JP2008017691A - Monitoring device of electric double-layer capacitor system - Google Patents

Monitoring device of electric double-layer capacitor system Download PDF

Info

Publication number
JP2008017691A
JP2008017691A JP2007192023A JP2007192023A JP2008017691A JP 2008017691 A JP2008017691 A JP 2008017691A JP 2007192023 A JP2007192023 A JP 2007192023A JP 2007192023 A JP2007192023 A JP 2007192023A JP 2008017691 A JP2008017691 A JP 2008017691A
Authority
JP
Japan
Prior art keywords
electric double
capacitor
double layer
layer capacitor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007192023A
Other languages
Japanese (ja)
Inventor
Yuji Mizutani
雄二 水谷
Hideki Tanaka
秀樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007192023A priority Critical patent/JP2008017691A/en
Publication of JP2008017691A publication Critical patent/JP2008017691A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monitoring device for monitoring the state of an electric double-layer capacitor by predicting the life of the capacitor in an electric double-layer capacitor system. <P>SOLUTION: In a central operating unit of an EDLC bank controller 10, the life of the EDLC bank 4 is predicted based on the history of measurement data obtained by a voltage measuring instrument 13, an atmosphere temperature sensor 14a, and a box-surface temperature sensor 15. When the predicted life reaches a predetermined value, operation is applied for switching a charging and discharging object to a backup EDLC bank 12 while alarming to urge the exchange of an EDLC bank 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気二重層キャパシタを用いて構成されるシステムにおいて当該キャパシタの状態監視を行う監視装置に関する。   The present invention relates to a monitoring device that monitors the state of a capacitor in a system configured using an electric double layer capacitor.

電気二重層キャパシタ(以下、EDLC(Electric Double Layer Capacitor)と称す)は、非常に大きな静電容量を有している。そのため、例えばコンバータ、インバータ、無停電電源装置などの電力制御装置において、負荷による電力消費の変動を充放電動作により吸収し平滑化するために利用されている。例えば、特許文献1では、EDLCを用いた無停電電源装置が開示されている。この特許文献1においては、装置の運転を行う場合に、EDLCの状態を計測して把握するようにしている。
特開2001−197686
An electric double layer capacitor (hereinafter referred to as EDLC (Electric Double Layer Capacitor)) has a very large capacitance. Therefore, for example, in power control devices such as converters, inverters, uninterruptible power supply devices, etc., it is used to absorb and smooth fluctuations in power consumption due to loads by charge / discharge operations. For example, Patent Document 1 discloses an uninterruptible power supply using EDLC. In this patent document 1, when the apparatus is operated, the state of EDLC is measured and grasped.
JP 2001-197686 A

しかしながら、特許文献1においては、EDLCが現時点から後どれ位の時間使用することができるのか(いわゆる余寿命)を推定する技術は開示されていない。EDLCについては、「充放電動作に関しては化学反応が発生せず、電気的特性は本質的に劣化しない」といった誤解が一部に存在している。
ところが、実際にEDLCを使用すると、その電気的特性は次第に劣化し、運転時間がある程度経過すると事実上の使用が不可能な状態に陥ってしまう。これは、本来の充放電動作については想定していない化学反応が実際には発生しており、その結果として静電容量が低下するなどの特性劣化が起こっているものと推定される。従って、EDLCの余寿命を正確に推定することは、高い信頼性が要求されるシステムにおいては保守更新の時期などを計画するために非常に重要である。
However, Patent Document 1 does not disclose a technique for estimating how long the EDLC can be used from the present time (so-called remaining life). Regarding EDLC, there is some misunderstanding that “chemical reaction does not occur in charge / discharge operation and electrical characteristics are not essentially deteriorated”.
However, when EDLC is actually used, its electrical characteristics gradually deteriorate, and after a certain amount of operation time, it becomes practically impossible to use. This is presumed that a chemical reaction that is not assumed for the original charge / discharge operation actually occurs, and as a result, characteristic deterioration such as a decrease in capacitance occurs. Therefore, accurately estimating the remaining life of the EDLC is very important in order to plan the time for maintenance and renewal in a system that requires high reliability.

本発明は上記事情に鑑みて成されたものであり、その目的は、電気二重層キャパシタシステムにおいて、電気二重層キャパシタの余寿命を予測することで当該キャパシタの状態監視を行う監視装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a monitoring device that monitors the state of a capacitor by predicting the remaining life of the electric double layer capacitor in an electric double layer capacitor system. There is.

上記目的を達成するため、請求項1記載の電気二重層キャパシタシステムの監視装置は、電気二重層キャパシタに対する充放電を制御することで負荷に対する電力供給を制御する電気二重層キャパシタシステムに使用され、前記電気二重層キャパシタの状態を監視するものであって、
前記電気二重層キャパシタの余寿命を予測するために必要な測定データを得るための測定手段と、
前記測定データの履歴に基づいて前記電気二重層キャパシタの余寿命を予測する余寿命予測手段と、
前記余寿命が所定の値に達すると、前記電気二重層キャパシタを交換するために必要な処置を行う交換処置手段とを備える。
斯様に構成すれば、余寿命予測手段が電気二重層キャパシタの余寿命を妥当に推定するので、交換処置手段は、その余寿命が所定の値に達した時点で電気二重層キャパシタを交換するために必要な処置を適切に実行できるようになる。
In order to achieve the above object, the electric double layer capacitor system monitoring device according to claim 1 is used in an electric double layer capacitor system that controls power supply to a load by controlling charging and discharging of the electric double layer capacitor. Monitoring the state of the electric double layer capacitor,
Measurement means for obtaining measurement data necessary for predicting the remaining life of the electric double layer capacitor;
A remaining life prediction means for predicting a remaining life of the electric double layer capacitor based on the history of the measurement data;
When the remaining life reaches a predetermined value, replacement treatment means is provided for performing measures necessary for replacing the electric double layer capacitor.
With this configuration, the remaining life predicting means appropriately estimates the remaining life of the electric double layer capacitor, so that the replacement treatment means replaces the electric double layer capacitor when the remaining life reaches a predetermined value. Therefore, it becomes possible to appropriately perform necessary measures.

そして、余寿命予測手段は、電気二重層キャパシタを所定の温度環境下に置き所定の電圧を印加した場合に、前記キャパシタの静電容量が所定の割合に低下するまでの時間を、複数の温度並びに複数の電圧について予め測定し、
その測定結果に基づいて得られる温度とキャパシタの寿命との関係を示すデータを記憶手段に記憶し、
電気二重層キャパシタシステムの運転時において、測定手段が、所定時間毎に雰囲気温度と前記キャパシタの筐体表面温度とを測定すると、その測定結果に基づいて当該キャパシタの内部温度を推定し、
その測定結果と前記記憶手段に記憶させたデータとに基づいて前記キャパシタの寿命減少度合いを演算し、当該キャパシタの余寿命を予測することを特徴とする。
The remaining life predicting means calculates the time until the capacitance of the capacitor decreases to a predetermined ratio when the electric double layer capacitor is placed in a predetermined temperature environment and a predetermined voltage is applied. As well as measuring a plurality of voltages in advance,
Data indicating the relationship between the temperature obtained based on the measurement result and the lifetime of the capacitor is stored in the storage means,
During operation of the electric double layer capacitor system, when the measuring means measures the ambient temperature and the housing surface temperature of the capacitor every predetermined time, the internal temperature of the capacitor is estimated based on the measurement result,
Based on the measurement result and the data stored in the storage means, the life reduction degree of the capacitor is calculated, and the remaining life of the capacitor is predicted.

即ち、電気二重層キャパシタは、実際に充放電動作を繰り返して長期間使用し続けると静電容量が次第に僅かずつ低下して行く。従って、電気二重層キャパシタの静電容量が、当初の状態から、当該キャパシタを使用するアプリケーションに応じて運用に支障を来たすと判断される所定の割合に低下した場合に、その電気二重層キャパシタは寿命に達したと判断することができる。そして、電気二重層キャパシタの静電容量が低下する態様は、電圧の印加状態と内部素子温度に大きく依存することが経験的に知られている。
従って、予め測定した結果に基づいて得られる温度とキャパシタの寿命との関係を示すデータを記憶しておき、電気二重層キャパシタを実際に運転する場合は、所定時間毎に当該キャパシタの内部温度を推定し、その推定結果と記憶させたデータとに基づいてキャパシタの寿命減少度合いを演算すれば、当該キャパシタの残りの寿命、即ち余寿命を妥当に予測することができる。
In other words, the capacitance of the electric double layer capacitor gradually decreases as it is repeatedly used for a long time by actually repeating the charge / discharge operation. Therefore, when the capacitance of the electric double layer capacitor is reduced from the initial state to a predetermined ratio that is determined to hinder the operation according to the application using the capacitor, the electric double layer capacitor is It can be determined that the lifetime has been reached. It is empirically known that the manner in which the capacitance of the electric double layer capacitor decreases greatly depends on the voltage application state and the internal element temperature.
Therefore, data indicating the relationship between the temperature obtained based on the pre-measured result and the lifetime of the capacitor is stored, and when the electric double layer capacitor is actually operated, the internal temperature of the capacitor is set every predetermined time. By estimating and calculating the life reduction degree of the capacitor based on the estimation result and the stored data, the remaining life of the capacitor, that is, the remaining life can be appropriately predicted.

本発明の電気二重層キャパシタシステムの監視装置によれば、電気二重層キャパシタを交換するために必要な処置を適切に実行できるため、システムの保守管理を計画的に行って管理コストを低下させることが可能となる。そして、余寿命予測手段は、電気二重層キャパシタの余寿命を妥当に推定することができるので、電気二重層キャパシタシステムの保守管理を適切に行なうことが可能となる。   According to the monitoring device of the electric double layer capacitor system of the present invention, since necessary measures for exchanging the electric double layer capacitor can be appropriately executed, system maintenance management is systematically performed to reduce the management cost. Is possible. Since the remaining life predicting means can reasonably estimate the remaining life of the electric double layer capacitor, it is possible to appropriately perform maintenance management of the electric double layer capacitor system.

(第1実施例)
以下、本発明の第1実施例について図1乃至図10をも参照して説明する。図7は、電気二重層キャパシタシステムたる電力制御装置1のブロック構成を示している。この図7において、商用交流電源などの電源2は、電力制御装置1の入力端子1aを介してコンバータ3の交流入力端子に接続されている。コンバータ3はサイリスタ等からなっており、交流入力端子に交流電力が入力されると直流電力に変換し、直流出力端子に出力するように構成されている。コンバータ3の直流出力端子は、インバータ5の直流入力端子に接続されていると共に、切換えスイッチ(交換処置手段)11を介してEDLC(電気二重層キャパシタ)バンク4の充放電端子に接続されている。EDLCバンク4は、多数のEDLCセルを直並列接続したものを筐体内に収容して構成されたものである。
(First embodiment)
The first embodiment of the present invention will be described below with reference to FIGS. FIG. 7 shows a block configuration of the power control apparatus 1 as an electric double layer capacitor system. In FIG. 7, a power source 2 such as a commercial AC power source is connected to an AC input terminal of a converter 3 via an input terminal 1 a of the power control device 1. The converter 3 is formed of a thyristor or the like, and is configured to convert AC power into DC power when AC power is input to the AC input terminal and output the DC power to the DC output terminal. A DC output terminal of the converter 3 is connected to a DC input terminal of the inverter 5 and is connected to a charge / discharge terminal of an EDLC (electric double layer capacitor) bank 4 via a changeover switch (exchange treatment means) 11. . The EDLC bank 4 is configured by accommodating a number of EDLC cells connected in series and parallel in a housing.

切換えスイッチ11は、後述するようにEDLCバンク4が寿命に達した(厳密には、残りの寿命時間が所定時間を下回った)と判断された場合に、コンバータ3の直流出力端子並びにインバータ5の直流入力端子を、バックアップ用のEDLCバンク12側に接続するように切換えるため配置されている。切換えスイッチ11の切換え制御は、後述するEDLCバンク制御装置10によって行われる。   As will be described later, the changeover switch 11 determines that the EDLC bank 4 has reached the end of life (strictly speaking, the remaining life time has fallen below a predetermined time) and the DC output terminal of the converter 3 and the inverter 5 The DC input terminal is arranged for switching so as to be connected to the backup EDLC bank 12 side. The changeover control of the changeover switch 11 is performed by an EDLC bank control device 10 described later.

インバータ5は、IGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子をブリッジ接続してなるもので、直流入力端子に直流電力が入力されると、設定された所望の電圧,電流,周波数,位相,及び高調波含有率の信号を交流出力するように構成されている。また、インバータ5の交流出力端子は、電力制御装置1の出力端子1bを介して負荷6に接続されている。   The inverter 5 is formed by bridge-connecting switching elements such as IGBTs (Insulated Gate Bipolar Transistors), and when DC power is input to the DC input terminal, the set desired voltage, current, frequency, phase, and It is comprised so that the signal of a harmonic content rate may be output by alternating current. The AC output terminal of the inverter 5 is connected to the load 6 through the output terminal 1 b of the power control device 1.

制御装置7は、コンバータ制御装置8,インバータ制御装置9及びEDLCバンク制御装置10を主体として構成されている。コンバータ制御装置8は、コンバータ3を駆動制御し、インバータ制御装置9はインバータ5を駆動制御し、EDLCバンク制御装置10はEDLCバンク4の充放電動作を監視しながら制御するものである。制御装置7は、各制御装置8〜10の制御動作を統括的に監視して電力制御動作を行い、負荷6に対して所定の電力が供給できるように構成されている。   The control device 7 is mainly composed of a converter control device 8, an inverter control device 9, and an EDLC bank control device 10. The converter control device 8 controls the drive of the converter 3, the inverter control device 9 controls the drive of the inverter 5, and the EDLC bank control device 10 controls the charge / discharge operation of the EDLC bank 4 while monitoring it. The control device 7 is configured to monitor the control operations of the control devices 8 to 10 to perform power control operations and supply predetermined power to the load 6.

電圧測定器(測定手段)13は、EDLCバンク4に印加される電圧を測定し、その測定結果を制御装置7に出力する。雰囲気温度センサ(測定手段)14は、EDLCバンク4が設置されている環境の雰囲気温度を検出する。また、筐体表面用温度センサ(測定手段)15は、EDLCバンク4の筐体表面に貼り付けられており、筐体表面その筐体表面の温度を検出する。そして、温度センサ14及び15の検出信号も、制御装置7に出力されるようになっている。尚、具体的には図示しないが、バックアップ用のEDLCバンク12についても、同様にして温度センサが配置されている。   The voltage measuring device (measuring means) 13 measures the voltage applied to the EDLC bank 4 and outputs the measurement result to the control device 7. The ambient temperature sensor (measuring means) 14 detects the ambient temperature of the environment where the EDLC bank 4 is installed. The housing surface temperature sensor (measuring means) 15 is attached to the housing surface of the EDLC bank 4 and detects the temperature of the housing surface. The detection signals of the temperature sensors 14 and 15 are also output to the control device 7. Although not specifically shown, a temperature sensor is similarly arranged for the backup EDLC bank 12.

図8は、EDLCバンク制御装置(監視装置)10の構成を示す機能ブロック図である。EDLCバンク制御装置10は、中央演算装置(CPU,余寿命予測手段,交換処置手段)16,プログラム保存RAM17,データ保存RAM(記憶手段)18,タイマ/時計19,キーボード20及び表示装置(交換処置手段)21などを有して構成されている。プログラム保存RAM14には、中央演算装置16を動作させるための制御プログラムがアップロードされて記憶されている。データ保存RAM18は、後述するようにEDLCバンク4の余寿命を予測するために予め行われた測定に関するデータが保存されている。また、データ保存RAM18は、中央演算装置16のワークエリアとしても利用される。   FIG. 8 is a functional block diagram showing the configuration of the EDLC bank control device (monitoring device) 10. The EDLC bank control device 10 includes a central processing unit (CPU, remaining life prediction means, replacement processing means) 16, a program storage RAM 17, a data storage RAM (storage means) 18, a timer / clock 19, a keyboard 20, and a display device (exchange processing). Means) 21 and the like. In the program storage RAM 14, a control program for operating the central processing unit 16 is uploaded and stored. As will be described later, the data storage RAM 18 stores data relating to measurements performed in advance in order to predict the remaining life of the EDLC bank 4. The data storage RAM 18 is also used as a work area for the central processing unit 16.

タイマ/時計19は、中央演算装置16に対して一定周期毎にタイマ割込みを発生させるシステムタイマとしての機能と、時刻を計時するリアルタイムクロックとしての時計機能を併せ持ったものである。キーボード20は、ユーザが各種の入力操作を行うための操作端末であり、表示装置21は、例えば液晶ディスプレイなどで構成され、中央演算装置16が文字や画像を表示させるためにデータを出力する。また、センサ信号入力ポート22は、図7に示す電圧測定器13や温度センサ14,15より出力されるセンサ信号が入力されるポートであり、中央演算装置16は、そのセンサ信号をA/D変換して読み込むようになっている。   The timer / clock 19 has both a function as a system timer that causes the central processing unit 16 to generate a timer interrupt at regular intervals, and a clock function as a real-time clock that measures time. The keyboard 20 is an operation terminal for a user to perform various input operations, and the display device 21 is configured by a liquid crystal display, for example, and outputs data for the central processing unit 16 to display characters and images. The sensor signal input port 22 is a port to which sensor signals output from the voltage measuring device 13 and the temperature sensors 14 and 15 shown in FIG. 7 are input. The central processing unit 16 converts the sensor signals into A / D. It is supposed to be converted and read.

次に、本実施例の作用について図1乃至図6,図9及び図10をも参照して説明する。先ず、実際にシステムを運転するのに先立ち、予め図2に示す手順によってEDLCに関する測定データを得ておく。システムの運転時におけるEDLCの自己発熱、及び雰囲気温度から決まるEDLCの内部温度を模擬するため、各種温度(例えば、低,中,高の3種類)に調整される恒温槽内にEDLCを配置する。そして、EDLCに各種の直流電圧(例えば、低い,やや低い,やや高い,高い,の4種類)を夫々フロート課電し、適当な時間間隔でEDLCの静電容量を測定する(ステップS1)。
その測定結果より、図3に示すように、EDLCの静電容量の変化を示す低下曲線が得られる(ステップS2)。尚、図3の横軸は対数メモリの課電時間であり、縦軸の数値は静電容量の変化率を示す相対的な値である。
Next, the operation of the present embodiment will be described with reference to FIGS. 1 to 6, 9, and 10. FIG. First, prior to actually operating the system, measurement data relating to EDLC is obtained in advance by the procedure shown in FIG. In order to simulate the internal temperature of the EDLC determined from the self-heating of the EDLC and the ambient temperature during system operation, the EDLC is placed in a thermostat adjusted to various temperatures (for example, three types, low, medium, and high) . Then, various DC voltages (for example, four types of low, slightly low, slightly high, and high) are float applied to the EDLC, and the capacitance of the EDLC is measured at an appropriate time interval (step S1).
From the measurement result, as shown in FIG. 3, a decrease curve indicating a change in the capacitance of the EDLC is obtained (step S2). Note that the horizontal axis of FIG. 3 is the logarithmic memory power application time, and the vertical axis is a relative value indicating the rate of change in capacitance.

次に、得られた低下曲線において、静電容量がある一定の割合に低下(当初の容量を100%とした場合に、例えば90%に低下)するまでの時間を(L)として、その時のEDLCの内部温度との関係を各課電電圧毎に得る(ステップS3)。この時、温度については絶対温度(T)に換算して(即ち、摂氏温度に「273」を加算する)逆数を1000倍して横軸とし、時間(L)については自然対数表示で縦軸にとると、図4に示すようにグラフ上で直線が得られる。   Next, in the obtained decrease curve, the time until the capacitance decreases to a certain rate (when the initial capacitance is 100%, for example, it decreases to 90%) is (L). A relationship with the internal temperature of the EDLC is obtained for each applied voltage (step S3). At this time, the temperature is converted into an absolute temperature (T) (that is, “273” is added to the Celsius temperature) and the reciprocal is multiplied by 1000 to make the horizontal axis, and the time (L) is displayed in natural logarithm. If taken, a straight line is obtained on the graph as shown in FIG.

ここで、各測定点について最小二乗法を用いて回帰させると、(1)式で示すようにアレニウス則に則った式が得られる。但し、a,bは回帰定数である。
ln(L)=b−a・1000/T ・・・(1)
アレニウス則は、温度とその温度に依存する化学反応の速度との関係を示す式として知られている。そして、各電圧毎に、温度を変化させて得た結果をプロットすることで(1)式から得られる定数a,bを、(1)式と共にデータ保存RAM18に書き込んで記憶させる(ステップS4)。
また、システムの運転前に基準温度(T0)を予め決定し、定数a,bと共に(1)式に与えることで、EDLCの基準温度(T0)に対する寿命時間(L0)が得られる(ステップS5)。例えば、基準温度(T0)を20℃とすると、寿命時間(L0)は数十万時間となる。これらについても、データ保存RAM18に書き込んで記憶させる。
Here, when regression is performed using the least square method for each measurement point, an equation in accordance with the Arrhenius rule is obtained as shown in equation (1). However, a and b are regression constants.
ln (L) = ba · 1000 / T (1)
The Arrhenius law is known as an equation indicating the relationship between temperature and the rate of chemical reaction depending on the temperature. Then, by plotting the results obtained by changing the temperature for each voltage, the constants a and b obtained from the equation (1) are written and stored in the data storage RAM 18 together with the equation (1) (step S4). .
In addition, the reference temperature (T0) is determined in advance before the system is operated, and given to the equation (1) together with the constants a and b, the lifetime (L0) with respect to the EDLC reference temperature (T0) is obtained (step S5). ). For example, when the reference temperature (T0) is 20 ° C., the lifetime (L0) is several hundred thousand hours. These are also written and stored in the data storage RAM 18.

次に、EDLCの内部温度に関する測定データを得る。EDLCの内部に絶縁した熱電対を温度センサとして埋め込んだ試料を作成し、EDLCの筐体表面にも温度センサを配置する。そして、これらのセンサによって得られるEDLCの内部温度並びに筐体表面温度(ケース温度)、加えて、測定環境の雰囲気温度をも測定可能とし、これらの温度上昇が飽和するまで、EDLCにパルス電圧を繰り返し印加する(サイクル課電)。
この測定結果より、雰囲気温度とケース温度との差、及び内部温度と雰囲気温度との差を取得する。そして、これらの差の関係を関連付けて、雰囲気温度とケース温度との差から、内部温度と雰囲気温度との差が読取れるようにデータを整理し、データ保存RAM18に書き込んで記憶させる(ステップS6)。この結果、例えば、図6に示すように、両者の関係が直線となるデータテーブルが得られる。
Next, measurement data relating to the internal temperature of the EDLC is obtained. A sample in which a thermocouple insulated inside the EDLC is embedded as a temperature sensor is created, and the temperature sensor is also arranged on the surface of the EDLC casing. The internal temperature of the EDLC obtained by these sensors and the housing surface temperature (case temperature) as well as the ambient temperature of the measurement environment can be measured, and a pulse voltage is applied to the EDLC until these temperature rises are saturated. Apply repeatedly (cycle power application).
From this measurement result, the difference between the ambient temperature and the case temperature and the difference between the internal temperature and the ambient temperature are acquired. Then, by associating the relationship between these differences, the data is organized so that the difference between the internal temperature and the ambient temperature can be read from the difference between the ambient temperature and the case temperature, and written and stored in the data storage RAM 18 (step S6). ). As a result, for example, as shown in FIG. 6, a data table in which the relationship between the two is a straight line is obtained.

以上の測定を予め行った後、システムの運転を行う。図1は、電力制御装置1の運転中に、制御装置7(主に、EDLCバンク制御装置10の中央演算装置16)によって行なわれる制御内容を示すフローチャートである。中央演算装置16は、タイマ/時計19による測定周期用のタイマ割込み(例えば、10時間周期)が発生する毎に(ステップS11,「YES」)本発明の要旨に係るステップS13〜S18の処理を実行するが、それ以外の場合は、(「NO」)システムの運転処理を行なう(ステップS12)。即ち、実質的には、コンバータ制御装置8,インバータ制御装置9によってコンバータ3,インバータ5の制御が行われる。   After the above measurement is performed in advance, the system is operated. FIG. 1 is a flowchart showing the contents of control performed by the control device 7 (mainly the central processing unit 16 of the EDLC bank control device 10) during operation of the power control device 1. The central processing unit 16 performs the processing of steps S13 to S18 according to the gist of the present invention every time a timer interrupt for a measurement cycle (for example, a 10-hour cycle) is generated by the timer / clock 19 (step S11, “YES”). Otherwise, ("NO") system operation processing is performed (step S12). That is, the converter 3 and the inverter 5 are substantially controlled by the converter control device 8 and the inverter control device 9.

ステップS13において、中央演算装置16は、雰囲気温度センサ14と筐体表面用温度センサ15とにより出力されるセンサ信号を参照し、EDLCバンク4が設置されている環境の雰囲気温度とEDLCバンク4のケース温度を検出し、両者の差を求める。それから、データ保存RAM18に記憶させた温度差の関係を示すデータに基づいて、EDLCバンク4の内部温度を推定する(ステップS14)。例えば、雰囲気温度が20℃である場合に、ケース温度との差が5℃であったとすると、図6に示すテーブルより、EDLCの内部温度との差8℃が得られる。従って、内部温度は28℃であると推定される。続いて、中央演算装置16は、ステップS14で推定した内部温度を絶対温度に変換する(ステップS15)。   In step S <b> 13, the central processing unit 16 refers to the sensor signals output from the ambient temperature sensor 14 and the housing surface temperature sensor 15, and the ambient temperature of the environment where the EDLC bank 4 is installed and the EDLC bank 4. The case temperature is detected and the difference between the two is obtained. Then, the internal temperature of the EDLC bank 4 is estimated based on the data indicating the temperature difference relationship stored in the data storage RAM 18 (step S14). For example, when the atmospheric temperature is 20 ° C. and the difference from the case temperature is 5 ° C., a difference of 8 ° C. from the internal temperature of the EDLC is obtained from the table shown in FIG. Therefore, the internal temperature is estimated to be 28 ° C. Subsequently, the central processing unit 16 converts the internal temperature estimated in step S14 into an absolute temperature (step S15).

次に、中央演算装置16は、初回の場合はシステムの運転開始からその時点までの経過時間(運転時間)を、2回目以降の場合は前回の測定時からの経過時間をタイマ/時計19によって得る(ステップS16)。そして、(1)式を定数b1を求める式に変形し、データ保存RAM18に記憶させた定数a,ステップS15で得た絶対温度の逆数,ステップS16で得た経過時間を代入することで、その時点の運転温度に応じた定数b1の値を得る。即ち、図5に示すように、直線の傾きである定数aは温度が変化しても変わらないが、切片である定数bは温度に応じて変化するからである。   Next, the central processing unit 16 uses the timer / clock 19 to calculate the elapsed time (operation time) from the start of operation of the system to the point of time for the first time, and the elapsed time from the previous measurement for the second time and thereafter. Obtain (step S16). Then, the equation (1) is transformed into an equation for obtaining the constant b1, and the constant a stored in the data storage RAM 18, the reciprocal of the absolute temperature obtained in step S15, and the elapsed time obtained in step S16 are substituted. A constant b1 value corresponding to the operating temperature at the time is obtained. That is, as shown in FIG. 5, the constant a which is the slope of the straight line does not change even when the temperature changes, but the constant b which is the intercept changes according to the temperature.

更に、(1)式に、上記で求めた定数b1を代入して時間(LT1)を求めれば、基準温度(T0)で換算した1回目のEDLCバンク4の使用時間が得られる。例えば、実際の内部温度28℃における運転時間が10時間であるのに対し、基準温度(T0=20℃)で換算した使用時間時間(LT1)は32時間となる。そして、データ保存RAM18に記憶させた寿命時間(L0)から使用時間(LT1)を減算すれば、その時点における余寿命時間(LR1)が得られる(ステップS17)。
LR1=L0−LT1 ・・・(2)
以上のようにして余寿命時間(LR1)を得ると、中央演算装置16は、その余寿命時間(LR1)をデータ保存RAM18に記憶させると共に、表示装置21に表示させる。また、以降で得られる余寿命時間が所定時間以下になった場合は、表示装置21にEDLCバンク4の交換を行う必要がある旨の警告表示を行ってユーザに報知すると共に、切換えスイッチ11を制御して、接続をバックアップ用のEDLCバンク12側に切換える(ステップS18)。それから、ステップS11に戻る。
Furthermore, if the time (LT1) is obtained by substituting the constant b1 obtained above into the equation (1), the first use time of the EDLC bank 4 converted by the reference temperature (T0) can be obtained. For example, the operating time at the actual internal temperature of 28 ° C. is 10 hours, whereas the operating time (LT 1) converted at the reference temperature (T 0 = 20 ° C.) is 32 hours. Then, by subtracting the use time (LT1) from the life time (L0) stored in the data storage RAM 18, the remaining life time (LR1) at that time is obtained (step S17).
LR1 = L0−LT1 (2)
When the remaining lifetime (LR1) is obtained as described above, the central processing unit 16 stores the remaining lifetime (LR1) in the data storage RAM 18 and displays it on the display device 21. In addition, when the remaining life time obtained thereafter becomes a predetermined time or less, a warning display is displayed on the display device 21 to the effect that the EDLC bank 4 needs to be replaced and the user is notified, and the changeover switch 11 is set. Then, the connection is switched to the backup EDLC bank 12 side (step S18). Then, the process returns to step S11.

以上の処理を繰り返し実行することで、2回目以降も、余寿命時間(LR1)を求める。そして、各時点において求めた余寿命時間(LR1)を表示装置21にその都度グラフ表示させることも可能である。更に、その結果に基づいて、実際に使用しているEDLCバンク4について寿命の回帰式を得ることもでき、得られた回帰式から外挿法によって余寿命を推定し直すこともできる。   By repeatedly executing the above processing, the remaining life time (LR1) is obtained after the second time. The remaining life time (LR1) obtained at each time point can be displayed on the display device 21 as a graph each time. Further, based on the result, the regression equation of the lifetime can be obtained for the EDLC bank 4 that is actually used, and the remaining lifetime can be estimated again by extrapolation from the obtained regression equation.

ここで、EDLCの電気的特性劣化のメカニズムについて考察する。現在までに市場で販売されているEDLCに適用されている材料やその基本的な構造は、各メーカ間において大きな差はない。一般的な構成としては、有機溶媒に四級アンモニウム塩を溶かしたものを電解液として、この電解液に活性炭よりなる電極を浸漬したものとなっている。しかしながら、EDLCの長期的な信頼性については、十分に検討されたものとそうでないものとの間に大きな相違がある。   Here, the mechanism of EDLC electrical characteristic deterioration will be considered. There are no significant differences between manufacturers in terms of materials and basic structures applied to EDLCs sold in the market to date. As a general configuration, a solution obtained by dissolving a quaternary ammonium salt in an organic solvent is used as an electrolytic solution, and an electrode made of activated carbon is immersed in the electrolytic solution. However, with regard to the long-term reliability of EDLC, there are significant differences between those that have been fully studied and those that have not.

信頼性を考慮して選択された材料並びに構造を有してなるEDLCは、その特性が安定していることは当然であり、特性劣化の主たる要因が電圧と温度のみであることが発明者らが行った試験によって明らかとなった。その試験の1つは、EDLCを60℃,95%RHの高温高湿度の雰囲気中において一定電圧を長期間課電し、また、EDLCを、加湿を行わない温度60℃の雰囲気中において同様に課電したものである。その結果、両者の間に特性劣化度合いの顕著な差は見られなかった。   The EDLC having a material and structure selected in consideration of reliability naturally has stable characteristics, and the inventors have found that the main causes of characteristic deterioration are only voltage and temperature. It became clear by the test done. One of the tests is that EDLC is charged at a constant voltage for a long time in an atmosphere of high temperature and high humidity of 60 ° C. and 95% RH, and EDLC is similarly applied in an atmosphere of 60 ° C. without humidification. It is the one that has been charged. As a result, there was no significant difference in the degree of characteristic deterioration between the two.

更に1つは、EDLCに機械的な振動を加えた場合と加えない場合とについて長期間課電を行ったが、その結果についても顕著な差は見られなかった。このような結果が得られた理由は、信頼性を考慮して製造されたEDLCは、堅牢な容器(筐体)に収容されているため密閉性が高く、変形もしないことから環境要素の影響を受け難い状態にあるためと考えられる。従って、堅牢で機密な構造を備えたEDLCであれば、予め求めておいた寿命式に基づいて、運転時における余寿命推定が十分に可能であることが裏付けられる。   Furthermore, one applied electric power for a long time with and without mechanical vibration applied to the EDLC, but no significant difference was found in the results. The reason why such a result was obtained is that EDLC manufactured in consideration of reliability is housed in a robust container (housing), so it has high sealing performance and is not deformed. It is thought that it is in a state where it is difficult to receive. Therefore, it is confirmed that the remaining life in operation can be estimated sufficiently based on the life formula obtained in advance if the EDLC has a robust and confidential structure.

また、本実施例において、EDLCバンク4の内部温度を推定する際に、ケース温度のみを以って推定しない理由は、EDLCに流す電流値と電流サイクル(負荷率)によって発熱量(ジュール損失)が変化するため、正確な推定ができないからである。この温度上昇のメカニズムに関しては、雰囲気中の気体は温度の変動が比較的小さいため、雰囲気温度を基準とする温度差を求めれば、負荷率に応じて変化するEDLCの内部温度を求めることが可能になると考える。   In the present embodiment, when the internal temperature of the EDLC bank 4 is estimated, the reason for not estimating the internal temperature only by the case temperature is that the calorific value (Joule loss) depends on the current value flowing through the EDLC and the current cycle (load factor). This is because accurate estimation cannot be performed. Regarding the mechanism of this temperature rise, the temperature fluctuation of the gas in the atmosphere is relatively small, so if the temperature difference based on the atmosphere temperature is obtained, the internal temperature of the EDLC that changes according to the load factor can be obtained. I think.

尚、EDLCに対する通電電流を計測することで、その通電電流と内部温度との関係や、通電電流とケース温度との関係について推定用のデータを得ることも考えられるが、この場合、通電電流がパルス状であるとすると、その通電サイクル数や休止時間の有無によって結果が大きく変化すると考えられる。従って、想定される全てのサイクルパターンについて予めデータを得ておく必要があり、現実的ではなく適用は困難である。   It is also possible to obtain estimation data for the relationship between the energization current and the internal temperature and the relationship between the energization current and the case temperature by measuring the energization current for the EDLC. If it is in the form of a pulse, it is considered that the result varies greatly depending on the number of energization cycles and the presence or absence of a downtime. Therefore, it is necessary to obtain data in advance for all possible cycle patterns, which is not realistic and difficult to apply.

ところで、EDLCの特性劣化を直接的に支配しているのが一体どのような化学変化であるのかについては、現時点では解明されていない。しかし、その主たるものの1つは、後述する実験やその分析結果を総合すると、発明者らは、EDLCの製造過程において除去しきれず活性炭電極の内部に残留した湿気や官能基である、と推定する。
各メーカは、活性炭電極の湿気を除去するために様々な手法を実施しているが、現在のところ、湿気を完全に除去する手法は確立されていない。活性炭は、基本的に非常に吸水し易い性質を有しており、その表面には極僅かであるが吸着水が残留し、また、例えばカルボニウム基、ヒドロニウム基等の様な官能基としての形でも残留している。
By the way, it is not clarified at this time what kind of chemical change directly controls the characteristic deterioration of EDLC. However, one of the main ones is that, based on the experiments and analysis results described later, the inventors presume that they are moisture and functional groups that cannot be removed in the manufacturing process of EDLC and remain inside the activated carbon electrode. .
Each manufacturer implements various methods for removing moisture from the activated carbon electrode, but at present, no method for completely removing moisture has been established. Activated carbon basically has a property that it is very easy to absorb water, and a slight amount of adsorbed water remains on its surface, and also forms as a functional group such as a carbonium group, a hydronium group, etc. But it remains.

斯様な状態の活性炭電極を備えたEDLCを運転すると、残留している水分に対して電気化学反応である電気分解が発生したり、電解液についても加水分解が生じることが想定される。そのように本来期待しない化学反応が生じた結果として、劣化物質が活性炭電極の表面に形成されるのである。そして、本発明における寿命推定が(1)式に示した関係に基づいて直線で得られていることは、EDLCの特性劣化が化学反応に支配されていることを示している。   When an EDLC equipped with an activated carbon electrode in such a state is operated, it is assumed that electrolysis, which is an electrochemical reaction, occurs with respect to the remaining water, and hydrolysis also occurs with respect to the electrolytic solution. As a result of such an unexpected chemical reaction, a deteriorated substance is formed on the surface of the activated carbon electrode. The fact that the lifetime estimation in the present invention is obtained in a straight line based on the relationship shown in the equation (1) indicates that the characteristic deterioration of EDLC is governed by a chemical reaction.

以上に述べたように、本発明は、EDLCが堅牢で且つ機密性の高い筐体構造を有している場合に、高精度の余寿命予測が可能となる。例えば、EDLC素子がフィルム等のようなものに収容されていると、フィルムは湿度を内部に拡散してしまうため、高温高湿度の雰囲気下や振動が加わり続ける環境で長期の運転を行うと、予測よりも余寿命が短くなってしまう可能性がある。   As described above, according to the present invention, when the EDLC has a robust and highly confidential housing structure, it is possible to predict the remaining life with high accuracy. For example, if the EDLC element is housed in something like a film, the film diffuses humidity inside, so if you run for a long time in a high temperature and high humidity atmosphere or in an environment where vibration continues to be applied, There is a possibility that the remaining life will be shorter than expected.

EDLCに使用される一般的な電解液は、有機溶媒がポリプロピレンカーボネート(PC)であり、その溶媒に電解質としてテトラエチルアンモニウムフッ化ホウ素(TEABF4)等を溶かしたものである。この電解液は、湿気の存在により容易に加水分解する性質を有する。また、水はEDLCの運転電圧よりもかなり低い1.2V程度の電圧でも電気分解反応が生じるため、電解液の加水分解反応も加速される。その結果、劣化生成物が活性炭電極の表面に形成されている概ね数nmの穴(ミクロポア)の内部に堆積し、電気二重層としての動作を妨げると考える。   In a general electrolytic solution used for EDLC, an organic solvent is polypropylene carbonate (PC), and tetraethylammonium boron fluoride (TEABF4) or the like is dissolved in the solvent as an electrolyte. This electrolytic solution has a property of being easily hydrolyzed by the presence of moisture. Further, since water undergoes an electrolysis reaction even at a voltage of about 1.2 V, which is considerably lower than the operating voltage of EDLC, the hydrolysis reaction of the electrolytic solution is also accelerated. As a result, it is considered that the deteriorated product is deposited inside a hole (micropore) of about several nm formed on the surface of the activated carbon electrode and hinders the operation as an electric double layer.

図9(a),(b)は、課電試験前後におけるEDLCの活性炭電極表面(真の表面から0.1nm)を、原子間力顕微鏡(AFM)で観測して撮影した写真である。これらより、電極表面の状態が変化していることが明瞭に判る。また、図10は、活性炭電極表面(真の表面から数nm)に存在する化合物を検出するため、X線電子分光分析(XPS)した結果を示す。横軸は検出された化合物の種類に対応し、縦軸は検出レベルの相対値を示す。運転前の電極(+)に対して、運転後の電極(+)については、化合物がより多く存在していることが明らかである。   9A and 9B are photographs taken by observing the surface of the activated carbon electrode of EDLC (0.1 nm from the true surface) before and after the voltage application test with an atomic force microscope (AFM). From these, it can be clearly seen that the state of the electrode surface changes. FIG. 10 shows the result of X-ray electron spectroscopic analysis (XPS) for detecting a compound present on the surface of the activated carbon electrode (several nm from the true surface). The horizontal axis corresponds to the type of compound detected, and the vertical axis represents the relative value of the detection level. It is clear that more compounds are present in the electrode (+) after operation than in the electrode (+) before operation.

以上のように本実施例によれば、制御装置7を構成する中央演算装置16は、電圧測定器13、雰囲気温度センサ14、筐体表面用温度センサ15によって得られる測定データの履歴に基づいてEDLCバンク4の余寿命を予測する。そして、予測した余寿命が所定の値に達すると、EDLCバンク4の交換を促すための報知動作を行なうと共に充放電制御対象をバックアップ用のEDLCバンク12に切換える処置を行う。
余寿命を予測するに当たっては、EDLCバンクを所定の温度環境下に置き所定の電圧を印加した場合に、静電容量が所定の割合に低下するまでの時間を複数の温度並びに複数の電圧について予め測定し、その測定結果についてアレニウスの式を適用した回帰式を求め、その式を表す定数を記憶させる。
As described above, according to this embodiment, the central processing unit 16 constituting the control device 7 is based on the history of measurement data obtained by the voltage measuring device 13, the ambient temperature sensor 14, and the housing surface temperature sensor 15. The remaining life of the EDLC bank 4 is predicted. When the predicted remaining life reaches a predetermined value, a notification operation for prompting replacement of the EDLC bank 4 is performed and a measure for switching the charge / discharge control target to the backup EDLC bank 12 is performed.
In predicting the remaining life, when a predetermined voltage is applied with the EDLC bank placed in a predetermined temperature environment, the time until the capacitance decreases to a predetermined ratio is set in advance for a plurality of temperatures and a plurality of voltages. The measurement is performed, a regression equation to which the Arrhenius equation is applied is obtained for the measurement result, and a constant representing the equation is stored.

そして、EDLCバンク4を用いたシステムの運転時において所定時間毎に雰囲気温度とEDLCバンク4の筐体表面温度とを測定すると、その測定結果よりEDLCバンク4の内部温度を推定し、その推定結果と記憶させたデータとに基づいて寿命減少度合いを演算し、余寿命を予測するようにした。従って、システムを運転しながらEDLCバンク4の余寿命を予測することが可能となり、適切な時期に報知動作や交換処置を自動で行なうことができる。   When the ambient temperature and the housing surface temperature of the EDLC bank 4 are measured every predetermined time during the operation of the system using the EDLC bank 4, the internal temperature of the EDLC bank 4 is estimated from the measurement result, and the estimation result The life reduction degree is calculated based on the stored data and the remaining life is predicted. Accordingly, it is possible to predict the remaining life of the EDLC bank 4 while operating the system, and the notification operation and the replacement procedure can be automatically performed at an appropriate time.

また、EDLCバンク4の内部温度を推定するために、EDLCバンク4に通電を行った場合における内部温度変化と筐体表面の温度変化とを予め測定し、雰囲気温度と筐体表面の温度との差、及び雰囲気温度と内部温度との差とを対応させて記憶させる。そして、システムの運転時に雰囲気温度と筐体表面の温度とを測定すると、両者の差に対応する前記雰囲気温度と前記内部温度との差を読み出し、雰囲気温度に温度差を加算することでEDLCバンク4の内部温度を推定する。従って、負荷率に応じて変化するEDLCバンク4の内部温度を妥当に推定することができる。   Further, in order to estimate the internal temperature of the EDLC bank 4, the internal temperature change and the case surface temperature change when the EDLC bank 4 is energized are measured in advance, and the ambient temperature and the case surface temperature are calculated. The difference and the difference between the ambient temperature and the internal temperature are stored in correspondence. Then, when the ambient temperature and the housing surface temperature are measured during system operation, the difference between the ambient temperature and the internal temperature corresponding to the difference between the two is read, and the temperature difference is added to the ambient temperature. 4 internal temperature is estimated. Therefore, it is possible to reasonably estimate the internal temperature of the EDLC bank 4 that changes according to the load factor.

(第2実施例)
図11は本発明の第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分についてのみ説明する。第2実施例の構成は基本的に第1実施例と同様であり、EDLCバンク4にパルス状の電圧が印加される場合に対応して余寿命を予測する例を示す。第2実施例では、第1実施例で示した図2の前段階の測定において、ステップS1におけるフロート課電に代えて、サイクル課電を行って測定データを得る。
(Second embodiment)
FIG. 11 shows a second embodiment of the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted. Only different parts will be described below. The configuration of the second embodiment is basically the same as that of the first embodiment, and an example in which the remaining life is predicted corresponding to the case where a pulsed voltage is applied to the EDLC bank 4 is shown. In the second embodiment, in the measurement in the previous stage of FIG. 2 shown in the first embodiment, measurement data is obtained by performing cycle electricity instead of the float electricity application in step S1.

即ち、パルス状の電圧を一定周期で連続的に印加し、同様にEDLCバンクの静電容量を測定する。この場合、パルス電圧の波高値は一定であり、電圧の立ち上がり時間を変化させることでEDLCバンクに通電される電流を変化させ、その電流毎に温度を3種(低,中,高)に変化させてデータを測定する。そして、静電容量の割合が10%低下する時点までに印加したパルス数を各温度毎に求める。   That is, a pulsed voltage is continuously applied at a constant cycle, and the capacitance of the EDLC bank is measured in the same manner. In this case, the peak value of the pulse voltage is constant, and the current passed through the EDLC bank is changed by changing the rise time of the voltage, and the temperature is changed to three types (low, medium, high) for each current. And measure the data. Then, the number of pulses applied up to the time when the capacitance ratio decreases by 10% is obtained for each temperature.

図11は、上記パルス数を対数表示して縦軸にとり、(恒温槽の設定温度に応じた)EDLCバンクの内部温度を絶対温度に変換し、その逆数を横軸にとったものである。この図に示すように、非常に相関性の高い直線でサイクル課電寿命特性が得られていることが判る。即ち、パルス電圧によりサイクル課電が行われる場合でも、EDLCの寿命特性は、パルス電圧のピークや電圧の立上がり時間に依存することなく、印加パルス数と内部温度とに基づいて決定されることが明らかである。従って、以降は第1実施例と同様に、最小二乗法を用いて(1)式の回帰定数a,bを求め、基準温度に応じた寿命時間(L0)を求めてデータ保存RAM18に記憶させ、余寿命予測を行う。尚、内部温度の推定方式に関しても、第1実施例と同様に行う。   In FIG. 11, the number of pulses is logarithmically displayed on the vertical axis, the internal temperature of the EDLC bank (according to the set temperature of the thermostat) is converted to an absolute temperature, and the reciprocal number is plotted on the horizontal axis. As shown in this figure, it can be seen that the cycle charge life characteristics are obtained with a highly correlated straight line. That is, even when the cycle voltage is applied by the pulse voltage, the life characteristics of the EDLC can be determined based on the number of applied pulses and the internal temperature without depending on the peak of the pulse voltage or the rise time of the voltage. it is obvious. Therefore, thereafter, similarly to the first embodiment, the regression constants a and b of the formula (1) are obtained by using the least square method, and the lifetime (L0) corresponding to the reference temperature is obtained and stored in the data storage RAM 18. , Predict remaining life. The internal temperature estimation method is the same as in the first embodiment.

以上のように第2実施例によれば、EDLCバンク4にパルス状の電圧が印加される場合に対応するため、EDLCバンク4を所定の温度環境下に置きパルス状の電圧を印加した場合に、静電容量が所定の割合に低下するまでの時間に相当する電圧印加回数を複数の温度について予め測定し、その結果に基づいて得られる内部温度とEDLCバンク4の寿命との関係を示すデータを記憶させる。   As described above, according to the second embodiment, in order to cope with the case where a pulsed voltage is applied to the EDLC bank 4, when the EDLC bank 4 is placed in a predetermined temperature environment and a pulsed voltage is applied. Data indicating the relationship between the internal temperature and the life of the EDLC bank 4 obtained by measuring the number of times of voltage application corresponding to the time until the capacitance decreases to a predetermined ratio for a plurality of temperatures in advance. Remember.

そして、システムの運転時において、EDLCバンク4の内部温度を推定すると共にパルス電圧の印加回数を測定すると、その測定結果と記憶させたデータとに基づいてEDLCバンク4の寿命減少度合いを演算し、余寿命を予測する。即ち、本発明の発明者らによって、EDLCバンク4がサイクル課電される場合の寿命特性は、印加パルス数とEDLCバンク4の内部温度とに基づいて決定されることが明らかとなったので、その原理に基づいて余寿命予測を妥当に行なうことが可能となる。   During operation of the system, when the internal temperature of the EDLC bank 4 is estimated and the number of times of application of the pulse voltage is measured, the life reduction degree of the EDLC bank 4 is calculated based on the measurement result and the stored data, Predict remaining life. That is, the inventors of the present invention have revealed that the lifetime characteristics when the EDLC bank 4 is cycled are determined based on the number of applied pulses and the internal temperature of the EDLC bank 4, Based on this principle, the remaining life can be predicted appropriately.

本発明は上記し且つ図面に記載した実施例にのみ限定されるものではなく、以下のような変形又は拡張が可能である。
EDLCの寿命としては、必ずしも静電容量が当初の状態から10%低下した時点をもって判断するものではなく、個別の状況に応じて適当な低下割合を設定すれば良い。
第1実施例において、余寿命時間が所定の値を下回った場合に、バックアップ用のEDLCバンク12側への切換えと、ユーザに対するEDLCバンクの交換を促す報知とは、何れか一方のみを行うようにしても良い。また、報知は、表示装置21を用いるものに限らず、音声やブザーを用いたり、報知専用のランプなどによって行っても良い。
ステップS18において、余寿命が所定時間以下となった場合に、EDLCバンク4に抵抗を接続して放電を行い、その時の電流,電圧の変化特性からその時点の静電容量を求め、その静電容量が実際に交換を要するレベルまで低下しているか否かを確認するようにしても良い。
The present invention is not limited to the embodiments described above and shown in the drawings, and the following modifications or expansions are possible.
The lifetime of the EDLC is not necessarily determined when the electrostatic capacity is reduced by 10% from the initial state, and an appropriate reduction rate may be set according to individual circumstances.
In the first embodiment, when the remaining lifetime falls below a predetermined value, only one of the switching to the backup EDLC bank 12 side and the notification for prompting the user to replace the EDLC bank is performed. Anyway. Further, the notification is not limited to using the display device 21, but may be performed by using a sound or a buzzer, a lamp dedicated to notification, or the like.
In step S18, when the remaining life is equal to or shorter than a predetermined time, discharging is performed by connecting a resistor to the EDLC bank 4, and the current capacitance is obtained from the current and voltage change characteristics at that time. It may be confirmed whether the capacity has actually dropped to a level that requires replacement.

第1実施例のように、必ずしも(1)式に回帰させる必要はなく、前段階の測定において得られたデータをデータ保存RAM18に記憶させ、それらのデータが示す傾向から直接寿命特性を推定しても良い。その際、例えば、所定の温度範囲について部分的に直線近似を行っても良い。この場合も、第1実施例と同様に、EDLCバンク4の内部温度を推定した後、夫々の温度に対応した寿命をデータ保存RAM18より読み出して、予め定めた基準温度における余寿命を演算して予測することができる。
また、システムの運転時において、EDLCバンク4に対する印加電圧が変動する場合は、運転時に測定されるその時々の印加電圧に最も近い電圧について得られているデータ(回帰式、若しくは寿命データ)に基づいて余寿命を予測すれば良い。その場合でも、余寿命予測としては、各電圧について夫々予測を行った結果の総和となる。
As in the first embodiment, it is not always necessary to return to the equation (1), the data obtained in the previous measurement is stored in the data storage RAM 18, and the life characteristics are estimated directly from the tendency indicated by those data. May be. At that time, for example, linear approximation may be partially performed for a predetermined temperature range. Also in this case, as in the first embodiment, after estimating the internal temperature of the EDLC bank 4, the life corresponding to each temperature is read from the data storage RAM 18, and the remaining life at a predetermined reference temperature is calculated. Can be predicted.
Further, when the applied voltage to the EDLC bank 4 fluctuates during operation of the system, it is based on data (regression equation or lifetime data) obtained for the voltage closest to the applied voltage at that time measured during operation. The remaining life can be predicted. Even in that case, the remaining life prediction is the sum of the results of prediction for each voltage.

本発明の第1実施例であり、電力制御装置の運転中に、制御装置(主に、EDLCバンク制御装置の中央演算装置)によって行なわれる制御内容を示すフローチャートThe flowchart which is 1st Example of this invention, and shows the control content performed by the control apparatus (mainly central processing unit of an EDLC bank control apparatus) during driving | operation of an electric power control apparatus. システムを運転するのに先立ち、EDLCに関して予め必要な測定データを得るための手順を示すフローチャートPrior to operating the system, a flowchart showing the procedure for obtaining the required measurement data for EDLC in advance. EDLCの静電容量の変化特性を示す図The figure which shows the change characteristic of the capacitance of EDLC 図2の手順で得られた測定結果について、横軸に温度(1000/T),縦軸に寿命時間を自然対数表示して示す図FIG. 2 is a graph showing the measurement result obtained by the procedure of FIG. 2 with the horizontal axis representing temperature (1000 / T) and the vertical axis representing the natural logarithm. フロート課電電圧を変化させた場合における、EDLCの寿命時間変化を内部温度をパラメータとして示す図A diagram showing the change in the EDLC lifetime with the internal temperature as a parameter when the float voltage is changed. 測定環境の雰囲気温度,EDLCバンクのケース温度,同内部温度との関係を示す図Diagram showing the relationship between the ambient temperature of the measurement environment, the case temperature of the EDLC bank, and the internal temperature 電力制御装置の構成を示す機能ブロック図Functional block diagram showing the configuration of the power control device EDLCバンク制御装置の構成を示す機能ブロック図Functional block diagram showing the configuration of the EDLC bank controller EDLCの活性炭電極表面を原子間力顕微鏡で観測して撮影した写真であり、(a)は課電試験前の状態,(b)は課電試験後の状態を示す図It is the photograph which observed and photographed the surface of activated carbon electrode of EDLC with an atomic force microscope, (a) is a state before an electric power test, and (b) is a figure showing the state after an electric power test. 活性炭電極表面に存在する化合物を検出するため、X線電子分光分析を行なった結果を示す図The figure which shows the result of having performed the X ray electron spectroscopic analysis in order to detect the compound which exists in the activated carbon electrode surface 本発明の第2実施例であり、EDLCにサイクル課電を行った場合の図4相当図FIG. 4 is a diagram corresponding to FIG. 4 when the cycle power is applied to the EDLC in the second embodiment of the present invention.

符号の説明Explanation of symbols

図面中、1は電力制御装置(電気二重層キャパシタシステム)、4はEDLCバンク(電気二重層キャパシタ)、10はEDLCバンク制御装置(監視装置)、11は切換えスイッチ(交換処置手段)、12はEDLCバンク(バックアップ用電気二重層キャパシタ)、13は電圧測定器(測定手段)、14は雰囲気温度センサ(測定手段)、15は筐体表面用温度センサ(測定手段)、16は中央演算装置(CPU,余寿命予測手段,交換処置手段)、18はデータ保存RAM(記憶手段)、21は表示装置(交換処置手段)を示す。   In the drawings, 1 is a power control device (electric double layer capacitor system), 4 is an EDLC bank (electric double layer capacitor), 10 is an EDLC bank control device (monitoring device), 11 is a changeover switch (exchange treatment means), and 12 is EDLC bank (backup electric double layer capacitor), 13 is a voltage measuring device (measuring means), 14 is an ambient temperature sensor (measuring means), 15 is a temperature sensor for the housing surface (measuring means), 16 is a central processing unit ( CPU, remaining life prediction means, replacement treatment means), 18 denotes a data storage RAM (storage means), and 21 denotes a display device (exchange treatment means).

Claims (6)

電気二重層キャパシタに対する充放電を制御することで負荷に対する電力供給を制御する電気二重層キャパシタシステムに使用され、前記電気二重層キャパシタの状態を監視する監視装置であって、
前記電気二重層キャパシタの余寿命を予測するために必要な測定データを得るための測定手段と、
前記測定データの履歴に基づいて前記電気二重層キャパシタの余寿命を予測する余寿命予測手段と、
前記余寿命が所定の値に達すると、前記電気二重層キャパシタを交換するために必要な処置を行う交換処置手段とを備え、
前記余寿命予測手段は、電気二重層キャパシタを所定の温度環境下に置き所定の電圧を印加した場合に、前記キャパシタの静電容量が所定の割合に低下するまでの時間を、複数の温度並びに複数の電圧について予め測定した結果に基づいて得られる温度とキャパシタの寿命との関係を示すデータを記憶手段に記憶し、
電気二重層キャパシタシステムの運転時において、前記測定手段が、所定時間毎に雰囲気温度と前記キャパシタの筐体表面温度とを測定すると、その測定結果に基づいて当該キャパシタの内部温度を推定し、
その推定結果と前記記憶手段に記憶させたデータとに基づいて前記キャパシタの寿命減少度合いを演算し、当該キャパシタの余寿命を予測することを特徴とする電気二重層キャパシタシステムの監視装置。
A monitoring device that is used in an electric double layer capacitor system that controls power supply to a load by controlling charging and discharging of the electric double layer capacitor, and monitors the state of the electric double layer capacitor,
Measurement means for obtaining measurement data necessary for predicting the remaining life of the electric double layer capacitor;
A remaining life prediction means for predicting a remaining life of the electric double layer capacitor based on the history of the measurement data;
When the remaining life reaches a predetermined value, a replacement treatment means for performing a treatment necessary for replacing the electric double layer capacitor,
The remaining life predicting means, when an electric double layer capacitor is placed in a predetermined temperature environment and a predetermined voltage is applied, the time until the capacitance of the capacitor decreases to a predetermined ratio, Storing in the storage means data indicating the relationship between the temperature obtained based on the results measured in advance for a plurality of voltages and the lifetime of the capacitor;
During operation of the electric double layer capacitor system, when the measurement means measures the ambient temperature and the housing surface temperature of the capacitor every predetermined time, the internal temperature of the capacitor is estimated based on the measurement result,
A monitoring device for an electric double layer capacitor system, wherein a life reduction degree of the capacitor is calculated based on the estimation result and data stored in the storage means, and a remaining life of the capacitor is predicted.
前記余寿命予測手段は、予め測定した結果についてアレニウスの式を適用した回帰式を求めると、その回帰式を表す定数を前記記憶手段に記憶し、
前記回帰式に基づいて所定の温度に対するキャパシタの寿命を推定し、その推定結果をも前記記憶手段に記憶し、
前記電気二重層キャパシタシステムの運転時において前記測定手段により得られた測定結果を前記回帰式に代入することでキャパシタの寿命減少度合いを演算し、その演算結果と記憶手段に記憶させた寿命とに基づいて前記キャパシタの余寿命を予測することを特徴とする請求項1記載の電気二重層キャパシタシステムの監視装置。
When the remaining life predicting means obtains a regression equation to which the Arrhenius equation is applied with respect to the result measured in advance, the constant representing the regression equation is stored in the storage means,
Estimating the lifetime of the capacitor with respect to a predetermined temperature based on the regression equation, also storing the estimation result in the storage means,
By substituting the measurement result obtained by the measurement means during the operation of the electric double layer capacitor system into the regression equation, the life reduction degree of the capacitor is calculated, and the calculation result and the life stored in the storage means The monitoring device for an electric double layer capacitor system according to claim 1, wherein the remaining life of the capacitor is predicted based on the prediction.
前記余寿命予測手段は、前記電気二重層キャパシタの内部温度を推定するために、キャパシタに通電を行った場合における当該キャパシタの内部温度変化と当該キャパシタの筐体表面の温度変化とを予め測定した時点における雰囲気温度と前記筐体表面の温度との差、及び前記雰囲気温度と前記内部温度との差とを対応させて前記記憶手段に記憶し、
前記電気二重層キャパシタシステムの運転時に、雰囲気温度と前記筐体表面の温度とを測定すると、両者の差に対応する前記雰囲気温度と前記内部温度との差を前記記憶手段より読み出し、
前記雰囲気温度に前記温度差を加算することでキャパシタの内部温度を推定することを特徴とする請求項1又は2記載の電気二重層キャパシタシステムの監視装置。
In order to estimate the internal temperature of the electric double layer capacitor, the remaining life prediction means previously measured the internal temperature change of the capacitor and the temperature change of the surface of the case of the capacitor when the capacitor was energized. Storing the difference between the ambient temperature at the time and the temperature of the housing surface and the difference between the ambient temperature and the internal temperature in the storage means,
During operation of the electric double layer capacitor system, when the ambient temperature and the temperature of the housing surface are measured, the difference between the ambient temperature and the internal temperature corresponding to the difference between the two is read from the storage means,
3. The monitoring device for an electric double layer capacitor system according to claim 1, wherein the internal temperature of the capacitor is estimated by adding the temperature difference to the ambient temperature.
前記余寿命予測手段は、前記電気二重層キャパシタシステムの運転時において、前記キャパシタの印加電圧が変動する場合は、前記運転時に測定されるその時々の印加電圧に最も近い電圧について得られているデータに基づいて余寿命を予測することを特徴とする請求項1乃至3の何れかに記載の電気二重層キャパシタシステムの監視装置。   If the applied voltage of the capacitor fluctuates during operation of the electric double layer capacitor system, the remaining life predicting means is data obtained with respect to a voltage closest to the current applied voltage measured during the operation. 4. The monitoring device for an electric double layer capacitor system according to claim 1, wherein the remaining life is predicted based on the characteristics. 前記余寿命予測手段は、前記電気二重層キャパシタシステムの運転時において、キャパシタにパルス状の電圧が印加される場合に対応するため、前記電気二重層キャパシタを所定の温度環境下に置きパルス状の電圧を印加した場合に、前記キャパシタの静電容量が所定の割合に低下するまでの時間に相当する電圧印加回数を、複数の温度について予め測定した結果に基づいて得られる温度とキャパシタの寿命との関係を示すデータを前記記憶手段に記憶し、
前記電気二重層キャパシタシステムの運転時において、前記測定手段が、キャパシタの内部温度を推定すると共に前記システムの運転時間に相当する電圧印加回数とを測定すると、その測定結果と前記記憶手段に記憶させたデータとに基づいてキャパシタの寿命減少度合いを演算し、前記キャパシタの余寿命を予測することを特徴とする請求項1乃至4の何れかに記載の電気二重層キャパシタシステムの監視装置。
The remaining life predicting means is arranged in such a manner that the electric double layer capacitor is placed under a predetermined temperature environment in order to cope with a case where a pulsed voltage is applied to the capacitor during operation of the electric double layer capacitor system. When a voltage is applied, the number of times of voltage application corresponding to the time until the capacitance of the capacitor decreases to a predetermined rate, the temperature obtained based on the results of measurement in advance for a plurality of temperatures, the life of the capacitor, Storing the data indicating the relationship in the storage means,
During the operation of the electric double layer capacitor system, when the measurement means estimates the internal temperature of the capacitor and measures the number of times of voltage application corresponding to the operation time of the system, the measurement result is stored in the storage means. 5. The monitoring device for an electric double layer capacitor system according to claim 1, wherein a life reduction degree of the capacitor is calculated based on the data and the remaining life of the capacitor is predicted.
前記交換処置手段は、余寿命が所定の値に達すると、電気二重層キャパシタの交換を促すための報知動作を行なうことを特徴とする請求項1乃至5の何れかに記載の電気二重層キャパシタシステムの監視装置。   6. The electric double layer capacitor according to claim 1, wherein when the remaining life reaches a predetermined value, the replacement treatment means performs a notification operation for prompting replacement of the electric double layer capacitor. System monitoring device.
JP2007192023A 2007-07-24 2007-07-24 Monitoring device of electric double-layer capacitor system Pending JP2008017691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192023A JP2008017691A (en) 2007-07-24 2007-07-24 Monitoring device of electric double-layer capacitor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192023A JP2008017691A (en) 2007-07-24 2007-07-24 Monitoring device of electric double-layer capacitor system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003407299A Division JP4011016B2 (en) 2003-12-05 2003-12-05 Electric double layer capacitor system monitoring device

Publications (1)

Publication Number Publication Date
JP2008017691A true JP2008017691A (en) 2008-01-24

Family

ID=39074168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192023A Pending JP2008017691A (en) 2007-07-24 2007-07-24 Monitoring device of electric double-layer capacitor system

Country Status (1)

Country Link
JP (1) JP2008017691A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148160A1 (en) 2008-06-06 2009-12-10 株式会社 明電舎 Capacitor's remaining lifetime diagnosing device, and electric power compensating device having the remaining lifetime diagnosing device
JP2011222133A (en) * 2010-04-02 2011-11-04 Toyota Motor Corp Input/output controller for battery pack
WO2012011440A1 (en) * 2010-07-23 2012-01-26 ソニー株式会社 Control device and control method, power generation device and power generation method, power storage device and power storage method, and power control system
WO2013107497A1 (en) * 2012-01-16 2013-07-25 Schneider Electric Buildings Llc Adjustment of a capacitor charge voltage
JP2015184135A (en) * 2014-03-24 2015-10-22 新日鐵住金株式会社 Measuring device, measuring method, and program
EP3160000A1 (en) * 2015-10-20 2017-04-26 Siemens Aktiengesellschaft Adjusting an operating point of an electrical energy storage device which is ready for operation
CN111524706A (en) * 2020-04-27 2020-08-11 宁波奥克斯电气股份有限公司 Electrolytic capacitor protection device and method and air conditioner
JP7523268B2 (en) 2020-07-13 2024-07-26 本田技研工業株式会社 Information processing device, information processing method, program, and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627175A (en) * 1992-07-07 1994-02-04 Toyota Autom Loom Works Ltd Life calculating device for capacitor
JP2000131362A (en) * 1998-10-27 2000-05-12 Kawasaki Steel Corp Method and apparatus for diagnosis of degradation of electrolytic capacitor
JP2001197686A (en) * 2000-01-12 2001-07-19 Okamura Kenkyusho:Kk Capacitor uninterruptible power supply apparatus
JP2002142373A (en) * 2000-11-01 2002-05-17 Power System:Kk Capacitor power storage system with compensated low- temperature characteristics
JP2003234248A (en) * 2002-02-07 2003-08-22 Matsushita Electric Ind Co Ltd Electrode material, its manufacturing method and electrochemical storage device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627175A (en) * 1992-07-07 1994-02-04 Toyota Autom Loom Works Ltd Life calculating device for capacitor
JP2000131362A (en) * 1998-10-27 2000-05-12 Kawasaki Steel Corp Method and apparatus for diagnosis of degradation of electrolytic capacitor
JP2001197686A (en) * 2000-01-12 2001-07-19 Okamura Kenkyusho:Kk Capacitor uninterruptible power supply apparatus
JP2002142373A (en) * 2000-11-01 2002-05-17 Power System:Kk Capacitor power storage system with compensated low- temperature characteristics
JP2003234248A (en) * 2002-02-07 2003-08-22 Matsushita Electric Ind Co Ltd Electrode material, its manufacturing method and electrochemical storage device using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131350B2 (en) * 2008-06-06 2013-01-30 株式会社明電舎 Capacitor remaining life diagnosis device and power compensation device having remaining life diagnosis device
WO2009148160A1 (en) 2008-06-06 2009-12-10 株式会社 明電舎 Capacitor's remaining lifetime diagnosing device, and electric power compensating device having the remaining lifetime diagnosing device
US8521459B2 (en) 2008-06-06 2013-08-27 Meidensha Corporation Capacitor's remaining lifetime diagnosing device, and electric power compensating device having the remaining lifetime diagnosing device
JP2011222133A (en) * 2010-04-02 2011-11-04 Toyota Motor Corp Input/output controller for battery pack
US9312714B2 (en) 2010-07-23 2016-04-12 Sony Corporation Control device and control method, power generation device and power generation method, power storage device and power storage method, and power control system
WO2012011440A1 (en) * 2010-07-23 2012-01-26 ソニー株式会社 Control device and control method, power generation device and power generation method, power storage device and power storage method, and power control system
JP2012029470A (en) * 2010-07-23 2012-02-09 Sony Corp Control device and method, power generating device and method, power storage device and method, and power control system
CN103004053A (en) * 2010-07-23 2013-03-27 索尼公司 Control device and control method, power generation device and power generation method, power storage device and power storage method, and power control system
WO2013107497A1 (en) * 2012-01-16 2013-07-25 Schneider Electric Buildings Llc Adjustment of a capacitor charge voltage
CN104054233A (en) * 2012-01-16 2014-09-17 施耐德电气建筑有限公司 Adjustment of a capacitor charge voltage
JP2015184135A (en) * 2014-03-24 2015-10-22 新日鐵住金株式会社 Measuring device, measuring method, and program
EP3160000A1 (en) * 2015-10-20 2017-04-26 Siemens Aktiengesellschaft Adjusting an operating point of an electrical energy storage device which is ready for operation
CN111524706A (en) * 2020-04-27 2020-08-11 宁波奥克斯电气股份有限公司 Electrolytic capacitor protection device and method and air conditioner
JP7523268B2 (en) 2020-07-13 2024-07-26 本田技研工業株式会社 Information processing device, information processing method, program, and storage medium

Similar Documents

Publication Publication Date Title
JP2008017691A (en) Monitoring device of electric double-layer capacitor system
JP4011016B2 (en) Electric double layer capacitor system monitoring device
US9157966B2 (en) Method and apparatus for online determination of battery state of charge and state of health
JP4645382B2 (en) Battery state detection device and battery state detection method
WO2014185163A1 (en) Cell state-maintaining device, cell state management system, cell, method for maintaining cell state, and program
JP2012032267A (en) Remaining capacitance detection apparatus and battery control ic
CN103675533A (en) Direct-current bus electrolytic capacitor life test method and device
WO2014103705A1 (en) Lifetime estimation device for energy storage devices and lifetime estimation method for energy storage devices
JP2006275797A (en) Residual capacity arithmetic unit for capacitor device
WO2016002398A1 (en) Battery degradation level estimation device and battery degradation level estimation method
KR20170043056A (en) Apparatus and method for temperature estimating of battery, apparatus and method for managing battery
Williard et al. A life model for supercapacitors
JP5978665B2 (en) Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method
US20160109528A1 (en) Method and apparatus for determining an operating point-dependent change in resistance factor and vehicle
Celaya et al. Towards prognostics of electrolytic capacitors
JP2002343444A (en) Status-monitoring system for lead-acid battery
JP2010093046A (en) Life prediction method and device for electrolytic capacitor
JP2009257953A (en) Management device
JP2015212623A (en) Water quality sensor and cooling system including the same
WO2020022463A1 (en) Electric storage device and temperature estimation method
JP2016157565A (en) Battery charging capacity estimation method and battery charging capacity estimation device
JP7511346B2 (en) Apparatus and method for measuring power storage device
CN115508634A (en) Lifetime estimation of electrolytic capacitors
JP2009131125A (en) Control unit for electric vehicle
US20210040630A1 (en) Control device, system and process for operating electrochemical gas generator cells

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615