JP2008016329A - Negative electrode material for lithium secondary battery - Google Patents

Negative electrode material for lithium secondary battery Download PDF

Info

Publication number
JP2008016329A
JP2008016329A JP2006186674A JP2006186674A JP2008016329A JP 2008016329 A JP2008016329 A JP 2008016329A JP 2006186674 A JP2006186674 A JP 2006186674A JP 2006186674 A JP2006186674 A JP 2006186674A JP 2008016329 A JP2008016329 A JP 2008016329A
Authority
JP
Japan
Prior art keywords
negative electrode
porous support
secondary battery
lithium secondary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006186674A
Other languages
Japanese (ja)
Inventor
Taku Kamimura
卓 上村
Yukihiro Ota
進啓 太田
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006186674A priority Critical patent/JP2008016329A/en
Publication of JP2008016329A publication Critical patent/JP2008016329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium secondary battery capable of maintaining properly high rate characteristics, even if chargings and dischargings are repeated in a secondary battery. <P>SOLUTION: The negative electrode material for the lithium secondary battery is provided with porous support bodies 3, 13 having a porous structure, and a negative electrode active material 5 which is carried by the porous support bodies 3, 13 and which contains lithium. According to this constitution, a negative electrode surface area is increased, a battery internal resistance is reduced, and high rate discharging characteristics are improved. Moreover, optimization of the material and the constitution of the porous support bodies, improvement in the cycle discharging characteristics, and thermal resistance or the like can be realized. Both a liquid electrolyte and a solid electrolyte can be applied as the electrolyte. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池用負極材に関するものである。   The present invention relates to a negative electrode material for a lithium secondary battery.

リチウム電池において、負極材を平坦表面のリチウム金属またはリチウム合金とする場合、リチウムイオンの脱着に利用される表面積は、非常に限定的となる。このため、負極材と電解質とが接触する面積を増大させるために、電着等によって固体リチウムの嵩密度の25%以上75%未満の多孔質リチウムを負極材とする提案がなされた(特許文献1)。このような多孔質リチウムを負極材とすることにより、電解質と負極材との接触面積が増大して、電池内部抵抗を低下させ、大電流時の発熱および電圧ロスを減少することができ、そのため大電流時の充放電容量を大きくすることができる。換言すれば、高レート特性を実現することができる。
特表平4−507171号公報
In a lithium battery, when the negative electrode material is a flat surface lithium metal or lithium alloy, the surface area used for lithium ion desorption is very limited. Therefore, in order to increase the contact area between the negative electrode material and the electrolyte, a proposal has been made to use porous lithium of 25% or more and less than 75% of the bulk density of solid lithium as a negative electrode material by electrodeposition or the like (Patent Document). 1). By using such porous lithium as the negative electrode material, the contact area between the electrolyte and the negative electrode material can be increased, the internal resistance of the battery can be reduced, and heat generation and voltage loss at a large current can be reduced. Charging / discharging capacity at a large current can be increased. In other words, high rate characteristics can be realized.
JP-T-4-507171

上記の多孔質リチウムは、一次電池に用いた場合には、上記した効果を得ることはできるが、二次電池用の負極材としては、同じ効果を期待することはできない。なぜなら、使い捨ての一次電池において、当初、最適な多孔質構造を有し、1回目の放電時に、負極の多孔質リチウム材で、狙いどおり、高密度で多量のリチウム溶出の効果が得られても、二次電池に使用された場合、二次電池の充電の際にリチウムが負極に再析出するとき、多孔質の孔を塞ぐなどの現象が生じる。その結果、2回目の放電のとき1回目の放電と同様の良好な特性が再現されないという問題がある。また、めっき処理の電着条件だけでは、気孔径、気孔率などの多孔質の構造を、広い範囲にわたって制御することが難しい問題もある。   When the porous lithium is used in a primary battery, the above effect can be obtained, but the same effect cannot be expected as a negative electrode material for a secondary battery. This is because, in a disposable primary battery, it has an optimal porous structure at the beginning, and at the time of the first discharge, the porous lithium material of the negative electrode can achieve a high density and a large amount of lithium elution as intended. When used in a secondary battery, when lithium is re-deposited on the negative electrode during charging of the secondary battery, a phenomenon such as closing a porous hole occurs. As a result, there is a problem in that good characteristics similar to those of the first discharge are not reproduced in the second discharge. Moreover, it is difficult to control the porous structure such as the pore diameter and the porosity over a wide range only by the electrodeposition conditions of the plating treatment.

本発明は、二次電池において充放電を繰り返しても、良好な高レート特性を維持することができるリチウム二次電池用負極材を提供することを目的とする。   An object of this invention is to provide the negative electrode material for lithium secondary batteries which can maintain a favorable high rate characteristic even if charging / discharging is repeated in a secondary battery.

本発明のリチウム二次電池負極材は、多孔質構造を有する多孔質支持体と、多孔質支持体に担持される、リチウムを含む負極活物質とを備えることを特徴とする。   The lithium secondary battery negative electrode material of the present invention is characterized by comprising a porous support having a porous structure and a negative electrode active material containing lithium carried on the porous support.

上記の構成により、負極の表面積が増大し、電池内部抵抗が減り、大電流時の発熱および電圧ロスが減り、そのため充放電容量を拡大することができる。すなわち高レート特性とすることができる。そして、リチウムを含む負極活物質と、多孔質支持体とを別部材としたので、充放電を繰り返しても、多孔質支持体の外形は安定的に維持され、多孔質支持体に担持されるリチウムが溶出と析出とを繰り返すだけである。このため高レート特性を、放充電の多サイクルにわたって維持可能とする二次電池の負極材を提供することができる。また、上記負極活物質と、多孔質支持体とを別部材としたので、電着によるリチウム多孔質支持体に比べて、気孔率を非常に大きく、90容積%以上にしたり、平均気孔径を大きくすることができる。このため、二次電池としてより好ましい形態の多孔質支持体を得ることができる。なお、上記リチウム二次電池用負極材は、電解質が液相のリチウム二次電池を対象にしてもよいし、電解質が固相のリチウム二次電池を対象にしてもよい。   With the above configuration, the surface area of the negative electrode is increased, the internal resistance of the battery is reduced, the heat generation and the voltage loss at the time of a large current are reduced, and therefore the charge / discharge capacity can be expanded. That is, a high rate characteristic can be obtained. In addition, since the negative electrode active material containing lithium and the porous support are used as separate members, the outer shape of the porous support is stably maintained even when charging and discharging are repeated, and is supported on the porous support. Lithium simply elutes and precipitates repeatedly. For this reason, the negative electrode material of the secondary battery which can maintain a high rate characteristic over many cycles of discharge / charge can be provided. In addition, since the negative electrode active material and the porous support are separate members, the porosity is very large compared to the lithium porous support by electrodeposition, and the average pore diameter is set to 90% by volume or more. Can be bigger. For this reason, the porous support body of a more preferable form as a secondary battery can be obtained. The negative electrode material for a lithium secondary battery may be targeted for a liquid phase lithium secondary battery, or a solid phase lithium secondary battery for an electrolyte.

また、上記の多孔質支持体は、導体で形成されることができる。この構成では、集電のための集電層は必要なく、その結果、たとえば集電層と電極板との接触面積の確保などに配慮する必要がなく、負極材の構成を簡単化することができる。   The porous support can be formed of a conductor. In this configuration, there is no need for a current collecting layer for current collection, and as a result, for example, it is not necessary to consider securing the contact area between the current collecting layer and the electrode plate, and the configuration of the negative electrode material can be simplified. it can.

また、上記の多孔質支持体が、銅と同等または銅より高い酸化電位を有する金属で形成した方が好ましい。この構成により、電池に組み込まれたとき、多孔質支持体の耐食性を維持することができる。   Moreover, it is preferable that the porous support is formed of a metal having an oxidation potential equivalent to or higher than that of copper. With this configuration, the corrosion resistance of the porous support can be maintained when incorporated in a battery.

また、上記の多孔質支持体が、素を50%以上含む材料で形成されていてもよい。この構成により、耐食性と導電性とを兼ね備えた多孔質支持体を得ることができる。   The porous support may be formed of a material containing 50% or more of elemental. With this configuration, a porous support having both corrosion resistance and conductivity can be obtained.

また、上記の多孔質支持体が、絶縁体で形成され、該多孔質支持体は、集電のために、負極活物質と電気接続する集電層をも担持する構成をとることができる。この構成により、多孔質支持体を形成する材料の選択肢を絶縁体にまで、拡大することができ、たとえば多孔質支持体の孔の形態などについて多様性を確保することができる。   In addition, the porous support described above is formed of an insulator, and the porous support can also be configured to carry a current collecting layer electrically connected to the negative electrode active material for current collection. With this configuration, the choice of material for forming the porous support can be expanded to the insulator, and, for example, diversity can be ensured with respect to the shape of the pores of the porous support.

また、上記の多孔質支持体は、ガラス転移温度が100℃以上の材料で形成した方が好ましい。この構成により、たとえばリチウムを含む負極活物質を多孔質支持体上に形成する際に必要とされる熱特性を得ることができる。   The porous support is preferably formed of a material having a glass transition temperature of 100 ° C. or higher. With this configuration, it is possible to obtain thermal characteristics required when, for example, a negative electrode active material containing lithium is formed on a porous support.

また、上記の集電層の酸化電位が、銅と同等または銅より高い金属とすることができる。この構成により、電池に組み込まれた集電層の耐食性を維持することができる。   Moreover, the oxidation potential of the current collecting layer can be a metal equivalent to or higher than copper. With this configuration, the corrosion resistance of the current collecting layer incorporated in the battery can be maintained.

上記の多孔質支持体において、平均気孔径(μm)>2×{(集電層厚(μm))+(負極活物質層厚(μm))}を満たすようにしてもよい(この不等式を、不等式(1)とする)。ここで、集電層を用いない場合(多孔質支持体が、導体で形成される場合)、集電層厚はゼロとする。また、負極活物質層厚(μm)は、使用開始前の層厚をさす。この構成により、多孔質支持体の気孔が、活物質等で塞がれない、または埋められないようにできる。   In the above porous support, the average pore diameter (μm)> 2 × {(current collector layer thickness (μm)) + (negative electrode active material layer thickness (μm))} may be satisfied (this inequality is represented by And inequality (1). Here, when the current collecting layer is not used (when the porous support is formed of a conductor), the current collecting layer thickness is zero. The negative electrode active material layer thickness (μm) is the layer thickness before the start of use. With this configuration, the pores of the porous support can be prevented from being blocked or filled with an active material or the like.

また、上記の負極活物質に接触して、リチウムイオン導電性固体電解質を配置することができる。この構造により、負極活物質の溶出、析出の繰り返し時に短絡不良の原因となるリチウム金属のデンドライド成長を抑制することができる。当然のことながら、リチウムイオン導電性固体電解質を、上記のように配置する負極材は、固体電解質のリチウム二次電池を対象とする。   Moreover, a lithium ion conductive solid electrolyte can be arrange | positioned in contact with said negative electrode active material. With this structure, dendritic growth of lithium metal that causes a short circuit failure when the negative electrode active material is repeatedly eluted and precipitated can be suppressed. As a matter of course, the negative electrode material in which the lithium ion conductive solid electrolyte is arranged as described above is intended for a solid electrolyte lithium secondary battery.

また、上記のリチウムイオン導電性固体電解質はLi,P、S、Oの元素を含有するものが好ましい。この構成により、経年使用による性能劣化の小さく、高レート特性の二次電池を得ることができる。   The lithium ion conductive solid electrolyte preferably contains Li, P, S, and O elements. With this configuration, it is possible to obtain a secondary battery with high rate characteristics with little performance deterioration due to use over time.

(実施の形態1)
次に図面を用いて本発明の実施の形態について説明する。図1は、本発明の実施の形態1におけるリチウム二次電池用負極材10を示す断面図である。図1において、導体からなる多孔質支持体3が、リチウムを含む負極活物質5を担持している。具体的にいえば、多孔質支持体3の気孔内外の表面をリチウム含有負極活物質5が被覆している。多孔質支持体3は、気孔率が大きいほうが表面積が大きくなり、Li含有負極活物質5をその表面に担持する場合、より多くのLi含有負極活物質5をその表面に担持することができる。また多孔質支持体3は、連続気孔を有するほうが好ましいが、必ずしも連続気孔でなくてもよい。図1では、Li含有負極活物質5は、多孔質支持体3の表面を覆うように層状に形成されているが、必ずしも層状である必要はなく、領域によっては島状にしか形成されない箇所があり、そのような場合には島状の領域と層状の領域とが混在してもよい。図1に示すリチウム二次電池用負極材10では、多孔質支持体3が導体で形成されているため、集電のための集電層は、とくに必要ない。多孔質支持体3が導電材で形成される場合、多孔質支持体の底部側は、図示しない電極板などに電気接続された状態で、固定されるようにするのがよい。
(Embodiment 1)
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a negative electrode material 10 for a lithium secondary battery according to Embodiment 1 of the present invention. In FIG. 1, a porous support 3 made of a conductor carries a negative electrode active material 5 containing lithium. More specifically, the surface of the porous support 3 inside and outside the pores is covered with the lithium-containing negative electrode active material 5. The porous support 3 has a larger surface area when the porosity is higher, and when the Li-containing negative electrode active material 5 is supported on the surface thereof, more Li-containing negative electrode active material 5 can be supported on the surface. The porous support 3 preferably has continuous pores, but does not necessarily have to be continuous pores. In FIG. 1, the Li-containing negative electrode active material 5 is formed in a layer shape so as to cover the surface of the porous support 3, but it does not necessarily have a layer shape, and there is a portion that is only formed in an island shape depending on the region. In such a case, island-like regions and layer-like regions may be mixed. In the negative electrode material 10 for a lithium secondary battery shown in FIG. 1, since the porous support 3 is formed of a conductor, a current collecting layer for collecting current is not particularly necessary. When the porous support 3 is formed of a conductive material, the bottom side of the porous support is preferably fixed in a state where it is electrically connected to an electrode plate (not shown).

図2は、多孔質支持体を絶縁体で形成した場合の、本発明の実施の形態1におけるリチウム二次電池用負極材10を示す断面図である。多孔質支持体13が絶縁体で形成されているため、集電のために集電層7が、多孔質支持体13の表面を被覆するように形成され、その集電層7の上にリチウムを含む負極活物質層5が形成されている。集電層7は、層状に多孔質支持体13の表面に形成されることが好ましいが、その上に形成されるリチウム含有負極活物質5は、層状に形成されることが好ましいが、その面積を十分大きくとれれば、層状でも島状でもかまわない。絶縁体の多孔質支持体13に、集電層7と、Li含有活物質5とが担持される場合には、図3に示すように、電極板1に多孔質支持体13が取り付けられ、集電層7は、その電極板1を覆う位置まで延びて、電気接触を保ち、電子が負電極から外部回路へと移動できる経路を確保するのがよい。   FIG. 2 is a cross-sectional view showing negative electrode material 10 for a lithium secondary battery according to Embodiment 1 of the present invention when the porous support is formed of an insulator. Since the porous support 13 is formed of an insulator, the current collection layer 7 is formed so as to cover the surface of the porous support 13 for current collection, and lithium is formed on the current collection layer 7. The negative electrode active material layer 5 containing is formed. The current collecting layer 7 is preferably formed on the surface of the porous support 13 in a layered manner, but the lithium-containing negative electrode active material 5 formed thereon is preferably formed in a layered shape, but its area If it is large enough, it may be layered or island-shaped. When the current collector layer 7 and the Li-containing active material 5 are carried on the insulating porous support 13, the porous support 13 is attached to the electrode plate 1 as shown in FIG. The current collecting layer 7 is preferably extended to a position covering the electrode plate 1 to maintain electrical contact and secure a path through which electrons can move from the negative electrode to the external circuit.

図1〜図3に示す負極材10は、液相電解質の二次電池に用いる場合には、多孔質支持体3の気孔中に液相の電解質が浸入して、表面に担持されているリチウム含有活物質5と接触する状態を維持するようにする。固体電解質の場合については、本発明の実施の形態2で説明する。   When the negative electrode material 10 shown in FIG. 1 to FIG. 3 is used for a secondary battery of a liquid phase electrolyte, the liquid phase electrolyte enters the pores of the porous support 3 and is supported on the surface. The state in contact with the contained active material 5 is maintained. The case of a solid electrolyte will be described in Embodiment 2 of the present invention.

多孔質支持体3,13の平均気孔径(μm)は、2×{(集電層厚(μm))+(Li含有活物質層厚(μm))}より大きくする(不等式(1)を満たす)のがよい。多孔質支持体の平均気孔径が、上記の条件を満たす場合、二次電池に適用したとき、充放電に応じて活物質の溶出と析出とのサイクルを繰り返しても、多孔質支持体3,13の気孔が、Li含有活物質で埋められにくくなる。すなわち、充放電開始前の初期の活物質層の表面積を維持することが実現しやすい。多孔質支持体が導体の場合(集電層なし)と、多孔質支持体が絶縁体の場合(集電層必須)とで、どちらがこの条件を満たしやすいか、といえば、明らかに、多孔質支持体が導体で形成され、集電層を用いない図1の場合のほうが、満たしやすい。図2の多孔質支持体が絶縁体の場合では、集電層の厚み分の2倍だけ、多孔質支持体の平均気孔径が実質的に小さくなり、Li含有活物質5によって塞がれやすくなるからである。したがって、多孔質支持体は導体で形成するほうが、充放電の繰り返しによりLi含有活物質によって気孔が塞がれにくい。しかし、絶縁体で多孔質支持体を形成した場合でも、平均気孔径を十分大きく形成できれば、なんら問題ない。平均気孔径は、気孔に押し込み可能な球体の径の最大値とイメージすることができる。図1または図2の気孔形状は、連続的な経路が形成されている形状であるが、上述のように連続的でなく、図1または図2に示す気孔形状と類似していなくてもよい。   The average pore diameter (μm) of the porous supports 3 and 13 is larger than 2 × {(current collector layer thickness (μm)) + (Li-containing active material layer thickness (μm))} (the inequality (1) is To meet). When the average pore diameter of the porous support satisfies the above-mentioned conditions, the porous support 3, even when the cycle of elution and precipitation of the active material is repeated according to charge and discharge when applied to a secondary battery. The 13 pores are hardly filled with the Li-containing active material. That is, it is easy to realize the initial surface area of the active material layer before the start of charge / discharge. Obviously, if the porous support is a conductor (no current collecting layer) or the porous support is an insulator (necessary current collecting layer), which is easier to meet this condition, it is clearly porous The case of FIG. 1 in which the support is formed of a conductor and does not use a current collecting layer is easier to fill. When the porous support in FIG. 2 is an insulator, the average pore diameter of the porous support is substantially reduced by twice the thickness of the current collecting layer, and is easily blocked by the Li-containing active material 5. Because it becomes. Therefore, when the porous support is formed of a conductor, the pores are less likely to be blocked by the Li-containing active material due to repeated charge and discharge. However, even when the porous support is formed of an insulator, there is no problem as long as the average pore diameter can be formed sufficiently large. The average pore diameter can be imaged as the maximum value of the diameter of a sphere that can be pushed into the pores. The pore shape of FIG. 1 or FIG. 2 is a shape in which a continuous path is formed, but is not continuous as described above, and may not be similar to the pore shape shown in FIG. 1 or FIG. .

多孔質支持体の材質は、十分大きな平均気孔径および気孔率を確保できれば、どのような材料で形成してもよい。たとえば、高分子樹脂、無機セラミックスなどの絶縁体、また金属やカーボンなどの導体であってもよい。具体的には、ポリプロピレン、ポリエチレン、ポリエーテルサルフォン、ポリイミド、ポリエーテルアミド、ポリテトラフルオロエチレンなどの高分子樹脂や、多孔質アルミナ、多孔質シリカ、多孔質ジルコニア、多孔質窒化珪素などの無機セラミックス、また、カーボン(炭素)、銅、アルミニウム、ニッケル、ステンレスなどの導体を用いることができる。多孔質の製造方法は、どのような方法であってもよく、たとえば電着、電析など液相プロセスでもよいし、各種の気相蒸着などの気相プロセスであってもよい。   The material of the porous support may be formed of any material as long as a sufficiently large average pore diameter and porosity can be secured. For example, an insulator such as a polymer resin or inorganic ceramics, or a conductor such as metal or carbon may be used. Specifically, polymer resins such as polypropylene, polyethylene, polyethersulfone, polyimide, polyetheramide, and polytetrafluoroethylene, and inorganic materials such as porous alumina, porous silica, porous zirconia, and porous silicon nitride Ceramics and conductors such as carbon (carbon), copper, aluminum, nickel, and stainless steel can be used. The porous manufacturing method may be any method, for example, a liquid phase process such as electrodeposition or electrodeposition, or a gas phase process such as various vapor depositions.

多孔質支持体3,13の気孔率は、10容積%〜99容積%が好ましい。この中でも50容積%〜95容積%がとくに好ましい。Li含有負極活物質を担持する表面積を十分広く確保できるからである。また、多孔質支持体3,13の平均気孔径は、2μm〜150μmとするのがよい。   The porosity of the porous supports 3 and 13 is preferably 10% by volume to 99% by volume. Among these, 50 volume%-95 volume% are especially preferable. This is because a sufficiently large surface area for supporting the Li-containing negative electrode active material can be secured. The average pore diameter of the porous supports 3 and 13 is preferably 2 μm to 150 μm.

また、集電層7については、銅、ニッケルなどの金属または合金などからなり、その厚みは集電を考慮すると0.1μm〜10μmとするのがよい。さらに好ましい厚み範囲は、0.5μm〜5μmとするのがよい。また、Li含有活物質層5の厚みは、1μm〜50μmであることが好ましい。上述の多孔質支持体の平均気孔径の範囲、これら集電層7およびLi含有活物質5の厚み範囲を考慮すれば、上述の不等式(1)を十分満たすよう担保されていることが納得される。   The current collecting layer 7 is made of a metal or alloy such as copper or nickel, and its thickness is preferably 0.1 μm to 10 μm in consideration of current collection. A more preferable thickness range is 0.5 μm to 5 μm. Moreover, it is preferable that the thickness of the Li containing active material layer 5 is 1 micrometer-50 micrometers. Considering the range of the average pore diameter of the porous support described above and the thickness range of the current collecting layer 7 and the Li-containing active material 5, it is convinced that the above inequality (1) is sufficiently satisfied. The

上記図1〜図3に示すリチウム二次電池用負極材は、気孔率および平均気孔径が上述の条件を満たすものを準備して、負極活物質5としてLi層を用いる場合には、たとえば10−6torr以下の真空中で抵抗加熱法によりLi蒸着を行うことができる。Li蒸着には、抵抗加熱法以外の任意の方法、たとえばCVD(Chemical Vapor Deposition)などを用いることができる。さらに電着法、電析法などどのような方法を用いてもよい。また絶縁体で多孔質支持体を形成した場合、集電層7の形成には、たとえば直流マグネトロンスパッタ法、CVD法など任意の気相成長法で成膜することができる。また、集電層7は、電着法、電析法などの液相からの形成法で形成してもよい。 When the negative electrode material for a lithium secondary battery shown in FIGS. 1 to 3 is prepared so that the porosity and the average pore diameter satisfy the above-described conditions, and the Li layer is used as the negative electrode active material 5, for example, 10 Li deposition can be performed by resistance heating in a vacuum of −6 torr or less. For Li deposition, any method other than the resistance heating method, for example, CVD (Chemical Vapor Deposition) can be used. Further, any method such as an electrodeposition method or an electrodeposition method may be used. When the porous support is formed of an insulator, the current collecting layer 7 can be formed by any vapor phase growth method such as direct current magnetron sputtering or CVD. Moreover, you may form the current collection layer 7 by the formation methods from liquid phases, such as an electrodeposition method and an electrodeposition method.

(実施の形態2)
上述の実施の形態1では、負極材10は液相の電解質の二次電池を主対象にしている。本発明の実施の形態2では、電解質にリチウムイオン導電性固体電解質(以下、固体電解質という。)を用いた例を説明する。図4は、本発明の実施の形態2における、リチウム二次電池用負極材10を示す断面図である。図4において、多孔質支持体3の気孔に固体電解質9が充填されて、リチウム含有負極活物質5に接触している。固体電解質9により充放電時のLi含有活物質5の表面荒れを防止することができる。この結果、リチウム二次電池の内部抵抗は減少し、大電流の充放電時の発熱や電圧ロスを少なくすることができる。そして、大電流の充放電時の容量を大きくすることができる。
(Embodiment 2)
In the first embodiment described above, the negative electrode material 10 is mainly intended for a secondary battery of a liquid phase electrolyte. In Embodiment 2 of the present invention, an example in which a lithium ion conductive solid electrolyte (hereinafter referred to as a solid electrolyte) is used as an electrolyte will be described. FIG. 4 is a cross-sectional view showing a negative electrode material 10 for a lithium secondary battery according to Embodiment 2 of the present invention. In FIG. 4, the pores of the porous support 3 are filled with the solid electrolyte 9 and are in contact with the lithium-containing negative electrode active material 5. The solid electrolyte 9 can prevent surface roughness of the Li-containing active material 5 during charging and discharging. As a result, the internal resistance of the lithium secondary battery is reduced, and heat generation and voltage loss during charge / discharge of a large current can be reduced. And the capacity | capacitance at the time of charging / discharging of a large current can be enlarged.

次に実施例により、本発明のリチウム二次電池用負極材の優れた特性を明らかにする。本発明の負極材10を適用したリチウム二次電池は、図5に示すように、電極面積2cm程度のコイン型二次電池である。正極材20には、アルミニウム箔に、活物質であるLiCoO粉末と集電材のアセチレンブラックとを、結着剤と共に100μm厚で塗布したものを用いた。セパレータ35は、ポリプロピレンを用い、厚み25μmとした。電解液は、EC(Ethyl Carbonate)とDEC(Diethyl Carbonate)との等体積混合物を用い、支持塩としてLiPFを1M濃度溶解した。支持塩には、LiPFの代わりにLiClOを用いてもよい。 Next, the outstanding characteristic of the negative electrode material for lithium secondary batteries of this invention is clarified by an Example. The lithium secondary battery to which the negative electrode material 10 of the present invention is applied is a coin-type secondary battery having an electrode area of about 2 cm 2 as shown in FIG. The positive electrode material 20 used was an aluminum foil coated with LiCoO 2 powder as an active material and acetylene black as a current collector in a thickness of 100 μm together with a binder. The separator 35 was made of polypropylene and had a thickness of 25 μm. As an electrolytic solution, an equal volume mixture of EC (Ethyl Carbonate) and DEC (Diethyl Carbonate) was used, and LiPF 6 was dissolved at a concentration of 1M as a supporting salt. LiClO 4 may be used instead of LiPF 6 as the supporting salt.

Figure 2008016329
Figure 2008016329

負極材10には、表1に示す本発明例1〜4および比較例1を用いた。本発明例の多孔質支持体には、カーボン(炭素材)および銅の導電体と、ポリプロピレンの絶縁体とを用いた。気孔率は、カーボンが95容積%、銅が96容積%、ポリプロピレンが90容積%といずれも90容積%以上であり、平均気孔径はいずれも20μmである。従来の多孔質リチウムでは、気孔率は最大でも75容積%であった(特許文献1)ことを考えると、多孔質支持体をリチウムと別の部材で形成した本発明の非常に大きな利点を十分認識することができる。これに対して、比較例1では、固体の銅層を用いた。また、絶縁体の多孔質支持体の本発明例3では、Niの集電層を形成した。負極活物質はいずれも厚み5μmのLi層とした。   Examples 1 to 4 of the present invention and Comparative Example 1 shown in Table 1 were used for the negative electrode material 10. Carbon (carbon material) and copper conductors and polypropylene insulators were used for the porous support of the present invention example. The porosity is 95% by volume of carbon, 96% by volume of copper, 90% by volume of polypropylene, and 90% by volume or more, and the average pore diameter is 20 μm. Considering that the conventional porous lithium has a porosity of 75% by volume at the maximum (Patent Document 1), the very large advantage of the present invention in which the porous support is formed of a member different from lithium is sufficient. Can be recognized. On the other hand, in Comparative Example 1, a solid copper layer was used. Further, in Example 3 of the present invention, which is an insulating porous support, a Ni current collecting layer was formed. Each negative electrode active material was a Li layer having a thickness of 5 μm.

Figure 2008016329
Figure 2008016329

上記したリチウム二次電池を電流密度30mA、4.2V〜3V間で充放電試験を行った。得られた結果を、表2に示す。表2によれば、本発明例1〜3では、10サイクル経過後も容量の劣化は、本発明例2における誤差範囲内の劣化程度しか認められず、100%の容量を維持する。これに対して、比較例1では、10サイクル経過時には1サイクル目の容量の68%にまで低下する。この実施例の結果により、本発明の負極材を用いた場合、大きな放電充電容量が得られ、高レート特性に優れたリチウム二次電池が得られることを確認した。   The above-described lithium secondary battery was subjected to a charge / discharge test between a current density of 30 mA and 4.2 V to 3 V. The results obtained are shown in Table 2. According to Table 2, in Examples 1 to 3 of the present invention, even after 10 cycles, the capacity was deteriorated only within the error range in Example 2 of the present invention, and the capacity of 100% was maintained. On the other hand, in Comparative Example 1, the capacity is reduced to 68% of the capacity of the first cycle when 10 cycles have elapsed. From the results of this Example, it was confirmed that when the negative electrode material of the present invention was used, a large discharge charge capacity was obtained and a lithium secondary battery excellent in high rate characteristics was obtained.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明のリチウム二次電池用負極材を用いることにより、リチウム二次電池の内部抵抗を減らすことができ、大電流の充放電時にロスの少ない、高レート特性を、繰り返し使用しても維持することができる。   By using the negative electrode material for a lithium secondary battery of the present invention, the internal resistance of the lithium secondary battery can be reduced, and a high rate characteristic with little loss during charge / discharge of a large current is maintained even after repeated use. be able to.

本発明の実施の形態1におけるリチウム二次電池用負極材を示す断面図である。It is sectional drawing which shows the negative electrode material for lithium secondary batteries in Embodiment 1 of this invention. 本発明の実施の形態1における別のリチウム二次電池用負極材を示す断面図である。It is sectional drawing which shows another negative electrode material for lithium secondary batteries in Embodiment 1 of this invention. 図2のリチウム二次電池用負極材をより詳細に示す図である。It is a figure which shows the negative electrode material for lithium secondary batteries of FIG. 2 in detail. 本発明の実施の形態2におけるリチウム二次電池用負極材を示す断面図である。It is sectional drawing which shows the negative electrode material for lithium secondary batteries in Embodiment 2 of this invention. 本発明の実施例に用いたリチウム二次電池を示す断面図である。It is sectional drawing which shows the lithium secondary battery used for the Example of this invention.

符号の説明Explanation of symbols

1 電極板、3 多孔質支持体(導体)、5 負極活物質、7 集電層、9 固体電解質、10 リチウム二次電池用負極材、13 多孔質支持体、20 正極材、35 セパレータ。
DESCRIPTION OF SYMBOLS 1 Electrode plate, 3 Porous support body (conductor), 5 Negative electrode active material, 7 Current collection layer, 9 Solid electrolyte, 10 Negative electrode material for lithium secondary batteries, 13 Porous support body, 20 Positive electrode material, 35 Separator.

Claims (10)

多孔質構造を有する多孔質支持体と、
前記多孔質支持体に担持された、リチウムを含む負極活物質とを備えることを特徴とする、リチウム二次電池負極材。
A porous support having a porous structure;
A negative electrode material for a lithium secondary battery, comprising: a negative electrode active material containing lithium supported on the porous support.
前記多孔質支持体が金属で形成されていることを特徴とする、請求項1に記載のリチウム二次電池負極材。   The lithium secondary battery negative electrode material according to claim 1, wherein the porous support is made of a metal. 前記多孔質支持体が、銅と同等または銅より高い酸化電位を有する金属で形成されていることを特徴とする、請求項2に記載のリチウム二次電池負極材。   The lithium secondary battery negative electrode material according to claim 2, wherein the porous support is formed of a metal having an oxidation potential equal to or higher than that of copper. 前記多孔質支持体が、炭素を50%以上含む材料で形成されていることを特徴とする、請求項2または3に記載のリチウム二次電池負極材。   The lithium secondary battery negative electrode material according to claim 2 or 3, wherein the porous support is made of a material containing 50% or more of carbon. 前記多孔質支持体が、絶縁体で形成され、該多孔質支持体は、集電のために、前記負極活物質と電気接続する集電層をも担持することを特徴とする、請求項1に記載のリチウム二次電池負極材。   The porous support is formed of an insulator, and the porous support also supports a current collecting layer electrically connected to the negative electrode active material for current collection. The negative electrode material of a lithium secondary battery as described in 1. 前記多孔質支持体を、ガラス転移温度が100℃以上の材料で形成することを特徴とする、請求項5に記載のリチウム二次電池負極材。   The lithium secondary battery negative electrode material according to claim 5, wherein the porous support is formed of a material having a glass transition temperature of 100 ° C or higher. 前記集電層の酸化電位が、銅と同等または銅より高い金属であることを特徴とする、請求項5または6に記載のリチウム二次電池負極材。   7. The negative electrode material for a lithium secondary battery according to claim 5, wherein an oxidation potential of the current collecting layer is a metal equivalent to or higher than copper. 8. 前記多孔質支持体において、平均気孔径(μm)>2×{(集電層厚(μm))+(負極活物質層厚(μm))}であることを特徴とする、請求項1〜7のいずれかに記載のリチウム二次電池負極材。   In the porous support, the average pore diameter (μm)> 2 × {(current collecting layer thickness (μm)) + (negative electrode active material layer thickness (μm))}. The lithium secondary battery negative electrode material according to any one of 7. 前記負極活物質に接触して、リチウムイオン固体電解質が配置されていることを特徴とする、請求項1〜8のいずれかに記載のリチウム二次電池負極材。   The lithium secondary battery negative electrode material according to claim 1, wherein a lithium ion solid electrolyte is disposed in contact with the negative electrode active material. 前記固体電解質がLi、P、S、Oを含有することを特徴とする、請求項9に記載のリチウム二次電池負極材。
The lithium secondary battery negative electrode material according to claim 9, wherein the solid electrolyte contains Li, P, S, and O.
JP2006186674A 2006-07-06 2006-07-06 Negative electrode material for lithium secondary battery Pending JP2008016329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006186674A JP2008016329A (en) 2006-07-06 2006-07-06 Negative electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006186674A JP2008016329A (en) 2006-07-06 2006-07-06 Negative electrode material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2008016329A true JP2008016329A (en) 2008-01-24

Family

ID=39073141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006186674A Pending JP2008016329A (en) 2006-07-06 2006-07-06 Negative electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2008016329A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238576A (en) * 2008-03-27 2009-10-15 Tokyo Metropolitan Univ All-solid battery, manufacturing method of all-solid battery, and electron conductivity imparting method
WO2011152244A1 (en) * 2010-05-31 2011-12-08 住友電気工業株式会社 Alloy negative electrode for lithium battery and process for production thereof, and lithium battery
JP2015099646A (en) * 2013-11-18 2015-05-28 株式会社Gsユアサ Positive electrode active material for lithium secondary batteries, electrode for lithium secondary batteries, and lithium secondary battery
JP2016527679A (en) * 2013-09-11 2016-09-08 エルジー・ケム・リミテッド Lithium electrode and lithium secondary battery including the same
CN107665978A (en) * 2016-07-27 2018-02-06 现代自动车株式会社 Electrode of lithium secondary cell, the manufacture method of electrode and the lithium secondary battery including the electrode
JP2019160486A (en) * 2018-03-09 2019-09-19 トヨタ自動車株式会社 Lithium ion secondary battery
JP2022104375A (en) * 2020-12-28 2022-07-08 本田技研工業株式会社 Electrode for lithium ion secondary battery
WO2023002759A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance and battery
WO2023212540A1 (en) * 2022-04-25 2023-11-02 Krishna Kumar Sarode Polymer-supported and lithiophilic material impregnated carbon fiber protection for li-metal stability

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163432A (en) * 1974-10-07 1976-06-01 Rockwell International Corp Richiumufukyoku oyobi denkienerugiichikusekisochi
JPS5818883A (en) * 1981-07-27 1983-02-03 Nippon Telegr & Teleph Corp <Ntt> Negative electrode for lithium battery
JPS6174268A (en) * 1984-09-17 1986-04-16 Hitachi Maxell Ltd Lithium secondary cell
JPH06349481A (en) * 1993-04-14 1994-12-22 C Uyemura & Co Ltd Electrode
JPH08321310A (en) * 1995-03-17 1996-12-03 Canon Inc Electrode for secondary battery, manufacture thereof, and secondary battery having the electrode
JPH11233116A (en) * 1998-02-16 1999-08-27 Canon Inc Electrode structural body for lithium secondary battery, its manufacture and lithium secondary battery
JP2000173595A (en) * 1998-12-08 2000-06-23 Sony Corp Composite negative electrode and secondary battery using it
JP2002097564A (en) * 2000-07-19 2002-04-02 Sumitomo Electric Ind Ltd Member with thin film of alkali metal and manufacturing method therefor
JP2003257420A (en) * 2002-03-06 2003-09-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005100804A (en) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd Electrode structural body for lithium secondary battery, and lithium secondary battery
JP2006164810A (en) * 2004-12-09 2006-06-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163432A (en) * 1974-10-07 1976-06-01 Rockwell International Corp Richiumufukyoku oyobi denkienerugiichikusekisochi
JPS5818883A (en) * 1981-07-27 1983-02-03 Nippon Telegr & Teleph Corp <Ntt> Negative electrode for lithium battery
JPS6174268A (en) * 1984-09-17 1986-04-16 Hitachi Maxell Ltd Lithium secondary cell
JPH06349481A (en) * 1993-04-14 1994-12-22 C Uyemura & Co Ltd Electrode
JPH08321310A (en) * 1995-03-17 1996-12-03 Canon Inc Electrode for secondary battery, manufacture thereof, and secondary battery having the electrode
JPH11233116A (en) * 1998-02-16 1999-08-27 Canon Inc Electrode structural body for lithium secondary battery, its manufacture and lithium secondary battery
JP2000173595A (en) * 1998-12-08 2000-06-23 Sony Corp Composite negative electrode and secondary battery using it
JP2002097564A (en) * 2000-07-19 2002-04-02 Sumitomo Electric Ind Ltd Member with thin film of alkali metal and manufacturing method therefor
JP2003257420A (en) * 2002-03-06 2003-09-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005100804A (en) * 2003-09-25 2005-04-14 Matsushita Electric Ind Co Ltd Electrode structural body for lithium secondary battery, and lithium secondary battery
JP2006164810A (en) * 2004-12-09 2006-06-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238576A (en) * 2008-03-27 2009-10-15 Tokyo Metropolitan Univ All-solid battery, manufacturing method of all-solid battery, and electron conductivity imparting method
WO2011152244A1 (en) * 2010-05-31 2011-12-08 住友電気工業株式会社 Alloy negative electrode for lithium battery and process for production thereof, and lithium battery
CN102906906A (en) * 2010-05-31 2013-01-30 住友电气工业株式会社 Alloy negative electrode for lithium battery and process for production thereof, and lithium battery
JP2016527679A (en) * 2013-09-11 2016-09-08 エルジー・ケム・リミテッド Lithium electrode and lithium secondary battery including the same
US9711798B2 (en) 2013-09-11 2017-07-18 Lg Chem, Ltd. Lithium electrode and lithium secondary battery comprising the same
JP2015099646A (en) * 2013-11-18 2015-05-28 株式会社Gsユアサ Positive electrode active material for lithium secondary batteries, electrode for lithium secondary batteries, and lithium secondary battery
CN107665978A (en) * 2016-07-27 2018-02-06 现代自动车株式会社 Electrode of lithium secondary cell, the manufacture method of electrode and the lithium secondary battery including the electrode
KR101827135B1 (en) * 2016-07-27 2018-02-07 현대자동차주식회사 Electrode for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising the same
US10205172B2 (en) 2016-07-27 2019-02-12 Hyundai Motor Company Electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP2019160486A (en) * 2018-03-09 2019-09-19 トヨタ自動車株式会社 Lithium ion secondary battery
JP2022104375A (en) * 2020-12-28 2022-07-08 本田技研工業株式会社 Electrode for lithium ion secondary battery
JP7239551B2 (en) 2020-12-28 2023-03-14 本田技研工業株式会社 Electrodes for lithium-ion secondary batteries
WO2023002759A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance and battery
WO2023212540A1 (en) * 2022-04-25 2023-11-02 Krishna Kumar Sarode Polymer-supported and lithiophilic material impregnated carbon fiber protection for li-metal stability

Similar Documents

Publication Publication Date Title
JP2008016329A (en) Negative electrode material for lithium secondary battery
JP4953631B2 (en) Non-aqueous electrolyte secondary battery
US8486562B2 (en) Thin film electrochemical energy storage device with three-dimensional anodic structure
US11302910B2 (en) Lithium secondary battery negative electrode including protection layer made of conductive fabric, and lithium secondary battery including same
JP5124975B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP5289735B2 (en) Lithium secondary battery
KR101994877B1 (en) Lithium sulfur battery and method for manufacturaing the same
JP6535012B2 (en) Air electrode collector for solid oxide fuel cell and solid oxide fuel cell including the same
JP2012516941A (en) Three-dimensional porous electrodes of copper, tin, copper tin, copper tin cobalt, and copper tin cobalt titanium for batteries and ultracapacitors
JPWO2009063747A1 (en) Lithium battery and manufacturing method thereof
JPH11154508A (en) Nonaqueous electrolyte battery
JP2007329077A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2008098157A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2009266705A (en) Lithium secondary battery
CN111226327A (en) Lithium solid-state battery and method for manufacturing lithium solid-state battery
JP2009076278A (en) Positive electrode and lithium secondary battery
CN113994512A (en) Lithium secondary battery and method for manufacturing the same
JP2019050156A (en) Nonaqueous electrolyte secondary battery
JP5095132B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP5422360B2 (en) Method for producing porous metal body for lithium secondary battery active material
JPWO2010082323A1 (en) Lithium ion secondary battery and manufacturing method thereof
JP5967188B2 (en) Electrode active material, electrode and method for producing secondary battery
TW201145650A (en) Electrode for high performance Li-ion batteries
US10446332B2 (en) Ultrathin asymmetric nanoporous-nickel graphene-copper based supercapacitor
JP2014049372A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090619

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529