JP2007154759A - Hybrid type wind power generating device - Google Patents

Hybrid type wind power generating device Download PDF

Info

Publication number
JP2007154759A
JP2007154759A JP2005350805A JP2005350805A JP2007154759A JP 2007154759 A JP2007154759 A JP 2007154759A JP 2005350805 A JP2005350805 A JP 2005350805A JP 2005350805 A JP2005350805 A JP 2005350805A JP 2007154759 A JP2007154759 A JP 2007154759A
Authority
JP
Japan
Prior art keywords
wind
power generator
wind power
exhaust gas
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005350805A
Other languages
Japanese (ja)
Other versions
JP4766317B2 (en
Inventor
Yusaku Iino
祐作 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005350805A priority Critical patent/JP4766317B2/en
Publication of JP2007154759A publication Critical patent/JP2007154759A/en
Application granted granted Critical
Publication of JP4766317B2 publication Critical patent/JP4766317B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid type wind power generating device capable of efficiently recovering both of remaining energy of exhaust gas or discharged air and energy of natural wind with a relatively compact device. <P>SOLUTION: The hybrid type wind power generating device has outlet parts 31, 32 of an exhaust duct and a vertical wind turbine blower impeller part 1 provided closely each other, and generate electric power by rotating the blower impeller part 1 by natural wind and exhaust gas wind discharged from the outlet parts 31, 32 of the exhaust duct. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、工場などから排出される排気ガスに含まれる残留エネルギーと、自然風の風力エネルギーとの両方を利用して発電を行うハイブリッド型風力発電装置に関する。   The present invention relates to a hybrid wind power generator that generates power by using both residual energy contained in exhaust gas discharged from a factory and natural wind energy.

工場には、溶鉱炉、熱処理炉、ボイラーなどの多種類の工業加熱炉が設けられている。この種の工業加熱炉に導入される空気等の加熱には石油系燃料を炉内に吹き込んで燃焼させるのが最も設備コストを低減できるため、一般的となっている。近年の燃料コストの高騰のため、工業加熱炉の排気ガスにより工業加熱炉に導入する空気を間接加熱して予熱したり、溶鉱炉から排出される高温高圧の排気ガスにより排気タービン付き発電機を用いて発電したりする省エネルギー技術が知られている。   The factory is equipped with various types of industrial heating furnaces such as blast furnaces, heat treatment furnaces and boilers. In order to heat air or the like introduced into this type of industrial heating furnace, it is common to inject petroleum-based fuel into the furnace and combust it because the equipment cost can be reduced most. Due to soaring fuel costs in recent years, the air introduced into the industrial heating furnace is indirectly heated with the exhaust gas from the industrial heating furnace and preheated, or the generator with an exhaust turbine is used with the high-temperature and high-pressure exhaust gas discharged from the blast furnace. Energy-saving technology that generates electricity is known.

下記の特許文献1は、主として速度エネルギーであるビル排出空気の残留エネルギーを発電回収する排気空気発電装置を提案している。
特開昭64ー87878号公報
The following Patent Document 1 proposes an exhaust air power generation apparatus that generates and recovers residual energy of building exhaust air that is mainly velocity energy.
JP-A-64-87878

上記特許文献1に記載されるビルの排出空気を利用する発電装置では、排出空気の静圧増大が困難であるため、主としてその速度エネルギーを利用して発電を行うことになるが、そのためには高速の排出空気を大量に翼車に流入させる必要があり、排出空気流量が少ない場合や排出停止時には発電を停止せざるを得なかった。   In the power generation device using the building exhaust air described in Patent Document 1, it is difficult to increase the static pressure of the exhaust air, and thus power generation is performed mainly using the velocity energy. It was necessary to flow a large amount of high-speed exhaust air into the impeller, and power generation had to be stopped when the exhaust air flow rate was low or when the exhaust was stopped.

その他の排気ガスエネルギー回収技術として、排気ガスをタービン内にて断熱膨脹させて発電を行う排気タービン付き発電機が溶鉱炉の炉頂発電として知られている。しかし、一般の工業加熱炉の排気ガスの圧力はほとんど大気圧であるため、既述したように断熱膨脹効果を利用することができず、排気ガスの残留エネルギーを回収するとしてもほとんどその排出速度エネルギーだけしか回収することができず、そのうえ工業加熱炉の操業停止時にはこの発電設備の運転を行うことができず、総コストに反映される運転時間が短縮されるという問題があった。   As another exhaust gas energy recovery technique, a generator with an exhaust turbine that generates power by adiabatically expanding the exhaust gas in a turbine is known as the top power generation of a blast furnace. However, since the pressure of exhaust gas in a general industrial heating furnace is almost atmospheric pressure, the adiabatic expansion effect cannot be used as described above, and even if the residual energy of the exhaust gas is recovered, the exhaust rate is almost the same. Only the energy can be recovered, and furthermore, when the industrial heating furnace is shut down, this power generation facility cannot be operated, and the operation time reflected in the total cost is shortened.

本発明は上記問題点に鑑みなされたものであり、排気ガスや排出空気の残留エネルギーと自然風のエネルギーとの両方を比較的コンパクトな装置で効率よく回収可能なハイブリッド型風力発電装置を提供することをその目的としている。   The present invention has been made in view of the above problems, and provides a hybrid wind power generator capable of efficiently recovering both residual energy of exhaust gas and exhaust air and natural wind energy with a relatively compact device. That is the purpose.

上記課題を解決する本発明のハイブリッド型風力発電装置は、排出空気又は排気ガスを建物外部に導く排気ダクトと、翼車部とこの翼車部に連結された発電機部とを有して前記排気ダクトの出口部に所定間隔を隔てて配設されるとともに前記出口部から外気に排出される前記排気ガスにより駆動されて発電する風力発電機とを備え、前記風力発電機は、自然風により駆動可能な位置に配置されて自然風及び排気ガス風の両方により発電を行うことを特徴としている。   The hybrid wind power generator of the present invention that solves the above-described problems has an exhaust duct that guides exhaust air or exhaust gas to the outside of a building, an impeller part, and a generator part connected to the impeller part. A wind power generator that is arranged at a predetermined interval at an outlet portion of the exhaust duct and that is driven by the exhaust gas discharged from the outlet portion to the outside air to generate electric power. It is arranged in a drivable position and is characterized in that it generates power by both natural wind and exhaust gas wind.

すなわち、この発明のハイブリッド型風力発電装置は、風力発電機の翼車部に高速で排出される建物の排出空気や加熱炉の排気ガスにより駆動されるとともに、この風力発電機の翼車部に自然風を直接導入することにより自然風により翼車部を直接駆動するので、風力発電機を排気ガス(排出空気を含む)のエネルギーと自然風のエネルギーの両方により駆動することができるため、単一の装置で出力増大を図ることができる。   That is, the hybrid wind power generator of the present invention is driven by the exhaust air from the building and the exhaust gas from the heating furnace discharged at a high speed to the impeller portion of the wind power generator, and the impeller portion of the wind power generator. By directly introducing natural wind, the impeller is driven directly by natural wind, so the wind power generator can be driven by both exhaust gas (including exhaust air) energy and natural wind energy. The output can be increased with one device.

更に、風力発電機に自然風を直接導入するため種々風向きが変わる自然風を導入して常に風力発電機の翼車部に導入する自然風案内ダクト構造を必要とせず、構造が簡単であり設置スペースを縮小できる利点もある。   In addition, since natural wind is directly introduced into the wind power generator, it does not require a natural wind guide duct structure that introduces natural wind that changes the direction of various winds and always introduces it into the wind turbine section of the wind power generator. There is also an advantage that the space can be reduced.

好適な態様において、前記風力発電機の翼車部は、縦型風車からなる。縦型風車には特別の自然風案内機構を必要とすることなく水平面内における全方向から自然風を導入することができる。更に、縦型風車の翼車部に対して所定方向から排気ガス風を導入する排気ダクトの出口部は、この翼車部に対して自然風の導入の障害となりにくいため、自然風による風力発電効果がプロペラ型風車に比べて向上する。   In a preferred aspect, the impeller portion of the wind power generator is a vertical windmill. A vertical wind turbine can introduce natural wind from all directions in a horizontal plane without requiring a special natural wind guide mechanism. Furthermore, since the outlet part of the exhaust duct that introduces exhaust gas wind from a predetermined direction to the impeller part of the vertical wind turbine is unlikely to obstruct the introduction of natural wind to this impeller part, wind power generation by natural wind The effect is improved compared to the propeller type windmill.

つまり、本発明のハイブリッド型風力発電装置では、排気ガスの流れ方向は風力発電機の翼車部に対して通常は固定されるにも関わらず自然風の流れ方向は種々変化する。このため、プロペラ型風車においては、翼車部を水平面ないにて自然風の風向に正向させるため、それを水平回動する必要があり、その結果として、プロペラ型風車の水平回転軸が、排気ダクトの出口部に対して好ましくない向きとなるという問題を生じる。また、プロペラ型風車では、その上流側に排気ダクトの出口部を設けることにより自然風をプロペラ型風車に導入するのが阻害されるという問題がある。これに対して公知の種々の縦型風車では、プロペラ型風車のように回動する水平回転軸をもたず、全方向からの自然風により駆動可能であるため、排気ダクトの出口部からの排気ガス風と、自然風との両方をより簡単に利用して発電を行うことができる。   That is, in the hybrid wind power generator of the present invention, the flow direction of the natural wind changes variously although the flow direction of the exhaust gas is normally fixed to the impeller portion of the wind power generator. For this reason, in the propeller type windmill, in order to make the impeller portion face the natural wind direction without a horizontal plane, it is necessary to horizontally rotate it, and as a result, the horizontal rotation axis of the propeller type windmill is There arises a problem that the direction is not preferable with respect to the outlet portion of the exhaust duct. Further, in the propeller type windmill, there is a problem that introduction of the natural wind into the propeller type windmill is hindered by providing the outlet portion of the exhaust duct on the upstream side. On the other hand, various known vertical wind turbines do not have a horizontal rotating shaft that rotates like a propeller type wind turbine, and can be driven by natural wind from all directions. It is possible to generate electric power more easily by using both exhaust gas wind and natural wind.

風力発電機の近くに工場建屋などが存在すると、特別の自然風案内風路を構成しない限り、その風下側では風力発電機への自然風の導入が阻害される場合がある。このため、縦型風車及び排気ダクトの出口部を工場建屋の屋上部に配置することが好適であるが、工場建屋の側方にたとえば所定距離離して配置してもよい。   If a factory building or the like is present near the wind power generator, introduction of natural wind to the wind power generator may be hindered on the leeward side unless a special natural wind guide air path is formed. For this reason, although it is suitable to arrange | position the exit part of a vertical windmill and an exhaust duct in the roof top of a factory building, you may arrange | position at a predetermined distance, for example to the side of a factory building.

好適な態様において、前記排気ダクトの出口部は、前記縦型風車の旋回方向と同方向に前記排気ガス風を導入する位置にセットされる。これにより、縦型風車は排気ガス風と自然風との両方のエネルギーを同時に回収することができる。   In a preferred aspect, the outlet portion of the exhaust duct is set at a position where the exhaust gas wind is introduced in the same direction as the turning direction of the vertical windmill. As a result, the vertical wind turbine can simultaneously recover the energy of both the exhaust gas wind and the natural wind.

好適な態様において、前記排気ダクトの出口部は、前記縦型風車の翼車部の外周部に前記排気ガス風を導入する。このようにすれば、排気ダクトの出口部の流路直角断面積が小さくても効率良く排気ガス風の速度エネルギーを回収することができる。なお、排気ダクトの静圧が正である場合には、排気ダクトの出口部にノズル構造を配置して排気ダクトの出口部から排出される排気ダクトの速度エネルギーを増大することが好適である。   In a preferred aspect, the outlet portion of the exhaust duct introduces the exhaust gas wind into the outer peripheral portion of the impeller portion of the vertical wind turbine. In this way, the velocity energy of the exhaust gas wind can be efficiently recovered even if the cross-sectional area perpendicular to the flow path at the outlet of the exhaust duct is small. In addition, when the static pressure of an exhaust duct is positive, it is suitable to arrange | position a nozzle structure in the exit part of an exhaust duct, and to increase the velocity energy of the exhaust duct discharged | emitted from the exit part of an exhaust duct.

好適な態様において、前記排気ダクトの出口部は、前記縦型風車の回転軸を中心として略回転称位置に複数配置され、前記各出口部は、前記縦型風車の回転方向へ前記排気ガス風を吹き出す。このようにすれば、縦型風車のトルクバランスを改善することができ、縦型風車の耐久性を向上することができるとともに、出力向上を図ることができる。   In a preferred aspect, a plurality of outlet portions of the exhaust duct are arranged at substantially rotational positions around the rotation axis of the vertical windmill, and the outlet portions are arranged in the direction of rotation of the vertical windmill. Blow out. In this way, the torque balance of the vertical wind turbine can be improved, the durability of the vertical wind turbine can be improved, and the output can be improved.

好適な態様において、前記排気ダクトの出口部は、前記縦型風車の回転軸を中心として略線対称位置に少なくとも2個配置され、前記2個の出口部の一方は前記縦型風車の回転方向へ前記排気ガス風を吹き出し、前記2個の出口部の他方は前記縦型風車の回転方向と逆方向へ前記排気ガス風を吹き出す。このようにすれば、縦型風車のトルクバランスを改善することができる。   In a preferred aspect, at least two outlet portions of the exhaust duct are arranged at substantially line symmetrical positions around the rotation axis of the vertical windmill, and one of the two outlet portions is a rotation direction of the vertical windmill. The exhaust gas is blown out, and the other of the two outlets blows out the exhaust gas in the direction opposite to the rotational direction of the vertical wind turbine. In this way, the torque balance of the vertical wind turbine can be improved.

好適な態様において、前記排気ダクトの出口部は、前記縦型風車の翼車部の径方向中央部へ前記翼車部の外周部よりも集中して前記排気ガス風を吹き出す。このようにすれば、縦型風車の翼車部各部のうち、最も大きなトルクを発生する部位に集中的に排気ガス風を流すことができるため流量に制限があっても有効に排気ガス風を利用することができる。   In a preferred aspect, the outlet portion of the exhaust duct blows out the exhaust gas wind to a central portion in the radial direction of the impeller portion of the vertical wind turbine more concentrated than the outer peripheral portion of the impeller portion. In this way, exhaust gas wind can be effectively flowed even if the flow rate is limited because exhaust gas wind can flow intensively to the part that generates the largest torque among the respective parts of the impeller part of the vertical wind turbine. Can be used.

その他、前記排気ダクトの出口部を前記翼車部の回転軸を中心として前記翼車部からみて自然風の風下側に回動させるダクト出口回動機構を設けても良い。縦型風車の翼車部には元々自然風により駆動されない部分をもつため、この部分に排気ガス風を導入することにより、自然風による縦型風車の駆動を阻害することなく、排気ガス風により縦型風車を駆動することができる。更に説明すると、縦型風車では、その翼車旋回領域のうち、自然風により回転する翼車部の旋回方向が自然風の風向きと略同じとなる半分(以下、同一向き翼車旋回領域と称する)が、主として翼車部を旋回させるトルクを発生する。このことは、縦型風車の翼車旋回領域のうち、自然風により回転する翼車部の旋回方向が自然風の風向きと略逆となる半分(逆向き翼車旋回領域)に、自然風の風向きと逆方向に排気ガス風を導入すれば、排気ガス風の方向と翼車旋回方向とが一致するため高効率にて排気ガス風と自然風とを利用できることを意味する。   In addition, a duct outlet turning mechanism for turning the outlet part of the exhaust duct to the leeward side of the natural wind when viewed from the impeller part about the rotation axis of the impeller part may be provided. Since the impeller part of the vertical wind turbine originally has a part that is not driven by natural wind, by introducing exhaust gas wind into this part, the vertical wind turbine drive by natural wind is not hindered by the exhaust gas wind. A vertical windmill can be driven. More specifically, in the vertical wind turbine, in the swirl region of the impeller, the swirl direction of the impeller portion rotated by natural wind is approximately the same as the natural wind direction (hereinafter referred to as the same direction impeller swivel region). ) Mainly generates torque for turning the impeller. This means that in the swirl region of the vertical wind turbine, the swirl direction of the impeller rotated by natural wind is approximately half the direction of the natural wind (reverse impeller swirl region). If the exhaust gas wind is introduced in the direction opposite to the wind direction, the direction of the exhaust gas wind and the direction of rotation of the impeller coincide with each other, which means that the exhaust gas wind and the natural wind can be used with high efficiency.

更に、翼車部から自然風の風上側に排出された前記排気ガスを自然風の風下側に導く案内ダクトを設けても良い。このようにすれば、この案内ダクトの出口側に作用する自然風のエゼクタ効果も利用することができる。すなわち、翼車部から自然風の上流側に出た排気ガス風が自然風により逆向きに圧迫されるのを抑止するために、翼車部から出た排気ガス風をたとえば水平面内にて少なくとも90度方向変換して自然風に向けて排出する排気ガス風案内機構を設けてもよい。   Further, a guide duct may be provided for guiding the exhaust gas discharged from the impeller portion to the windward side of the natural wind to the leeward side of the natural wind. If it does in this way, the ejector effect of the natural wind which acts on the exit side of this guide duct can also be utilized. That is, in order to prevent the exhaust gas wind that has flowed out from the impeller portion to the upstream side of the natural wind from being compressed in the opposite direction by the natural wind, An exhaust gas wind guide mechanism that changes the direction by 90 degrees and exhausts it toward the natural wind may be provided.

以下、本発明の好適な実施形態を図面を参照して具体的に説明する。ただし、本発明は、この実施形態に限定されるものではなく、他の公知構成要素等を用いて本発明を実施しても良いことは当然である。   Preferred embodiments of the present invention will be specifically described below with reference to the drawings. However, the present invention is not limited to this embodiment, and it goes without saying that the present invention may be implemented using other known components.

(実施形態1)
実施形態1のハイブリッド型風力発電装置を図1、図2を参照して説明する。図1はその模式側面図、図2はその装置の模式平面図である。
(Embodiment 1)
A hybrid wind power generator according to Embodiment 1 will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic side view thereof, and FIG. 2 is a schematic plan view of the apparatus.

1は縦型風車型の風力発電機の翼車部、2は工場建屋、3は工場建屋2の屋上に設けられた工業加熱炉(図示せず)の排気ダクトの出口部である。   Reference numeral 1 denotes an impeller part of a vertical wind turbine type wind power generator, 2 denotes a factory building, and 3 denotes an outlet part of an exhaust duct of an industrial heating furnace (not shown) provided on the roof of the factory building 2.

風力発電機の発電機部は工場建屋2の屋根面4下に格納されており、図1では図示省略されている。排気ダクトの出口部3は、図2に示すように、縦型の翼車部1の外周部に排気ガス風を吹き付ける配置となっており、これにより翼車部1は、その回転軸5を中心として回転する。また、自然風も縦型風車を回転させる。重要なことは、排気ダクトの出口部3が翼車部1に近接配置されているにもかかわらず、自然風の風向が変化しても自然風は良好に翼車部1を回転させることである。   The generator part of the wind power generator is stored under the roof surface 4 of the factory building 2 and is not shown in FIG. As shown in FIG. 2, the outlet portion 3 of the exhaust duct is arranged to blow exhaust gas wind on the outer peripheral portion of the vertical impeller portion 1, whereby the impeller portion 1 has its rotating shaft 5. Rotates as the center. Natural wind also rotates the vertical windmill. What is important is that, even though the outlet 3 of the exhaust duct is disposed close to the impeller 1, the natural wind can rotate the impeller 1 even if the wind direction of the natural wind changes. is there.

たとえば、自然風が風向きAをもつ場合を考える。上から見た翼車部1の円形の翼車旋回領域6のうちの半分を占める正向き翼車旋回領域7には、排気ダクトの出口部3により増速された自然風が導入されることになる。すなわち、排気ダクトの出口部3は、翼車部1へ導入される自然風の増速効果とともに、この増速風を主として正向き翼車旋回領域7のみに導入し、この増速風を逆向き翼車旋回領域8には導入しない効果を有する。自然風の風向きBにおいては上記効果は更に顕著であり、自然風が逆向き翼車旋回領域8に流入するのを阻害し、正向き翼車自然風を旋回領域7に案内する。自然風の風向きC、Dにおいては、翼車部1の上流側に排気ダクトの出口部3が位置しないため、上記効果はほとんど期待できないものの、排気ダクトの出口部3が自然風の翼車部1への導入を阻害することもない。   For example, consider a case where the natural wind has a wind direction A. Natural wind accelerated by the outlet 3 of the exhaust duct is introduced into the forward impeller swirl region 7 occupying half of the circular impeller swirl region 6 of the impeller unit 1 as viewed from above. become. That is, the outlet portion 3 of the exhaust duct introduces this accelerated wind mainly only in the forward impeller turning region 7 together with the effect of increasing the natural wind introduced into the impeller portion 1 and reverses this accelerated wind. This has the effect of not being introduced into the direction impeller turning region 8. In the natural wind direction B, the above-described effect is more remarkable. The natural wind is prevented from flowing into the reverse impeller turning region 8 and the normal impeller natural wind is guided to the turning region 7. In the natural wind directions C and D, the outlet 3 of the exhaust duct is not located on the upstream side of the impeller 1, so the above effect can hardly be expected, but the outlet 3 of the exhaust duct is a natural wind impeller. It does not inhibit the introduction to 1.

(実施形態2)
実施形態2のハイブリッド型風力発電装置を図3、図4を参照して説明する。図3はその模式側面図、図4はその装置の模式平面図である。
(Embodiment 2)
The hybrid type wind power generator of Embodiment 2 is demonstrated with reference to FIG. 3, FIG. FIG. 3 is a schematic side view thereof, and FIG. 4 is a schematic plan view of the device.

この実施形態は、図1に示す実施形態において、排気ダクトの出口部3を工場建屋2の屋根面4から上方へ突出させたものであり、排気ガス風は、排気ダクト内を上昇した後、排気ダクトの出口部3内に設けられた風向き変換用の案内翼9により水平方向に方向変換されて縦型風車の翼車部1の外周部に導入される。なお、この実施形態では、排気ダクトの出口部3の先端は翼車部1の外周面に沿いつつ湾曲しており、これにより、排気ダクトの出口部3と翼車部1との間の間隙距離を減らして排気ガス風の速度低下を抑制している。   In this embodiment, in the embodiment shown in FIG. 1, the outlet portion 3 of the exhaust duct protrudes upward from the roof surface 4 of the factory building 2, and the exhaust gas wind rises in the exhaust duct, The direction is changed in the horizontal direction by the guide vanes 9 for changing the wind direction provided in the outlet portion 3 of the exhaust duct and introduced into the outer peripheral portion of the impeller portion 1 of the vertical wind turbine. In this embodiment, the front end of the outlet portion 3 of the exhaust duct is curved along the outer peripheral surface of the impeller portion 1, whereby the gap between the outlet portion 3 of the exhaust duct and the impeller portion 1 is curved. The distance is reduced to suppress the speed reduction of the exhaust gas wind.

(実施形態3)
実施形態3のハイブリッド型風力発電装置を図5、図6を参照して説明する。図5はその模式側面図、図6はその装置の模式平面図である。
(Embodiment 3)
A hybrid wind power generator according to Embodiment 3 will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic side view thereof, and FIG. 6 is a schematic plan view of the device.

この実施形態は、図1に示す実施形態において、排気ダクトの出口部31、32を翼車部1の回転軸5を中心として回転対称位置(180度回転対称位置)に一対設けたものであり、両排気ダクトの出口部3は、それぞれ排気ガス風を翼車部1に向けて排出している。このようにすれば、翼車部1に生じる回転トルクバランスを改善することができ、翼車部1の潤滑部の耐久性を改善することができる。更に、既述した排気ダクトの出口部3による自然風増速効果を更に向上できることも理解されるであろう。なお、出口部を更に多数配置することも可能であり、この場合にもそれらを回転対称配置することが好適である。   In this embodiment, in the embodiment shown in FIG. 1, a pair of outlet portions 31 and 32 of the exhaust duct are provided at rotationally symmetric positions (180-degree rotationally symmetric positions) around the rotation shaft 5 of the impeller 1. The outlet portions 3 of the two exhaust ducts discharge the exhaust gas wind toward the impeller portion 1, respectively. If it does in this way, the rotational torque balance which arises in the impeller part 1 can be improved, and durability of the lubrication part of the impeller part 1 can be improved. Furthermore, it will be understood that the natural wind acceleration effect by the outlet 3 of the exhaust duct described above can be further improved. In addition, it is also possible to arrange a large number of outlet portions, and in this case as well, it is preferable to arrange them in a rotationally symmetrical manner.

(実施形態4)
実施形態4のハイブリッド型風力発電装置を図7、図8を参照して説明する。図7はその模式側面図、図8はその装置の模式平面図である。
(Embodiment 4)
A hybrid wind power generator according to Embodiment 4 will be described with reference to FIGS. FIG. 7 is a schematic side view thereof, and FIG. 8 is a schematic plan view of the device.

この実施形態は、図5、図6に示す実施形態において、排気ダクトの出口部31、32を翼車部1の回転軸5を中心として回転対称位置(180度回転対称位置)に一対設ける代わりに、これら出口部31、32を回転軸5を中心線として線対称位置に配置し、排気ガス風を同一方向へ吹き出すようにしたものである。ただし、排気ガス風は翼車部1の外周部に吹き込まれる。このようにすれば、回転トルクバランスを改善することができる。なお、図7では、出口部31の図示を省略している。   This embodiment is different from the embodiment shown in FIGS. 5 and 6 in that the outlet portions 31 and 32 of the exhaust duct are provided at a rotationally symmetric position (180 degree rotationally symmetric position) around the rotational axis 5 of the impeller 1. In addition, these outlet portions 31 and 32 are arranged in a line-symmetrical position with the rotation axis 5 as the center line, and exhaust gas wind is blown out in the same direction. However, the exhaust gas wind is blown into the outer peripheral portion of the impeller portion 1. In this way, the rotational torque balance can be improved. In addition, illustration of the exit part 31 is abbreviate | omitted in FIG.

(実施形態5)
実施形態5のハイブリッド型風力発電装置を図9、図10を参照して説明する。図9はその模式側面図、図10はその装置の模式平面図である。
この実施形態は、図1、図2に示す実施形態において、翼車部1の外周部に排気ガス風を吹き出すように排気ダクトの出口部3を設ける代わりに、排気ガス風を翼車部1の回転軸5近傍すなわち図10における左右方向中央部に吹き出すように出口部3を配置したものである。このようにすれば、図11に示すように翼車部1の各翼部のうち、トルクを最も大きく稼げる回転位置の翼部沿って排気ガス風を流すことができるため、トルクを向上することができる。なお、図11において、二重同心円で囲まれたリング状の領域は翼車部1の翼部が旋回する領域であり、内側の円の内側はこれら翼部を機械支持する支持部が旋回する領域である。図11において、F1、F2は翼車部1の翼部10に生じる力、T1、T2はこの力F1、F2のうちのトルク成分である。なお、図11における翼部10の形状は一例でありその適宜変更が可能であること、及び翼形変更によりその揚力や抗力が変化することは当然である。
(Embodiment 5)
A hybrid wind power generator according to Embodiment 5 will be described with reference to FIGS. FIG. 9 is a schematic side view thereof, and FIG. 10 is a schematic plan view of the apparatus.
In this embodiment, in the embodiment shown in FIGS. 1 and 2, instead of providing the outlet portion 3 of the exhaust duct so as to blow the exhaust gas wind around the outer peripheral portion of the impeller portion 1, the exhaust gas wind is supplied to the impeller portion 1. The outlet portion 3 is arranged so as to blow out in the vicinity of the rotary shaft 5, that is, in the central portion in the left-right direction in FIG. 10. If it does in this way, as shown in FIG. 11, since an exhaust-gas wind can be flowed along the wing | blade part of the rotation position which can make torque most among each wing | blade part of the impeller part 1, torque is improved. Can do. In FIG. 11, a ring-shaped region surrounded by double concentric circles is a region where the wings of the impeller unit 1 rotate, and inside the inner circle, a support unit that mechanically supports these wings rotates. It is an area. In FIG. 11, F1 and F2 are forces generated in the wing portion 10 of the impeller portion 1, and T1 and T2 are torque components of the forces F1 and F2. It should be noted that the shape of the wing portion 10 in FIG. 11 is an example, and can be changed as appropriate, and naturally the lift force and drag force are changed by changing the airfoil shape.

(変形態様)
なお、上記実施形態では、翼車部1を工場建屋2上に配置したが、工場建屋2の外壁から所定距離離せば、工場建屋2の横に配置してもよい。
(Modification)
In addition, in the said embodiment, although the impeller part 1 was arrange | positioned on the factory building 2, you may arrange | position to the side of the factory building 2 if it separates from the outer wall of the factory building 2 by the predetermined distance.

本発明のハイブリッド型風力発電装置の実施形態1を示す模式側面図である。It is a model side view which shows Embodiment 1 of the hybrid type wind power generator of this invention. 本発明のハイブリッド型風力発電装置の実施形態1を示す模式平面図である。1 is a schematic plan view showing Embodiment 1 of a hybrid wind power generator of the present invention. 本発明のハイブリッド型風力発電装置の実施形態2を示す模式側面図である。It is a model side view which shows Embodiment 2 of the hybrid type wind power generator of this invention. 本発明のハイブリッド型風力発電装置の実施形態2を示す模式平面図である。It is a schematic plan view which shows Embodiment 2 of the hybrid type wind power generator of this invention. 本発明のハイブリッド型風力発電装置の実施形態3を示す模式側面図である。It is a model side view which shows Embodiment 3 of the hybrid type wind power generator of this invention. 本発明のハイブリッド型風力発電装置の実施形態3を示す模式平面図である。It is a schematic plan view which shows Embodiment 3 of the hybrid type wind power generator of this invention. 本発明のハイブリッド型風力発電装置の実施形態4を示す模式側面図である。It is a schematic side view which shows Embodiment 4 of the hybrid type wind power generator of this invention. 本発明のハイブリッド型風力発電装置の実施形態4を示す模式平面図である。It is a schematic plan view which shows Embodiment 4 of the hybrid type wind power generator of this invention. 本発明のハイブリッド型風力発電装置の実施形態5を示す模式側面図である。It is a model side view which shows Embodiment 5 of the hybrid type wind power generator of this invention. 本発明のハイブリッド型風力発電装置の実施形態5を示す模式平面図である。It is a schematic plan view which shows Embodiment 5 of the hybrid type wind power generator of this invention. 実施形態5における翼車部のうち、最も大きなトルクを生じる翼部におけるトルク発生状態を示す説明図である。It is explanatory drawing which shows the torque generation state in the wing | blade part which produces the largest torque among the impeller parts in Embodiment 5. FIG.

符号の説明Explanation of symbols

1 縦型風車型の風力発電機の翼車部
2 工場建屋
3 排気ダクトの出口部
4 工場建屋の屋根面
5 翼車部の回転軸
6 翼車部の翼車旋回領域
7 半円形の正向き翼車旋回領域
8 半円系の逆向き翼車旋回領域
9 風向き変換用の案内翼
31、32 排気ダクトの出口部
1 Vertical windmill-type wind turbine impeller part 2 Factory building 3 Exhaust duct outlet part 4 Factory building roof surface 5 Impeller part rotating shaft 6 Impeller part impeller swirl area 7 Semi-circular forward Impeller swirl region 8 Semi-circular reverse impeller swirl region 9 Wind vane changing guide vanes 31 and 32 Exhaust duct outlet

Claims (7)

排出空気又は排気ガスを建物外部に導く排気ダクトと、
翼車部とこの翼車部に連結された発電機部とを有して前記排気ダクトの出口部に所定間隔を隔てて配設されるとともに前記出口部から外気に排出される前記排気ガスにより駆動されて発電する風力発電機と、
を備え、
前記風力発電機は、
自然風により駆動可能な位置に配置されて自然風及び排気ガス風の両方により発電を行うことを特徴とするハイブリッド型風力発電装置。
An exhaust duct for guiding exhaust air or exhaust gas to the outside of the building;
The exhaust gas having an impeller portion and a generator portion connected to the impeller portion is disposed at a predetermined interval at an outlet portion of the exhaust duct and is exhausted to the outside air from the outlet portion. A wind power generator that is driven to generate electricity;
With
The wind power generator
A hybrid wind power generator, which is arranged at a position where it can be driven by natural wind and generates power by both natural wind and exhaust gas wind.
請求項1記載のハイブリッド型風力発電装置において、
前記風力発電機の翼車部は、
縦型風車からなることを特徴とするハイブリッド型風力発電装置。
The hybrid wind turbine generator according to claim 1,
The impeller part of the wind power generator is
A hybrid wind power generator characterized by comprising a vertical wind turbine.
請求項2記載のハイブリッド型風力発電装置において、
前記排気ダクトの出口部は、
前記縦型風車の旋回方向と同方向に前記排気ガス風を導入する位置にセットされることを特徴とするハイブリッド型風力発電装置。
The hybrid wind power generator according to claim 2,
The outlet of the exhaust duct is
A hybrid type wind power generator, which is set at a position where the exhaust gas wind is introduced in the same direction as the turning direction of the vertical windmill.
請求項3記載のハイブリッド型風力発電装置において、
前記排気ダクトの出口部は、
前記縦型風車の翼車部の外周部に前記翼車部の径方向中央部よりも集中して前記排気ガス風を吹き出すことを特徴とするハイブリッド型風力発電装置。
In the hybrid type wind power generator according to claim 3,
The outlet of the exhaust duct is
The hybrid wind power generator characterized in that the exhaust gas wind is blown out more concentratedly on the outer peripheral portion of the impeller portion of the vertical wind turbine than in the radial center portion of the impeller portion.
請求項3記載のハイブリッド型風力発電装置において、
前記排気ダクトの出口部は、
前記縦型風車の回転軸を中心として略回転称位置に複数配置され、前記各出口部は、前記縦型風車の回転方向へ前記排気ガス風を吹き出すことを特徴とするハイブリッド型風力発電装置。
In the hybrid type wind power generator according to claim 3,
The outlet of the exhaust duct is
A hybrid wind turbine generator, wherein a plurality of the rotary wind turbines are arranged at substantially rotational positions around a rotation axis of the vertical wind turbine, and each of the outlet portions blows out the exhaust gas wind in a rotation direction of the vertical wind turbine.
請求項2記載のハイブリッド型風力発電装置において、
前記排気ダクトの出口部は、
前記縦型風車の回転軸を中心として略線対称位置に少なくとも2個配置され、前記2個の出口部の一方は前記縦型風車の回転方向へ前記排気ガス風を吹き出し、前記2個の出口部の他方は前記縦型風車の回転方向と逆方向へ前記排気ガス風を吹き出すことを特徴とするハイブリッド型風力発電装置。
The hybrid wind power generator according to claim 2,
The outlet of the exhaust duct is
At least two of the two vertical outlets are arranged at substantially line symmetrical positions around the rotation axis of the vertical wind turbine, and one of the two outlets blows the exhaust gas wind in the rotational direction of the vertical wind turbine, and the two outlets The hybrid wind power generator is characterized in that the exhaust gas is blown out in the direction opposite to the rotation direction of the vertical wind turbine at the other of the parts.
請求項2記載のハイブリッド型風力発電装置において、
前記排気ダクトの出口部は、
前記縦型風車の翼車部の径方向中央部へ前記翼車部の外周部よりも集中して前記排気ガス風を吹き出すことを特徴とするハイブリッド型風力発電装置。
The hybrid wind power generator according to claim 2,
The outlet of the exhaust duct is
The hybrid wind power generator characterized in that the exhaust gas wind is blown out more concentratedly than the outer peripheral portion of the impeller portion toward the radial center of the impeller portion of the vertical windmill.
JP2005350805A 2005-12-05 2005-12-05 Hybrid wind power generator Expired - Fee Related JP4766317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350805A JP4766317B2 (en) 2005-12-05 2005-12-05 Hybrid wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350805A JP4766317B2 (en) 2005-12-05 2005-12-05 Hybrid wind power generator

Publications (2)

Publication Number Publication Date
JP2007154759A true JP2007154759A (en) 2007-06-21
JP4766317B2 JP4766317B2 (en) 2011-09-07

Family

ID=38239454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350805A Expired - Fee Related JP4766317B2 (en) 2005-12-05 2005-12-05 Hybrid wind power generator

Country Status (1)

Country Link
JP (1) JP4766317B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103564A2 (en) * 2008-02-22 2009-08-27 New World Energy Enterprises Limited Turbine enhancement system
JP2009203655A (en) * 2008-02-26 2009-09-10 Tomiyama Reinetsu Kogyo:Kk Building
WO2009136413A2 (en) * 2008-05-09 2009-11-12 Sanjiv Choudhary Method for recovery of wind energy and systems thereof
ITBO20110199A1 (en) * 2011-04-14 2012-10-15 Gm Meccanica S R L ENERGY RECOVERY SYSTEM
KR102275991B1 (en) * 2020-12-23 2021-07-13 김태환 An automotive wind farm
KR102335959B1 (en) * 2020-12-23 2021-12-03 김태환 Motorcycle Wind Power Generation System

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336933A (en) * 1990-07-16 1994-08-09 Bru-Mel Corporation Fluid-augmented free-vortex power generating apparatus
JPH0712044A (en) * 1993-06-24 1995-01-17 Kiyoto Furuya Wind power generation device
JP2003314074A (en) * 2002-04-25 2003-11-06 Shin Meiwa Ind Co Ltd Mechanical parking facility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336933A (en) * 1990-07-16 1994-08-09 Bru-Mel Corporation Fluid-augmented free-vortex power generating apparatus
JPH0712044A (en) * 1993-06-24 1995-01-17 Kiyoto Furuya Wind power generation device
JP2003314074A (en) * 2002-04-25 2003-11-06 Shin Meiwa Ind Co Ltd Mechanical parking facility

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103564A2 (en) * 2008-02-22 2009-08-27 New World Energy Enterprises Limited Turbine enhancement system
WO2009103564A3 (en) * 2008-02-22 2010-09-16 New World Energy Enterprises Limited Wind turbine
US20110048019A1 (en) * 2008-02-22 2011-03-03 David Smyth Turbine enhancement system
JP2009203655A (en) * 2008-02-26 2009-09-10 Tomiyama Reinetsu Kogyo:Kk Building
WO2009136413A2 (en) * 2008-05-09 2009-11-12 Sanjiv Choudhary Method for recovery of wind energy and systems thereof
WO2009136413A3 (en) * 2008-05-09 2010-01-07 Sanjiv Choudhary Method for recovery of wind energy and systems thereof
ITBO20110199A1 (en) * 2011-04-14 2012-10-15 Gm Meccanica S R L ENERGY RECOVERY SYSTEM
KR102275991B1 (en) * 2020-12-23 2021-07-13 김태환 An automotive wind farm
KR102335959B1 (en) * 2020-12-23 2021-12-03 김태환 Motorcycle Wind Power Generation System

Also Published As

Publication number Publication date
JP4766317B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5258774B2 (en) Wind power generator, generator for generating power from the atmosphere, and method for generating power from the moving atmosphere
US7683501B2 (en) Energy recovery system including a flow guide apparatus
JP5508008B2 (en) Impact turbine used in bidirectional flow
JP4766317B2 (en) Hybrid wind power generator
JP5289770B2 (en) Omnidirectional wind turbine
US20100064655A1 (en) System and method for managing turbine exhaust gas temperature
US20100028132A2 (en) Wind turbine with mixers and ejectors
US20100310361A1 (en) Wind turbine with two successive propellers
US9932959B2 (en) Shrounded wind turbine configuration with nozzle augmented diffuser
JP2011515613A (en) Wind turbine with mixer and discharger
US20090230691A1 (en) Wind turbine with mixers and ejectors
JP2016525186A (en) Wind power generation tower with gyromill type wind turbine
JP2005069082A (en) Temperature controller of windmill
JP2011169172A (en) Turbine
EP3483395A2 (en) Inter-turbine ducts with flow control mechanisms
JP5397724B2 (en) Power generation method using low pressure turbine and power generation apparatus using low pressure turbine
KR101817229B1 (en) Apparatus for generating by wind power
KR101336280B1 (en) Wind power generator of a wind focus type
KR101396137B1 (en) Wind power generator
RU2642706C2 (en) The wind-generating tower
CN101975145A (en) Solar and wind driven generator
CN102196961A (en) High efficiency turbine
JP2021055671A (en) Wind turbine and method for generating electric power from wind power
JP2016023628A (en) Power generation apparatus and power generation method
JP7293014B2 (en) GAS TURBINE SYSTEM AND MOVING OBJECT WITH THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees