JP2008019295A - Moisture conditioning coating - Google Patents

Moisture conditioning coating Download PDF

Info

Publication number
JP2008019295A
JP2008019295A JP2006189912A JP2006189912A JP2008019295A JP 2008019295 A JP2008019295 A JP 2008019295A JP 2006189912 A JP2006189912 A JP 2006189912A JP 2006189912 A JP2006189912 A JP 2006189912A JP 2008019295 A JP2008019295 A JP 2008019295A
Authority
JP
Japan
Prior art keywords
mass
humidity
parts
trade name
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006189912A
Other languages
Japanese (ja)
Other versions
JP5127021B2 (en
Inventor
Osamu Nakano
修 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokushu Paper Manufacturing Co Ltd
Original Assignee
Tokushu Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokushu Paper Manufacturing Co Ltd filed Critical Tokushu Paper Manufacturing Co Ltd
Priority to JP2006189912A priority Critical patent/JP5127021B2/en
Publication of JP2008019295A publication Critical patent/JP2008019295A/en
Application granted granted Critical
Publication of JP5127021B2 publication Critical patent/JP5127021B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a moisture conditioning coating having excellent performances of adsorbing toxic gases without desorbing the gases and moisture adsorbing and releasing properties and to provide a material for using the coating on the inner surface of a storing cabinet or an exhibition case and maintaining the interior thereof in excellent preservation environments. <P>SOLUTION: The moisture conditioning coating is obtained by adding an adhesive to powder consisting essentially of moisture adsorbing and releasing inorganic powder and gas-adsorbing powder having performances of adsorbing the toxic gases without desorbing the gases and uniformly dispersing the adhesive. The resultant moisture conditioning coating can be used within a constant range of coating weight and air volume ratio to maintain the interior of the storing cabinet or the exhibition case in the excellent preservation environments. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、調湿性塗料に関するものである。詳しくは、美術館・博物館の収蔵庫や展示室および展示ケース等の内装材に使用される、有害ガス吸着性能と調湿性能を具備した調湿性塗料に関するものである。   The present invention relates to a humidity control paint. More specifically, the present invention relates to a humidity control paint having a harmful gas adsorption performance and a humidity control performance, which is used for interior materials such as museum storages, exhibition rooms, and display cases.

建築構造物の内壁面等に適用する調湿性塗料と塗料組成物、およびその工法等に関する従来の技術は、次に示した特許文献1〜5に開示されている。即ち、特許文献1には、特定粒子径の合成樹脂エマルジョンと珪藻土を必須成分とする塗料が開示されており、珪藻土を高比率に含有させることにより吸放湿性能を得ている。また、特許文献2では、合成樹脂エマルジョン、珪藻土、及び高吸水ポリマーを含有する高顔料体積濃度の塗料が開示されており、高比率の珪藻土に対して低比率の高吸水ポリマーを含有させることによって吸放湿性能を発揮させている。しかしながら、これらの両技術とも、珪藻土の吸放湿性を活かしたものであり、特定した有害ガスを積極的に吸着して除去するためのものではなかった。また、特許文献3に開示されている脱臭機能も、本来珪藻土が具備している性能を示したものにすぎない。さらに、特許文献4、5には、吸放湿性合成樹脂微粒子または吸放湿性樹脂エマルジョンを主成分とする吸放湿性塗料等が開示されているが、有害ガスを吸着して除去するためのものではなかった。   Conventional techniques relating to a humidity-controlling paint and paint composition applied to the inner wall surface of a building structure, and the construction method thereof are disclosed in Patent Documents 1 to 5 shown below. That is, Patent Document 1 discloses a paint containing a synthetic resin emulsion having a specific particle size and diatomaceous earth as essential components, and obtaining moisture absorption / release performance by containing diatomaceous earth in a high ratio. Patent Document 2 discloses a paint having a high pigment volume concentration containing a synthetic resin emulsion, diatomaceous earth, and a highly water-absorbing polymer. By containing a high water-absorbing polymer in a low ratio with respect to a high ratio of diatomaceous earth. Exhibits moisture absorption and release performance. However, both of these techniques make use of the hygroscopic properties of diatomaceous earth and are not intended to actively adsorb and remove the specified harmful gases. In addition, the deodorizing function disclosed in Patent Document 3 is merely a performance that is originally provided in diatomaceous earth. Further, Patent Documents 4 and 5 disclose moisture-absorbing / releasing paints mainly composed of moisture-absorbing / releasing synthetic resin fine particles or moisture-releasing / releasing resin emulsions, which are used to adsorb and remove harmful gases. It wasn't.

近年、美術館や博物館等において保存・展示環境を改善し、収蔵品の安全性を高めたいとの認識が一層強まってきているのは周知の事実である。特に新設、若しくは増改築した直後に、打設した新しいコンクリートの躯体や内装材から発生するアンモニアを主体とするアルカリ性物質と放湿される水分によって、収蔵品が変色、変形、変質、劣化してしまうことが大きな問題点になっている。また、収蔵品の収蔵や展示期間中における収蔵品自体からの有害ガスの発生と収蔵扉からの進入による庫内の空気質汚染、展示ケース材料や館内空気流入によるケース内の空気質汚染に対する対策は、漸く着手され始めた段階である。さらに、有害ガスの問題は、保存環境以外にも人に対する生活環境の悪化の問題としても重要視されている。   In recent years, it is a well-known fact that there is an increasing awareness that museums and museums want to improve the preservation and display environment and increase the safety of their collections. In particular, immediately after new construction or expansion and renovation, the stored items are discolored, deformed, altered, or deteriorated by the alkaline substance mainly composed of ammonia and moisture released from the new concrete frame and interior materials. It is a big problem. Measures against storage of stored products and generation of harmful gases from the stored products themselves during the exhibition period and air quality contamination in the cabinet due to entry from the storage door, air quality contamination in the case due to display case material and inflow of air in the hall Is the stage that has begun to begin. Furthermore, the problem of harmful gas is regarded as important as a problem of deterioration of living environment for humans in addition to the preservation environment.

従来、前述したような問題を解決するめに、新設あるいは増改築後の美術館や博物館では、竣工直後の収蔵品の搬入や展示を避け、館内の有害ガス濃度、空気質pH、湿度等が一定のレベル以下になるまで空のまま放置する、いわゆる「枯らし」が行われてきた。つまり、半年から数年にも及ぶコンクリートの乾燥期間を置き、この間に室内の換気・除湿を強制的に行っているのが一般的であった。また、開館後も空調設備に取り付けられた吸着フィルターによって、アンモニア等の有害ガスを除去するという方法が試みられてきた。しかし、工期を延長してまでコンクリートの十分な乾燥期間を確保することは困難であり、また、コンクリートから発生するアルカリ性物質を低濃度に抑えることは難しく根本的な解決には至らず、短期間で保存・展示環境を改善して早期にかつ安全に開館できる方法が求められてきた。   Conventionally, in order to solve the above-mentioned problems, museums and museums that have been newly constructed or expanded or reconstructed should avoid the collection and display of stored items immediately after completion, and the concentration of harmful gases, air quality pH, humidity, etc. in the building should be constant So-called “withering” has been carried out, in which it is left empty until it is below the level. In other words, it was common to put a drying period of concrete from half a year to several years, and forcibly ventilate and dehumidify the room during this period. In addition, after the opening, a method of removing harmful gases such as ammonia by an adsorption filter attached to an air conditioning facility has been tried. However, it is difficult to ensure a sufficient drying period of the concrete until the construction period is extended, and it is difficult to suppress the alkaline substance generated from the concrete to a low concentration. In order to improve the preservation and exhibition environment, there has been a demand for a method that can be opened early and safely.

特許文献6には、コンクリートから発生するアルカリ性物質を遮断するための吸着材を設けた建築構造が提案されている。この方法を採用すれば、短期間で収蔵庫内部のアンモンア濃度を一定のレベル以下に低減することが可能となり、施工後の「枯らし」期間を大幅に短縮でき早期の開館が可能となったが、コンクリートから放湿された水分による湿度を安全の範囲に調節するには不十分であった。   Patent Document 6 proposes a building structure provided with an adsorbent for blocking alkaline substances generated from concrete. By adopting this method, it was possible to reduce the Ammona concentration inside the storage to a certain level or less in a short period of time, and the “withering” period after construction could be greatly shortened, allowing early opening. However, it was insufficient to adjust the humidity due to moisture released from the concrete to a safe range.

一方、収蔵庫内部の湿度を調節するための基材として、古来より調湿性能の高い桐、杉または檜等の木材が使用され、近年に至って不燃性の珪酸カルシウム板、天然の珪藻土やゼオライト板などが使用されるようになった。しかしながら、前記の木材には有害ガス吸着性能は殆ど無く、吸放湿量も少ないことに加え、短時間内における吸放湿速度が遅いことの欠点を有していた。また、後記の珪酸カルシウム板等では幾つかの有害ガス吸着性能は有しているが、温度の上昇と共に一度吸着した有害ガスを再び脱着する危険性があり、確実に有害ガスを除去する材料としては問題を有していた。さらに、吸放湿量は多いが短時間内における吸放湿速度が非常に遅いため、調湿性能の面からの改善が求められていた。   On the other hand, wood such as paulownia, cedar or cocoon has been used as a base material for adjusting the humidity inside the storage since ancient times, and has been used in recent years. A board etc. came to be used. However, the above-mentioned wood has no harmful gas adsorbing performance, has a small amount of moisture absorption and desorption, and has a drawback of a slow moisture absorption and desorption rate within a short time. In addition, the calcium silicate plate described later has some harmful gas adsorption performance, but there is a risk of desorbing the harmful gas once adsorbed as the temperature rises. Had a problem. Furthermore, although the moisture absorption / release amount is large, the moisture absorption / release rate within a short period of time is very slow, and thus there has been a demand for improvement in terms of humidity control performance.

本発明者は、前記の問題点を解決するために、吸放湿量が多く、短時間内における吸放湿速度が速く、かつアンモニアを吸着して脱着しないアンモニア吸着シート(特許文献7)の提案を行った。さらには、収蔵庫や展示室等に、前記アンモニア吸着シートと珪酸カルシウム板とを積層した内装材を施工することにより、室内の有害ガスの除去と適切な湿度調節を満たす性能を得るに至った。   In order to solve the above-mentioned problems, the inventor of an ammonia adsorbing sheet (Patent Document 7) that has a large moisture absorption / release amount, a high moisture absorption / release rate within a short time, and does not adsorb and desorb ammonia. Proposed. Furthermore, by installing interior materials in which the ammonia adsorbing sheets and calcium silicate plates were laminated in storages and exhibition rooms, etc., it was possible to obtain performance that satisfies the removal of harmful gases in the room and appropriate humidity control. .

しかしながら、現時点で実用上幾つかの問題点があることが判明した。即ち、(1)アンモニア吸着シートと珪酸カルシウム板を積層加工する際に生じる傷、汚れの発生とその対策、
(2)積層加工後、建設現場に運搬する際に生じる傷、汚れの発生とその対策、(3)収蔵庫等に内装する際に生じる傷、汚れの発生とその対策、
(4)前記の積層内装材を使用しないで、展示期間中のみ展示ケース内を安全な環境に保つための対策、
(5)経費節減のため前記の積層内装材を使用しないで、有害ガス吸着性能と調湿性能を付与しながら収蔵庫等のリフォームを行う時の対策、
(6)従来の調湿性塗料にはない、請求項8で特定したような有害ガスを吸着し脱着しない機能を付与すること、などの諸問題に対処する必要性が生じたのである。
However, it has been found that there are several practical problems at this time. (1) Scratches and dirt generated when laminating an ammonia adsorbing sheet and a calcium silicate plate and countermeasures thereof,
(2) Scratches and stains that occur when transported to the construction site after lamination processing, and countermeasures, (3) Scratches and stains that occur when interiors are stored in storages, and countermeasures,
(4) Measures to keep the display case in a safe environment only during the exhibition period without using the above laminated interior material,
(5) Measures when renovating storage such as storage while providing harmful gas adsorption performance and humidity control performance without using the above-mentioned laminated interior material for cost saving,
(6) There is a need to deal with various problems such as providing a function of adsorbing and not desorbing harmful gases as specified in claim 8, which is not found in conventional humidity control paints.

特開昭57−151661号JP-A-57-151661 特開昭62−74966号JP-A-62-74966 特開平11−141091号JP-A-11-149101 特開2002−80798号JP 2002-80798 特開2004−307752号JP 2004-307752 A 特許第2897609号Japanese Patent No. 2897609 特開2005−319367号JP 2005-319367 A

本発明は、具体的には前述した1〜5の5項目の問題点を解決し、好ましくは6項目の問題点をも解決し、特定した有害ガスを吸着して脱着しない機能を有する調湿性塗料を提供するものである。また、調湿性能としては、密閉可能な1mの蓋付き鋼製容器の内面に、気積率A/V=1〜6m−1、塗布量0.15〜4.8kg/mの範囲内で調湿性塗料を塗布し、温度22℃、相対湿度60%の雰囲気中で開封したまま容器内の温湿度を一定にしたのち密閉し、密閉容器の外部の温度差を28℃(22→40→22→12→22℃)の範囲で増減変化させ、到達した容器内の各温度における最大に増減した際の平衡湿度と、相対湿度60%との差の合計(平衡湿度増減幅)を測定したとき、前記平衡湿度変動幅を相対湿度で20%以下に調湿できる調湿性塗料を提供するものである。 Specifically, the present invention solves the above-mentioned five problems of 1 to 5, preferably solves the six problems, and has a function of adsorbing the specified harmful gas so as not to desorb. A paint is provided. As the humidity performance, the inner surface of the lid steel container sealable 1 m 3, Kisekiritsu A / V = 1~6m -1, the range of coating amount 0.15~4.8kg / m 3 Apply a humidity-controllable paint inside, keep the container open in an atmosphere with a temperature of 22 ° C and a relative humidity of 60%, keep the temperature and humidity inside the container constant, and then close the container with a temperature difference of 28 ° C (22 → 40 → 22 → 12 → 22 ° C), and the total difference (equilibrium humidity fluctuation range) between the relative humidity and the relative humidity of 60% when the temperature is increased or decreased to the maximum at each temperature in the container reached. The present invention provides a humidity control paint capable of adjusting the equilibrium humidity fluctuation range to 20% or less in relative humidity when measured.

即ち、本発明の請求項1に係る発明は、ガス吸着性粉体5〜40質量部と吸放湿性無機粉体60〜95質量部とを主成分とした粉体100質量部に対して、接着剤を5〜30質量部配合し、塗料濃度を35〜55質量%の範囲に調整したことを特徴とする調湿性塗料である。   That is, the invention according to claim 1 of the present invention is based on 100 parts by mass of a powder mainly composed of 5 to 40 parts by mass of gas adsorbing powder and 60 to 95 parts by mass of hygroscopic inorganic powder. It is a humidity control paint characterized by blending 5 to 30 parts by mass of an adhesive and adjusting the paint concentration to a range of 35 to 55% by mass.

本発明の請求項2に係る発明は、吸放湿性無機粉体が、シリカゲルであることを特徴とする請求項1に記載の調湿性塗料である。   The invention according to claim 2 of the present invention is the humidity-controlling paint according to claim 1, wherein the hygroscopic inorganic powder is silica gel.

本発明の請求項3に係る発明は、ガス吸着性粉体が、疎水性ガス吸着性粉体および/または親水性ガス吸着性粉体から選択された1種または2種以上混合されていることを特徴とする請求項1、または2に記載の調湿性塗料である。   In the invention according to claim 3 of the present invention, the gas adsorbing powder is a mixture of one or more selected from hydrophobic gas adsorbing powder and / or hydrophilic gas adsorbing powder. The humidity-controllable paint according to claim 1 or 2.

本発明の請求項4に係る発明は、疎水性ガス吸着性粉体が、平均粒子径50μm以下の粉末活性炭であることを特徴とする請求項3に記載の調湿性塗料である。   The invention according to claim 4 of the present invention is the humidity-controlling paint according to claim 3, wherein the hydrophobic gas-adsorbing powder is powdered activated carbon having an average particle diameter of 50 μm or less.

本発明の請求項5に係る発明は、親水性ガス吸着性粉体が、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物、若しくは二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物、若しくは消石灰から選択された任意の1種類であることを特徴とする請求項3に記載の調湿性塗料である。   In the invention according to claim 5 of the present invention, the hydrophilic gas-adsorbing powder is a composite of a water-insoluble phosphate of silicon dioxide and titanium and a hydroxide of zinc, or of silicon dioxide, zinc oxide and aluminum oxide. The humidity-controllable paint according to claim 3, wherein the paint is any one selected from a composite or slaked lime.

本発明の請求項6に係る発明は、親水性ガス吸着性粉体が、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物、若しくは二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物、若しくは消石灰から選択された任意の2種類であることを特徴とする請求項3に記載の調湿性塗料である。   In the invention according to claim 6 of the present invention, the hydrophilic gas-adsorbing powder is a composite of a water-insoluble phosphate of silicon dioxide and titanium and a hydroxide of zinc, or of silicon dioxide, zinc oxide and aluminum oxide. The humidity-controllable paint according to claim 3, which is any two types selected from a composite or slaked lime.

Figure 2008019295
本発明の請求項7に係る発明は、親水性ガス吸着性粉体が、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物、若しくは二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物、若しくは消石灰の混合物であることを特徴とする請求項3に記載の調湿性塗料である。
Figure 2008019295
In the invention according to claim 7 of the present invention, the hydrophilic gas-adsorbing powder is a composite of a water-insoluble phosphate of silicon dioxide and titanium and a hydroxide of zinc, or of silicon dioxide, zinc oxide and aluminum oxide. The humidity-controllable paint according to claim 3, which is a composite or a mixture of slaked lime.

本発明の請求項8に係る発明は、有害ガスとして、アンモニア、ホルムアルデヒド、酢酸、硫化水素、二酸化硫黄、二酸化窒素、二酸化炭素を吸着し、脱着しないことが可能な請求項1〜請求項7に記載の調湿性塗料である。   The invention according to claim 8 of the present invention is such that ammonia, formaldehyde, acetic acid, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, carbon dioxide can be adsorbed and not desorbed as harmful gas. It is the humidity control paint described.

本発明の請求項9に係る発明は、密閉可能な1mの蓋付き鋼製容器の内面に、気積率A/V=1〜6m−1、塗布量0.15〜4.8kg/m範囲内で調湿性塗料を塗布し、温度22℃、相対湿度60%の雰囲気中で開封したまま容器内の温湿度を一定にしたのち密閉し、密閉容器の外部の温度差を28℃(22→40→22→12→22℃)の範囲で増減変化させ、到達した容器内の各温度における最大に増減した際の平衡湿度と、相対湿度60%との差の合計(平衡湿度増減幅)を、相対湿度で20%以内に調湿することを可能にすることを特徴とする、請求項1〜請求項8のいずれか1項に記載の調湿性塗料である。 According to the ninth aspect of the present invention, the volume ratio A / V = 1 to 6 m −1 and the coating amount 0.15 to 4.8 kg / m are applied to the inner surface of a 1 m 3 lidded steel container. Apply humidity-controllable paint within 3 ranges, keep the container open at a temperature of 22 ° C and a relative humidity of 60%, and keep the temperature and humidity inside the container constant. 22 → 40 → 22 → 12 → 22 ° C.) The total difference between the equilibrium humidity and the relative humidity of 60% when the temperature is increased or decreased at each temperature in the container reached (the equilibrium humidity fluctuation range) The humidity-controllable paint according to any one of claims 1 to 8, characterized in that the humidity can be adjusted within 20% in relative humidity.

本発明によれば、内装材の傷や汚れ箇所の補修のため、或いは各種の展示ケース材料や壁装材料の表面に塗布するため、有害ガス吸着性能と調湿性能を具備した調湿性塗料の使用によって、前記載の両性能を損なうことなく、望ましい保存・展示環境を提供することができる。   According to the present invention, for repairing scratches and dirt on interior materials, or for applying to the surface of various display case materials and wall covering materials, a humidity control paint having harmful gas adsorption performance and humidity control performance is provided. By using it, it is possible to provide a desirable storage / exhibition environment without impairing both the performances described above.

本発明では、前述した諸問題を解決するために、調湿性能を付与する粉体に加え、有害ガス吸着性能に優れた粉体を見出し、これらを使用して塗料とした。また、内装材として固定され長期的に使用する場合は、吸着した有害ガスを脱着しないものとし、展示ケースとして展示期間中のみ使用する場合は、有害ガスの吸着を重視し特に脱着には拘らないもので塗料化を図った。   In the present invention, in order to solve the above-mentioned problems, in addition to the powder imparting humidity conditioning performance, a powder excellent in harmful gas adsorption performance was found and used as a paint. In addition, when it is fixed as an interior material and used for a long time, the adsorbed harmful gas shall not be desorbed, and when used as an exhibition case only during the exhibition period, the adsorption of the harmful gas is emphasized and it is not particularly concerned with desorption. I tried to paint with things.

本発明者は、優れた有害ガス吸着性能を有する粉体を見出すために、各種の粉体を以下に述べるような2つのグループに分けて検討を行った。また有害ガスは、主として文化財に与える影響の大きいアンモニア、ホルムアルデヒド、酢酸、硫化水素、二酸化硫黄、二酸化窒素、二酸化炭素の7種類を対象とした。そのために、製紙用繊維を主体として製造した坪量60g/mの木材パルプ紙の片面に、各種のガス吸着性粉体100質量部と接着剤15質量部を主体とする塗料を25g/m塗工して、坪量が85g/mの塗工紙を得た。次いでガス吸着性能評価として、各種の塗工紙を10×10cm角に裁断して評価用のサンプルとした。さらにブランクとして前記した坪量60g/mの木材パルプ紙も同じように用意した。これらのサンプルを温度23℃、相対湿度50%の条件下で24時間放置して前処理し、次いでこのサンプルをテドラーバッグに入れて脱気し、既知の濃度に調製した各種のガス2リットルを注入して直ちに検知管(ガステック(株)製造)を使用してその濃度を温度23℃の条件下で測定し、これを初期濃度とした。温度を23℃のまま5時間放置した後で、再度テドラーバッグ内のガス濃度を測定した。その後直ちに、40℃に設定したオーブンに入れ、1時間経過した後テドラーバッグ内のガス濃度を測定し脱着の有無を確認した。各サンプルのガス吸着性能は、初期濃度から残存濃度を差し引きして各塗工紙の吸着量(ppm)とした。各種のガスは、既知濃度として60〜100ppmの範囲に調整し使用した。 In order to find a powder having an excellent harmful gas adsorption performance, the present inventor examined various powders in two groups as described below. In addition, seven types of harmful gases, mainly ammonia, formaldehyde, acetic acid, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, and carbon dioxide, which have a large impact on cultural properties, were targeted. For this purpose, 25 g / m of a paint mainly composed of 100 parts by mass of various gas-adsorbing powders and 15 parts by mass of an adhesive is applied to one side of a wood pulp paper having a basis weight of 60 g / m 2 manufactured mainly using papermaking fibers. Two coatings were performed to obtain a coated paper having a basis weight of 85 g / m 2 . Next, as a gas adsorption performance evaluation, various coated papers were cut into 10 × 10 cm squares to obtain evaluation samples. Further, the above-described wood pulp paper having a basis weight of 60 g / m 2 was prepared in the same manner. These samples are pretreated for 24 hours under conditions of a temperature of 23 ° C. and a relative humidity of 50%, then the samples are put in a Tedlar bag, degassed, and injected with 2 liters of various gases prepared to known concentrations. Then, immediately using a detector tube (manufactured by Gastec Co., Ltd.), the concentration was measured under the condition of a temperature of 23 ° C., and this was taken as the initial concentration. After leaving the temperature at 23 ° C. for 5 hours, the gas concentration in the Tedlar bag was measured again. Immediately after that, it was placed in an oven set at 40 ° C., and after 1 hour, the gas concentration in the Tedlar bag was measured to confirm the presence or absence of desorption. The gas adsorption performance of each sample was determined by subtracting the residual concentration from the initial concentration to obtain the adsorption amount (ppm) of each coated paper. Various gases were adjusted to a known concentration of 60 to 100 ppm and used.

ガス吸着性粉体の第1のグループは疎水性ガス吸着性粉体で、ハイシリカゼオライト(SiO/Alの比が5以上のもので、この比が高い程疎水性を示す)や活性炭等の吸着剤である。活性炭は、その形状から大別すると粒状活性炭と粉末活性炭の2つに分類できる。本発明においては、吸放湿性無機粉体とガス吸着性粉体とを主成分とした粉体に接着剤を添加した塗料を支持体表面に形成させるため、平均粒子径が50μm以下の粉末活性炭を使用することが好ましい。その理由は、これよりも平均粒子径が大きいと粒子の凹凸によって塗膜表面が荒れることと、活性炭の比表面積が小さくなるので有害ガス吸着性能が低下してくる傾向があり好ましくないからである。また、平均粒子径が小さくなるほど比表面積が増大するので有害ガス吸着性能の向上効果としては好ましいが、小さくなるにつれてコストが高くなる傾向にあるので、平均粒子径としては3〜50μmの範囲のものが好ましい。 The first group of gas adsorbing powders are hydrophobic gas adsorbing powders, high silica zeolite (SiO 2 / Al 2 O 3 ratio of 5 or more, the higher this ratio, the more hydrophobic) And adsorbents such as activated carbon. Activated carbon can be roughly classified into two types: granular activated carbon and powdered activated carbon. In the present invention, a powdered activated carbon having an average particle size of 50 μm or less is formed on the support surface by forming a coating material in which an adhesive is added to a powder mainly composed of moisture-absorbing / releasing inorganic powder and gas-adsorbing powder. Is preferably used. The reason is that if the average particle size is larger than this, the surface of the coating film becomes rough due to the unevenness of the particles, and the specific surface area of the activated carbon tends to decrease, so the harmful gas adsorption performance tends to decrease, which is not preferable. . Moreover, since the specific surface area increases as the average particle size decreases, it is preferable as an effect of improving the harmful gas adsorption performance. However, since the cost tends to increase as the average particle size decreases, the average particle size is in the range of 3 to 50 μm. Is preferred.

一般的に活性炭の原料としては木炭、木材、椰子殻、石炭、亜炭、瀝青炭、ピート等が使用される。使用される原料の違いにより、ガス吸着性能に影響を及ぼす平均細孔半径と細孔径分布が大きく異なるので、各種ガスへの吸着性能に差が生じてくるのが特徴である。平均細孔半径のピークが1.0nm付近に集中している椰子殻活性炭は、平均細孔半径が2.0〜3.5nmに分布している木質活性炭より平均細孔半径が遙かに小さいために、キシレン等の揮発性有機化合物(以下、「VOC」という)に対する吸着性能が優れていると言われている。従って本発明で使用する活性炭としては木質活性炭も使用できるが、椰子殻活性炭の方が好ましい。しかしながら、活性炭の吸着機構は分子間引力による物理的吸着が主であるため、脱着する危険性を有することを考慮しておく必要がある。また、特定のガスを吸着し脱着させないことを目的に、前記の粒状若しくは粉末状の活性炭を燐酸や炭酸カリウムなどで化学的に処理したり、銀等の金属類を添着させたりした特殊な機能性活性炭についても、平均粒子径や価格が適正なものであれば本発明に使用することは一向に差し支えない。   Generally, charcoal, wood, coconut shell, coal, lignite, bituminous coal, peat, etc. are used as raw materials for activated carbon. Since the average pore radius and pore size distribution that affect the gas adsorption performance vary greatly depending on the raw materials used, the feature is that the adsorption performance to various gases varies. The coconut shell activated carbon in which the peak of the average pore radius is concentrated in the vicinity of 1.0 nm has a much smaller average pore radius than the wood activated carbon in which the average pore radius is distributed in the range of 2.0 to 3.5 nm. Therefore, it is said that the adsorption performance for volatile organic compounds such as xylene (hereinafter referred to as “VOC”) is excellent. Accordingly, wood activated carbon can be used as the activated carbon used in the present invention, but coconut shell activated carbon is preferred. However, since the adsorption mechanism of activated carbon is mainly physical adsorption by intermolecular attractive force, it must be considered that there is a risk of desorption. In addition, for the purpose of not adsorbing and desorbing a specific gas, special functions such as chemically treating the granular or powdered activated carbon with phosphoric acid or potassium carbonate, or attaching metals such as silver The activated carbon may be used in the present invention as long as the average particle size and price are appropriate.

ガス吸着性粉体の第2のグループは親水性ガス吸着性粉体で、例えば二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物、二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物、シリカゲル、シリカアルミナ質ゲル状粘土、合成ゼオライト、天然ゼオライト、アルミナゲル、消石灰、珪藻土、珪藻頁岩、活性白土等の吸着剤である。これらの吸着剤は親水性であって、水のような極性分子を選択的に吸着するのが特徴であり、本発明で言う吸放湿性無機粉体に属するものが多い。そしてこれらの単独、あるいは2種類以上を併用することができ、それぞれのガス吸着性能を補填するために、前述した疎水性ガス吸着性粉体である活性炭の他、数種類の粉体を併用しても一向に構わない。本発明は、コンクリートや内装材等から発生するアンモニアや酢酸の除去が主目的である。しかし、同時に庫内の亜硫酸ガス等の大気汚染ガスも除去できれば更に有用なものとなる。また、新築した建物において、建材や家具から発散するVOC等の有害ガスも除去できれば、新築やリフォームされた住宅、あるいは保存施設にとって欠くべからざるものとなる。   The second group of gas-adsorbing powders are hydrophilic gas-adsorbing powders, such as silicon dioxide and titanium water-insoluble phosphate and zinc hydroxide composites, silicon dioxide and zinc oxide and aluminum oxide. Adsorbents such as composites, silica gel, silica-alumina gel clay, synthetic zeolite, natural zeolite, alumina gel, slaked lime, diatomaceous earth, diatom shale, activated clay. These adsorbents are hydrophilic and are characterized by selectively adsorbing polar molecules such as water, and many of them belong to the hygroscopic inorganic powder referred to in the present invention. These can be used singly or in combination of two or more. In order to supplement each gas adsorption performance, several types of powders are used in combination with activated carbon which is the hydrophobic gas adsorbing powder described above. It does n’t matter. The main object of the present invention is to remove ammonia and acetic acid generated from concrete and interior materials. However, it will be more useful if air pollutant gases such as sulfurous acid gas in the cabinet can be removed at the same time. In addition, if a harmful gas such as VOC emanating from building materials and furniture can be removed in a newly built building, it will be indispensable for a newly built or renovated house or storage facility.

表1に代表的な各種塗工紙の有害ガスに対する吸着性と脱着性を、以下の評価内容で示した。
◎:初期濃度に対して60%以上のガス吸着性能を示し、40℃に昇温してもガスを脱着(ガス濃度が増加しなかった)しなかったもの
○:初期濃度に対して60%以上のガス吸着性能を示したが、40℃に昇温するとガスを脱着(ガス濃度が増加した)したもの
×:初期濃度に対して60%未満のガス吸着性能しかなかったもの
(表1)

Figure 2008019295
なお、表中の(1)はシリカゲル、(2)は椰子殻活性炭、(3)は二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物、(4)は二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物、(5)は消石灰、(6)は木材パルプ紙を示している。 Table 1 shows the adsorptive and desorbing properties of various coated papers with respect to harmful gases with the following evaluation contents.
A: Gas adsorption performance of 60% or more with respect to the initial concentration, and no gas desorption (gas concentration did not increase) even when the temperature was raised to 40 ° C. ○: 60% with respect to the initial concentration The above gas adsorption performance was shown, but when the temperature was raised to 40 ° C., the gas was desorbed (the gas concentration increased) x: the gas adsorption performance was less than 60% of the initial concentration (Table 1)
Figure 2008019295
In the table, (1) is silica gel, (2) is coconut shell activated carbon, (3) is a composite of silicon dioxide and titanium water-insoluble phosphate and zinc hydroxide, and (4) is silicon dioxide. A composite of zinc oxide and aluminum oxide, (5) shows slaked lime, and (6) shows wood pulp paper.

表1の結果から以下のことがわかった。
シリカゲルは、硫化水素と二酸化炭素以外の有害ガスを吸着するが、昇温によって脱着する危険性がある
椰子殻活性炭は、アンモニア、ホルムアルデヒド、硫化水素、二酸化炭素以外の有害ガスを吸着するが、昇温によって脱着する危険性がある
シリカゲルと椰子殻活性炭の酢酸に対する吸着は、塗工した木材パルプ紙の影響によると考えられる
二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物と二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物は、二酸化炭素以外の有害ガスを吸着し、昇温によって脱着する危険性がない
消石灰は、アンモニア以外の有害ガスを吸着し、昇温によって脱着する危険性がない
From the results in Table 1, the following were found.
Silica gel adsorbs harmful gases other than hydrogen sulfide and carbon dioxide, but coconut shell activated carbon, which can be desorbed due to temperature rise, adsorbs harmful gases other than ammonia, formaldehyde, hydrogen sulfide, and carbon dioxide. Adsorption of silica gel and coconut shell activated carbon, which can be desorbed by temperature, to acetic acid is considered to be due to the effect of coated wood pulp paper. A composite of water-insoluble phosphate and zinc hydroxide of silicon dioxide and titanium The composite of silicon dioxide, zinc oxide and aluminum oxide adsorbs harmful gases other than carbon dioxide, and there is no risk of desorption due to temperature rise. Slaked lime adsorbs harmful gases other than ammonia and desorbs due to temperature rise. No danger

本発明者は、以上の検討結果から、親水性ガス吸着性粉体の内、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物、二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物、消石灰が有害ガス吸着性に優れ、且つ脱着試験により一度吸着した有害ガスを脱着しない粉体であることを見出し、これらを吸放湿性無機粉体と混合し、接着剤を加え塗料として調製することを目指したのである。   From the above examination results, the present inventor has found that, among the hydrophilic gas-adsorbing powders, a composite of silicon dioxide and titanium water-insoluble phosphate and zinc hydroxide, silicon dioxide and zinc oxide, and aluminum oxide. It is found that composites and slaked lime are powders that are excellent in harmful gas adsorption and do not desorb the harmful gas once adsorbed by the desorption test, mix these with moisture absorbing / releasing inorganic powder, add adhesive, and paint It aimed to be prepared.

二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物と二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物は、「セブントールN」と「ミズカナイトHP」の商品名で水澤化学工業(株)から市販されている。これらの親水性ガス吸着性粉体は、本発明が提案する全ての有害ガスに対して吸着性能を有している訳ではないので、併用する方が除去対象とする有害ガスが増えるので好ましい。   A composite of water-insoluble phosphate of silicon dioxide and titanium and a hydroxide of zinc and a composite of silicon dioxide, zinc oxide and aluminum oxide are named Mizusawa Chemical Industries under the trade names “Seventhol N” and “Mizukanite HP”. It is commercially available from Co., Ltd. Since these hydrophilic gas adsorbing powders do not have adsorption performance for all harmful gases proposed by the present invention, it is preferable to use them together because the harmful gases to be removed increase.

前記した親水性ガス吸着性粉体が、温度が上昇しても一度吸着した有害ガスを脱着しなかった理由は、これらの吸着剤が多孔質で比表面積が大きいことによる物理的なガス吸着だけでなく、以下に示すような化学反応に基づく化学吸着を主体としているからと考える。   The reason why the above-mentioned hydrophilic gas adsorbent powder did not desorb the harmful gas once adsorbed even when the temperature rose was only because of the physical gas adsorption because these adsorbents are porous and have a large specific surface area. Rather, it is thought that the main is chemisorption based on the chemical reaction shown below.

二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物によるアンモニアの吸着機構は、吸着剤の表面に存在する活性水酸基とアンモニアとの化学反応に基づくものであり、この反応は不可逆反応であるためアンモニアは脱着しないと考える。反応機構は次式の通りである。
(1) M(四価金属)−OH+NHOH→M−O・NH+H
また、硫化水素もアンモニア同様化学吸着で固体化され、酢酸は水素結合により吸着するため、両者とも脱着することはないと考える。
The mechanism of adsorption of ammonia by a complex of silicon dioxide and titanium water-insoluble phosphate and zinc hydroxide is based on a chemical reaction between the active hydroxyl group present on the surface of the adsorbent and ammonia. It is thought that ammonia does not desorb because it is an irreversible reaction. The reaction mechanism is as follows.
(1) M (tetravalent metal) —OH + NH 4 OH → MO—NH 4 + H 2 O
In addition, hydrogen sulfide is solidified by chemical adsorption like ammonia, and acetic acid is adsorbed by hydrogen bonds.

次に、二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物によるアンモニアの吸着機構は、二酸化珪素(固体酸)による中和反応と酸化亜鉛による配位子交換反応の2つに分けることができ、この反応は不可逆反応であるためアンモニアは脱着しないと考える。アンモニアに対する中和反応は次式の通りである。
(1) NH+HO+−SiO(−)−→NH (+)SiO(−)+OH(−)
また配位子交換反応による吸着は、硫化水素、酢酸のような酸性ガスと酸化亜鉛成分とが次のような化学反応によるものと考えられる。
(2) HS+−ZnO−→ZnS+H
(3) 2CHCOOH+−ZnO−→Zn(OCOCH+H
Next, the adsorption mechanism of ammonia by the composite of silicon dioxide, zinc oxide and aluminum oxide can be divided into two reactions, neutralization reaction with silicon dioxide (solid acid) and ligand exchange reaction with zinc oxide. Since the reaction is an irreversible reaction, it is considered that ammonia does not desorb. The neutralization reaction for ammonia is as follows:
(1) NH 3 + H 2 O + —SiO (−) − → NH 4 (+) SiO (−) + OH (−)
Adsorption by a ligand exchange reaction is considered to be caused by the following chemical reaction between an acidic gas such as hydrogen sulfide and acetic acid and a zinc oxide component.
(2) H 2 S + —ZnO— → ZnS + H 2 O
(3) 2CH 3 COOH + —ZnO— → Zn (OCOCH 3 ) 2 + H 2 O

また、消石灰による有害ガスとの反応は不可逆反応で次式の通りであるため、吸着した有害ガスは脱着しないと考える。
硫化水素(HS)は、消石灰(水酸化カルシウム)と反応して無臭の硫化物になる。
(1) Ca(OH)+HS→CaS+2H
ホルムアルデヒド(HCHO)は、消石灰と反応して無害なギ酸カルシウム(Ca(HCOO))になる。
(2) Ca(OH)+2HCHO→Ca(COOH)+2H
炭酸ガス(CO)は、消石灰に吸収され炭酸カルシウムになる。
(3) Ca(OH)+CO→CaCO+H
以上の他、消石灰は吸放湿性と防黴性も有るため、本発明には極めて有用な粉体となる。
Moreover, since the reaction with toxic gas due to slaked lime is an irreversible reaction and is represented by the following formula, it is considered that the adsorbed toxic gas does not desorb.
Hydrogen sulfide (H 2 S) reacts with slaked lime (calcium hydroxide) to become odorless sulfide.
(1) Ca (OH) 2 + H 2 S → CaS + 2H 2 O
Formaldehyde (HCHO) reacts with slaked lime to become harmless calcium formate (Ca (HCOO) 2 ).
(2) Ca (OH) 2 + 2HCHO → Ca (COOH) 2 + 2H 2
Carbon dioxide (CO 2 ) is absorbed by slaked lime and becomes calcium carbonate.
(3) Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O
In addition to the above, slaked lime has moisture absorption and desorption properties and antifungal properties, so that it is an extremely useful powder for the present invention.

本発明では、ガス吸着性粉体と吸放湿性無機粉体とを主成分とした粉体100質量部に
対して、前述した疎水性ガス吸着性粉体と親水性ガス吸着性粉体から選択された1種また
は2種以上の粉体を5〜40質量部配合する。5質量部以下だとガス吸着量が少なくなっ
て好ましくなく、40質量部以上だとガス吸着量がほぼ一定になるのでこれ以上の使用は
不要である。
In the present invention, the hydrophobic gas-adsorbing powder and the hydrophilic gas-adsorbing powder described above are selected with respect to 100 parts by mass of the powder mainly composed of the gas-adsorbing powder and the hygroscopic inorganic powder. One to two or more kinds of powders are blended in an amount of 5 to 40 parts by mass. If the amount is 5 parts by mass or less, the amount of gas adsorption decreases, which is not preferable. If the amount is 40 parts by mass or more, the amount of gas adsorption becomes almost constant.

本発明では、調湿性能を付与するために吸放湿性無機粉体を使用する。吸放湿性無機粉
体とは、珪藻土、珪藻頁岩、活性白土、ゼオライト、シリカゲル、アルミナ、シリカアル
ミナゲル、アルミナゲル、石灰、アロフェン、イモゴライト、軽石、シラスバルーン、パ
ーライト、バーミキュライト、ベントナイト、セピオライト、アルミノ珪酸マグネシウム
等の天然および合成の無機粉体である。また、無機質ではないが架橋アクリロニトリル系
重合体微粒子であって、残存ニトリル基の1mmol/g以上が塩型カルボキシル基に変
換された吸放湿性合成樹脂微粒子等も使用できる。無機粉体の吸放湿性能には、低湿度領
域で優れた吸放湿性を示すものと高湿度領域で優れた吸放湿性を示すものがある。また、
目的とする調湿条件に適応した調湿性能を付与する必要があるので、前記した無機粉体を
数種類併用することが望ましい。係る目的を達成するためには任意の着色塗料に調製でき
る白色粉体が好ましい。白色粉体の中ではシリカゲルが最適であり、低湿度領域で優れた
吸放湿性を示す平均細孔直径2nmのシリカゲルA型と、高湿度領域で優れた吸放湿性を
示す平均細孔直径8nmのシリカゲルB型を適宜併用することが特に好ましい。吸放湿性
無機粉体の使用量は、塗料中に使用される粉体100質量部の内、60〜95質量部を混
合することが好ましい。60質量部以下だと調湿性能が低下するため好ましくなく、95
質量部以上だとガス吸着性粉体の使用量が少なくなるので好ましくない。
In the present invention, moisture-absorbing / releasing inorganic powder is used to impart humidity control performance. Hygroscopic inorganic powder means diatomaceous earth, diatom shale, activated clay, zeolite, silica gel, alumina, silica alumina gel, alumina gel, lime, allophane, imogolite, pumice, shirasu balloon, perlite, vermiculite, bentonite, sepiolite, alumino Natural and synthetic inorganic powders such as magnesium silicate. Further, although not inorganic, crosslinked acrylonitrile-based polymer fine particles, such as hygroscopic synthetic resin fine particles in which 1 mmol / g or more of residual nitrile groups are converted into salt-type carboxyl groups, can be used. As the moisture absorption / release performance of the inorganic powder, there are those exhibiting excellent moisture absorption / release in a low humidity region and those exhibiting excellent moisture absorption / release in a high humidity region. Also,
Since it is necessary to provide humidity control performance adapted to the target humidity control conditions, it is desirable to use several kinds of the above-mentioned inorganic powders in combination. In order to achieve the object, a white powder that can be prepared into any colored paint is preferred. Among the white powders, silica gel is most suitable, silica gel A type having an average pore diameter of 2 nm showing excellent moisture absorption / release in the low humidity region, and average pore diameter of 8 nm showing excellent moisture absorption / release in the high humidity region. It is particularly preferred to use silica gel type B as appropriate. The amount of the hygroscopic inorganic powder used is preferably 60 to 95 parts by mass of 100 parts by mass of the powder used in the paint. If it is 60 parts by mass or less, the humidity control performance is lowered, which is not preferable.
If it is more than part by mass, the amount of the gas adsorbing powder used is reduced, which is not preferable.

前述した吸放湿性無機粉体は親水性ガス吸着性粉体に属するものも多く、種々の有害ガ
スを吸着する性質を有している。しかしながら、その吸着機構は主に物理的な吸着である
ため、温度の上昇と共に一度吸着した有害ガスを再び脱着する危険性はあるが、展示ケー
スとして展示期間中のみ使用する場合は、有害ガスの吸着を重視し特に脱着には拘らない
塗料材料として極めて有用である。本発明が特定した7種類の有害ガス以外には、アセト
アルデヒド、キシレン、オゾン、トルエン、エチルベンゼン、スチレン、トリメチルアミ
ン、n−吉草酸、メチルメルカプタン、酸化エチレン、酸化プロピレン、ヨウ化メチル、
塩素ガスなどが挙げられるが、これらの有害ガスを吸着するものは使用できる。
Many of the moisture-absorbing / releasing inorganic powders described above belong to hydrophilic gas-adsorbing powders and have a property of adsorbing various harmful gases. However, since the adsorption mechanism is mainly physical adsorption, there is a risk of desorbing once adsorbed harmful gas as the temperature rises. It is extremely useful as a coating material that emphasizes adsorption and is not particularly concerned with desorption. In addition to the seven types of harmful gases specified by the present invention, acetaldehyde, xylene, ozone, toluene, ethylbenzene, styrene, trimethylamine, n-valeric acid, methyl mercaptan, ethylene oxide, propylene oxide, methyl iodide,
Although chlorine gas etc. are mentioned, what adsorbs these harmful gases can be used.

本発明は、前述したガス吸着性粉体と吸放湿性無機粉体のほか、接着剤を使用する。ま
た、本発明の効果を妨げない範囲で、体質顔料、無機充填材、亜麻仁油などの油、スサな
どの繊維、光触媒活性を有する無機酸化物、顔料、顔料分散剤、湿潤剤、消泡剤、凍結融
解安定剤、皮膜形成助剤、レオロジー調整剤、pH調整剤、イオン交換樹脂、界面活性剤、
可塑剤、減水剤、防腐剤、抗菌剤、流動化剤、防水剤、凝結剤又は凝結促進剤等を配合す
ることもできる。以下に、主な使用材料について述べる。
In the present invention, an adhesive is used in addition to the aforementioned gas adsorbing powder and moisture absorbing / releasing inorganic powder. Further, extender pigments, inorganic fillers, oils such as linseed oil, fibers such as soot, inorganic oxides having a photocatalytic activity, pigments, pigment dispersants, wetting agents, antifoaming agents, as long as the effects of the present invention are not hindered. , Freeze-thaw stabilizer, film formation aid, rheology adjuster, pH adjuster, ion exchange resin, surfactant,
A plasticizer, a water reducing agent, an antiseptic, an antibacterial agent, a fluidizing agent, a waterproofing agent, a coagulant, a coagulation accelerator, and the like can be blended. The main materials used are described below.

本発明で使用する接着剤は、スチレン・ブタジエン系ラテックス、アクリロニトリル・
ブタジエン系ラテックス、酢酸ビニル樹脂エマルジョン、エチレン酢酸ビニル樹脂エマル
ジョン、アクリルエマルジョン、塩化ビニルエマルジヨン、塩化ビニリデンエマルジョン、
およびこれらの共重合エマルジョン等、カゼイン、澱粉、PVA等々を適宜組み合わせて
使用する。また、前記載の吸放湿性合成樹脂微粒子のエマルジョンに接着剤を併用して使
用することもできる。接着剤の使用量は、吸放湿性無機粉体とガス吸着性粉体とを主成分
とした粉体100質量部に対して、5〜30質量部配合することが好ましい。5質量部以
下だと塗料の塗膜強度が弱くなり、30質量部以上だと有害ガス吸着量が低下するので好
ましくない。また、塗料濃度は35〜55質量%の範囲に調整することが好ましい。35
質量%以下だと塗料粘度が低くなり一回の塗布で一定以上の塗布量を得るのが困難となり、
55質量%以上だと吸放湿性無機粉体の保水量が多いため高濃度の塗料化が困難になるの
で好ましくない。
Adhesives used in the present invention are styrene / butadiene latex, acrylonitrile /
Butadiene latex, vinyl acetate resin emulsion, ethylene vinyl acetate resin emulsion, acrylic emulsion, vinyl chloride emulsion, vinylidene chloride emulsion,
These copolymer emulsions, casein, starch, PVA and the like are used in appropriate combination. In addition, an adhesive can be used in combination with the emulsion of hygroscopic synthetic resin fine particles described above. The amount of the adhesive used is preferably 5 to 30 parts by mass with respect to 100 parts by mass of the powder mainly composed of moisture absorbing / releasing inorganic powder and gas adsorbing powder. If it is 5 parts by mass or less, the coating film strength of the paint becomes weak, and if it is 30 parts by mass or more, the harmful gas adsorption amount decreases, which is not preferable. Moreover, it is preferable to adjust the coating-material density | concentration in the range of 35-55 mass%. 35
If it is less than mass%, the viscosity of the paint will be low and it will be difficult to obtain a certain amount of coating in a single application.
If it is 55% by mass or more, the moisture content of the moisture-absorbing / releasing inorganic powder is large, and it becomes difficult to make a high-concentration paint, which is not preferable.

本発明で使用する無機質成分は、カオリン、クレー、タルク、炭酸カルシウム(軽質お
よび重質)、水酸化アルミニウム、水酸化カルシウム、硫酸バリウム、ホワイトカーボン、
シリカ等の体質顔料;珪砂、寒水砂、パーライト,バーミキュライト,シラス球及び汚泥
焼成骨材といった再生骨材等の無機充填材;酸化チタン(アナターゼ形)、酸化ルビジウ
ム、酸化コバルト、酸化セシウム、酸化クロム、酸化ロジウム、酸化バナジウム、酸化亜
鉛、酸化マンガン、酸化レニウム、酸化第二鉄、三酸化タングステン、酸化ジルコニウム、
酸化スズ、酸化ビスマス、酸化ルテニウム、チタン酸ストロンチウム、酸化モリブデン、
酸化ゲルマニウム、酸化鉛、酸化カドミウム、酸化銅、酸化ニオブ及び酸化タンタル等の
光触媒活性を有する無機酸化物;酸化チタンや亜鉛華等の白色顔料;黒色酸化鉄(鉄黒)、
べんがら(赤色酸化鉄)、黄色酸化鉄(黄鉄)等の酸化鉄や群青等の酸化金属からなる着
色顔料;等を配合して使用できる。
The inorganic components used in the present invention are kaolin, clay, talc, calcium carbonate (light and heavy), aluminum hydroxide, calcium hydroxide, barium sulfate, white carbon,
Body pigments such as silica; inorganic fillers such as reclaimed aggregates such as silica sand, cold water sand, perlite, vermiculite, shirasu sphere and sludge calcined aggregate; titanium oxide (anatase type), rubidium oxide, cobalt oxide, cesium oxide, chromium oxide , Rhodium oxide, vanadium oxide, zinc oxide, manganese oxide, rhenium oxide, ferric oxide, tungsten trioxide, zirconium oxide,
Tin oxide, bismuth oxide, ruthenium oxide, strontium titanate, molybdenum oxide,
Inorganic oxides having photocatalytic activity such as germanium oxide, lead oxide, cadmium oxide, copper oxide, niobium oxide and tantalum oxide; white pigments such as titanium oxide and zinc white; black iron oxide (iron black),
Color pigments made of iron oxides such as red iron oxide (red iron oxide) and yellow iron oxide (yellow iron) and oxide metals such as ultramarine blue;

本発明での顔料分散剤は、ポリアクリル酸ソーダ、アルキルナフタレンスルホン酸ソー
ダのホルマリン縮合物、ポリアクリル酸アンモニウム、低分子量スチレン−マレイン酸ア
ンモン共重合体、ポリオキシエチレンの脂肪酸エステルやアルキルフェノールエーテル、
スルホコハク酸誘導体、ポリエチレンオキサイドとポリプロピレンオキサイドとのブロッ
クポリマー等があり、湿潤剤はグリセリン、ポリエチレングリコール、ソルビトール等を
配合して使用できる。
The pigment dispersant in the present invention includes polyacrylic acid soda, formalin condensate of alkyl naphthalene sulfonic acid soda, ammonium polyacrylate, low molecular weight styrene-ammonium maleate copolymer, polyoxyethylene fatty acid ester and alkylphenol ether,
There are sulfosuccinic acid derivatives, block polymers of polyethylene oxide and polypropylene oxide, etc., and the wetting agent can be used by blending glycerin, polyethylene glycol, sorbitol and the like.

また消泡剤には、通常塗料や塗材および建築用吹き付け材に配合して用いられるものの
中から適宜選択することができ、オクチルアルコール、グリコール誘導体、シクロヘキサ
ン、シリコン、プルロニック系界面活性剤、ポリオキシエチレンアルキルフェニルエーテ
ル等の各種の抑泡剤及び破泡剤を配合して使用できる。
Further, the antifoaming agent can be appropriately selected from those usually used in paints, coating materials, and building spraying materials. Octyl alcohol, glycol derivatives, cyclohexane, silicon, pluronic surfactants, Various foam suppressors and foam breakers such as oxyethylene alkylphenyl ether can be blended and used.

さらに増粘剤には、ポリアクリルアミド、ポリアクリル酸ソーダ、アクリル酸/アクリ
ル酸エステル共重合体、アクリル酸ナトリウム/アクリルアミド共重合体、アクリルアミ
ド/2−アクリロイルアミノ−2−メチルプロパンスルホン酸ナトリウム共重合体、デン
プン/アクリル酸/アクリル酸ナトリウムなどのアクリル系増粘剤;ヒドロキシエチルセ
ルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースな
どのセルロースエーテル系の増粘剤;カルボキシメチルセルロースまたはそのナトリウム
塩;酢酸ビニル/マレイン酸ソーダ共重合体;アルギン酸ソーダ、ポリエチレンオキサイ
ド等の有機系増粘剤、アルミニウムステアレート、ジンクステアレート、ベントナイト、
ケイ酸系増粘剤等の無機系増粘剤、並びに上記有機系増粘剤とベントナイト等の無機系増
粘剤との併用系等、適宜選択して使用することができる。
Further thickeners include polyacrylamide, sodium polyacrylate, acrylic acid / acrylic acid ester copolymer, sodium acrylate / acrylamide copolymer, sodium acrylamide / 2-acryloylamino-2-methylpropanesulfonate Polymers, acrylic thickeners such as starch / acrylic acid / sodium acrylate; cellulose ether thickeners such as hydroxyethylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose; carboxymethylcellulose or its sodium salt; vinyl acetate / maleic acid Soda copolymer; organic thickeners such as sodium alginate, polyethylene oxide, aluminum stearate, zinc stearate, bentonite,
An inorganic thickener such as a silicic acid thickener, and a combined system of the organic thickener and an inorganic thickener such as bentonite can be appropriately selected and used.

本発明による密閉系、あるいは準密閉系の収蔵庫や展示ケースの内部を調湿するための
調湿性能は、収蔵庫の容積(m)に対する調湿性塗料の塗布面積(m)の比率(気積率
A/V)と塗布量(kg/m)の違いによって左右される。気積率とは、密閉系、ある
いは準密閉系の収蔵庫の容積1mあたりに対する塗布面積(m)の比率であり、通常、
−1(m/m)の単位で表され、気積率A/V=6m−1は、立方体の内部6面体に全
て塗布したことを意味する。また本発明では、気積率A/V=1〜6m−1、塗布量を15
0〜800g/mの範囲で提案していることから、実際には0.15〜4.8kg/m
範囲内の塗料固形分質量の使用により湿度調節を行うことになる。塗布量が150g/m
未満だと吸放湿量と有害ガス吸着量が不足するため好ましくなく、800g/m以上だ
と吸放湿量と有害ガス吸着量は十分ではあるがコスト高になるので好ましくない。
The humidity control performance for conditioning the inside of a closed or semi-closed storage or display case according to the present invention is the ratio of the application area (m 2 ) of the humidity control paint to the volume (m 3 ) of the storage. It depends on the difference between (volume ratio A / V) and coating amount (kg / m 3 ). The volume fraction is the ratio of the coating area (m 2 ) to 1 m 3 of the volume of a closed or semi-closed storage,
Expressed in units of m −1 (m 2 / m 3 ), the air volume ratio A / V = 6 m −1 means that all of the cubes were applied to the internal hexahedron. In the present invention, the volume ratio A / V = 1 to 6 m −1 , and the coating amount is 15
Since it is proposed in the range of 0 to 800 g / m 2 , it is actually 0.15 to 4.8 kg / m 3.
Humidity adjustment is performed by using the solid content of paint within the range. Application amount is 150 g / m
If it is less than 2 , the moisture absorption / release amount and the harmful gas adsorption amount are insufficient, which is not preferable. If it is 800 g / m 2 or more, the moisture absorption / release amount and the harmful gas adsorption amount are sufficient, but the cost increases.

図1は、密閉可能な1mの蓋付き鋼製容器の内面に、気積率A/V=0.5〜6m−1
塗料固形分質量の塗布量0.075〜4.8kg/m範囲内で、調湿性塗料を塗布し、
温度22℃、相対湿度60%の雰囲気中で開封したまま容器内の温湿度を一定にしたのち
密閉し、密閉容器の外部の温度差を28℃(22→40→22→12→22℃)の範囲で
増減変化させ、到達した容器内の各温度における最大に増減した平衡湿度と相対湿度6
0%との差の合計(平衡湿度増減幅)を測定したものである。調湿性塗料を全く使用しな
いと相対湿度55%の範囲で平衡湿度が変動するが、塗布量150g/mで6m塗布
(0.9kg/m)すると変動幅が相対湿度で4%、塗布量800g/mで4m以上
塗布(3.2kg/m)すると変動幅が相対湿度で0%となることを示している。
FIG. 1 shows that the air volume ratio A / V = 0.5 to 6 m −1 on the inner surface of a 1 m 3 lidded steel container.
Applying the humidity-controlling paint within the range of the coating amount 0.075 to 4.8 kg / m 3 of the solid content of the paint,
The container is sealed after the temperature and humidity in the container are kept constant in an atmosphere of a temperature of 22 ° C. and a relative humidity of 60%. The temperature difference outside the sealed container is 28 ° C. (22 → 40 → 22 → 12 → 22 ° C.) The equilibrium humidity and relative humidity are increased and decreased to the maximum at each temperature in the reached container.
The total difference from the 0% (equilibrium humidity fluctuation range) was measured. If no humidity control paint is used, the equilibrium humidity varies within the range of 55% relative humidity. However, when the coating amount is 150 g / m 2 and 6 m 2 is applied (0.9 kg / m 3 ), the variation range is 4% relative humidity. When the coating amount is 800 g / m 2 and 4 m 2 or more is applied (3.2 kg / m 3 ), the fluctuation range is 0% in relative humidity.

本発明では、前記平衡湿度変動幅を相対湿度で20%以下に調湿できる調湿性塗料を提
案するものである。図中、(1)は800g/m、(2)は150g/mの調湿性塗料
を塗布した場合である。気積率A/V=1m−1に対して調湿性塗料を800g/m塗布
した場合と、気積率A/V=5.5m−1に対して調湿性塗料を150g/m塗布した場
合には、両者ともほぼ同じ塗料固形分質量(0.8kg/m)を使用したことになり、
ほぼ平衡湿度変動幅は同じになる。また、塗料固形分質量が0.15kg/m以上の塗
布量(気積率で(1)は0.5m−1以上、(2)は1m−1以上)なら、相対湿度で20%
以下に調湿できることを図から読み取ることができる。なお、準密閉系では、気密性、換
気回数、温湿度変動幅、構造物の材質、耐用年数等を考慮して、前記載の密閉系の使用量
を基準に安全率を加算し、調湿効果を確認したうえで使用量を決定することになる。その
調湿効果によって、収蔵庫内部の湿度を調節することが可能となる。また、本発明の湿度
調節方法は、以上に記載された事例に限定されるものではない。
In the present invention, a humidity control paint capable of adjusting the equilibrium humidity fluctuation range to 20% or less in relative humidity is proposed. In the figure, (1) shows a case where 800 g / m 2 and (2) a 150 g / m 2 humidity-controlling paint is applied. And if the Kisekiritsu A / V = Humidity paint against 1 m -1 was 800 g / m 2 coating, Kisekiritsu A / V = Humidity paint 150 g / m 2 coating against 5.5 m -1 In that case, both used the same paint solids mass (0.8 kg / m 3 ),
The equilibrium humidity fluctuation range is almost the same. Also, if the coating solid mass is 0.15 kg / m 3 or more (volume ratio (1) is 0.5 m −1 or more, (2) is 1 m −1 or more), the relative humidity is 20%.
It can be read from the figure that the humidity can be adjusted below. For semi-closed systems, taking into account airtightness, frequency of ventilation, temperature / humidity fluctuation range, structure material, service life, etc., add a safety factor based on the amount of use of the closed system described above, and adjust humidity The amount to be used will be determined after confirming the effect. The humidity inside the storage can be adjusted by the humidity control effect. Moreover, the humidity control method of the present invention is not limited to the examples described above.

[実施例1]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」、富士シリシア化学
(株)製)とシリカゲルB型(商品名「シリカゲルPA−270B」、富士シリシア化学
(株)製)45質量部に、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物
の複合物10質量部(商品名「セブントールN」、水澤化学工業(株)製)、消石灰5質
量部(商品名「カルテックLT」、鈴木工業(株)製)、ルチル型酸化チタン10質量部
(商品名「R−820」、石原産業(株)製)を混合した後、0.5質量部の顔料分散剤
(商品名「アロンT−50」、ポリアクリル酸ソーダ、東亜合成(株)製)を添加した水
100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペ
ラーに移し、接着剤44質量部(商品名「プライマルB−15B」、日本アクリル化学(株)
製、46%)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗
料を調製した。この調湿性塗料の濃度は45質量%、粘度は850Pa・s(25℃、B
型粘度計、No.6ロータで測定)であった。
[Example 1]
30 parts by mass of silica gel A type (trade name “silica gel PA-270A”, manufactured by Fuji Silysia Chemical Co., Ltd.) and silica gel B type (trade name “silica gel PA-270B”, manufactured by Fuji Silysia Chemical Co., Ltd.) 45 parts by mass , 10 parts by mass of a water-insoluble phosphate of silicon dioxide and titanium and a hydroxide of zinc (trade name “Seven Toll N”, manufactured by Mizusawa Chemical Co., Ltd.), 5 parts by mass of slaked lime (trade name “Caltech” LT ", manufactured by Suzuki Kogyo Co., Ltd.), 10 parts by mass of rutile titanium oxide (trade name" R-820 ", manufactured by Ishihara Sangyo Co., Ltd.) and mixed with 0.5 parts by mass of pigment dispersant (product) 100 parts by mass of water to which the name “Aron T-50”, sodium polyacrylate, manufactured by Toa Gosei Co., Ltd.) was added was added to obtain a powder dispersion with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of adhesive (trade name “Primal B-15B”, Nippon Acrylic Chemical Co., Ltd.)
Manufactured, 46%) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity control paint is 45% by mass, and the viscosity is 850 Pa · s (25 ° C., B
Type viscometer, no. Measured with 6 rotors).

[実施例2]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型
(商品名「シリカゲルPA−270B」)45質量部に、二酸化珪素と酸化亜鉛および酸
化アルミニウムの複合物10質量部(商品名「ミズカナイトHP」、水澤化学工業(株)
製)、消石灰5質量部(商品名「カルテックLT」)、ルチル型酸化チタン10質量部(商
品名「R−820」)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−5
0」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この
粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)
と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。
この調湿性塗料の濃度は46質量%、粘度は860Pa・s(25℃、B型粘度計、No.
6ロータで測定)であった。
[Example 2]
30 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and 45 parts by mass of silica gel B type (trade name “silica gel PA-270B”), 10 parts by mass of a composite of silicon dioxide, zinc oxide and aluminum oxide ( Product name "Mizukanite HP", Mizusawa Chemical Co., Ltd.
Product), 5 parts by mass of slaked lime (trade name “Caltech LT”) and 10 parts by mass of rutile titanium oxide (trade name “R-820”), and then 0.5 parts by mass of a pigment dispersant (trade name “ Aaron T-5
0 ") was added and 100 parts by mass of water was added to obtain a powder dispersion with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of adhesive (trade name “Primal B-15B”)
And a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity control paint.
The concentration of the humidity control paint is 46% by mass and the viscosity is 860 Pa · s (25 ° C., B-type viscometer, No.
Measured with 6 rotors).

[実施例3]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型
(商品名「シリカゲルPA−270B」)45質量部に、消石灰10質量部(商品名「カ
ルテックLT」)、ルチル型酸化チタン10質量部(商品名「R−820」)、カオリン
クレー5質量部(商品名「白土一級」、金谷工業(株)製)を混合した後、0.5質量部
の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパー
ジョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部
(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌
しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は44質量%、粘度は83
0Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Example 3]
30 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and 45 parts by mass of silica gel B type (trade name “silica gel PA-270B”), 10 parts by mass of slaked lime (trade name “Caltech LT”), rutile type After mixing 10 parts by mass of titanium oxide (trade name “R-820”) and 5 parts by weight of kaolin clay (trade name “Shirato Grade 1”, manufactured by Kanaya Kogyo Co., Ltd.), 0.5 parts by mass of pigment dispersant ( 100 parts by mass of water added with a trade name “Aron T-50”) was added, and a powder dispersion was obtained with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity control paint is 44% by mass and the viscosity is 83%.
0 Pa · s (measured with a No. 6 rotor at 25 ° C., a B-type viscometer).

[実施例4]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型
(商品名「シリカゲルPA−270B」)45質量部に、二酸化珪素とチタンの水不溶性
リン酸塩および亜鉛の水酸化物の複合物10質量部(商品名「セブントールN」)、消石
灰5質量部(商品名「カルテックLT」)、椰子殻活性炭10質量部(商品名「粉末活性
炭CB」、二村化学工業(株)製)を混合した後、0.5質量部の顔料分散剤(商品名「ア
ロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を
得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−
15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料
を調製した。この調湿性塗料の濃度は45質量%、粘度は870Pa・s(25℃、B型
粘度計、No.6ロータで測定)であった。
[Example 4]
Hydroxide of silicon dioxide and titanium water-insoluble phosphate and zinc into 45 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and silica gel B type (trade name “silica gel PA-270B”) 10 parts by mass of a composite product (trade name “Seven Toll N”), 5 parts by weight of slaked lime (trade name “Caltech LT”), 10 parts by weight of coconut shell activated carbon (trade name “Powdered Activated Carbon CB”, Nimura Chemical Co., Ltd. ), And 100 parts by weight of water to which 0.5 part by weight of a pigment dispersant (trade name “Aron T-50”) was added was added to obtain a powder dispersion with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-
15B ") and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity-controlling paint was 45% by mass, and the viscosity was 870 Pa · s (measured with a B-type viscometer, No. 6 rotor) at 870 Pa · s.

[実施例5]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型
(商品名「シリカゲルPA−270B」)45質量部に、二酸化珪素と酸化亜鉛および酸
化アルミニウムの複合物10質量部(商品名「ミズカナイトHP」)、消石灰5質量部(商
品名「カルテックLT」)、椰子殻活性炭10質量部(商品名「粉末活性炭CB」)を混
合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100
質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに
移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギ
ン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は
44質量%、粘度は855Pa・s(25℃、B型粘度計、No.6ロータで測定)であ
った。
[Example 5]
30 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and 45 parts by mass of silica gel B type (trade name “silica gel PA-270B”), 10 parts by mass of a composite of silicon dioxide, zinc oxide and aluminum oxide ( (Trade name “Mizukanite HP”), 5 parts by mass of slaked lime (trade name “Caltech LT”), 10 parts by mass of coconut shell activated carbon (trade name “powdered activated carbon CB”), 0.5 parts by mass of pigment dispersant (Trade name “Aron T-50”) with added water 100
Part by mass was added, and a powder dispersion was obtained with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity-controlling paint was 44% by mass, and the viscosity was 855 Pa · s (25 ° C., measured with a B-type viscometer, No. 6 rotor).

[実施例6]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型(商品名「シリカゲルPA−270B」)45質量部に、消石灰5質量部(商品名「カルテックLT」)、椰子殻活性炭10質量部(商品名「粉末活性炭CB」)、カオリンクレー10質量部(商品名「白土一級」)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は44質量%、粘度は840Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Example 6]
30 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and 45 parts by mass of silica gel B type (trade name “silica gel PA-270B”), 5 parts by mass of slaked lime (trade name “Caltech LT”), coconut shell After mixing 10 parts by weight of activated carbon (trade name “powdered activated carbon CB”) and 10 parts by weight of kaolin clay (trade name “first grade of white clay”), 0.5 part by weight of pigment dispersant (trade name “Aron T-50”). 100 parts by mass of water added was added to obtain a powder dispersion with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of this humidity control paint was 44% by mass and the viscosity was 840 Pa · s (25 ° C., measured with a B-type viscometer, No. 6 rotor).

[実施例7]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型(商品名「シリカゲルPA−270B」)45質量部に、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物5質量部(商品名「セブントールN」)、二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物5質量部(商品名「ミズカナイトHP」、水澤化学工業(株)製)、消石灰5質量部(商品名「カルテックLT」、鈴木工業(株)製)、ルチル型酸化チタン10質量部(商品名「R−820」、石原産業(株)製)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」、ポリアクリル酸ソーダ、東亜合成(株)製)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」、日本アクリル化学(株)製、46%)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は45質量%、粘度は850Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Example 7]
Hydroxide of silicon dioxide and titanium water-insoluble phosphate and zinc into 45 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and silica gel B type (trade name “silica gel PA-270B”) 5 parts by mass of a composite product (trade name “Seventhol N”), 5 parts by mass of a composite of silicon dioxide, zinc oxide and aluminum oxide (trade name “Mizukanite HP”, manufactured by Mizusawa Chemical Co., Ltd.), slaked lime 5 0.5 parts by mass after mixing 10 parts by mass (trade name “R-820”, manufactured by Ishihara Sangyo Co., Ltd.) Part of the pigment dispersant (trade name “Aron T-50”, sodium polyacrylate, manufactured by Toa Gosei Co., Ltd.) was added to 100 parts by weight of water, and a powder dispersion was obtained using a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of adhesive (trade name “Primal B-15B”, manufactured by Nippon Acrylic Chemical Co., Ltd., 46%) and a thickener (2% by mass sodium alginate solution) were stirred. While adding, a humidity-control paint was prepared. The concentration of the humidity control paint was 45% by mass, and the viscosity was 850 Pa · s (measured with a B type viscometer, No. 6 rotor) at 850 Pa · s.

[実施例8]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型(商品名「シリカゲルPA−270B」)45質量部に、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物5質量部(商品名「セブントールN」)、二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物5質量部(商品名「ミズカナイトHP」、消石灰5質量部(商品名「カルテックLT」)、椰子殻活性炭10質量部(商品名「粉末活性炭CB」、二村化学工業(株)製)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は45質量%、粘度は870Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Example 8]
Hydroxide of silicon dioxide and titanium water-insoluble phosphate and zinc into 45 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and silica gel B type (trade name “silica gel PA-270B”) 5 parts by mass of a composite product (trade name “Seventhol N”), 5 parts by mass of a composite of silicon dioxide, zinc oxide and aluminum oxide (trade name “Mizukanite HP”, 5 parts by mass of slaked lime (trade name “Caltech LT”) ), 10 parts by weight of coconut shell activated carbon (trade name “powdered activated carbon CB”, manufactured by Nimura Chemical Co., Ltd.), and 0.5 parts by weight of pigment dispersant (trade name “Aron T-50”) 100 parts by mass of the added water was added to obtain a powder dispersion with a dispersion mill, which was transferred to an impeller, and 44 parts by mass of adhesive (trade name “Primal B-15B”) and a thickener ( (Mass% sodium alginate solution) was added with stirring to prepare a humidity control paint, the concentration of the humidity control paint being 45% by mass and the viscosity measured at 870 Pa · s (25 ° C., B-type viscometer, No. 6 rotor). )Met.

[比較例1]
ルチル型酸化チタン10質量部(商品名「R−820」)とカオリンクレー90質量部(商品名「白土一級」)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は47質量%、粘度は840Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Comparative Example 1]
After mixing 10 parts by weight of rutile titanium oxide (trade name “R-820”) and 90 parts by weight of kaolin clay (trade name “first grade of white clay”), 0.5 part by weight of pigment dispersant (trade name “Aron T”) −50 ”) was added to 100 parts by mass of water, and a dispersion was obtained with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity control paint was 47% by mass and the viscosity was 840 Pa · s (25 ° C., measured with a B-type viscometer, No. 6 rotor).

[比較例2]
シリカゲルA型20質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型(商品名「シリカゲルPA−270B」)30質量部に、ルチル型酸化チタン10質量部(商品名「R−820」)、カオリンクレー40質量部(商品名「白土一級」)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は47質量%、粘度は860Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Comparative Example 2]
20 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and 30 parts by mass of silica gel B type (trade name “silica gel PA-270B”), 10 parts by mass of rutile titanium oxide (trade name “R-820”) ), 40 parts by weight of kaolin clay (trade name “Shirachi Grade 1”), 100 parts by weight of water to which 0.5 part by weight of a pigment dispersant (trade name “Aron T-50”) is added, and dispersion is added. A powder dispersion was obtained with a mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity control paint was 47% by mass and the viscosity was 860 Pa · s (25 ° C., measured with a B-type viscometer, No. 6 rotor).

[比較例3]
シリカゲルA型36質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型(商品名「シリカゲルPA−270B」)54質量部に、ルチル型酸化チタン10質量部(商品名「R−820」)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は43質量%、粘度は830Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Comparative Example 3]
36 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and 54 parts by mass of silica gel B type (trade name “silica gel PA-270B”), 10 parts by mass of rutile titanium oxide (trade name “R-820”) ) Was added, and 100 parts by mass of water to which 0.5 part by mass of a pigment dispersant (trade name “Aron T-50”) was added was added to obtain a powder dispersion with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity control paint was 43% by mass, and the viscosity was 830 Pa · s (measured with a B type viscometer, No. 6 rotor) at 830 Pa · s.

[比較例4]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型(商品名「シリカゲルPA−270B」)45質量部に、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物10質量部(商品名「セブントールN」)、ルチル型酸化チタン10質量部(商品名「R−820」)、カオリンクレー5質量部(商品名「白土一級」)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は46質量%、粘度は870Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Comparative Example 4]
Hydroxide of silicon dioxide and titanium water-insoluble phosphate and zinc into 45 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and silica gel B type (trade name “silica gel PA-270B”) 10 parts by mass of a composite product (product name “Seventhol N”), 10 parts by mass of rutile titanium oxide (product name “R-820”), and 5 parts by mass of kaolin clay (product name “first grade of white clay”) were mixed. Thereafter, 100 parts by mass of water to which 0.5 part by mass of a pigment dispersant (trade name “Aron T-50”) was added was added to obtain a powder dispersion with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity-controlling paint was 46% by mass, and the viscosity was 870 Pa · s (measured with a B-type viscometer, No. 6 rotor) at 870 Pa · s.

[比較例5]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型(商品名「シリカゲルPA−270B」)45質量部に、二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物10質量部(商品名「ミズカナイトHP」)、ルチル型酸化チタン10質量部(商品名「R−820」)、カオリンクレー5質量部(商品名「白土一級」)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は44質量%、粘度は850Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Comparative Example 5]
30 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and 45 parts by mass of silica gel B type (trade name “silica gel PA-270B”), 10 parts by mass of a composite of silicon dioxide, zinc oxide and aluminum oxide ( (Trade name “Mizukanite HP”), rutile-type titanium oxide 10 parts by mass (trade name “R-820”), kaolin clay 5 parts by mass (trade name “Shirachi grade 1”), 0.5 parts by mass of pigment 100 parts by mass of water to which a dispersant (trade name “Aron T-50”) was added was added to obtain a powder dispersion with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity-controlling paint was 44% by mass, and the viscosity was 850 Pa · s (measured with a B-type viscometer, No. 6 rotor) at 850 Pa · s.

[比較例6]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型(商品名「シリカゲルPA−270B」)45質量部に、椰子殻活性炭10質量部(商品名「粉末活性炭CB」)、カオリンクレー15質量部(商品名「白土一級」)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は43質量%、粘度は850Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Comparative Example 6]
Silica gel type A 30 parts by mass (trade name “silica gel PA-270A”) and silica gel type B (trade name “silica gel PA-270B”) 45 parts by mass, coconut shell activated carbon 10 parts by mass (trade name “powdered activated carbon CB”) After mixing 15 parts by weight of kaolin clay (trade name “Shirachi Grade 1”), 100 parts by weight of water added with 0.5 parts by weight of a pigment dispersant (trade name “Aron T-50”) was added, and the dispersion mill was added. A powder dispersion was obtained. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity-controlling paint was 43% by mass, and the viscosity was 850 Pa · s (measured at 25 ° C., B-type viscometer, No. 6 rotor).

[比較例7]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型(商品名「シリカゲルPA−270B」)45質量部に、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物10質量部(商品名「セブントールN」)、椰子殻活性炭10質量部(商品名「粉末活性炭CB」)、カオリンクレー5質量部(商品名「白土一級」)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は47質量%、粘度は840Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Comparative Example 7]
Hydroxide of silicon dioxide and titanium water-insoluble phosphate and zinc into 45 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and silica gel B type (trade name “silica gel PA-270B”) After mixing 10 parts by mass of the product composite (trade name “Seventhol N”), 10 parts by weight of coconut shell activated carbon (trade name “powdered activated carbon CB”), 5 parts by weight of kaolin clay (trade name “first grade of white clay”) 100 parts by weight of water to which 0.5 part by weight of a pigment dispersant (trade name “Aron T-50”) was added was added to obtain a powder dispersion with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity control paint was 47% by mass and the viscosity was 840 Pa · s (25 ° C., measured with a B-type viscometer, No. 6 rotor).

[比較例8]
シリカゲルA型30質量部(商品名「シリカゲルPA−270A」)とシリカゲルB型(商品名「シリカゲルPA−270B」)45質量部に、二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物10質量部(商品名「ミズカナイトHP」)、椰子殻活性炭10質量部(商品名「粉末活性炭CB」)、カオリンクレー5質量部(商品名「白土一級」)を混合した後、0.5質量部の顔料分散剤(商品名「アロンT−50」)を添加した水100質量部を加えディスパージョンミルで粉体分散液を得た。この粉体分散液をインペラーに移し、接着剤44質量部(商品名「プライマルB−15B」)と増粘剤(2質量%アルギン酸ソーダ溶液)を攪拌しながら添加し調湿性塗料を調製した。この調湿性塗料の濃度は45質量%、粘度は860Pa・s(25℃、B型粘度計、No.6ロータで測定)であった。
[Comparative Example 8]
30 parts by mass of silica gel A type (trade name “silica gel PA-270A”) and 45 parts by mass of silica gel B type (trade name “silica gel PA-270B”), 10 parts by mass of a composite of silicon dioxide, zinc oxide and aluminum oxide ( (Trade name “Mizukanite HP”), coconut shell activated carbon 10 parts by weight (trade name “powdered activated carbon CB”), kaolin clay 5 parts by weight (trade name “Shirachi Grade 1”), 0.5 parts by weight of pigment dispersion 100 parts by mass of water to which an agent (trade name “Aron T-50”) was added was added to obtain a powder dispersion with a dispersion mill. This powder dispersion was transferred to an impeller, and 44 parts by mass of an adhesive (trade name “Primal B-15B”) and a thickener (2% by mass sodium alginate solution) were added with stirring to prepare a humidity-control paint. The concentration of the humidity control paint was 45% by mass and the viscosity was 860 Pa · s (measured with a B type viscometer, No. 6 rotor) at 860 Pa · s.

[調湿性能確認試験]
図2は、実施例1と比較例1、2で得られた調湿性塗料をそれぞれ150g/m塗布して気積率A/V=1m−1で使用し、調湿性能を確認したものである。なお、塗膜中のシリカゲル含有量は、実施例1は94g/m、比較例1は0、比較例2は63g/mであった。この調湿性塗料を、可変空調室内に鋼製の密閉可能な蓋付き容器(1m)の内側面に塗布し、蓋を開けて22℃、相対湿度60%で24時間暴露してから容器を密閉し、容器の外部の温度を5時間毎に22→40→12→22℃と順次変化させていった際の、容器内の温湿度の変化を示したものである。図2のようにシリカゲルの固形分質量比率が増えると、吸放湿量が増加するため元の平衡湿度に戻り易いことがわかる。平衡湿度変動幅は、実施例1が相対湿度で18%、比較例1が相対湿度で53%、比較例2が相対湿度で22%であった。
[Humidity control test]
FIG. 2 shows a humidity control performance confirmed by applying 150 g / m 2 of each of the humidity control paints obtained in Example 1 and Comparative Examples 1 and 2 and using the volume ratio A / V = 1 m −1. It is. The silica gel content in the coating film was 94 g / m 2 in Example 1, 0 in Comparative Example 1, and 63 g / m 2 in Comparative Example 2. This humidity control paint is applied to the inside surface of a steel sealable lid (1m 3 ) in a variable air-conditioning room, opened for 24 hours at 22 ° C and 60% relative humidity after the lid is opened. The figure shows the change of temperature and humidity in the container when the container is sealed and the temperature outside the container is sequentially changed from 22 → 40 → 12 → 22 ° C. every 5 hours. As shown in FIG. 2, it can be seen that when the solid content mass ratio of the silica gel increases, the moisture absorption and desorption amount increases, so that it easily returns to the original equilibrium humidity. The fluctuation range of the equilibrium humidity was 18% in relative humidity in Example 1, 53% in relative humidity in Comparative Example 1, and 22% in relative humidity in Comparative Example 2.

[有害ガス吸脱着確認試験]
実施例1〜8、比較例3〜8で得た各種の調湿性塗料を、No.22のワイヤーロッドを使用して手塗り塗工を行い、坪量38g/mのスパンレース不織布(商品名「RPN−38」、大和紡績(株)製)に固形分質量で150g/m塗布して、乾燥後坪量188g/mの調湿性材料量を得た。ここで得られた調湿性材料を10×10cm角に裁断して、有害ガス(アンモニア、ホルムアルデヒド、酢酸、硫化水素、二酸化硫黄、二酸化窒素、二酸化炭素)の吸着と脱着試験用のサンプルとした。これらのサンプルを温度23℃、相対湿度50%の条件下で24時間放置して前処理し、次いでこのサンプルをテドラーバッグに入れて脱気し、既知の濃度に調製した各種のガス2リットルを注入して直ちに検知管(ガステック(株)製造)を使用してその濃度を温度23℃の条件下で測定し、これを初期濃度とした。温度を23℃のまま5時間放置した後で、再度テドラーバッグ内のガス濃度を測定して有害ガスの吸着性能を確認した。その後直ちに各サンプルを40℃に設定したオーブンに入れ、1時間経過した後テドラーバッグ内のガス濃度を測定し、有害ガス脱着の有無を確認した。各サンプルのガス吸着性能は、初期濃度から残存濃度を差し引きして各調湿性材料の吸着量(ppm)とした。各種のガスは、既知濃度として60〜100ppmの範囲に調整し使用した。
[Toxic gas adsorption / desorption confirmation test]
Various humidity control paints obtained in Examples 1 to 8 and Comparative Examples 3 to 8 are Using 22 wire rods, it was hand-painted and applied to a spunlace nonwoven fabric having a basis weight of 38 g / m 2 (trade name “RPN-38”, manufactured by Daiwabo Co., Ltd.) with a solid content of 150 g / m 2. It was applied to obtain a humidity-controlling material amount having a basis weight of 188 g / m 2 after drying. The humidity control material obtained here was cut into a 10 × 10 cm square to prepare a sample for adsorption and desorption tests of harmful gases (ammonia, formaldehyde, acetic acid, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, carbon dioxide). These samples are pretreated for 24 hours under conditions of a temperature of 23 ° C. and a relative humidity of 50%, then the samples are put in a Tedlar bag, degassed, and injected with 2 liters of various gases prepared to known concentrations. Then, immediately using a detector tube (manufactured by Gastec Co., Ltd.), the concentration was measured under the condition of a temperature of 23 ° C., and this was taken as the initial concentration. After leaving the temperature at 23 ° C. for 5 hours, the gas concentration in the Tedlar bag was measured again to confirm the harmful gas adsorption performance. Immediately after that, each sample was put in an oven set at 40 ° C., and after 1 hour, the gas concentration in the Tedlar bag was measured to confirm the presence or absence of harmful gas desorption. The gas adsorption performance of each sample was obtained by subtracting the residual concentration from the initial concentration to obtain the adsorption amount (ppm) of each humidity control material. Various gases were adjusted to a known concentration of 60 to 100 ppm and used.

表2に実施例1〜8、比較例3〜8の有害ガスに対する吸着性と脱着性を、以下の評価内容で示した。
(合格):初期濃度に対して60%以上のガス吸着性能を示し、40℃に昇温してもガスを脱着(ガス濃度が増加しなかった)しなかったもの
○ (合格):初期濃度に対して60%以上のガス吸着性能を示したが、40℃に昇温するとガスを脱着(ガス濃度が増加した)したもの
×(不合格):初期濃度に対して60%未満のガス吸着性能しかなかったもの
(表2)

Figure 2008019295
(実1〜8は実施例1〜8を示し、比3〜8は比較例3〜8を示している)
この結果、実施例1〜8は比較例3〜8と比較して、特定した7種類の有害ガスを全て吸着し、一部のガスを除いて脱着しない性能を有していることが確認できた。また、アンモニアに対しては実施例3と6が脱着の可能性もあるが、展示期間中に限り展示ケース内を安全な環境に保つためのものとして有益なものと判断した。 Table 2 shows the adsorptivity and desorption property to harmful gases of Examples 1 to 8 and Comparative Examples 3 to 8 with the following evaluation contents.
(Accepted): Gas adsorption performance of 60% or more with respect to the initial concentration, and gas was not desorbed (gas concentration did not increase) even when the temperature was raised to 40 ° C. ○ (Pass): Initial concentration The gas adsorption performance of 60% or more was shown, but when the temperature was raised to 40 ° C., the gas was desorbed (the gas concentration increased) × (failure): less than 60% gas adsorption with respect to the initial concentration Those with only performance (Table 2)
Figure 2008019295
(Acts 1-8 show Examples 1-8, ratios 3-8 show Comparative Examples 3-8)
As a result, compared with Comparative Examples 3-8, Examples 1-8 can confirm that it has the performance which adsorb | sucks all the specified seven types of harmful gas, and does not desorb except some gas. It was. In addition, although Examples 3 and 6 may be desorbed from ammonia, it was judged useful for maintaining a safe environment in the display case only during the display period.

本発明による調湿性塗料、有害ガス吸着性能と調湿性能を具備した内装材の傷や汚れ箇所の補修、或いは各種の展示ケース材料や壁装材料の表面に塗布することにより、有害ガスを吸着し脱着しない性能と調湿性能を付与することが可能となるので、長期に亘って望ましい保存・展示環境を保つために好適に利用できる。   Moisture-adjusting paint according to the present invention, adsorbing harmful gases by applying to the surface of various display case materials and wall covering materials, or repairing scratches and dirt on interior materials with harmful gas adsorption performance and humidity conditioning performance In addition, since it is possible to impart performance without desorption and humidity control performance, it can be suitably used to maintain a desirable storage / exhibition environment for a long period of time.

:気積率と平衡湿度変動幅を示す図である。: It is a figure which shows a volume ratio and an equilibrium humidity fluctuation range. :調湿性能確認試験を示す図である。: It is a figure which shows a humidity control performance confirmation test.

Claims (9)

ガス吸着性粉体5〜40質量部と吸放湿性無機粉体60〜95質量部とを主成分とした粉体100質量部に対して、接着剤を5〜30質量部配合し、塗料濃度を35〜55質量%の範囲に調整したことを特徴とする調湿性塗料。   5 to 30 parts by mass of an adhesive is blended with 100 parts by mass of powder mainly composed of 5 to 40 parts by mass of gas adsorbing powder and 60 to 95 parts by mass of moisture absorbing / releasing inorganic powder, Is a humidity-controlling paint characterized in that it is adjusted in a range of 35 to 55% by mass. 吸放湿性無機粉体が、シリカゲルであることを特徴とする請求項1に記載の調湿性塗料。   The moisture-controlling paint according to claim 1, wherein the hygroscopic inorganic powder is silica gel. ガス吸着性粉体が、疎水性ガス吸着性粉体および/または親水性ガス吸着性粉体から選択された1種または2種以上混合されていることを特徴とする請求項1、または2に記載の調湿性塗料。   3. The gas adsorbing powder is mixed with one or more selected from hydrophobic gas adsorbing powder and / or hydrophilic gas adsorbing powder. The humidity control paint as described. 疎水性ガス吸着性粉体が、平均粒子径50μm以下の粉末活性炭であることを特徴とする請求項3に記載の調湿性塗料。   The humidity-controllable paint according to claim 3, wherein the hydrophobic gas-adsorbing powder is powdered activated carbon having an average particle diameter of 50 µm or less. 親水性ガス吸着性粉体が、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物、若しくは二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物、若しくは消石灰から選択された任意の1種類であることを特徴とする請求項3に記載の調湿性塗料。   Any hydrophilic gas-adsorbing powder selected from a water-insoluble phosphate and zinc hydroxide composite of silicon dioxide and titanium, or a composite of silicon dioxide and zinc oxide and aluminum oxide, or slaked lime The humidity-controllable paint according to claim 3, which is one type. 親水性ガス吸着性粉体が、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物、若しくは二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物、若しくは消石灰から選択された任意の2種類であることを特徴とする請求項3に記載の調湿性塗料。   Any hydrophilic gas-adsorbing powder selected from a water-insoluble phosphate and zinc hydroxide composite of silicon dioxide and titanium, or a composite of silicon dioxide and zinc oxide and aluminum oxide, or slaked lime The humidity-controlling paint according to claim 3, wherein there are two types. 親水性ガス吸着性粉体が、二酸化珪素とチタンの水不溶性リン酸塩および亜鉛の水酸化物の複合物、若しくは二酸化珪素と酸化亜鉛および酸化アルミニウムの複合物、若しくは消石灰の混合物であることを特徴とする請求項3に記載の調湿性塗料。   The hydrophilic gas-adsorbing powder is a composite of silicon dioxide and titanium water-insoluble phosphate and zinc hydroxide, or a composite of silicon dioxide and zinc oxide and aluminum oxide, or a mixture of slaked lime. The humidity control paint according to claim 3. 有害ガスとして、アンモニア、ホルムアルデヒド、酢酸、硫化水素、二酸化硫黄、二酸化窒素、二酸化炭素を吸着し、脱着しないことが可能な請求項1〜請求項7に記載の調湿性塗料。   The humidity-controllable paint according to claim 1, which adsorbs ammonia, formaldehyde, acetic acid, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, and carbon dioxide as harmful gases and is capable of not desorbing. 密閉可能な1mの蓋付き鋼製容器の内面に、気積率A/V=1〜6m−1、塗布量0.15〜4.8kg/m範囲内で調湿性塗料を塗布し、温度22℃、相対湿度60%の雰囲気中で開封したまま容器内の温湿度を一定にしたのち密閉し、密閉容器の外部の温度差を28℃(22→40→22→12→22℃)の範囲で増減変化させ、到達した容器内の各温度における最大に増減した際の平衡湿度と、相対湿度60%との差の合計(平衡湿度増減幅)を、相対湿度で20%以内に調湿することを可能にすることを特徴とする、請求項1〜請求項8のいずれか1項に記載の調湿性塗料。









Applying a humidity-controlling paint to the inner surface of a 1 m 3 lidded steel container that can be sealed, with a volume ratio of A / V = 1 to 6 m −1 and an application amount of 0.15 to 4.8 kg / m 3 , The container is sealed after the temperature and humidity in the container are kept constant in an atmosphere of a temperature of 22 ° C. and a relative humidity of 60%. The temperature difference outside the sealed container is 28 ° C. (22 → 40 → 22 → 12 → 22 ° C.) The total of the difference between the equilibrium humidity when the maximum temperature at each temperature in the reached container is increased or decreased and the relative humidity of 60% (balanced increase / decrease width) is adjusted within 20% of the relative humidity. The humidity control paint according to any one of claims 1 to 8, wherein the paint can be moistened.









JP2006189912A 2006-07-11 2006-07-11 Humidity control paint Expired - Fee Related JP5127021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189912A JP5127021B2 (en) 2006-07-11 2006-07-11 Humidity control paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006189912A JP5127021B2 (en) 2006-07-11 2006-07-11 Humidity control paint

Publications (2)

Publication Number Publication Date
JP2008019295A true JP2008019295A (en) 2008-01-31
JP5127021B2 JP5127021B2 (en) 2013-01-23

Family

ID=39075507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189912A Expired - Fee Related JP5127021B2 (en) 2006-07-11 2006-07-11 Humidity control paint

Country Status (1)

Country Link
JP (1) JP5127021B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174184A (en) * 2009-01-30 2010-08-12 Ahtech Kobo Kk Water paint composition
JP2011052195A (en) * 2009-09-02 2011-03-17 Sardonyx:Kk Coating material and coating film for suppressing water droplet and absorbing and drying water droplet
KR20140087325A (en) * 2012-12-28 2014-07-09 삼성정밀화학 주식회사 Aqueous Paint Composition Comprising Cellulose Ether Thickener Containing Low Sodium Salt
WO2014141892A1 (en) * 2013-03-14 2014-09-18 水澤化学工業株式会社 White pigment for coatings
JP2017509724A (en) * 2013-12-19 2017-04-06 サートゥンティード コーポレーション COATING COMPOSITION FOR BUILDING MATERIAL AND COATED BUILDING MATERIAL SUBSTRATE
JP2019010768A (en) * 2017-06-29 2019-01-24 共同印刷株式会社 Film for moisture absorption and gas adsorption, and laminate for packaging
JP2019010775A (en) * 2017-06-29 2019-01-24 共同印刷株式会社 Film for moisture absorption and gas adsorption, and laminate for packaging
JP2019058855A (en) * 2017-09-26 2019-04-18 レンゴー株式会社 Moisture adsorbing/desorbing sheet and production method thereof
CN110294949A (en) * 2019-07-16 2019-10-01 东莞市艾呼吸电子科技有限责任公司 A kind of photocatalyst air purifying powder and coating
US10988630B2 (en) 2014-12-19 2021-04-27 Certainteed Corporation Coating compositions for building materials and coated building material substrates
US11136755B2 (en) 2017-06-30 2021-10-05 Certainteed Llc Vapor retarding building materials and methods for making them

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097337A (en) * 2003-09-22 2005-04-14 Aica Kogyo Co Ltd Humidity-conditioning and formaldehyde-adsorbing coating material
JP2005105010A (en) * 2003-09-26 2005-04-21 Yamaguchi Prefecture Inorganic coating material and voc-adsorbing functional material using the same
JP2005319367A (en) * 2004-05-07 2005-11-17 Tokushu Paper Mfg Co Ltd Ammonia adsorbing sheet
JP2006051417A (en) * 2004-08-10 2006-02-23 Tokushu Paper Mfg Co Ltd Pollutant gas removing paper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097337A (en) * 2003-09-22 2005-04-14 Aica Kogyo Co Ltd Humidity-conditioning and formaldehyde-adsorbing coating material
JP2005105010A (en) * 2003-09-26 2005-04-21 Yamaguchi Prefecture Inorganic coating material and voc-adsorbing functional material using the same
JP2005319367A (en) * 2004-05-07 2005-11-17 Tokushu Paper Mfg Co Ltd Ammonia adsorbing sheet
JP2006051417A (en) * 2004-08-10 2006-02-23 Tokushu Paper Mfg Co Ltd Pollutant gas removing paper

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174184A (en) * 2009-01-30 2010-08-12 Ahtech Kobo Kk Water paint composition
JP2011052195A (en) * 2009-09-02 2011-03-17 Sardonyx:Kk Coating material and coating film for suppressing water droplet and absorbing and drying water droplet
KR102034898B1 (en) 2012-12-28 2019-10-22 롯데정밀화학 주식회사 Aqueous Paint Composition Comprising Cellulose Ether Thickener Containing Low Sodium Salt
KR20140087325A (en) * 2012-12-28 2014-07-09 삼성정밀화학 주식회사 Aqueous Paint Composition Comprising Cellulose Ether Thickener Containing Low Sodium Salt
WO2014141892A1 (en) * 2013-03-14 2014-09-18 水澤化学工業株式会社 White pigment for coatings
JPWO2014141892A1 (en) * 2013-03-14 2017-02-16 水澤化学工業株式会社 White pigment for paint
JP2017509724A (en) * 2013-12-19 2017-04-06 サートゥンティード コーポレーション COATING COMPOSITION FOR BUILDING MATERIAL AND COATED BUILDING MATERIAL SUBSTRATE
US10988630B2 (en) 2014-12-19 2021-04-27 Certainteed Corporation Coating compositions for building materials and coated building material substrates
JP2019010768A (en) * 2017-06-29 2019-01-24 共同印刷株式会社 Film for moisture absorption and gas adsorption, and laminate for packaging
JP2019010775A (en) * 2017-06-29 2019-01-24 共同印刷株式会社 Film for moisture absorption and gas adsorption, and laminate for packaging
US11136755B2 (en) 2017-06-30 2021-10-05 Certainteed Llc Vapor retarding building materials and methods for making them
US11795684B2 (en) 2017-06-30 2023-10-24 Certainteed Llc Vapor retarding building materials and methods for making them
JP2019058855A (en) * 2017-09-26 2019-04-18 レンゴー株式会社 Moisture adsorbing/desorbing sheet and production method thereof
CN110294949A (en) * 2019-07-16 2019-10-01 东莞市艾呼吸电子科技有限责任公司 A kind of photocatalyst air purifying powder and coating

Also Published As

Publication number Publication date
JP5127021B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5127021B2 (en) Humidity control paint
KR101474529B1 (en) Photocatalytic coating
US20090211453A1 (en) Filtration Media for the Removal of Basic Molecular Contaminants for Use in a Clean Environment
EP3213775B1 (en) Method for producing deodorizer and method for producing deodorizing processed product
JPWO2004085151A1 (en) Functional member, method for producing the same, and coating liquid
JP4637656B2 (en) Paint finishing method
Nomura et al. Airborne aldehyde abatement by latex coatings containing amine-functionalized porous silicas
WO2002060996A1 (en) Coating with adsorbing properties for use on interior room surfaces
JP3694462B2 (en) Adsorbent paint
JP2000279500A (en) Deodorant composition and deodorant product
CN107903666A (en) A kind of filter material is with removing aldehyde mildew resistant paint and preparation method
JP2010174172A (en) Coating agent
JP5136872B2 (en) Interior finish with humidity control and paintability, as well as formaldehyde reduction
JP6584115B2 (en) Complex for adsorbing and absorbing chemical substances and method for producing the same
JP2004024330A (en) Deodorant
JP2004211049A (en) Functional coating
JP5510911B2 (en) Composite interior coating material for buildings
JP2004300648A (en) Functional wallpaper
JP2009068324A5 (en)
JP4281953B2 (en) Humidity control, formaldehyde adsorbent coating material
Aina et al. Hybrid Mixed-Metal Oxide Latex Composite Thin Films for Passive Control of Indoor Formaldehyde
JP2006312656A (en) Coating material composition for construction, coating material for construction, and usage of coating material composition for construction
JP2000144016A (en) Coating material for preventing pollution in room
JP2006075312A (en) Deodorant composition having superior heat resistance and molding using the same
JP2004291468A (en) Decorative sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees