JP5019290B2 - Hydroelectric power generation method using low-pressure turbine and its hydroelectric generator - Google Patents

Hydroelectric power generation method using low-pressure turbine and its hydroelectric generator Download PDF

Info

Publication number
JP5019290B2
JP5019290B2 JP2007271943A JP2007271943A JP5019290B2 JP 5019290 B2 JP5019290 B2 JP 5019290B2 JP 2007271943 A JP2007271943 A JP 2007271943A JP 2007271943 A JP2007271943 A JP 2007271943A JP 5019290 B2 JP5019290 B2 JP 5019290B2
Authority
JP
Japan
Prior art keywords
blade
water
turbine
propeller turbine
propeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007271943A
Other languages
Japanese (ja)
Other versions
JP2008019879A (en
Inventor
康夫 松浦
Original Assignee
松浦 真ツ江
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松浦 真ツ江 filed Critical 松浦 真ツ江
Priority to JP2007271943A priority Critical patent/JP5019290B2/en
Publication of JP2008019879A publication Critical patent/JP2008019879A/en
Application granted granted Critical
Publication of JP5019290B2 publication Critical patent/JP5019290B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

本発明は、落差による水の移動エネルギーを利用する水力発電に代え、水を駆動流体に複数のプロペラ水車でタービンを構成し、複数のプロペラ水車を少ない動力で回転させ大きな移動エネルギーをもつ水流をつくり、この水流を最後尾のプロペラ水車に受けトルクに変換、出力を調整し、コストの安い電気を供給する低圧タービンによる水力発電方法とその水力発電装置に関するものである。   In the present invention, instead of hydroelectric power generation using water kinetic energy due to a head, a turbine is constituted by a plurality of propeller turbines using water as a driving fluid, and a plurality of propeller turbines are rotated with less power to generate a water stream having a large kinetic energy. The present invention relates to a hydroelectric power generation method and a hydroelectric power generation apparatus using a low-pressure turbine that receives this water flow at the tail propeller turbine, converts the torque into torque, adjusts the output, and supplies low-cost electricity.

水力発電は一般に高所にダムを設け、低所に設けたペルトン水車もしくはフランシス水車を高落差の移動エネルギーの大きな水流で回転させトルクに変換し発電、気体にくらべ密度の高い水を駆動流体に、燃焼による二酸化炭素を発生をともなわない効率の良い発電方式である。しかしながら、高落差を確保できるダムの適地は少なく、送電ロスの大きな遠隔地に立地せざるを得ず、施設規模は大きくダム建設および送発電装置に費用を要し、発電コストは高い。   Hydroelectric power generation is generally provided with a dam at a high place, and a Pelton turbine or Francis turbine installed at a low place is rotated with a high flow of water with a high head and converted into torque to generate power, and water with a higher density than gas is used as the driving fluid. This is an efficient power generation system that does not generate carbon dioxide from combustion. However, there are few suitable dams where high heads can be secured, and it must be located in a remote area where transmission loss is large, the scale of the facility is large, and costs are required for dam construction and power transmission equipment, resulting in high power generation costs.

一方、低落差ではプロペラ水車が利用されるが、水の移動エネルギーが制約され、出力を確保するには大きな水量が必要となりプロペラ水車の規模は大きく、これに対応するには貯水量の大きな堰堤が必要であり、建設費は大きく発電コストは下がらない。   On the other hand, propeller turbines are used at low heads. However, the transfer energy of water is limited, and a large amount of water is required to secure output, and the scale of propeller turbines is large. The construction cost is large and the power generation cost is not reduced.

したがって、水力発電には落差による水の移動エネルギーに代え、小規模な施設で水の移動エネルギーを増大させる方法が望まれる。このような状況のなかで、これまでにも水の移動エネルギーを増大するための技術は公開されている。   Therefore, a method for increasing the water transfer energy in a small-scale facility instead of the water transfer energy due to the head is desired for hydroelectric power generation. Under such circumstances, techniques for increasing the water transfer energy have been disclosed.

例えば、特許文献1には水の移動エネルギーを増大させるため、ドーナツ型の水路に水を導入し、ドーナツ型水路からその内側に設置した渦巻発生室にスパイラル状に注水し、渦巻水流を発生させ、これによりタービンを回転し発電しようとするものである。   For example, in Patent Document 1, water is introduced into a donut-shaped water channel, and water is spirally poured from the donut-shaped water channel into a spiral generating chamber installed inside the donut-shaped water channel to generate a spiral water flow. Thus, the turbine is rotated to generate electricity.

また、特許文献2には、導水管の出口に円錐筒を設け導水管を拡大、拡大した導水管の口径に見合う大形のプロペラ水車で発電することにより、水の移動エネルギーを機械的に増大させようとするものである。   In Patent Document 2, a conical cylinder is provided at the outlet of the water guide pipe, and the water pipe is enlarged. By generating electricity with a large propeller turbine that matches the diameter of the enlarged water guide pipe, the movement energy of water is mechanically increased. I will try to let you.

特開2007―192236JP2007-192236A 特開2006―307655JP 2006-307655 A

しかしながら、上述の特許文献1に開示された発明においては、渦巻水流でタービンを回転させ発電をおこなうものであるが、発電量を大きくするには水量を増やし渦巻の流速を速くする必要があり、高落差による水の移動エネルギーに依存しなければ施設規模は大きくなり、揚水に要する電力量などから発電効率は低くなる。   However, in the invention disclosed in Patent Document 1 described above, power is generated by rotating a turbine with a swirl water flow, but in order to increase the amount of power generation, it is necessary to increase the amount of water and increase the flow speed of the swirl. If it does not depend on the water transfer energy due to the high head, the scale of the facility will be large, and the power generation efficiency will be low due to the amount of power required for pumping.

また、上述の特許文献2に開示された発明においては、導水管を拡大すれば流速は低下し水の移動エネルギーは減少する。これをプロペラ水車口径の拡大により補填しようとすれば、大きな水量を必要とし高落差による水の移動エネルギーに依存するか、もしくは貯水量の大きな堰堤が必要となる。   In the invention disclosed in Patent Document 2 described above, if the water guide pipe is enlarged, the flow velocity is reduced and the water transfer energy is reduced. If this is to be compensated for by increasing the diameter of the propeller turbine, a large amount of water is required and it depends on the water transfer energy due to the high head, or a dam with a large amount of water storage is required.

本発明においては、気体にくらべ密度の高い水を駆動流体に複数のプロペラ水車でタービンを構成、個々プロペラ水車の直径、回転数、ブレード枚数を調整し大きな移動エネルギーをもつ水流をつくるとともに、少ない動力でプロペラ水車を駆動する簡素な動力機構にすること、および水流のもつ大きなエネルギーをトルクに変換する最終尾のプロペラ水車の出力を発電量に対応した出力にするために、プロペラ水車の直径、回転数、ブレード枚数を調整し、発電コストの低廉な発電方法とすることを課題とする。   In the present invention, a turbine is composed of a plurality of propeller turbines using water having a density higher than that of gas as a driving fluid, and the diameter, rotation speed, and number of blades of each propeller turbine are adjusted to create a water flow having a large kinetic energy, and less. In order to make a simple power mechanism that drives the propeller turbine with power, and to convert the output of the final propeller turbine that converts the large energy of the water flow into torque, the output of the propeller turbine is the output corresponding to the power generation amount, It is an object to adjust the number of rotations and the number of blades to provide a power generation method with a low power generation cost.

本発明の請求項1に記載の低圧タービンによる水力発電方法は、第1動翼のプロペラ水車を駆動し回転させ流体である水を吸引加速し水流をつくる工程と、プロペラ水車はそれを構成する複数のブレード断面が回転軸を中心にラセン状に配置され、回転によりブレード断面に設定された流体の流入角が位相し、前方からの加速流体が流入角に流入し回転すること、および流体が水であればプロペラ水車の回転でつくられる水流はプロペラ水車の直径、回転数、ブレード枚数に比例し、移動エネルギーの大きな水流をつくるにはプロペラ水車の直径を大きくし、回転数、ブレード枚数を増やせばよいことから、第1動翼のプロペラ水車で吸引加速された水流の流れ方向に、間隔を置いて直列に配置した第1動翼のプロペラ水車より直径の大きな第2動翼のプロペラ水車に、第1動翼のプロペラ水車で加速した水流を流入させプロペラ水車を回転する工程と、この回転方向に合わせ第2動翼のプロペラ水車を駆動し回転することにより水をさらに吸引加速し大きな移動エネルギーをもつ水流とする工程と、第2動翼のプロペラ水車より直径の大きな第3動翼のプロペラ水車で、この大きな移動エネルギーの水流を受け、ブレードを回転させ水流のエネルギーをトルクに変換、発電量に対応した出力にする工程と、このトルクで発電機を回転させ発電をおこなう工程からなり、大きな水流の移動エネルギーをトルクに変換、出力を調整し発電する作用を有している。   The hydroelectric power generation method using a low-pressure turbine according to claim 1 of the present invention includes a step of driving and rotating a propeller turbine of a first moving blade to suck and accelerate water as a fluid to create a water flow, and the propeller turbine constitutes the same. A plurality of blade cross sections are arranged in a spiral shape around the rotation axis, the inflow angle of the fluid set in the blade cross section by rotation is phased, the acceleration fluid from the front flows into the inflow angle and rotates, and the fluid If it is water, the water flow created by the rotation of the propeller turbine is proportional to the diameter, rotation speed, and number of blades of the propeller turbine. Since the number may be increased, the diameter of the propeller turbine is larger than that of the first rotor blades arranged in series at intervals in the flow direction of the water flow sucked and accelerated by the propeller turbine of the first rotor blade. The process of rotating the propeller turbine by causing the water flow accelerated by the propeller turbine of the first rotor blade to flow into the propeller turbine of the second rotor blade, and driving and rotating the propeller turbine of the second rotor blade according to this rotational direction causes water to flow. And the process of making the water flow with a large movement energy and the propeller turbine of the third rotor blade, which has a larger diameter than the propeller turbine of the second rotor blade, The process of converting the energy of the water into torque and generating the output corresponding to the amount of power generation, and the process of generating power by rotating the generator with this torque, converting the moving energy of a large water flow into torque, adjusting the output and generating electricity have.

請求項2に記載の低圧タービンによる水力発電方法は、一般的にプロペラ水車を回転させる場合、プロペラ水車を構成するブレード断面に流体である水が流入する角度と直角に発生する揚力が、ブレード断面に流体が流入する角度の延長上に発生する抗力より大きくなるように回転軸から動力を与える。これはプロペラ水車を構成するブレード断面に水が流入する角度に水を流入させるに等しく、この角度への水の噴射によりプロペラ水車は回転すること、また、プロペラ水車の回転時のプロペラ水車のブレード上の推力およびトルクの発生分布はブレード先端付近で高く、局所的に推力およびトルクの発生分布の高いブレード先端付近に水を噴射することにより、プロペラ水車に回転軸から動力を与え水を捲込み回転させる場合に比べ抗力は減少し、より少ない動力でプロペラ水車が回転することは実験で確認される。したがって、第1動翼のプロペラ水車および第2動翼のプロペラ水車は、プロペラ水車の回転により水がプロペラ水車を構成するブレード断面へ流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ水車先端付近に水を噴射しプロペラ水車を回転させる工程により、プロペラ水車に回転軸から動力を与え回転させる場合に比べ少ない動力と複数のプロペラ水車を回転軸で連結せず、もしくは多重の回転軸とすることなく、個々独立させた簡素な機構で大きな移動エネルギーをもつ水流をつくりだす作用を有している。   In the hydroelectric power generation method using a low-pressure turbine according to claim 2, in general, when rotating a propeller turbine, a lift generated at right angles to an angle at which water as a fluid flows into a blade section constituting the propeller turbine is a blade section. Power is applied from the rotating shaft so as to be larger than the drag generated on the extension of the angle at which the fluid flows into. This is equivalent to injecting water at an angle at which water flows into the blade cross section constituting the propeller turbine, and the propeller turbine rotates when the water is injected at this angle, and the propeller turbine blades when the propeller turbine rotates. The upper thrust and torque generation distribution is high near the blade tip, and water is injected from the rotating shaft to the propeller turbine by injecting water near the blade tip where the thrust and torque generation distribution is high locally. The drag is reduced compared to the case of rotating, and it is confirmed by experiments that the propeller turbine rotates with less power. Therefore, the propeller turbine of the first moving blade and the propeller turbine of the second moving blade have a high distribution of thrust and torque locally at an angle at which water flows into the blade cross section constituting the propeller turbine by the rotation of the propeller turbine. The process of injecting water near the tip of the propeller turbine and rotating the propeller turbine causes less power and multiple propeller turbines to be connected by the rotation shaft or multiple rotations compared to rotating the propeller turbine from the rotating shaft. It has the effect of creating a water stream with large kinetic energy by a simple mechanism that is independent of each other without using a shaft.

請求項3に記載の低圧タービンによる水力発電装置は請求項1に記載の低圧タービンによる水力発電方法を発電装置として捉えたものであり、第1動翼のプロペラ水車からの水の流れ方向に直列に間隔をおいて配置した第1動翼のプロペラ水車より直径の大きな第2動翼のプロペラ水車と、第2動翼のプロペラ水車より直径の大きな第3動翼のプロペラ水車と、これに連結した発電機で構成。第1動翼のプロペラ水車および第2動翼のプロペラ水車で大きな移動エネルギーをもつ水流を起し、この水流を第3動翼のプロペラ水車に受け回転させ、水の移動エネルギーをトルクに変換し出力を調整、発電機を稼動し発電をおこなうものであり、本請求項記載の発明の作用は請求項1の発明と同様である。   A hydroelectric generator using a low-pressure turbine according to a third aspect captures the hydroelectric power generation method using the low-pressure turbine according to the first aspect as a power generator, and is in series with the flow direction of water from the propeller turbine of the first moving blade. The propeller turbine of the second rotor blade having a diameter larger than that of the propeller turbine of the first moving blade, and the propeller turbine of the third blade having a diameter larger than that of the propeller turbine of the second blade, which are connected to each other. Constructed with a generator. The propeller turbine of the first rotor blade and the propeller turbine of the second rotor blade generate a water flow with large movement energy, and this water flow is received and rotated by the propeller turbine of the third blade to convert the water movement energy into torque. The output is adjusted and the generator is operated to generate electric power. The operation of the present invention is the same as that of the first aspect.

請求項4に記載の低圧タービンによる水力発電装置は請求項2に記載の低圧タービンによる水力発電方法を発電装置として捉えたものであり、第1動翼のプロペラ水車および第2動翼のプロペラ水車について、プロペラ水車の回転により流体である水がプロペラ水車を構成するブレード断面へ流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ水車先端付近に水を噴射しプロペラを回転させる手段を設け、少ない動力と簡素な機構でプロペラ水車を回転させるものであり、本請求項記載の発明の作用は請求項2の発明と同様である。   A hydraulic power generation apparatus using a low-pressure turbine according to a fourth aspect is obtained by capturing the hydroelectric power generation method using the low-pressure turbine according to claim 2 as a power generation apparatus, and includes a propeller turbine of a first moving blade and a propeller turbine of a second moving blade. The means for rotating the propeller by injecting water to the vicinity of the tip of the propeller turbine where the generation distribution of thrust and torque is locally high at an angle at which water as fluid flows into the blade cross section constituting the propeller turbine by rotation of the propeller turbine The propeller turbine is rotated with a small amount of power and a simple mechanism, and the operation of the present invention is the same as that of the second aspect.

請求項5に記載の低圧タービンによる水力発電装置は、第2動翼と第3動翼の間に第2動翼の口径と第3動翼の口径に合わせ拡大した円錐形の外殻を設け、第2動翼と第3動翼の間の水の流路を閉水路とすることにより、加速された水がその粘性から周辺の水を捲込みながら質量を増やし拡散し減速することを防ぎ、水の移動エネルギーの式=(1/2)×(水量)×(流速)から水の移動エネルギーをつくる大きな要素となる水の速い流速を維持する作用を有している。 The hydroelectric generator using a low-pressure turbine according to claim 5 is provided with a conical outer shell enlarged between the second blade and the third blade in accordance with the diameter of the second blade and the diameter of the third blade. By making the water flow path between the second and third rotor blades closed, it prevents the accelerated water from diffusing and decelerating by increasing the mass while swallowing the surrounding water from its viscosity The equation for the kinetic energy of water = (1/2) × (amount of water) × (flow velocity) 2 has the action of maintaining a fast flow velocity of water, which is a major factor in creating the kinetic energy of water.

請求項6に記載低圧タービンによる水力発電装置は、第1動翼、第2動翼、第3動翼、発電機を、浮体構造物の中央に設けた水の流路に配置、これらが水中にある吃水位とした浮体構造物の水平方向の移動を留め、上下に移動を可能とする円環状の係留具で地中に打ち込んだ係留杭に係留、水面の水位の上下の変動を円環状の係留具で対応すること、および潮汐流などの周期的に方向が変わる水流には、その方向に応じた複数の浮体構造物を設け交互に稼動させることにより、潮流の方向変化に影響されることなく、常時発電することのできる作用を有している。   The hydraulic power generation apparatus using a low-pressure turbine according to claim 6 is arranged such that the first moving blade, the second moving blade, the third moving blade, and the generator are arranged in a water flow path provided in the center of the floating structure, The floating structure at the submerged water level in the horizontal direction is held in the horizontal direction, and it is moored to a mooring pile driven into the ground with an annular mooring tool that can move up and down. It is affected by changes in the direction of the tidal current by providing a plurality of floating structures corresponding to the direction of the water flow that changes direction periodically, such as tidal currents, etc. It has the effect | action which can always produce electric power.

本発明は第1動翼のプロペラ水車の局所的に推力およびトルク発生分布の高いプロペラ水車先端付近に、流体である水をプロペラ水車を構成するブレード断面へ流入する角度に噴射し回転させ、周辺の水を吸引加速し水流を起し、この水流をその流れ方向に直列に間隔を置き配置した第1動翼のプロペラ水車より直径の大きな第2動翼のプロペラ水車に流入、回転させる。この回転方向に合わせ第2動翼のプロペラ水車を、第1動翼のプロペラ水車と同じ方法で回転させ、さらに水を吸引加速することにより大きな移動エネルギーをもつ水流とし、この水流を第3動翼のプロペラ水車に受け、水流の移動エネルギーをトルクに変換し、出力を調整、発電機を稼動し発電をおこなう低圧タービンによる水力発電方法とその水力発電装置である。   The present invention injects and rotates water, which is a fluid, in the vicinity of the tip of the propeller turbine of the first rotor blade where the thrust and torque generation distribution is locally high at an angle that flows into the blade cross section constituting the propeller turbine. The water is sucked and accelerated to generate a water flow, and this water flow is introduced into a propeller turbine of a second moving blade having a diameter larger than that of the propeller turbine of the first moving blade arranged in series in the flow direction and rotated. According to this rotation direction, the propeller turbine of the second blade is rotated in the same manner as the propeller turbine of the first blade, and further water is sucked and accelerated to form a water stream having a large movement energy. A hydroelectric power generation method and a hydroelectric power generation apparatus using a low-pressure turbine that receives a propeller turbine of a wing, converts the moving energy of the water flow into torque, adjusts the output, operates the generator, and generates electric power.

この方法による場合、水流の水の質量とプロペラ水車の直径、回転数、ブレード枚数との関係は、回転数およびブレード枚数を一定としプロペラ直径をn倍にすれば水の質量はn倍、また、プロペラ水車の直径およびブレード枚数を一定とし回転数をn倍にすれば水の質量はn倍、プロペラ水車の直径および回転数を一定としブレード枚数をn倍にすれば水の質量はn倍前後となる。 If by this method, the diameter of the mass and the propeller water turbine water flow, rotating speed, the relationship between the number of blades, the water mass when the the rotational speed and number of blades and fixed propeller diameter n times the n 4-fold, In addition, if the propeller turbine has a constant diameter and the number of blades and the rotation speed is increased n times, the mass of water is n 3 times, and if the propeller turbine is fixed in the diameter and rotation speed and the number of blades is increased n times, the mass of water is It becomes around n times.

この水の質量とプロペラ水車回転用動力との関係は、第1動翼のプロペラ水車の先端付近で流体である水をブレード断面へ水が流入する角度に噴射し、プロペラ水車を回転させ水流を起し、この水流を第1動翼のプロペラ水車より直径の大きな第2動翼のプロペラ水車に流入、回転させ、この回転方向に合わせ第2動翼のプロペラ水車を第1動翼のプロペラ水車と同じ方法で回転させることにより、プロペラ水車の回転用動力は回転軸から動力を与え回転させる場合にくらべ低減する。   The relationship between the mass of the water and the power for rotating the propeller turbine is such that water as a fluid is injected near the tip of the propeller turbine of the first blade at an angle at which water flows into the blade cross section, and the propeller turbine is rotated to generate water flow. The water flow is caused to flow into a second blade propeller turbine having a diameter larger than that of the first blade propeller turbine, and the propeller turbine of the second blade is rotated in accordance with the rotation direction. Rotating in the same manner as in the above, the rotational power of the propeller turbine is reduced compared to when rotating from the rotating shaft.

プロペラ水車先端付近でブレード断面へ流入する角度に流体である水を吹込む手段はポンプである。プロペラ水車回転用動力はポンプに要する電力であり発電機より自給する。ポンプの稼動電力は吹込量と吹込圧によるが、ブレード断面へ水が流入する角度はプロペラ水車が水を捲込む角度であり、プロペラ水車の回転により吹込圧は低く、ポンプ稼動電力はプロペラ水車の直径に対応する吹込量により、吹込圧は吹込量と吹込ノズル口径の関係で設定される。第2動翼のプロペラ水車の直径は第1動翼のプロペラ水車の直径より大きく、より大きな動力を必要とする。プロペラ水車で加速された水はその粘性から周辺の水を捲込みながら質量を増やし拡散し減速する。したがって、第1動翼のプロペラ水車で加速した水の拡散域を第2動翼のプロペラ水車の直径に準じた範囲に合わせプロペラ水車の間隔を調整、第1動翼のプロペラで加速した水流で第2動翼のプロペラ水車を回転させ、この回転方向に合わせ第2動翼のプロペラ水車を第1動翼のプロペラ水車と同じ方法で回転させることにより、第2動翼のプロペラ回転用水車のポンプの所要電力は低減し、ポンプへの給電量の発電量に占める割合は低下する。この場合、規模に応じた流速をもつ前面からの潮汐流などの水流があれば、ポンプへの給電量はさらに低減する。   A means for blowing water, which is a fluid at an angle to flow into the blade cross section near the tip of the propeller turbine, is a pump. The power for rotating the propeller turbine is the power required for the pump and is supplied by the generator. The operating power of the pump depends on the amount of injection and the pressure, but the angle at which water flows into the blade cross section is the angle at which the propeller turbine pours water, the blowing pressure is low due to the rotation of the propeller turbine, and the pump operating power is The blowing pressure is set by the relationship between the blowing amount and the blowing nozzle diameter by the blowing amount corresponding to the diameter. The diameter of the propeller turbine of the second moving blade is larger than the diameter of the propeller turbine of the first moving blade and requires more power. The water accelerated by the propeller water turbine increases in mass while depressing the surrounding water from its viscosity and decelerates. Therefore, the water diffusion area accelerated by the propeller turbine of the first moving blade is adjusted to the range corresponding to the diameter of the propeller turbine of the second moving blade, and the interval between the propeller turbines is adjusted, and the water flow accelerated by the propeller of the first moving blade By rotating the propeller turbine of the second moving blade and rotating the propeller turbine of the second moving blade in the same manner as the propeller turbine of the first moving blade in accordance with this rotation direction, the propeller rotating turbine of the second moving blade is rotated. The required power of the pump is reduced, and the ratio of the amount of power supplied to the pump to the amount of power generation is reduced. In this case, if there is a water flow such as a tidal flow from the front surface having a flow velocity corresponding to the scale, the amount of power supplied to the pump is further reduced.

第1動翼のプロペラ水車と第2動翼のプロペラ水車で起した水流の移動エネルギーは流速が速いほど大きい。このエネルギーをトルクに変換する第3動翼のプロペラ水車は第2動翼のプロペラ水車の口径を1とし、流入する水量を一定に、第3動翼のプロペラ水車直径をn倍すれば流速は1/n倍、水の移動エネルギーは1/n倍、このエネルギーを出力に変換する第3動翼のプロペラ水車のブレード枚数は1/n倍に減少する。一方、第3動翼のプロペラ水車直径を1/nに縮小すれば流速はn倍、水の移動エネルギーはn倍、このエネルギーを出力に変換する第3動翼のプロペラ水車のブレード枚数はn倍に増える。水の密度は気体にくらべ高く第3動翼のプロペラ水車ブレード枚数は物理的な制約があり、この制約にあわせて第3動翼のプロペラ水車の直径を第2動翼のプロペラ水車の直径より大きく設定、これにより水の移動エネルギーを出力に変換、発電をおこなう。 The movement energy of the water flow generated by the propeller turbine of the first moving blade and the propeller turbine of the second moving blade increases as the flow velocity increases. The propeller turbine of the third rotor blade that converts this energy into torque has a caliber of the propeller turbine of the second rotor blade set to 1, the amount of water flowing in is constant, and the flow velocity can be increased by multiplying the propeller turbine diameter of the third rotor blade by n 1 / n 2 times, water transfer energy 1 / n 4 times, and the number of blades of the propeller turbine of the third rotor blade that converts this energy into output is reduced 1 / n 3 times. On the other hand, if the propeller turbine diameter of the third rotor blade is reduced to 1 / n, the flow velocity is n 2 times, the water transfer energy is n 4 times, and the number of blades of the third rotor blade propeller turbine that converts this energy into output Increases n 3 times. The density of water is higher than that of gas, and the number of propeller turbine blades of the third blade is physically limited. The diameter of the propeller turbine of the third blade is determined from the diameter of the propeller turbine of the second blade according to this limitation. It is set to a large value, which converts the kinetic energy of water into output and generates electricity.

第3動翼のプロペラ水車に連結する発電機を商用周波数の交流発電機とすれば、回転数=(120×周波数)/極数より、周波数60Hz、極数8として回転数は900rpm、この回転数にあわせ第2動翼のプロペラ水車から流入する水量により第3動翼のプロペラ水車の直径と変換する水の移動エネルギーを設定、これに見合う出力を第3動翼のプロペラ水車のブレード枚数で調整する。一方、発電機の出力は回転数に比例し、同一出力で周波数を高め回転を早めれば規模は小さくなる。本発明の低圧タービンによる水力発電方法とその発電装置では、第1動翼のプロペラ水車と第2動翼のプロペラ水車の口径、回転数、ブレード枚数を調整、速い流速の水流とし、第3動翼のプロペラ水車のブレード枚数をその物理的な制約下、最大限に増やすことにより第3動翼のプロペラ水車の直径を縮小、早い回転数とし小規模な発電機で大きな発電量とすることができる。但し、用途で周波数を変換する必要があり、発電量と装置製造費用で発電コストを調整する。   If the generator connected to the propeller turbine of the third rotor blade is an AC generator of commercial frequency, the rotation speed is 900 rpm and the rotation speed is 900 rpm with the rotation speed = (120 × frequency) / number of poles, the frequency is 60 Hz. According to the number, the diameter of the propeller turbine of the third rotor blade and the transfer energy of water to be converted are set by the amount of water flowing from the propeller turbine of the second rotor blade, and the output corresponding to this is the number of blades of the propeller turbine of the third rotor blade adjust. On the other hand, the output of the generator is proportional to the rotational speed, and the scale becomes smaller if the frequency is increased with the same output and the rotation is accelerated. In the hydroelectric power generation method using the low-pressure turbine and the power generation apparatus according to the present invention, the diameter, the rotation speed, and the number of blades of the propeller turbine of the first moving blade and the propeller turbine of the second moving blade are adjusted to obtain a high-speed water flow. By increasing the number of blades of the propeller turbine of the wing to the maximum under the physical constraints, the diameter of the propeller turbine of the third blade can be reduced, the rotation speed can be increased, and a small generator can increase the power generation amount. it can. However, it is necessary to convert the frequency depending on the application, and the power generation cost is adjusted by the power generation amount and the device manufacturing cost.

本発明の実施例を図により説明する   Embodiments of the present invention will be described with reference to the drawings.

以下に本発明の実施の形態にかかる低圧タービンによる発電方法について図1を参照しながら説明する。図1は本発明の実施形態にかかる低圧タービンによる水力発電方法の構成図である。図1において低圧タービンによる発電方法は浮体構造物1、浮体構造物の水の流路2、第1動翼3、第1動翼の外殻支持材4、第1動翼のプロペラ水車5、第1動翼のプロペラ水車支持材6、第1動翼の外殻7、第1動翼のプロペラ水車への水噴射ノズル8、第2動翼9、第2動翼の外殻支持材10、第2動翼のプロペラ水車支持材11、第2動翼の外殻12、第2動翼のプロペラ水車13、第2動翼のプロペラ水車への水噴射ノズル14、円錐形外殻15、第3動翼の外殻支持材16、第3動翼17、第3動翼のプロペラ水車支持材18、第3動翼の外殻19、第3動翼のプロペラ水車20、回転軸21、発電機支持材22、発電機23で構成する。浮体構造物1の中央部に設けた浮体構造物の水の流路2に配置した第1動翼3は、第1動翼の外殻支持材4で浮体構造物1に固定され、第1動翼のプロペラ水車5は第1動翼のプロペラ水車支持材6で第1動翼の外殻7に固定される。第1動翼のプロペラ水車5は第1動翼のプロペラ水車5の先端付近でプロペラ水車を構成するブレード断面へ水が流入する角度に第1動翼のプロペラ水車への水噴射ノズル8で水を噴射しプロペラ水車を回転させる。   A power generation method using a low-pressure turbine according to an embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a configuration diagram of a hydroelectric power generation method using a low-pressure turbine according to an embodiment of the present invention. In FIG. 1, a power generation method using a low-pressure turbine includes a floating structure 1, a water flow path 2 of the floating structure, a first moving blade 3, an outer shell support 4 of the first moving blade, a propeller turbine 5 of the first moving blade, Propeller turbine support material 6 of the first moving blade, outer shell 7 of the first moving blade, water injection nozzle 8 to the propeller turbine of the first moving blade, second moving blade 9, outer shell support material 10 of the second moving blade , Propeller turbine support 11 for the second rotor blade, outer shell 12 for the second rotor blade, propeller turbine 13 for the second rotor blade, water injection nozzle 14 for the propeller turbine of the second rotor blade, conical outer shell 15, Outer shell support material 16 of third rotor blade, third rotor blade 17, propeller turbine support material 18 of third rotor blade, outer shell 19 of third rotor blade, propeller turbine 20 of third rotor blade, rotating shaft 21, The generator support 22 and the generator 23 are included. The first moving blade 3 disposed in the water flow path 2 of the floating structure provided in the center of the floating structure 1 is fixed to the floating structure 1 by the outer shell support 4 of the first moving blade, and the first The propeller turbine 5 of the moving blade is fixed to the outer shell 7 of the first moving blade by the propeller turbine support 6 of the first moving blade. The propeller turbine 5 of the first moving blade is watered by the water injection nozzle 8 to the propeller turbine of the first moving blade at an angle at which water flows into the blade cross section constituting the propeller turbine near the tip of the propeller turbine 5 of the first moving blade. Is injected and the propeller turbine is rotated.

第1動翼のプロペラ水車5の回転により水は吸引加速され、回転水流となり周辺の水を捲込み吸引しながら質量を増やし拡散し減速する。この水の拡散域を浮体構造物1の中央部に設けた浮体構造物の水の流路2に配置し、第2動翼の外殻支持材10で浮体構造物1に固定され、第2動翼のプロペラ水車支持材11で第2動翼の外殻12に固定された第2動翼のプロペラ水車13の直径に準じた範囲にするように第1動翼のプロペラ水車5との間隔を調整し、この水流を第2動翼9に受け、第2動翼のプロペラ水車13を回転させるとともに、この回転の方向に合わせ第2動翼のプロペラ水車13の先端付近で、プロペラ水車を構成するブレード断面へ水が流入する角度に、第2動翼のプロペラ水車への水噴射ノズル14で水を噴射しプロペラ水車を回転させる。第2動翼のプロペラ水車13の回転により水は吸引加速され、加速にともない第1動翼3と第2動翼9との間で水を捲込み吸引し大きな移動エネルギーをもつ水流となる。   As the propeller turbine 5 of the first moving blade rotates, the water is sucked and accelerated, becomes a rotating water flow, increases the mass while sucking and sucking the surrounding water, and decelerates and decelerates. This water diffusion region is disposed in the water flow path 2 of the floating structure provided in the center of the floating structure 1, and is fixed to the floating structure 1 by the outer shell support material 10 of the second moving blade. The distance between the propeller turbine 5 of the first blade and the propeller turbine 5 of the first blade so as to be in a range corresponding to the diameter of the propeller turbine 13 of the second blade fixed to the outer shell 12 of the second blade by the propeller turbine support member 11 of the blade. The water flow is received by the second moving blade 9 and the propeller turbine 13 of the second moving blade is rotated, and the propeller turbine is moved near the tip of the propeller turbine 13 of the second moving blade in accordance with the direction of rotation. Water is injected by the water injection nozzle 14 to the propeller turbine of the second moving blade at an angle at which water flows into the blade cross section constituting the blade, thereby rotating the propeller turbine. Water is sucked and accelerated by the rotation of the propeller turbine 13 of the second moving blade, and with the acceleration, water is swallowed and sucked between the first moving blade 3 and the second moving blade 9 to form a water flow having a large movement energy.

第2動翼のプロペラ水車13の回転により大きな移動エネルギーをもった水流を、閉水路である円錐形外殻15を通して、浮体構造物1の中央部に設けた浮体構造物の水の流路2に配置し、第3動翼の外殻支持材16で浮体構造物1に固定された第3動翼17に受け、第3動翼のプロペラ水車支持材18で第3動翼の外殻19に固定された第3動翼のプロペラ水車20を回転させ、水の移動エネルギーをトルクに転換、第3動翼のプロペラ水車20の直径とブレード枚数で出力を調整し、変換されたトルクを回転軸21で発電機支持材22により、浮体構造物1に固定された発電機23に伝え発電をおこなう。   The water flow 2 of the floating structure provided in the central part of the floating structure 1 is passed through the conical outer shell 15 that is a closed water channel through the water flow having a large movement energy due to the rotation of the propeller turbine 13 of the second moving blade. And is received by the third rotor blade 17 fixed to the floating structure 1 by the outer shell support member 16 of the third rotor blade, and the outer shell 19 of the third rotor blade by the propeller turbine support member 18 of the third rotor blade. The propeller turbine 20 of the third moving blade fixed to the rotor is rotated to convert the water movement energy into torque, the output is adjusted by the diameter of the propeller turbine 20 of the third moving blade and the number of blades, and the converted torque is rotated. The shaft 21 is transmitted to the generator 23 fixed to the floating structure 1 by the generator support member 22 to generate power.

以下に本発明の実施の形態にかかる低圧タービンによる発電方法のうちプロペラ水車への水の噴射方法について図2を参照しながら説明する。図2は本発明の実施形態にかかる低圧タービンによる水力発電方法のうちプロペラ水車への水噴射方法の構成図であり、水供給ポンプおよび水噴射ノズルの例である。   A method for injecting water into a propeller turbine among the power generation methods using a low-pressure turbine according to an embodiment of the present invention will be described below with reference to FIG. FIG. 2 is a configuration diagram of a water injection method for a propeller turbine in a hydroelectric power generation method using a low-pressure turbine according to an embodiment of the present invention, which is an example of a water supply pump and a water injection nozzle.

図2において水噴射方法はプロペラ水車を構成するブレード24、ブレ−ド断面25、水噴射ノズル26、水供給ポンプ27、プロペラ水車の回転軸28、水の噴射によりプロペラ水車を回転させる動翼の外殻29で構成する。プロペラ水車は同じ形状をもつ複数のブレード24で構成され、各々のブレード断面25はプロペラ水車の回転軸28を中心にラセン状に配置される。水噴射ノズル26はこの配置に対応し各々のブレード断面へ流体が流入する角度に応じて、複数の水噴射ノズル26を向い合せに配置する。各々のブレード24に流体が流入する角度は、ブレードの翼形において設定されている角度となる。したがって、水噴射ノズル26は翼形に応じて設定された角度に固定し、流量で回転数を調整する。水供給ポンプ27は水噴射ノズル26の配置にしたがい水の噴射によりプロペラ水車を回転させる動翼の外殻29の外側に配置する。   In FIG. 2, the water injection method includes a blade 24 constituting a propeller turbine, a blade section 25, a water injection nozzle 26, a water supply pump 27, a rotating shaft 28 of the propeller turbine, and a rotor blade for rotating the propeller turbine by water injection. An outer shell 29 is used. The propeller turbine is composed of a plurality of blades 24 having the same shape, and each blade cross section 25 is arranged in a spiral shape around the rotation shaft 28 of the propeller turbine. The water injection nozzle 26 corresponds to this arrangement, and a plurality of water injection nozzles 26 are arranged facing each other according to the angle at which the fluid flows into each blade cross section. The angle at which fluid flows into each blade 24 is an angle set in the blade airfoil. Accordingly, the water injection nozzle 26 is fixed at an angle set according to the airfoil, and the rotational speed is adjusted by the flow rate. The water supply pump 27 is arranged outside the outer shell 29 of the moving blade that rotates the propeller turbine by water injection according to the arrangement of the water injection nozzle 26.

以下に本発明の実施の形態にかかる低圧タービンによる水力発電方法のうち浮体構造物への機器類の装着方法について図3を参照しながら説明する。図3は本発明の実施形態にかかる低圧タービンによる水力発電方法のうち浮体構造物への機器装着方法の構成図であり、浮体構造物への第1の動翼、第2の動翼、第3の動翼、発電機などの装着例である。   Hereinafter, a method for mounting devices to a floating structure in a hydroelectric power generation method using a low-pressure turbine according to an embodiment of the present invention will be described with reference to FIG. FIG. 3 is a configuration diagram of an apparatus mounting method for a floating structure in a hydroelectric power generation method using a low-pressure turbine according to an embodiment of the present invention. The first moving blade, the second moving blade, It is an example of mounting | wearing with 3 rotor blades, a generator, etc.

図3において機器装着方法は浮体構造物1、浮体構造物の水の流路2、第1動翼3、第2動翼9、第3動翼17、発電機23で構成する。浮体構造物1には水の流れ方向に浮体構造物1の中央に発電に必要な水量が通水できる口径をもつ浮体構造物の水の流路2を設置、この浮体構造物の水の流路2に第1動翼3、第2動翼9、第3動翼17、発電機23などの機器類を支持材で固定する。浮体構造物1の吃水位は水の流路2が水中にある吃水位となるよう浮体構造物の浮力を調整することにより、一定方向の水流のある動水域、もしくは水流のない静水域において、発電可能となる。   In FIG. 3, the device mounting method includes a floating structure 1, a water flow path 2 of the floating structure, a first moving blade 3, a second moving blade 9, a third moving blade 17, and a generator 23. The floating structure 1 is provided with a water flow path 2 of the floating structure having a diameter capable of passing the amount of water necessary for power generation in the center of the floating structure 1 in the direction of water flow. Devices such as the first moving blade 3, the second moving blade 9, the third moving blade 17, and the generator 23 are fixed to the path 2 with a support material. By adjusting the buoyancy of the floating structure so that the water flow path 2 becomes the submerged level in the water, the floating level of the floating structure 1 is adjusted in a hydrodynamic area with a water flow in a certain direction or in a still water area without a water flow. Power generation is possible.

以下に本発明の実施の形態にかかる低圧タービンによる水力発電方法のうち浮体構造物の係留方法について図4を参照しながら説明する。図4(a)は本発明の実施形態にかかる低圧タービンによる水力発電方法のうち浮体構造物の係留方法の構成図、(b)は周期的に方向が変わる潮汐流などの水流に対応した複数の浮体構造物の係留方法の構成図であり、円環状の係留具と係留杭による浮体構造物の係留例である。   Hereinafter, a mooring method for a floating structure in a hydroelectric power generation method using a low-pressure turbine according to an embodiment of the present invention will be described with reference to FIG. FIG. 4A is a configuration diagram of a mooring method for a floating structure in a hydroelectric power generation method using a low-pressure turbine according to an embodiment of the present invention, and FIG. 4B is a diagram corresponding to a plurality of water flows such as tidal currents whose directions change periodically. It is a block diagram of the mooring method of the floating structure of this, and is an example of mooring of the floating structure by an annular mooring tool and a mooring pile.

図4において浮体構造物係留方法は浮体構造物1、円環状の係留具30、係留杭31で構成する。浮体構造物1は円環状の係留具30で地中に打ち込んだ係留杭31に繋ぎ、水平方向の移動を留め、上下に移動を可能とする円環状の係留具30で係留杭31に係留、吃水位を一定に保ち常時発電可能にするとともに、周期的に方向が変わる潮汐流などの水流には、その方向に応じた複数の浮体構造物を設け交互に稼動することにより、水流の方向変化に影響されることなく、常時発電可能とする。   In FIG. 4, the floating structure mooring method includes a floating structure 1, an annular mooring tool 30, and a mooring pile 31. The floating structure 1 is connected to a mooring pile 31 driven into the ground by an annular mooring tool 30, and is moored to the mooring pile 31 by an annular mooring tool 30 that keeps moving in the horizontal direction and can move up and down. The water flow direction can be changed constantly by providing multiple floating structures corresponding to the direction of the tidal flow and other water flows that are periodically changed in direction, while keeping the water level constant and allowing constant power generation. It is possible to always generate power without being affected by.

以上に説明において、本実施形態にかかる低圧タービンによる水力発電方法においては、プロペラ水車により、少ない動力量で大きな移動エネルギーをもつ水流をつくり、この移動エネルギーを最終尾のプロペラ水車でトルクに変換、出力を調整し発電機を回転させ発電をおこなうものであり、流動駆体にガスにくらべ密度の高い水を使用することからタービンとしての効率は高く、燃焼に伴う二酸化炭素の発生もなく、機構的に簡素で発電コストの低廉な低圧タービンによる水力発電方法となる。   In the above description, in the hydroelectric power generation method using the low-pressure turbine according to the present embodiment, the propeller turbine creates a water stream with a large amount of kinetic energy with a small amount of power, and converts this kinetic energy into torque with the final propeller turbine. Power is generated by adjusting the output and rotating the generator, and because the fluidized body uses water with a higher density than the gas, the efficiency of the turbine is high, there is no generation of carbon dioxide due to combustion, and the mechanism This is a hydroelectric power generation method using a low-pressure turbine that is simple and low in power generation cost.

次に図5を参照しながら本発明の実施の形態にかかる低圧タービンによる水力発電装置について説明する。本実施形態は先に説明した低圧タービンによる水力発電方法を発電装置として捉えるものである。既に図1を参照して方法の発明について説明した際に、その方法についても実質的には説明したと考えられるが理解を容易にするために再度フロー図を参照しながら説明するものである。   Next, a hydraulic power generation apparatus using a low-pressure turbine according to an embodiment of the present invention will be described with reference to FIG. In the present embodiment, the hydraulic power generation method using the low-pressure turbine described above is regarded as a power generation device. When the method invention has already been described with reference to FIG. 1, it is considered that the method has also been substantially described, but for the sake of easy understanding, the method will be described again with reference to the flowchart.

図5は本発明の実施の形態にかかる低圧タービンによる水力発電装置のフロー図である。図5においてステップS―1は第1動翼のプロペラ水車の先端付近のブレード断面に流体である水が流入する角度に、水を噴射しプロペラ水車を回転させ周辺の水を吸引加速し、水流とする手段である。ステップS―2はステップS―1で加速した水流を第2動翼のプロペラ水車に流入させ回転、その回転方向に第2動翼のプロペラ水車の先端付近のブレード断面に水が流入する角度に、水を噴射しプロペラ水車を回転させ、水をさらに吸引加速することにより、大きな移動エネルギーをもつ水流とする手段である。ステップS―3は移動エネルギーの大きな水流を第3動翼のプロペラ水車に受け、移動エネルギーをトルクに転換し出力を調整する手段である。S―4は転換されたトルクを回転軸で発電機に伝え発電機を回転させ発電する手段である。以上説明した本実施形態にかかる低圧タービンによる水力発電装置も先に説明した低圧タービンによる水力発電方法と同様の効果を得ることができる。   FIG. 5 is a flowchart of the hydroelectric power generation apparatus using the low-pressure turbine according to the embodiment of the present invention. In FIG. 5, step S-1 is to inject water into the blade cross section near the tip of the propeller turbine of the first moving blade, and to rotate the propeller turbine to suck and accelerate the surrounding water. It is means. In step S-2, the water flow accelerated in step S-1 is caused to flow into the propeller turbine of the second moving blade and rotate, and in such a direction that water flows into the blade cross section near the tip of the propeller turbine of the second moving blade. It is a means for generating a water stream having a large movement energy by injecting water, rotating a propeller turbine, and further sucking and accelerating the water. Step S-3 is a means for adjusting the output by receiving the water flow having a large movement energy in the propeller turbine of the third rotor blade and converting the movement energy into torque. S-4 is a means for transmitting the converted torque to the generator through the rotating shaft to generate power by rotating the generator. The hydroelectric power generation apparatus using the low-pressure turbine according to the present embodiment described above can also achieve the same effects as the hydraulic power generation method using the low-pressure turbine described above.

本発明の実施形態に係る低圧タービンによる水力発電方法の構成図である。It is a block diagram of the hydroelectric power generation method by the low pressure turbine which concerns on embodiment of this invention. 本発明の実施形態に係る低圧タービンによる水力発電方法のうちプロペラ水 車への流体吹込方法についての構成図である。It is a block diagram about the fluid injection method to the propeller turbine among the hydroelectric power generation methods by the low pressure turbine which concerns on embodiment of this invention. 本発明の実施形態に係る低圧タービンによる水力発電方法のうち浮体構造物 への機器装着方法の構成図である。It is a block diagram of the apparatus mounting method to a floating structure among the hydroelectric power generation methods by the low pressure turbine which concerns on embodiment of this invention. 本発明の実施形態に係る低圧タービンによる水力発電方法のうち浮体構造物 の係留方法の構成図である。It is a block diagram of the mooring method of a floating structure among the hydroelectric power generation methods by the low pressure turbine which concerns on embodiment of this invention. 本発明の実施形態に係る低圧タービンによる水力発電装置のフロー図である。It is a flow figure of a hydroelectric generator by a low-pressure turbine concerning an embodiment of the present invention.

符号の説明Explanation of symbols

1:浮体構造物
2:浮体構造物の水の流路
3:第1動翼
4:第1動翼の外殻支持材
5:第1動翼のプロペラ水車
6:第1動翼のプロペラ水車支持材
7:第1動翼の外殻
8:第1動翼のプロペラ水車への水噴射ノズル
9:第2動翼
10:第2動翼の外殻支持材
11:第2動翼のプロペラ水車支持材
12:第2動翼の外殻
13:第2動翼のプロペラ水車
14:第2動翼のプロペラ水車への水噴射ノズル
15:円錐形外殻
16:第3動翼の外殻支持材
17:第3動翼
18:第3動翼のプロペラ水車支持材
19:第3動翼の外殻
20:第3動翼のプロペラ水車
21:回転軸
22:発電機支持材
23:発電機
24:プロペラ水車を構成するブレード
25:ブレ−ド断面
26:水噴射ノズル
27:水供給ポンプ
28:プロペラ水車の回転軸
29:水の噴射によりプロペラ水車を回転させる動翼の外殻
30:円環状の係留具
31:係留杭
1: Floating structure 2: Flow path of water in floating structure
3: First blade
4: Outer shell support for first blade 5: Propeller turbine for first blade 6: Propeller turbine for first blade 7: Outer shell of first blade
8: Water injection nozzle to the propeller turbine of the first blade
9: Second blade
10: Outer shell support material for second blade
11: Propeller turbine support for the second blade
12: Outer shell of the second rotor blade
13: Propeller turbine of the second moving blade
14: Water injection nozzle for the propeller turbine of the second rotor blade
15: Conical outer shell
16: Outer shell support material for third rotor blade
17: Third blade
18: Propeller turbine support for third blade
19: Outer shell of third rotor blade
20: Propeller turbine of third blade
21: Rotating shaft
22: Generator support material
23: Generator
24: Blades constituting a propeller turbine
25: Blade cross section
26: Water injection nozzle
27: Water supply pump
28: Rotating shaft of propeller turbine
29: Outer shell of rotor blade that rotates propeller turbine by water injection
30: Annular mooring device
31: Mooring pile

Claims (6)

第1動翼のプロペラ水車を駆動し回転させ、流体である水を吸引加速し水流をつくる工程と、この水流を第1動翼のプロペラ水車の直径より大きな第2動翼のプロペラ水車に流入させ第2動翼のプロペラ水車を回転させるとともに、この回転方向に合わせ第2動翼のプロペラ水車を駆動し回転、水をさらに吸引加速することによって大きな移動エネルギーをもつ水流にする工程と、この大きな移動エネルギーをもつ水流を第2動翼のプロペラ水車より直径の大きな第3動翼のプロペラ水車に受けブレードを回転させ、水の移動エネルギーをトルクに転換し出力を調整、発電機を駆動し発電する工程を有することを特徴とする低圧タービンによる水力発電方法。   Driving and rotating the propeller turbine of the first blade, sucking and accelerating the fluid water to create a water flow, and this water flow into the propeller turbine of the second blade larger than the diameter of the propeller turbine of the first blade And rotating the propeller turbine of the second moving blade, driving and rotating the propeller turbine of the second moving blade in accordance with the rotation direction, and further sucking and accelerating the water to form a water stream having a large movement energy, The water flow with large kinetic energy is received by the propeller turbine of the third rotor blade, which has a larger diameter than the propeller turbine of the second blade, and the blade is rotated to convert the water mobil energy into torque, adjust the output, and drive the generator A hydroelectric power generation method using a low-pressure turbine, comprising a step of generating power. 前記第1動翼のプロペラ水車および第2動翼のプロペラ水車は、プロペラ水車の回転により流体である水がプロペラ水車を構成するブレード断面への流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ水車のブレード先端付近に水を噴射しプロペラ水車を回転させる工程を有することを特徴とする請求項1記載の低圧タービンによる水力発電方法。   The propeller turbine of the first moving blade and the propeller turbine of the second moving blade generate thrust and torque locally at an angle at which water, which is a fluid, flows into a blade cross section constituting the propeller turbine by rotation of the propeller turbine. 2. The hydroelectric power generation method using a low-pressure turbine according to claim 1, further comprising a step of injecting water near a blade tip of a propeller turbine having a high distribution to rotate the propeller turbine. 第1動翼と第2動翼と第3動翼は、第1動翼からの水流の方向に直列に間隔をおき配置、第1動翼のプロペラ水車より直径の大きな第2動翼のプロペラ水車と、第2動翼のプロペラ水車より直径の大きな第3動翼のプロペラ水車と、第3動翼のプロペラ水車に連結した発電機からなることを特徴とする低圧タービンによる水力発電装置。   The first rotor blade, the second rotor blade, and the third rotor blade are arranged at intervals in series in the direction of water flow from the first rotor blade, and the propeller of the second rotor blade having a larger diameter than the propeller turbine of the first rotor blade. A hydroelectric generator using a low-pressure turbine, comprising: a turbine, a propeller turbine of a third rotor blade having a diameter larger than that of a propeller turbine of a second rotor blade, and a generator connected to the propeller turbine of the third rotor blade. 前記第1動翼のプロペラ水車および第2動翼のプロペラ水車は、プロペラ水車の回転により流体である水がプロペラ水車を構成するブレード断面へ流入する角度で、局所的に推力およびトルクの発生分布の高いプロペラ水車先端付近に水を噴射し、プロペラ水車を回転させる手段を設けたことを特徴とする請求項3の記載の低圧タービンによる水力発電装置。   The propeller turbine of the first moving blade and the propeller turbine of the second moving blade are configured to generate thrust and torque locally at an angle at which water, which is fluid, flows into a blade cross section constituting the propeller turbine by rotation of the propeller turbine. 4. A hydroelectric generator using a low-pressure turbine according to claim 3, further comprising means for injecting water near the tip of a propeller turbine having a high height and rotating the propeller turbine. 前記第2動翼と第3動翼の間に、第2動翼の口径と第3動翼の口径に合わせ拡大した円錐形の外殻を設け、この間の水の流路を閉水路とすることを特徴とする請求項3又は請求項4の記載の低圧タービンによる水力発電装置。   A conical outer shell enlarged in accordance with the diameter of the second moving blade and the diameter of the third moving blade is provided between the second moving blade and the third moving blade, and the water flow path therebetween is a closed channel. A hydroelectric power generation apparatus using a low-pressure turbine according to claim 3 or 4, 前記第1動翼、第2動翼、第3動翼、発電機を、浮体構造物の中央に設けた水の流路に配置、これらが水中にある吃水位とした浮体構造物を、上下に移動できる円環状の係留具で係留杭に係留し、水面の水位の上下の変動を円環状の係留具で対応する手段を設けるとともに、潮汐流など周期的に方向が変わる水流には、その方向に応じた複数の浮体構造物を設けることを特徴とする請求項3又は請求項4又は請求項5の記載の低圧タービンによる水力発電装置。   The first moving blade, the second moving blade, the third moving blade, and the generator are arranged in a flow path of water provided in the center of the floating structure, and the floating structure that has a submerged level in water is An annular mooring tool that can be moved to the mooring pile, and a means for responding to fluctuations in the water level on the water surface with an annular mooring tool are provided. 6. A hydroelectric generator using a low-pressure turbine according to claim 3, 4 or 5, wherein a plurality of floating structures according to directions are provided.
JP2007271943A 2007-10-19 2007-10-19 Hydroelectric power generation method using low-pressure turbine and its hydroelectric generator Expired - Fee Related JP5019290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271943A JP5019290B2 (en) 2007-10-19 2007-10-19 Hydroelectric power generation method using low-pressure turbine and its hydroelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271943A JP5019290B2 (en) 2007-10-19 2007-10-19 Hydroelectric power generation method using low-pressure turbine and its hydroelectric generator

Publications (2)

Publication Number Publication Date
JP2008019879A JP2008019879A (en) 2008-01-31
JP5019290B2 true JP5019290B2 (en) 2012-09-05

Family

ID=39075993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271943A Expired - Fee Related JP5019290B2 (en) 2007-10-19 2007-10-19 Hydroelectric power generation method using low-pressure turbine and its hydroelectric generator

Country Status (1)

Country Link
JP (1) JP5019290B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115892B2 (en) * 2010-01-15 2013-01-09 松浦 真ツ江 Method and apparatus for generating electricity by installing a hydro turbine in a connecting pipe through which water circulates
SE536398C2 (en) * 2012-02-21 2013-10-08 Bjoern Kristiansen Turbine with overflow and decreasing cross-sectional area
JP6055266B2 (en) * 2012-10-19 2016-12-27 株式会社東芝 Axial turbine generator
JP5948641B2 (en) * 2014-07-02 2016-07-06 成田 照男 Water wheel device and small-scale generator using the same
JP6592262B2 (en) * 2015-03-24 2019-10-16 Ntn株式会社 Pressure water generator
CN109404200A (en) * 2018-11-29 2019-03-01 河海大学 Intelligent hydraulic turbine system with gold scroll tail water stream flow-increasing device
CN109681369A (en) * 2018-11-29 2019-04-26 河海大学 A kind of flow increasing formula intelligence hydraulic turbine system of the isometrical scroll tail water stream flow-increasing device of band
CN109611264A (en) * 2018-11-29 2019-04-12 河海大学 A kind of flow increasing formula intelligence hydraulic turbine system with involute shape tail water stream flow-increasing device
CN109667699A (en) * 2018-11-29 2019-04-23 河海大学 A kind of tail water stream mode controller for flow increasing formula intelligence hydraulic turbine system
CN109322777A (en) * 2018-11-29 2019-02-12 河海大学 A kind of tail water stream flow-increasing device for flow increasing formula intelligence hydraulic turbine system
CN109681366A (en) * 2018-11-29 2019-04-26 河海大学 Intelligent hydraulic turbine system with chain linear tail water stream flow-increasing device
CN109854439A (en) * 2018-11-29 2019-06-07 河海大学 Flow increasing formula hydraulic turbine system with spiral of Bernoulli shape tail water stream flow-increasing device
CN109854440A (en) * 2018-11-29 2019-06-07 河海大学 A kind of flow increasing formula intelligence hydraulic turbine system with streamlined tail water stream flow-increasing device
CN109667695A (en) * 2018-11-29 2019-04-23 河海大学 Flow increasing formula hydraulic turbine system with suona horn shape tail water stream flow-increasing device
CN111622888B (en) * 2020-05-22 2021-07-02 嘉兴金旅燕科技有限公司 Automatic regulation formula ocean tidal energy utilization equipment
CN111894786B (en) * 2020-08-03 2021-10-15 浙江海洋大学 Reducing type wave energy generator turbine
CN117516947B (en) * 2024-01-02 2024-03-15 西华大学 Visualized test system and method for water pump turbine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677565A (en) * 1979-11-29 1981-06-25 Shizukiyo Kawasaki Ocean current power generating system utilizing sea bottom current
JPS56132376U (en) * 1980-03-10 1981-10-07
JPH07247948A (en) * 1994-03-04 1995-09-26 Masayoshi Shigematsu Infinite power generating device
JP3915960B2 (en) * 1999-11-10 2007-05-16 株式会社エヌ・ティ・ティ・ドコモ北海道 Hydroelectric generator
JP2003184731A (en) * 2001-12-18 2003-07-03 Mitsubishi Heavy Ind Ltd Power generation system using elastic tube pumping
JP4183169B2 (en) * 2002-08-02 2008-11-19 富士電機ホールディングス株式会社 Cylindrical propeller turbine equipment
JP2006307655A (en) * 2005-04-26 2006-11-09 Yasuhisa Choshoin Conical water flow expandable hydraulic power generator
JP2007327483A (en) * 2006-06-06 2007-12-20 Takashi Tamaki Generator
JP2007192236A (en) * 2007-05-14 2007-08-02 Isamu Tojikubo Hydraulic power generation by swirl stream

Also Published As

Publication number Publication date
JP2008019879A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP5019290B2 (en) Hydroelectric power generation method using low-pressure turbine and its hydroelectric generator
US8310072B2 (en) Wind power installation, generator for generation of electrical power from ambient air, and method for generation of electrical power from ambient air in motiion
CN101889128B (en) Turbine assembly
JP5084890B2 (en) Structure of ultra low drop turbine with flow rate and flow control
AU746011B2 (en) Extracting power from moving water
EP2220363B1 (en) A power generator
CN206054171U (en) Modularity bi-directional current energy TRT
US8994203B2 (en) Hydrokinetic energy conversion system
US20100045046A1 (en) Force fluid flow energy harvester
JP2009522481A (en) Apparatus and system for generating regenerative hydraulic energy and renewable hydraulic energy
US9322385B1 (en) Hydro vortex enabled turbine generator
CN101956641B (en) Guiding device for horizontal-shaft tidal generation water turbine
KR20100100876A (en) A power generator
US20150030430A1 (en) Water turbine
CN107237718A (en) A kind of multi-stage impeller tumbler for absorbing tide energy
KR100942372B1 (en) Hydro-electric power apparatus
CN205714570U (en) Tidal current energy generating equipment and kuppe thereof
KR101871703B1 (en) Hydroelectric system
RU2642706C2 (en) The wind-generating tower
KR100924527B1 (en) Vertical type wind turbine device
KR101250330B1 (en) Apparatus for increase Torque of Vertical Axis Turbine System
CN107143456B (en) A kind of power generation mechanism
JP5115892B2 (en) Method and apparatus for generating electricity by installing a hydro turbine in a connecting pipe through which water circulates
WO2017181433A1 (en) Tidal stream generator and stream guiding cover thereof
KR101354588B1 (en) a wind turbine blade with apparatus of air injection for effects of pitch control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees