じように変化する。 When using this method, the thrust and torque generated by the rotation of the propeller is restricted by the wind speed in the air that is a compressible fluid, and the wind speed due to the propeller diameter and air volume is limited to the sound speed unless a special device such as a Laval nozzle is used. In addition, water, which is an incompressible fluid, is restricted by static pressure due to the propeller diameter and flow rate. When the driving fluid is air under this restriction, the relationship between the thrust and torque generated by the rotation of the propeller and the diameter of the propeller, the number of rotations, and the number of blades is constant and the propeller diameter is n. if double thrust and torque n 4 times, also, the thrust is n 2 times, torque n 3 times, the propeller diameter and the rotational speed is constant if n times the rotational speed and the propeller diameter and number of blades is constant If the number of blades is increased by n times, the thrust and torque generated will be around n times, and even when the driving fluid is water, the relationship between the thrust and torque generated by the rotation of the propeller, the propeller diameter, the number of rotations, and the number of blades is the same. To change.

この推力と併行し変化するトルクとプロペラ回転用動力との関係において、プロペラ先端付近で流体である空気もしくは水がブレード断面へ流入する角度に流体を吹込みプロペラを回転、さらに第1の動翼のプロペラで吸引し加速した流体を、第1の動翼より直径の大きな第2の動翼のプロペラに吹付け回転させ、この回転方向に合わせ第2の動翼のプロペラを第1の動翼のプロペラと同じ方法で回転させることによりプロペラの回転に要する動力を低減する。   In the relationship between the torque that changes in parallel with the thrust and the power for propeller rotation, fluid is blown at an angle at which air or water, which is a fluid, flows into the blade cross section near the tip of the propeller, and the propeller is rotated. The fluid sucked and accelerated by the propeller of the second blade is sprayed and rotated on the propeller of the second moving blade having a diameter larger than that of the first moving blade, and the propeller of the second moving blade is rotated in accordance with this rotation direction. The power required for the rotation of the propeller is reduced by rotating it in the same manner as the propeller.

プロペラ先端付近で流体がブレード断面へ流入する角度に流体を吹込みプロペラを回転させる動力は空気ではブロアー、水ではポンプの稼動に要する電力である。流体の吹込み手段であるブロアーもしくはポンプの稼動電力は、吹込量と吹込圧によるがブレード断面へ流体が流入する角度はプロペラが流体を捲込んでゆく角度でもあり、プロペラの回転により吹込圧は低く、電力はプロペラ直径に対応した吹込量により、吹込圧は吹込量と吹込口径により設定される。第2の動翼のプロペラの直径は第1の動翼のプロペラの直径より大きく、より大きなトルクを発生する。プロペラで加速された流体は収束し拡散する。したがって、第1の動翼のプロペラで加速した流体の拡散域を第2の動翼のプロペラの直径に準じた範囲に合わせるようにプロペラ間隔を調整し、第1の動翼のプロペラで加速した流体により第2の動翼のプロペラを回転させれば、第2の動翼のプロペラ回転用のブロアーもしくはポンプの所要電力はさらに低減する。   The power that blows the fluid at an angle at which the fluid flows into the blade cross section near the tip of the propeller and rotates the propeller is the power required to operate the blower for air and the pump for water. The operating power of the blower or pump, which is the fluid blowing means, depends on the blowing amount and blowing pressure, but the angle at which the fluid flows into the blade cross section is also the angle at which the propeller pours the fluid. The electric power is set by the blowing amount corresponding to the propeller diameter, and the blowing pressure is set by the blowing amount and the blowing port diameter. The diameter of the propeller of the second blade is larger than the diameter of the propeller of the first blade and generates a larger torque. The fluid accelerated by the propeller converges and diffuses. Therefore, the propeller interval was adjusted so that the diffusion region of the fluid accelerated by the propeller of the first moving blade matched the range according to the diameter of the propeller of the second moving blade, and accelerated by the propeller of the first moving blade. When the propeller of the second blade is rotated by the fluid, the power required for the blower or pump for rotating the propeller of the second blade is further reduced.

第1の動翼のプロペラの先端付近で流体がブレード断面へ流入する角度に流体を吹込みプロペラを回転、さらに第1の動翼のプロペラで加速した流体を第1の動翼のプロペラより直径の大きな第2の動翼のプロペラに吹付け回転させ、この回転方向に合わせ第2の動翼のプロペラを第1の動翼装置のプロペラと同じ方法で回転させることにより、第1の動翼と第2の動翼の個々のプロペラは回転軸で連結しない独立したプロペラとなり、機構の複雑な高圧タービン、もしくは航空機や船舶などの推進機関に使用される二重反転プロペラの複雑な動力伝達装置、駆動装置に比べ簡素な機構となる。   The fluid is blown at an angle at which the fluid flows into the blade cross section near the tip of the first blade propeller, the propeller is rotated, and the fluid accelerated by the first blade propeller has a diameter larger than that of the first blade propeller. The second rotor blade propeller is blown and rotated in the same direction as the propeller of the first rotor blade device in accordance with the direction of rotation. The individual propellers of the rotor blade and the second rotor blade are independent propellers that are not connected by a rotating shaft, and the complex power transmission device of a complex high-pressure turbine or a counter-rotating propeller used for propulsion engines such as aircraft and ships The mechanism is simpler than that of the driving device.

本発明の実施例を図により説明する   Embodiments of the present invention will be described with reference to the drawings.

以下に本発明の実施の形態にかかる低圧タービン駆動方法について図1を参照しながら説明する。図1は本発明の実施形態にかかる低圧タービン駆動方法の構成図である。図1において低圧タービン駆動方法は第1の動翼1、第1の動翼の支持材2、第1の動翼のプロペラ3、第1の動翼のプロペラへの流体吹込ノズル4、円筒形外殻5、第2の動翼6、第2の動翼外殻7、第2の動翼のプロペラ8、第2の動翼の支持材9、第2の動翼のプロペラへの流体吹込ノズル10、第1の動翼の空気吹込用ブロアー11、第1の動翼の水吹込用ポンプ12、第2の動翼の空気吹込用ブロアー13、第2の動翼の水吹込用ポンプ14で構成する。第1の動翼1は円筒形外殻5と等間隔に設けた第1の動翼の支持材2で固定され、円筒形外殻5の外側に設けた第1の動翼への空気吹込用ブロアー11、もしくは水吹込用ポンプ12から、第1の動翼の支持材2を通して、流体である空気もしくは水を第1の動翼のプロペラ3の先端付近でブレード断面へ流体が流入する角度に第1の動翼のプロペラへの流体吹込ノズル4で吹込み、プロペラを回転させる。   Hereinafter, a low-pressure turbine driving method according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram of a low-pressure turbine driving method according to an embodiment of the present invention. In FIG. 1, a low-pressure turbine driving method includes a first moving blade 1, a first moving blade support 2, a first moving blade propeller 3, a fluid blowing nozzle 4 to the first moving blade propeller, and a cylindrical shape. Fluid injection into the outer shell 5, the second moving blade 6, the second moving blade outer shell 7, the second moving blade propeller 8, the second moving blade support 9, and the second moving blade propeller Nozzle 10, first moving blade air blowing blower 11, first moving blade water blowing pump 12, second moving blade air blowing blower 13, second moving blade water blowing pump 14 Consists of. The first moving blade 1 is fixed by a support member 2 of the first moving blade provided at equal intervals with the cylindrical outer shell 5, and air is blown into the first moving blade provided outside the cylindrical outer shell 5. The angle at which the fluid flows from the blower 11 for water or the pump 12 for water blowing into the blade cross section near the tip of the propeller 3 of the first blade through the air or water as the fluid through the support member 2 of the first blade The fluid is blown into the propeller of the first blade by the fluid blowing nozzle 4 to rotate the propeller.

第1の動翼のプロペラ3の回転により流体は吸引され加速し、回転しながら収束後、拡散する。この流体の拡散域を第2の動翼の支持材9で第2の動翼外殻7に固定された第2の動翼のプロペラ8の直径に準じた範囲にするように第1の動翼のプロペラ4との間隔を調整し、第2の動翼のプロペラ8を回転させる。この回転の方向に合わせ、第2の動翼外殻7の外側に設けた第2の動翼の空気吹込用ブロアー13、もしくは第2の動翼の水吹込用ポンプ14から第2の動翼のプロペラ8へ第2の動翼のプロペラへの流体吹込ノズル10で、第2の動翼のプロペラ8の先端付近でブレード断面へ流体が流入する角度に空気もしくは水を吹込みプロペラを回転させる。第2の動翼のプロペラ8の回転により流体は吸引し加速され、加速にともない吸引される流体を第1の動翼1と第2の動翼6との間に設けた円筒形外殻5の第1の動翼1と第2の動翼6の口径差による空間から吸引し大きな推力とする。   The fluid is sucked and accelerated by the rotation of the propeller 3 of the first rotor blade, and after converging while rotating, it diffuses. The diffusion region of the fluid is in a range corresponding to the diameter of the propeller 8 of the second blade fixed to the second blade outer shell 7 by the second blade support material 9. The distance between the blade propeller 4 is adjusted, and the second blade propeller 8 is rotated. In accordance with the direction of this rotation, the second moving blade is supplied from the air blowing blower 13 of the second moving blade provided on the outside of the second moving blade outer shell 7 or the water blowing pump 14 of the second moving blade. The propeller 8 of the second rotor blade is blown into the propeller 8 of the second rotor blade by blowing air or water at an angle at which the fluid flows into the blade cross section near the tip of the propeller 8 of the second rotor blade, and the propeller is rotated. . The fluid is sucked and accelerated by the rotation of the propeller 8 of the second moving blade, and the cylindrical outer shell 5 provided with the fluid sucked along with the acceleration between the first moving blade 1 and the second moving blade 6. The first moving blade 1 and the second moving blade 6 are sucked from the space due to the difference in the diameter of the second moving blade 6 to obtain a large thrust.

以下に本発明の実施の形態にかかる低圧タービン駆動方法のうちプロペラへの流体吹込方法について図2を参照しながら説明する。図2は本発明の実施形態にかかる低圧タービン駆動方法のうちプロペラへの流体吹込方法の構成図であり(a)は空気吹込用ブロアー(b)は水吹込用ポンプの例である。   Hereinafter, a method for injecting fluid into a propeller in a low-pressure turbine driving method according to an embodiment of the present invention will be described with reference to FIG. FIG. 2 is a configuration diagram of a fluid blowing method to a propeller in a low-pressure turbine driving method according to an embodiment of the present invention. (A) is an air blowing blower (b) is an example of a water blowing pump.

図2においてプロペラへの流体吹込方法はプロペラを構成するブレード15、ブレ−ド断面16、流体吹込ノズル17、空気吹込用ブロアー18、水吹込用ポンプ19、回転軸20で構成する。プロペラは同じ形状をもつ複数のブレード15により構成され、各々のブレード断面16は回転軸20を中心に非対称ラセン状に配置される。流体吹込ノズル17はこの配置に対応し、各々のブレード断面へ流体が流入する角度に応じて複数の流体吹込ノズル17を向い合せに配置する。流体がブレード断面へ流入する角度に流体を吹込みプロペラを回転させる場合、各々のブレード15に流体が流入する角度は、ブレードの翼形において設定された角度となる。したがって、流体吹込ノズル17は各翼形に応じて設定された角度に固定し、流量により回転数を調整する。空気吹込用ブロアー18もしくは水吹込用ポンプ19の配置は流体吹込ノズル17の配置にしたがい、流体が空気であれば空気吹込用ブロアー18、水であれば水吹込用ポンプ19で、空気もしくは水を流体吹込ノズル3に送り込む。   In FIG. 2, the method of injecting fluid into the propeller includes a blade 15, a blade cross section 16, a fluid injecting nozzle 17, an air injecting blower 18, a water injecting pump 19, and a rotating shaft 20 that constitute the propeller. The propeller is constituted by a plurality of blades 15 having the same shape, and each blade cross section 16 is arranged in an asymmetrical spiral shape around the rotating shaft 20. The fluid blowing nozzles 17 correspond to this arrangement, and a plurality of fluid blowing nozzles 17 are arranged facing each other according to the angle at which the fluid flows into each blade cross section. When the fluid is blown at an angle at which the fluid flows into the blade cross section and the propeller is rotated, the angle at which the fluid flows into each blade 15 is an angle set in the blade airfoil. Therefore, the fluid blowing nozzle 17 is fixed at an angle set according to each airfoil, and the rotational speed is adjusted by the flow rate. The air blowing blower 18 or the water blowing pump 19 is arranged according to the arrangement of the fluid blowing nozzle 17. If the fluid is air, the air blowing blower 18 is used. If the fluid is water, the air blowing pump 19 is used. It feeds into the fluid blowing nozzle 3.

以上に説明において、本実施形態にかかる低圧タービンの駆動方法においては、少ない動力量で大きな推力を得ることができ、タービンとしての熱効率と稼動率はともに高く、二酸化炭素の発生もなく、機構的にも簡素な低圧タービンとなる   In the above description, in the driving method of the low-pressure turbine according to the present embodiment, a large thrust can be obtained with a small amount of power, both the thermal efficiency and the operation rate as the turbine are high, no carbon dioxide is generated, and the mechanical A simple low-pressure turbine

次に図3を参照しながら本発明の実施の形態にかかる低圧タービンの駆動装置について説明する。本実施形態は先に説明した低圧タービンによる駆動方法を駆動装置として捉えるものである。既に図1を参照して方法の発明について説明した際に、その方法についても実質的には説明したと考えられるが理解を容易にするために再度フロー図を参照しながら説明するものである。   Next, a driving apparatus for a low-pressure turbine according to an embodiment of the present invention will be described with reference to FIG. In the present embodiment, the driving method using the low-pressure turbine described above is regarded as a driving device. When the method invention has already been described with reference to FIG. 1, it is considered that the method has also been substantially described, but for the sake of easy understanding, the method will be described again with reference to the flowchart.

図3は本発明の実施の形態にかかる低圧タービンの駆動装置のフロー図である。図2においてステップS―1は第1の動翼のプロペラの先端付近のブレード断面に流体が流入する角度で、流体である空気もしくは水を吹込みプロペラを回転させ、周辺の流体を吸引し加速する手段である。ステップS―2はステップS―1で加速した流体を第2の動翼のプロペラに吹付け回転させ、その回転方向に第2の動翼のプロペラの先端付近のブレード断面に流体が流入する角度で流体を吹込みプロペラの回転させ、流体をさらに吸引し加速することにより大きな推力にする手段である。以上説明した本実施形態にかかる低圧タービンの駆動装置も先に説明した低圧タービンの駆動方法と同様の効果を得ることができる。   FIG. 3 is a flowchart of the low-pressure turbine drive apparatus according to the embodiment of the present invention. In FIG. 2, step S-1 is an angle at which the fluid flows into the blade cross section near the tip of the first rotor blade propeller, blows air or water as the fluid, rotates the propeller, sucks the surrounding fluid, and accelerates. It is means to do. In step S-2, the fluid accelerated in step S-1 is sprayed and rotated on the propeller of the second blade, and the angle at which the fluid flows into the blade cross section near the tip of the propeller of the second blade in the rotation direction. This is a means for generating a large thrust by blowing the fluid and rotating the propeller to further suck and accelerate the fluid. The above-described low-pressure turbine drive apparatus according to the present embodiment can also achieve the same effects as the low-pressure turbine drive method described above.

本発明の実施形態に係る低圧タービンの駆動方法の構成図である。It is a block diagram of the drive method of the low pressure turbine which concerns on embodiment of this invention. 本発明の実施形態に係る低圧タービン駆動方法のうちプロペラへの流体吹込 方法についての構成図である。It is a block diagram about the fluid blowing method to the propeller among the low-pressure turbine drive methods which concern on embodiment of this invention. 本発明の実施形態に係る低圧タービンの駆動装置のフロー図である。It is a flowchart of the drive device of the low pressure turbine concerning the embodiment of the present invention.

符号の説明Explanation of symbols

1:第1の動翼
2:第1の動翼の支持材
3:第1の動翼のプロペラ
4:第1の動翼のプロペラへの流体吹込ノズル
5:円筒形外殻
6:第2の動翼
7:第2の動翼外殻
8:第2の動翼のプロペラ
9:第2の動翼の支持材
10:第2の動翼のプロペラへの流体吹込ノズル
11:第1の動翼の空気吹込用ブロアー
12:第1の動翼の水吹込用ポンプ
13:第2の動翼の空気吹込用ブロアー
14:第2の動翼の水吹込用ポンプ
15:ブレード
16:ブレード断面
17:流体吹込ノズル
18:空気吹込用ブロアー
19:水吹込用ポンプ
20:回転軸
1: First blade
2: Support material for the first blade
3: Propeller of the first blade
4: Fluid injection nozzle to the propeller of the first blade
5: Cylindrical outer shell
6: Second blade
7: Second bucket outer shell
8: Second blade propeller
9: Support material for second blade
10: Fluid injection nozzle to the propeller of the second blade
11: Air blower for the first rotor blade
12: Pump for water blowing of the first moving blade
13: Air blower for the second rotor blade
14: Pump for water blowing of the second moving blade
15: Blade
16: Blade cross section
17: Fluid injection nozzle
18: Air blower
19: Pump for water blowing
20: Rotating shaft

Claims (5)

第1の動翼のプロペラを駆動し回転させることにより流体を吸引し加速する工程と、加速した流体を第1の動翼のプロペラの直径より大きな第2の動翼のプロペラに吹込み第2の動翼のプロペラを回転させる工程と、この回転方向に合わせ第2の動翼のプロペラを駆動し回転させることにより、流体をさらに吸引し加速することにより大きな推力とする工程を有することを特徴とする低圧タービンの駆動方法。   A step of driving and rotating the propeller of the first blade to suck and accelerate the fluid, and blowing the accelerated fluid into the propeller of the second blade larger than the diameter of the propeller of the first blade. A step of rotating the propeller of the moving blade of the first blade and a step of driving and rotating the propeller of the second moving blade in accordance with the rotation direction to further suck and accelerate the fluid to obtain a large thrust. A low-pressure turbine driving method. 前記第1の動翼のプロペラおよび第2の動翼のプロペラは、プロペラの回転により流体がプロペラを構成するブレード断面への流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ先端付近に流体を吹込むことによりプロペラを回転させる工程を有することを特徴とする請求項1記載の低圧タービンの駆動方法。   The propeller tip of the first rotor blade and the propeller of the second rotor blade has a propeller tip having a locally high thrust and torque generation distribution at an angle at which fluid flows into a blade cross section constituting the propeller by rotation of the propeller. 2. The method of driving a low-pressure turbine according to claim 1, further comprising a step of rotating the propeller by blowing a fluid in the vicinity thereof. 第1の動翼のプロペラと第1の動翼のプロペラからの流体の流れの方向に直列に間隔をおいて配置し、前記プロペラにより直径の大きな第2の動翼のプロペラからなることを特徴とする低圧タービン駆動装置。   The propeller of the first moving blade and the propeller of the first moving blade are arranged at intervals in series in the direction of fluid flow from the propeller of the first moving blade, and the propeller of the second moving blade has a large diameter by the propeller. A low-pressure turbine drive. 前記第1の動翼のプロペラおよび第2の動翼のプロペラは、プロペラの回転により流体がプロペラを構成するブレード断面へ流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ先端付近に流体を吹込む手段を設けたことを特徴とする請求項3の記載の低圧タービン駆動装置。   The propeller of the first moving blade and the propeller of the second moving blade are at an angle at which fluid flows into the blade cross section constituting the propeller by the rotation of the propeller and in the vicinity of the propeller tip where the generation distribution of thrust and torque is locally high 4. The low-pressure turbine drive apparatus according to claim 3, further comprising means for injecting fluid into the pipe. 前記第1の動翼と第2の動翼の間に、第2の動翼の口径と同じ口径の円筒形外殻を設けることを特徴とする請求項3又は4の記載の低圧タービン駆動装置。   5. The low-pressure turbine drive device according to claim 3, wherein a cylindrical outer shell having the same diameter as that of the second moving blade is provided between the first moving blade and the second moving blade. .
JP2007168410A 2007-06-27 2007-06-27 Low pressure turbine driving method and low pressure turbine driving apparatus therefor Pending JP2008019862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168410A JP2008019862A (en) 2007-06-27 2007-06-27 Low pressure turbine driving method and low pressure turbine driving apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168410A JP2008019862A (en) 2007-06-27 2007-06-27 Low pressure turbine driving method and low pressure turbine driving apparatus therefor

Publications (1)

Publication Number Publication Date
JP2008019862A true JP2008019862A (en) 2008-01-31

Family

ID=39075984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168410A Pending JP2008019862A (en) 2007-06-27 2007-06-27 Low pressure turbine driving method and low pressure turbine driving apparatus therefor

Country Status (1)

Country Link
JP (1) JP2008019862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095869A2 (en) * 2009-02-23 2010-08-26 Kwon Yong Joon Air purifier employing a water jet-type fan system, and purification method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1481518A1 (en) * 1967-01-17 1969-07-17 Messerschmitt Boelkow Blohm Propulsion for aircraft
JPS52106018A (en) * 1976-03-02 1977-09-06 Masaaki Kusano Turbofan jet engine
JPS55107038A (en) * 1979-02-13 1980-08-16 Akira Naito Small jet engine for model aircraft
JPH0361621A (en) * 1989-04-18 1991-03-18 Soc Natl Etud Constr Mot Aviat <Snecma> High bypass ratio turbojet engine with reversal upstream and downstream fan
JPH1073003A (en) * 1996-08-30 1998-03-17 Mitsubishi Heavy Ind Ltd Gas turbine engine
JP2000002155A (en) * 1998-04-13 2000-01-07 Nikkiso Co Ltd Turbofan engine
JP2001294200A (en) * 2000-04-13 2001-10-23 Homare Shoji:Kk Aircraft capable of flying in atmosphere and outer space
JP2003293702A (en) * 2002-04-02 2003-10-15 National Aerospace Laboratory Of Japan Single blade cascade multi-stage turbine
JP2005180422A (en) * 2003-11-20 2005-07-07 General Electric Co <Ge> Binary cooling medium type turbine blade
JP2006138206A (en) * 2004-11-10 2006-06-01 Ishikawajima Harima Heavy Ind Co Ltd Pde drive tip turbine fan engine
JP2008190460A (en) * 2007-02-06 2008-08-21 Toyota Motor Corp Tip turbine drive fan

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1481518A1 (en) * 1967-01-17 1969-07-17 Messerschmitt Boelkow Blohm Propulsion for aircraft
JPS52106018A (en) * 1976-03-02 1977-09-06 Masaaki Kusano Turbofan jet engine
JPS55107038A (en) * 1979-02-13 1980-08-16 Akira Naito Small jet engine for model aircraft
JPH0361621A (en) * 1989-04-18 1991-03-18 Soc Natl Etud Constr Mot Aviat <Snecma> High bypass ratio turbojet engine with reversal upstream and downstream fan
JPH1073003A (en) * 1996-08-30 1998-03-17 Mitsubishi Heavy Ind Ltd Gas turbine engine
JP2000002155A (en) * 1998-04-13 2000-01-07 Nikkiso Co Ltd Turbofan engine
JP2001294200A (en) * 2000-04-13 2001-10-23 Homare Shoji:Kk Aircraft capable of flying in atmosphere and outer space
JP2003293702A (en) * 2002-04-02 2003-10-15 National Aerospace Laboratory Of Japan Single blade cascade multi-stage turbine
JP2005180422A (en) * 2003-11-20 2005-07-07 General Electric Co <Ge> Binary cooling medium type turbine blade
JP2006138206A (en) * 2004-11-10 2006-06-01 Ishikawajima Harima Heavy Ind Co Ltd Pde drive tip turbine fan engine
JP2008190460A (en) * 2007-02-06 2008-08-21 Toyota Motor Corp Tip turbine drive fan

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095869A2 (en) * 2009-02-23 2010-08-26 Kwon Yong Joon Air purifier employing a water jet-type fan system, and purification method thereof
WO2010095869A3 (en) * 2009-02-23 2010-11-18 Kwon Yong Joon Air purifier employing a water jet-type fan system, and purification method thereof

Similar Documents

Publication Publication Date Title
JP5019290B2 (en) Hydroelectric power generation method using low-pressure turbine and its hydroelectric generator
EP2205833B1 (en) Turbine assembly
JP2006177370A (en) Wind power generating device
JP2006177370A5 (en)
US10377476B2 (en) Impeller-based vehicle propulsion system
JP5397724B2 (en) Power generation method using low pressure turbine and power generation apparatus using low pressure turbine
JP4305518B2 (en) Chip turbine drive fan
JP2006242169A (en) Rotary wing and power generating device using it
US20120251322A1 (en) Rotating fluid conduit utilized such a propeller or turbine, characterized by a rotating annulus, formed by a rotating inner hub and a rotating outer shell
JP2008019862A (en) Low pressure turbine driving method and low pressure turbine driving apparatus therefor
JP2007154759A (en) Hybrid type wind power generating device
JP5115890B2 (en) Method and apparatus for generating electricity by driving air through low-pressure turbine by circulating air through connected pipes
JP2007016608A (en) Pulse-detonation rotary driving unit
US10190436B2 (en) Power transmission system for turbine, a turbocharger, a compressor, or a pump
JP2018090173A (en) Vessel
JP6354051B2 (en) Wave power turbine
JP6524396B2 (en) Wave power generation turbine
JP2009052413A (en) Turbine
JP2008100628A (en) Fluid thrust generating device
JP6357668B2 (en) Wave power turbine
JP4389794B2 (en) Projection generator for flying object
JP2006291886A (en) Method of producing power from moving fluid with high efficiency
JP2015004321A (en) Power generation method of wind power generator, wind power generator, compression fluid power generation method, compression fluid power generator, and hybrid power generator
JP6524397B2 (en) Wave power generation turbine
JP2020520429A (en) Method for constructing an engine or motor housed in a cylindrical casing

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100317

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A02 Decision of refusal

Effective date: 20120131

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120423

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120518