JP2008014729A - Fluid flow velocity measuring instrument - Google Patents

Fluid flow velocity measuring instrument Download PDF

Info

Publication number
JP2008014729A
JP2008014729A JP2006184956A JP2006184956A JP2008014729A JP 2008014729 A JP2008014729 A JP 2008014729A JP 2006184956 A JP2006184956 A JP 2006184956A JP 2006184956 A JP2006184956 A JP 2006184956A JP 2008014729 A JP2008014729 A JP 2008014729A
Authority
JP
Japan
Prior art keywords
temperature
heater
output
flow velocity
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006184956A
Other languages
Japanese (ja)
Other versions
JP4939128B2 (en
Inventor
Takashi Iwata
岳志 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006184956A priority Critical patent/JP4939128B2/en
Publication of JP2008014729A publication Critical patent/JP2008014729A/en
Application granted granted Critical
Publication of JP4939128B2 publication Critical patent/JP4939128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid flow velocity measuring instrument used not only for performing efficient measurement with a measurement down period eliminated but for performing measurement even if flow velocity is zero. <P>SOLUTION: A heater 3 starts heat generation by its power application to raise the temperature of the heater. Heat transfer takes place in temperature sensing elements 1 and 2. An output voltage 10 owing to a temperature rise of the sensing element 1 reaching V2 causes a trigger signal to be output from a comparator 6. An output of a logic element 8 becomes Low to cause a heater control circuit 9 to stop the power application to the heater 3. Because of this, heat transferring to the temperature sensing elements 1 and 2 decreases. An output voltage of the sensing element 2 reaching V1 causes a trigger signal to be output from a comparator 7. The output of the logic element 8 becomes High to start the power application to the heater 3. This operation is repeated to cause output pulses to be output from the logic element 8. Pulse intervals T1 and T2 are measured of these output pulses. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流体の流速計測装置に係り、ヒータを発熱させてヒータで生じた熱が流体によって移動する速度を計測することによって流体の流速を計測する流体の流速計測装置に関する。   The present invention relates to a fluid flow velocity measuring apparatus, and more particularly to a fluid flow velocity measuring apparatus that measures a fluid flow velocity by measuring a speed at which a heater generates heat and heat generated by the heater is moved by the fluid.

従来、流体中でヒータを発熱させて、ヒータから流体によって移動する熱の速度や量を計測することで流体の流速を計測する技術が知られており、一例として、ヒータを挟んで上流側と下流側にサーモパイルを配置したフローセンサを用い、ヒータ発熱開始時から上流側サーモパイルと下流側サーモパイルで所定の出力差が生じるまでの時間を計測して熱の伝播時間を計測することで流体の流速を計測する方法が提案されている。(例えば特許文献1参照)。
特許第3381831号
Conventionally, a technique for measuring the flow velocity of a fluid by heating the heater in the fluid and measuring the speed and amount of heat transferred by the fluid from the heater is known. Using a flow sensor with a thermopile on the downstream side, measure the heat propagation time by measuring the time from when the heater heat starts to when a predetermined output difference occurs between the upstream thermopile and the downstream thermopile. A method has been proposed for measuring. (For example, refer to Patent Document 1).
Japanese Patent No. 3381831

この特許文献1記載の方法では、ヒータをオシレータによるタイミングで発熱させ、この熱がサーモパイルに到達するまでの時間によって、流速を計測する方法であるため、サーモパイルでヒータからの熱を検出した時間から次にヒータが発熱するまでの時間は計測休止期間となり、計測の効率が良くないだけでなく、流速0の状態ではサーモパイルの出力差が存在しないことから、流速0付近を計測することができないという問題がある。
本発明は、上記実情を考慮してなされたものであり、前記計測休止期間をなくし効率の良い計測を可能とするだけでなく、流速0でも計測を可能とする流体の流速計測装置を提供することを目的とする。
In the method described in Patent Document 1, the heater is heated at the timing of the oscillator, and the flow rate is measured by the time until the heat reaches the thermopile. Therefore, from the time when the heat from the heater is detected by the thermopile. Next, the time until the heater generates heat is a measurement suspension period. Not only is the measurement efficiency not good, but there is no difference in thermopile output at a flow velocity of 0, so it is impossible to measure around the flow velocity of 0. There's a problem.
The present invention has been made in view of the above circumstances, and provides a fluid flow velocity measuring apparatus that not only eliminates the measurement suspension period but enables efficient measurement, but also enables measurement even at a flow velocity of zero. For the purpose.

上記課題を解決するために、請求項1に記載の発明は、ヒータと、ヒータを挟んで配置された第1の感温体及び第2の感温体を備えたフローセンサと、第1の感温体で検出される出力電圧と第1の基準電圧とを比較して前記出力電圧が前記第1の基準電圧を超えたとき信号を出力する第1の比較手段と、第2の感温体で検出される出力電圧と第2の基準電圧とを比較して前記出力電圧が前記第2の基準電圧を超えたとき信号を出力するする第2の比較手段と、第1の比較手段と第2の比較手段から得られた信号によって出力パルスを発生する論理素子と、該論理素子から出力される出力パルスに応じて前記ヒータに電流を印加するヒータ制御回路と、を備え、前記ヒータ制御回路は、前記第1の比較手段からの出力信号によって、前記ヒータへの通電を停止または減少させ、前記第2の比較手段からの出力信号によって前記ヒータへの通電を開始または増加させ、前記ヒータ制御回路に供給される前記出力パルスのパルス間隔を計測することによって前記フローセンサ上を流れる流体の流速を計測する流体の流速計測装置を特徴とする。   In order to solve the above-mentioned problem, the invention described in claim 1 includes a heater, a flow sensor including a first temperature sensor and a second temperature sensor arranged with the heater interposed therebetween, and a first sensor. A first comparing means for comparing the output voltage detected by the temperature sensing element with the first reference voltage and outputting a signal when the output voltage exceeds the first reference voltage; A second comparison means for comparing the output voltage detected by the body with a second reference voltage and outputting a signal when the output voltage exceeds the second reference voltage; and a first comparison means; A logic element that generates an output pulse based on a signal obtained from the second comparison means; and a heater control circuit that applies a current to the heater in accordance with the output pulse output from the logic element. The circuit uses the output signal from the first comparison means to generate the heater. By stopping or decreasing the current supply, starting or increasing the current supply to the heater according to the output signal from the second comparison means, and measuring the pulse interval of the output pulse supplied to the heater control circuit. It is characterized by a fluid flow velocity measuring device that measures the flow velocity of the fluid flowing on the flow sensor.

また請求項2の発明は、請求項1記載の流体の流速計測装置において、前記第1の感温体と第2の感温体は、第1の感温抵抗体及び第2の感温抵抗体であり、前記フローセンサは、流体温度検出用の第3の感温抵抗体を備え、該第3の感温抵抗体に直列に第1の固定抵抗と第2の固定抵抗を接続し、前記第1の感温抵抗体、前記第2の感温抵抗体、及び第1の固定抵抗と第2の固定抵抗と第3の感温抵抗体に、それぞれ一定の電流を流す第1、第2及び第3の定電流源を接続し、前記第1の比較手段は、第1の固定抵抗と第2の固有抵抗と第3の感温抵抗体で発生した電圧を前記第1の基準電圧として第1の感温抵抗体で発生した電圧と比較し、前記第2の比較手段は、第1の固定抵抗と第3の感温抵抗体で発生した電圧を前記第2の基準電圧として第2の感温抵抗体で発生した電圧と比較することを特徴とする。
また請求項3の発明は、請求項2記載の流体の流速計測装置において、前記ヒータ制御回路は、積分回路を備え、当該積分回路によって定められた時定数でヒータへの通電を制御することを特徴とする。
また請求項4の発明は、請求項3記載の流体の流速計測装置において、前記ヒータへの通電の減少及び増加に伴い生じる第1及び第2の感温抵抗体での電圧を前記積分回路で定められる時定数と一致するようにヒータ制御回路を制御することを特徴とする。
また請求項5の発明は、請求項1乃至4の何れか1項記載の流体の流速計測装置において、前記ヒータへの通電の停止または減少及びヒータへの通電の開始または増加に伴い生じる第1の感温抵抗体と第2の感熱抵抗体との電圧差を検出する検出回路を備えたことを特徴とする。
According to a second aspect of the present invention, there is provided the fluid flow velocity measuring device according to the first aspect, wherein the first temperature sensing body and the second temperature sensing body are a first temperature sensing resistor and a second temperature sensing resistor. The flow sensor includes a third temperature-sensitive resistor for detecting a fluid temperature, and a first fixed resistor and a second fixed resistor are connected in series with the third temperature-sensitive resistor, First, first, and second current flowing through the first temperature-sensitive resistor, the second temperature-sensitive resistor, and the first fixed resistor, the second fixed resistor, and the third temperature-sensitive resistor, respectively. 2 and a third constant current source are connected, and the first comparison means uses the voltage generated by the first fixed resistance, the second specific resistance, and the third temperature sensitive resistor as the first reference voltage. The second comparison means compares the voltage generated in the first fixed resistor and the third temperature sensitive resistor with the second reference voltage. Comparing the second voltage generated by the temperature sensing resistor and said as.
According to a third aspect of the present invention, in the fluid flow velocity measuring device according to the second aspect, the heater control circuit includes an integration circuit, and controls energization to the heater with a time constant determined by the integration circuit. Features.
According to a fourth aspect of the present invention, in the fluid flow velocity measuring device according to the third aspect, the voltage at the first and second temperature sensitive resistors, which is caused by the decrease and increase in energization to the heater, is obtained by the integration circuit. The heater control circuit is controlled to coincide with a predetermined time constant.
Further, the invention according to claim 5 is the fluid flow velocity measuring device according to any one of claims 1 to 4, wherein the first is generated when the energization of the heater is stopped or decreased and the energization of the heater is started or increased. A detection circuit for detecting a voltage difference between the temperature sensitive resistor and the second heat sensitive resistor is provided.

本発明によれば、上記構成とすることによって、計測休止期間をなくし効率の良い計測を可能とするだけでなく、流速0でも計測を可能とする流体の流速計測装置を提供することができる。   According to the present invention, it is possible to provide a fluid flow velocity measuring device that not only eliminates the measurement suspension period and enables efficient measurement, but also enables measurement even at a flow velocity of 0 by adopting the above configuration.

以下、図面を参照して、本発明の実施形態を詳細に説明する。
[実施例1]
図1は、本発明による一実施形態に係る流体の流速計測装置の概略構成を示す回路図である。
図中、1及び2は、サーモパイルからなる第1の感温体及び第2の感温体、3は通電することによって発熱する感温抵抗体からなるヒータ、4及び5は所定の電圧V1及びV2を第2の比較機7及び第1の比較機6に供給する電源、8は第1の比較機6及び第2の比較機7からのトリガー信号によって出力パルスを発生するフリップフロップ回路等の論理素子、9は当該出力パルスに応じて前記ヒータへの通電を制御するヒータ制御回路、34は前記出力パルスのパルス間隔を計測して、流体の流速を演算する演算回路、35は演算回路34から出力された流体の流速を表示する表示手段である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Example 1]
FIG. 1 is a circuit diagram showing a schematic configuration of a fluid flow velocity measuring apparatus according to an embodiment of the present invention.
In the figure, 1 and 2 are a first temperature sensor and a second temperature sensor made of a thermopile, 3 is a heater made of a temperature sensor that generates heat when energized, and 4 and 5 have a predetermined voltage V1 and A power supply for supplying V2 to the second comparator 7 and the first comparator 6, 8 is a flip-flop circuit for generating an output pulse by a trigger signal from the first comparator 6 and the second comparator 7, etc. A logic element, 9 is a heater control circuit that controls energization of the heater in accordance with the output pulse, 34 is an arithmetic circuit that measures the pulse interval of the output pulse and calculates the flow velocity of the fluid, and 35 is an arithmetic circuit 34 It is a display means which displays the flow velocity of the fluid output from.

次に、本実施例による流体の流速計測装置の動作について、図2に基づいて説明する。図2は、本実施例による流体の流速計測装置の動作を説明するためのタイムチャートであり、図2は流体が正の向きに流れているときに本構成で電源投入した時の動作のタイミングである。なお、図1の第1の感温体1から第2の感温体2に向けて流体が流れる向き(矢印X)を正としている。
この流体の流速計測装置は、図示していないが論理素子8にパワーONリセット信号(b)などを加える事により開始され、これによって論理素子8の出力(e)がHighになり、ヒータ制御回路9はヒータ3への通電を開始する。通電によりヒータ3は発熱を開始して、ヒータの温度は上昇し、空間を介して第1の感温体1及び第2の感温体2に移動する熱が増加する。この熱移動に伴い、第1の感温体1の温度上昇による出力電圧10がV2に到達する(図2(a)参照)ことで第1の比較機6からトリガー信号(c)が出力され、論理素子8の出力がLowになり、ヒータ制御回路9はヒータ3への通電を停止する。これによって、ヒータ3の温度は低下して行き空間を介して第1の感温体1及び第2の感温体2に移動する熱が減り、第2の感温体2で出力電圧がV1に到達することで第2の比較機7からトリガー信号(d)が出力され、論理素子8の出力がHighになり、ヒータ3への通電が開始される。この動作が繰り返し行われ、論理素子8から出力パルスが出力される。この出力パルスのパルス間隔T1(ON時間)及びT2(OFF時間)を計測することで予め求められているパルス間隔T1及びT2と流体の流速との関係線(検量線)から演算回路34で演算して流速を計測し、表示手段35で流速を表示するものである。
Next, the operation of the fluid flow velocity measuring apparatus according to this embodiment will be described with reference to FIG. FIG. 2 is a time chart for explaining the operation of the fluid flow velocity measuring apparatus according to the present embodiment. FIG. 2 shows the operation timing when the power is turned on in this configuration when the fluid is flowing in the positive direction. It is. The direction (arrow X) in which the fluid flows from the first temperature sensing element 1 to the second temperature sensing element 2 in FIG. 1 is positive.
Although not shown in the drawing, this fluid flow velocity measuring device is started by applying a power ON reset signal (b) or the like to the logic element 8, whereby the output (e) of the logic element 8 becomes High, and the heater control circuit 9 starts energizing the heater 3. When energized, the heater 3 starts to generate heat, the temperature of the heater rises, and the heat that moves to the first temperature sensor 1 and the second temperature sensor 2 through the space increases. With this heat transfer, the trigger voltage (c) is output from the first comparator 6 when the output voltage 10 due to the temperature rise of the first temperature sensing element 1 reaches V2 (see FIG. 2 (a)). The output of the logic element 8 becomes Low, and the heater control circuit 9 stops energizing the heater 3. As a result, the temperature of the heater 3 decreases and the heat transferred to the first temperature sensing body 1 and the second temperature sensing body 2 through the going space is reduced, and the output voltage of the second temperature sensing body 2 is V1. , The trigger signal (d) is output from the second comparator 7, the output of the logic element 8 becomes High, and energization of the heater 3 is started. This operation is repeated, and an output pulse is output from the logic element 8. By calculating the pulse interval T1 (ON time) and T2 (OFF time) of the output pulse, the calculation circuit 34 calculates from the relationship line (calibration curve) between the pulse interval T1 and T2 obtained in advance and the fluid flow velocity. Thus, the flow velocity is measured, and the flow velocity is displayed by the display means 35.

また、本実施例におけるヒータの制御方法は、第1の感温体1及び第2の感温体2が検出する温度上昇を十分与えられるだけの発熱温度で制御されるものであり、上述した一連の動作は、ヒータ温度が上昇・降下していく過程でなされているものである。ヒータの温度上昇・降下速度は、ヒータの熱容量で決まるものであり、このヒータの温度上昇・降下速度が全ての基準となる。このような場合、ヒータ発熱制御時においては、第1の感温体1ではヒータ温度上昇に伴う熱の移動が流体の流れによって阻害され、温度上昇速度は遅くなり、第2の感温体2では、ヒータの温度上昇に伴う熱が第2の感温体2へ移動するため、温度上昇速度は速くなる。一方、ヒータ非発熱制御時においては、第1の感温体1の降下速度が速くなり、第2の感温体2では、ヒータの温度降下に伴う熱が第2の感温体2へ移動するため、温度降下速度は遅くなる。
本実施例においては、ヒータ発熱制御時は第1の感温体1の温度上昇速度によって出力パルスのHighの時間を規定し、ヒータ非発熱制御時には第2の感温体2の温度降下速度によって出力パルスのLowの時間を規定するものであるので出力パルスのパルス周期を計測することで計測休止期間が無く流速計測を行う事ができる。
Further, the heater control method in the present embodiment is controlled at a heat generation temperature sufficient to provide a temperature rise detected by the first temperature sensing element 1 and the second temperature sensing element 2, and has been described above. A series of operations is performed in the process where the heater temperature rises and falls. The temperature increase / decrease rate of the heater is determined by the heat capacity of the heater, and the temperature increase / decrease rate of the heater serves as a reference. In such a case, at the time of heater heat generation control, in the first temperature sensing element 1, the movement of heat accompanying the rise in heater temperature is hindered by the flow of fluid, the temperature rise rate becomes slow, and the second temperature sensing element 2. Then, since the heat accompanying the temperature rise of the heater moves to the second temperature sensing body 2, the temperature rise speed is increased. On the other hand, during the heater non-heat generation control, the lowering speed of the first temperature sensing element 1 is increased, and in the second temperature sensing element 2, the heat accompanying the temperature drop of the heater moves to the second temperature sensing element 2. Therefore, the temperature drop rate becomes slow.
In this embodiment, the high time of the output pulse is defined by the temperature rise speed of the first temperature sensing element 1 during the heater heat generation control, and the temperature drop speed of the second temperature sensing element 2 during the heater non-heat generation control. Since it defines the low time of the output pulse, measuring the pulse period of the output pulse makes it possible to measure the flow velocity without a measurement pause period.

図3には、流体の流れが異なる状態時での第1の感温体1及び第2の感温体2の出力信号10、11(A1、B1、C1参照)とヒータ制御信号(A2、B2、C2参照)との検出タイミングを示す。(A)は上記で説明したのと同様に、正の方向に流体が流れている状態である。(B)は流体が流れていない流速0の状態である。この流速0の状態においては、第1の感温体1と第2の感温体2の温度上昇速度及び温度降下速度が同一であり、流れがある状態の第1の感温体1と第2の感温体2の中間くらいに位置する温度上昇及び温度降下速度になる。(C)は流体が逆方向に流れている状態で、この場合、第1の感温体1が下流側となり、第2の感温体2に比べて温度上昇速度が速くなり、温度降下速度は遅くなる。よって図に示す動作になる。このように本方式においては流速が−から+までの範囲で休止期間無く計測が行えるものである。
また、本実施例においては、感温体出力の検出レベルV1・V2によってヒータの発熱制御がなされるものであり、V1とV2の電圧レベルを検出可能な必要最低限の大きさとすることで、ヒータから感温体への微小な熱移動が計測でき、これにより上流側の感温体の反応が小さくなる高流速まで計測できるものである。
FIG. 3 shows output signals 10 and 11 (refer to A1, B1, and C1) and heater control signals (A2, A1, B2) of the first temperature sensor 1 and the second temperature sensor 2 when the fluid flows are different. B2 and C2) are shown. (A) is a state where the fluid is flowing in the positive direction, as described above. (B) is the state of the flow velocity 0 where the fluid is not flowing. In the state where the flow velocity is 0, the temperature increasing speed and the temperature decreasing speed of the first temperature sensing element 1 and the second temperature sensing element 2 are the same, and the first temperature sensing element 1 and the first temperature sensing element 1 in a state where there is a flow. The temperature rise speed and the temperature fall speed are located in the middle of the two temperature sensing bodies 2. (C) is a state in which the fluid is flowing in the opposite direction. In this case, the first temperature sensing element 1 is on the downstream side, and the temperature rise rate is faster than the second temperature sensing element 2, and the temperature drop rate. Will be late. Therefore, the operation shown in FIG. As described above, in this method, measurement can be performed without a pause period in the range of flow velocity from − to +.
In this embodiment, the heater heat generation is controlled by the detection levels V1 and V2 of the temperature sensor output. By setting the voltage levels of V1 and V2 to the minimum necessary levels, A minute heat transfer from the heater to the temperature sensing element can be measured, and thereby, a high flow rate at which the reaction of the upstream temperature sensing element becomes small can be measured.

[実施例2]
図4は、本発明による他の実施形態に係る流体の流速計測装置の概略構成を示す回路図で、実施例1と同一構成については、同一符号を付し、説明を省略する。
図4中、13及び14は、感温抵抗体からなる感温体で、それぞれ第1の感温抵抗体及び第2の感温抵抗体、15は流体温度検出用の感温抵抗体からなる第3の感温抵抗体、16及び17は、所定の抵抗値を有する第1の固有抵抗及び第2の固有抵抗、18、19、20は、それぞれ第1の感温抵抗体13、第2の感温抵抗体14及び第3の感温抵抗体15と第1及び第2の固有抵抗16、17に供給される定電流源である。
本実施例は、前述の実施例1とは、感温体として、サーモパイルに代えて感温抵抗体を使用した点において相違する。感温抵抗体によるフローセンサでは、ヒータも温度検出素子も同一プロセスで作成でき、更に同一形状にでき、これにより素子間の温度応答速度が同じになることに着目してなされたものであり、本実施例の特徴は、流速計測用の感温抵抗体と同一形状の感温抵抗体を用いて流体温度の基準とし、更には基準となる感温抵抗体に直列に固定抵抗を接続して、この固定抵抗の抵抗値をもって流速計測用の感温抵抗体の温度検出レベルとする温度補償を行ったことにある。
[Example 2]
FIG. 4 is a circuit diagram showing a schematic configuration of a fluid flow velocity measuring device according to another embodiment of the present invention. The same components as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
In FIG. 4, reference numerals 13 and 14 denote temperature sensing elements made of a temperature sensing resistor, respectively, a first temperature sensing resistor and a second temperature sensing resistor, and 15 a temperature sensing resistor for detecting the fluid temperature. The third temperature-sensitive resistor, 16 and 17 are a first specific resistance and a second specific resistance having a predetermined resistance value, and 18, 19 and 20 are the first temperature-sensitive resistor 13 and the second specific resistance, respectively. The constant current source is supplied to the temperature sensitive resistor 14, the third temperature sensitive resistor 15, and the first and second specific resistors 16 and 17.
This example is different from Example 1 described above in that a temperature sensitive resistor is used instead of the thermopile as the temperature sensitive material. In the flow sensor using a temperature sensitive resistor, the heater and the temperature detection element can be created in the same process, and can be made into the same shape, thereby making the temperature response speed between the elements the same, The feature of the present embodiment is that a fluid temperature reference is made by using a temperature sensitive resistor having the same shape as the temperature sensing resistor for measuring the flow velocity, and further, a fixed resistor is connected in series to the reference temperature sensitive resistor. The temperature compensation is performed by using the resistance value of the fixed resistance as the temperature detection level of the temperature sensing resistor for measuring the flow velocity.

また、本実施例に用いる感温抵抗体からなるフローセンサの好適な構造を図5及び図6に示す。図5及び図6で示すフローセンサは、半導体プロセスを用いて作られたものであり、シリコンウエファからなる基台22に、流体の流れX方向から順に開口21a、21b、21c、21d、21eが間隙21fで連通されて形成されており、これらの開口21a、21b、21c、21d、21e間にそれぞれ両端に接続端子15a、15b、13a、13b、3a、3b、14a、14bを有して基台22と連結された感温抵抗体15、13、3、14が設けられており、隣り合った素子間での抵抗値のばらつきが小さいように形成されている。第1の感温抵抗体13、第2の感温抵抗体14及び第3の感温抵抗体15は、発熱しない程度の微弱な定電流を通電し温度検出を行う。本実施例の場合3つの感温抵抗体13、14及び15に通電される電流は同一の電流値である。このように構成することで、ヒータ3が非発熱状態では感温抵抗体13、14、15の抵抗値は流体の温度が変化した場合においてもほぼ同一の抵抗値を示すので、感温抵抗体の両端で発生する電圧もほぼ同じになる。
感温抵抗体15には固定抵抗16、17が直列に接続されており、感温抵抗体15と固定抵抗16で生じる電圧V1は、感温抵抗体14で生じた電圧11と比較するための電圧で、感温抵抗体14が流体温度に対して固定抵抗16の抵抗値で規定された分高い温度となるように設定している。また、感温抵抗体15と固定抵抗16と固定抵抗17で生じる電圧V2は、感温抵抗体13で生じた電圧10と比較するための電圧であり、感温抵抗体13が流体温度に対して固定抵抗16、17の合計の抵抗値で規定された分高い温度となるように設定している。ここで、感温抵抗体15で生じる電圧を実施例1でのGNDレベル(基準)として考えると本実施例の動作は、実施例1の図3と何ら変わらない動作となる。
Moreover, the suitable structure of the flow sensor which consists of a temperature sensitive resistor used for a present Example is shown in FIG.5 and FIG.6. The flow sensor shown in FIG. 5 and FIG. 6 is manufactured using a semiconductor process. Openings 21a, 21b, 21c, 21d, and 21e are formed on a base 22 made of silicon wafer in order from the fluid flow direction X. The openings 21a, 21b, 21c, 21d, and 21e are connected to each other through gaps 21f, and connection terminals 15a, 15b, 13a, 13b, 3a, 3b, 14a, and 14b are provided at both ends. Temperature sensitive resistors 15, 13, 3, and 14 connected to the base 22 are provided, and are formed so that variations in resistance values between adjacent elements are small. The first temperature-sensitive resistor 13, the second temperature-sensitive resistor 14, and the third temperature-sensitive resistor 15 conduct temperature detection by passing a weak constant current that does not generate heat. In the case of the present embodiment, the currents supplied to the three temperature sensitive resistors 13, 14 and 15 have the same current value. With this configuration, when the heater 3 is in a non-heated state, the resistance values of the temperature sensitive resistors 13, 14, and 15 show substantially the same resistance value even when the temperature of the fluid changes. The voltage generated at both ends is substantially the same.
Fixed resistors 16 and 17 are connected in series to the temperature sensitive resistor 15, and the voltage V 1 generated by the temperature sensitive resistor 15 and the fixed resistor 16 is compared with the voltage 11 generated by the temperature sensitive resistor 14. The temperature is set so that the temperature-sensitive resistor 14 has a temperature that is higher than the fluid temperature by a value defined by the resistance value of the fixed resistor 16. The voltage V2 generated by the temperature sensitive resistor 15, the fixed resistor 16, and the fixed resistor 17 is a voltage for comparison with the voltage 10 generated by the temperature sensitive resistor 13, and the temperature sensitive resistor 13 is compared with the fluid temperature. Thus, the temperature is set to be higher by the amount defined by the total resistance value of the fixed resistors 16 and 17. Here, when the voltage generated in the temperature sensitive resistor 15 is considered as the GND level (reference) in the first embodiment, the operation of the present embodiment is the same as that in FIG. 3 of the first embodiment.

また、上述した固定抵抗16、17は、感温抵抗体13、14の温度検出レベルを決定するものであるが、図5のようなフローセンサは、感温抵抗体感のばらつきが少ないことから、非常に小さな抵抗値とすることができる。
更には、定電流源18、19、20に調整回路を付加し、感温抵抗体13、14、15のばらつきにより生じる電圧差を小さくして、固定抵抗16、17を極小な抵抗値としても良い。これによって、感温抵抗体13、14の温度検出レベルは流体温度に対して微小に高い温度とすることができ、ヒータ3から移動するわずかな熱量を検出することが可能となる。
また、感温抵抗体13での温度は、固定抵抗16と17で規定される温度以上に上昇することは無いため、感温抵抗体15は図5に示すように感温抵抗体13の更に上流に配置することでヒータの熱の影響をほとんど受け無なくなる。感温抵抗体15は、周囲温度によって抵抗値が変化する感温抵抗体の温度補償用に設けたものであり、温度補償用の感温抵抗体15も含めた全ての感温抵抗体を同一形状にすることが可能であり、同一熱容量とすることが出来、これにより温度応答速度も全て同じになるので、流体に急激な温度変化が発生した場合においても誤差無く流速計測が行える。
In addition, the fixed resistors 16 and 17 described above determine the temperature detection level of the temperature sensitive resistors 13 and 14, but the flow sensor as shown in FIG. The resistance value can be very small.
Furthermore, an adjustment circuit is added to the constant current sources 18, 19, 20 to reduce the voltage difference caused by variations in the temperature sensitive resistors 13, 14, 15, and the fixed resistors 16, 17 can be set to a minimum resistance value. good. As a result, the temperature detection level of the temperature sensitive resistors 13 and 14 can be made slightly higher than the fluid temperature, and a slight amount of heat moving from the heater 3 can be detected.
Further, since the temperature at the temperature sensitive resistor 13 does not rise above the temperature defined by the fixed resistors 16 and 17, the temperature sensitive resistor 15 is further provided as a temperature sensitive resistor 13 as shown in FIG. By placing it upstream, it is almost unaffected by the heat of the heater. The temperature sensitive resistor 15 is provided for temperature compensation of the temperature sensitive resistor whose resistance value changes depending on the ambient temperature, and all the temperature sensitive resistors including the temperature sensitive resistor 15 for temperature compensation are the same. Since the shape can be made to have the same heat capacity, and the temperature response speeds are all the same, the flow velocity can be measured without error even when a sudden temperature change occurs in the fluid.

また、図4に示す構成から解るように、本実施例は非常に少ない部品点数で構成できるものであり、計測は全て抵抗値の比較によってなされるものである。よって、詳細が記載されていない定電流源18、19、20についても相対的な誤差が無ければよいので1つの簡単な定電圧源を基準に容易に作ることができ、固定抵抗16、17は近年チップの金属皮膜抵抗で高性能で安価なものが普及しているので回路のコストを上げる要因にはならず、唯一高価な部品として比較機6、7があるが必要とする流速計測性能との兼ね合いで安価なものも選択できる。
また、本構成での出力はパルス出力であるため、ADコンバータなどの部品も必要とせず流速に変換することが出来るので本実施例を用いた流速計測装置は安価なものとなる
As can be seen from the configuration shown in FIG. 4, the present embodiment can be configured with a very small number of parts, and all measurements are made by comparing resistance values. Therefore, the constant current sources 18, 19, and 20 whose details are not described need not have a relative error, so that they can be easily made based on one simple constant voltage source. In recent years, high-performance and low-priced metal film resistors on chips have become widespread, so it does not increase the cost of the circuit. The only expensive parts are the comparators 6 and 7, but the required flow rate measurement performance You can also choose cheaper ones.
Also, since the output in this configuration is a pulse output, it can be converted into a flow velocity without the need for parts such as an AD converter, so the flow velocity measuring device using this embodiment is inexpensive.

[実施例3]
図7は、本発明による他の実施形態に係る流体の流速計測装置の概略構成を示す回路図で、実施例2と同一構成については、同一符号を付し、説明を省略する。なお、図7中23はランプ積分回路用のリファレンス電源、24はランプ積分回路用の固定抵抗、25はランプ積分回路用のコンデンサ、26はランプ積分回路用のオペアンプ、27はアナログスイッチである。
本実施例においては、前述の実施例2のヒータ制御回路9として、積分回路を用いた構成としており、ヒータの発熱温度の上昇速度を回路時定数で規定したことを特徴とする。本実施例における積分回路はランプ積分回路であり、これによりヒータ3に加える電圧を時間経過に対して直線的に変化するものとしている。図7における動作を図8に示す。図8中(A1)、(A2)、(A3)は、それぞれ、(A)正方向に流れがある時のヒータに印加される電圧と、感温抵抗体13で検出される電圧10及び感温抵抗体14で検出される電圧11と、論理素子8から出力されるヒータ制御信号出力信号とを示し、同様に、(B1)、(B2)、(B3)、(C1)、(C2)、(C3)は、(B)流れが無い時、(C)逆方向に流れがある時におけるヒータに印加される電圧と、感温抵抗体13で検出される電圧10及び感温抵抗体14で検出される電圧11と、論理素子8から出力されるヒータ制御信号出力信号とを示す。
[Example 3]
FIG. 7 is a circuit diagram showing a schematic configuration of a fluid flow velocity measuring device according to another embodiment of the present invention. The same components as those in Example 2 are denoted by the same reference numerals, and description thereof is omitted. In FIG. 7, 23 is a reference power supply for the ramp integration circuit, 24 is a fixed resistor for the ramp integration circuit, 25 is a capacitor for the ramp integration circuit, 26 is an operational amplifier for the ramp integration circuit, and 27 is an analog switch.
In the present embodiment, an integration circuit is used as the heater control circuit 9 of the second embodiment described above, and the rate of increase in the heat generation temperature of the heater is defined by a circuit time constant. The integrating circuit in the present embodiment is a ramp integrating circuit, whereby the voltage applied to the heater 3 changes linearly with time. The operation in FIG. 7 is shown in FIG. In FIG. 8, (A1), (A2), and (A3) respectively indicate (A) the voltage applied to the heater when there is a flow in the positive direction, the voltage 10 detected by the temperature-sensitive resistor 13, and the sensitivity. The voltage 11 detected by the temperature resistor 14 and the heater control signal output signal output from the logic element 8 are shown. Similarly, (B1), (B2), (B3), (C1), (C2) , (C3) is (B) when there is no flow, (C) the voltage applied to the heater when there is flow in the reverse direction, the voltage 10 detected by the temperature sensitive resistor 13, and the temperature sensitive resistor 14 2 shows the voltage 11 detected at 1 and the heater control signal output signal output from the logic element 8.

本実施例においては、感温抵抗体13で生じる電圧10がV2の電圧に到達することでヒータ制御信号をLowとし、感温抵抗体14で生じる電圧11がV1の電圧に到達することでヒータ制御信号をHighとする。上記動作はヒータ3の発熱温度上昇・降下の繰り返し周期がランプ積分回路で決められた時定数で決定されるため時定数を大きくすることで、ヒータの熱容量による電力の消耗を抑えることが出来る。
また、本実施例では、感温抵抗体13での温度上昇量は流速を検出できる最小限の熱量に固定(V2の電圧値)されており、これによってヒータ発熱温度の上限値が決定される。言い換えるとヒータ発熱温度は、流速に応じて計測できる最小限の発熱温度に制御されるものである。このように、本実施例においては、無駄にヒータを発熱させず低消費電力の流速計測が実現できるものである。
In the present embodiment, the heater control signal is set to low when the voltage 10 generated at the temperature sensitive resistor 13 reaches the voltage V2, and the heater 11 when the voltage 11 generated at the temperature sensitive resistor 14 reaches the voltage V1. Let the control signal be High. In the above operation, since the repetition period of the heating temperature rise / fall of the heater 3 is determined by the time constant determined by the ramp integration circuit, the power consumption due to the heat capacity of the heater can be suppressed by increasing the time constant.
Further, in this embodiment, the amount of temperature rise in the temperature sensitive resistor 13 is fixed to the minimum amount of heat that can detect the flow velocity (the voltage value of V2), thereby determining the upper limit value of the heater heat generation temperature. . In other words, the heater heat generation temperature is controlled to the minimum heat generation temperature that can be measured according to the flow velocity. Thus, in this embodiment, it is possible to realize flow velocity measurement with low power consumption without causing the heater to generate heat unnecessarily.

[実施例4]
図9は、本発明による他の実施形態に係る流体の流速計測装置の概略構成を示す回路図で、実施例3と同一構成については、同一符号を付し、説明を省略する。なお、図9中28はオペアンプ、29は固定抵抗、30、31は差動増幅器、36、37、38、39、40は加算機用固定抵抗、41は加算機用オペアンプである。
本実施例においては、前述の実施例3記載のものと基本的には同一であるが、感温抵抗体13、14で検出された出力を差動増幅器30、31を介して入力された信号を加算機で加算してオペアンプ28に入力し、ランプ積分回路の出力を制御して、流速を計測する感温抵抗体13、14の温度上昇・降下速度をランプ積分回路で決められた時定数と同じなるようにヒータ3を制御する事を特徴としている。
より具体的に説明すると、感温抵抗体13、14で発生する電圧10、11を感温抵抗体15と固定抵抗29で発生する電圧12と比較増幅して、ヒータ3から感温抵抗体13、14に移動する熱によって生じる温度上昇・降下による電圧変化を差動増幅器30、31で取り出す。この信号を加算機で合成して、電圧ランプ信号42と比較し、ヒータ3を制御する。電圧ランプ信号42は、感温抵抗体13、14の温度によって制御されるものであるから、おのずとランプ電圧42のスイング範囲は加算機からの出力信号と合致したレベルに安定する。この動作によって感温抵抗体13、14の温度上昇、降下速度は時間経過に対して直線的に変化するものとなる。
[Example 4]
FIG. 9 is a circuit diagram showing a schematic configuration of a fluid flow velocity measuring apparatus according to another embodiment of the present invention. The same components as those in Example 3 are denoted by the same reference numerals, and description thereof is omitted. In FIG. 9, 28 is an operational amplifier, 29 is a fixed resistor, 30 and 31 are differential amplifiers, 36, 37, 38, 39 and 40 are fixed resistors for adders, and 41 is an operational amplifier for adders.
The present embodiment is basically the same as that described in the third embodiment, but the signals detected by the temperature sensitive resistors 13 and 14 are input through the differential amplifiers 30 and 31. Is added to the operational amplifier 28, and the output of the ramp integrating circuit is controlled, and the temperature rise and fall speeds of the temperature sensitive resistors 13 and 14 for measuring the flow velocity are determined by the ramp integrating circuit. It is characterized by controlling the heater 3 so as to be the same.
More specifically, the voltages 10 and 11 generated by the temperature sensitive resistors 13 and 14 are compared and amplified with the voltage 12 generated by the temperature sensitive resistor 15 and the fixed resistor 29, so that the heater 3 generates the temperature sensitive resistor 13. , 14 is used to take out the voltage change caused by the temperature rise / drop caused by the heat transferred to the differential amplifiers 30 and 31. This signal is synthesized by an adder and compared with the voltage ramp signal 42 to control the heater 3. Since the voltage ramp signal 42 is controlled by the temperature of the temperature sensitive resistors 13 and 14, the swing range of the lamp voltage 42 is naturally stabilized at a level that matches the output signal from the adder. By this operation, the temperature rise and fall speeds of the temperature sensitive resistors 13 and 14 change linearly with time.

図10に本構成による動作タイミングを示す。図中(A1)、(A2)は、それぞれ、(A)正方向に流れがある時の感温抵抗体13で検出される電圧10及び感温抵抗体14で検出される電圧11と、論理素子8から出力されるヒータ制御信号出力信号とを示し、同様に、(B1)、(B2)、(C1)、(C2)は、(B)流れが無い時、(C)逆方向に流れがある時における感温抵抗体13で検出される電圧10及び感温抵抗体14で検出される電圧11と、論理素子8から出力されるヒータ制御信号出力信号とを示す。
本構成によれば、感温抵抗体13、14の温度上昇速度の合成及び温度降下速度の合成が常に一定速度であり、この条件は流速や周囲温度によらず固定される。このことから、感温抵抗体13、14からフローセンサの基台22に流出した熱量に応じてヒータ3から熱が補われるものであり、流速が生じ感温抵抗体13と感温抵抗体14に温度差が生じている場合においてもヒータ3から供給される熱量の比は流速によるものなので、前記基台22に流出する熱量と同量の熱がヒータから供給される。よって、基台22に流出する熱の影響は一切受けなくなる。
FIG. 10 shows the operation timing according to this configuration. In the figure, (A1) and (A2) respectively represent (A) the voltage 10 detected by the temperature sensing resistor 13 and the voltage 11 detected by the temperature sensing resistor 14 when there is a flow in the positive direction, and the logic. The heater control signal output signal output from the element 8 is shown. Similarly, (B1), (B2), (C1), and (C2) flow in the reverse direction when (B) there is no flow. The voltage 10 detected by the temperature-sensitive resistor 13 and the voltage 11 detected by the temperature-sensitive resistor 14 and the heater control signal output signal output from the logic element 8 are shown.
According to this configuration, the composition of the temperature increasing speed and the composition of the temperature decreasing speed of the temperature sensitive resistors 13 and 14 are always constant, and this condition is fixed regardless of the flow speed and the ambient temperature. Therefore, heat is supplemented from the heater 3 in accordance with the amount of heat flowing out from the temperature sensitive resistors 13 and 14 to the base 22 of the flow sensor, a flow rate is generated, and the temperature sensitive resistors 13 and 14 are heated. Even when there is a temperature difference, since the ratio of the amount of heat supplied from the heater 3 depends on the flow velocity, the same amount of heat that flows out to the base 22 is supplied from the heater. Therefore, the influence of the heat flowing out to the base 22 is not affected at all.

[実施例5]
図11は、本発明による他の実施形態に係る流体の流速計測装置の概略構成を示す回路図で、実施例4と同一構成については、同一符号を付し、説明を省略する。
本実施例では、基本的な動作は前述の実施例4と同じであり、感温抵抗体13の温度上昇・降下速度をヒータ制御回路9のランプ積分回路で定められた時定数により固定するものである。これによって、感温抵抗体13が基準となり、感温抵抗体14の温度上昇・降下速度が流速によって変化する。その結果、感温抵抗体13、14の温度上昇・降下速度はランプ積分回路の時定数で規定されるので、ヒータ発熱温度の影響が無くなり、これによって温度依存性がなくなり、また流体の熱伝導率の違いなどによる誤差もなくなり、感温抵抗体の経年劣化などによる影響も無くなる。このように、流速に応じてヒータ発熱温度が変化するので低流速から高流速まで安定した出力を得ることができる。さらに、本実施例のものは、実施例4のものに比べ、回路規模が小さくてすむが、感温抵抗体13の温度上昇・降下速度が固定であるため、流速に対する出力パルスの変化は小さくなる。
[Example 5]
FIG. 11 is a circuit diagram showing a schematic configuration of a fluid flow velocity measuring apparatus according to another embodiment of the present invention. The same components as those in Example 4 are denoted by the same reference numerals, and description thereof is omitted.
In this embodiment, the basic operation is the same as that of the above-described fourth embodiment, and the temperature rise / fall rate of the temperature sensitive resistor 13 is fixed by a time constant determined by the ramp integration circuit of the heater control circuit 9. It is. As a result, the temperature-sensitive resistor 13 is used as a reference, and the temperature increase / decrease rate of the temperature-sensitive resistor 14 changes depending on the flow velocity. As a result, the temperature increase / decrease rate of the temperature sensitive resistors 13 and 14 is defined by the time constant of the ramp integration circuit, so there is no influence of the heater heat generation temperature, thereby eliminating the temperature dependence and the heat conduction of the fluid. The error due to the difference in the rate is eliminated, and the influence due to aging deterioration of the temperature sensitive resistor is also eliminated. Thus, since the heater heat generation temperature changes according to the flow rate, a stable output from a low flow rate to a high flow rate can be obtained. Furthermore, although the circuit scale of this embodiment is smaller than that of Embodiment 4, the temperature rise / fall speed of the temperature sensitive resistor 13 is fixed, so that the change of the output pulse with respect to the flow velocity is small. Become.

[実施例6]
図12は、本発明による他の実施形態に係る流体の流速計測装置の概略構成を示す回路図で、実施例3と同一構成については、同一符号を付し、説明を省略する。なお、図12中33は差動増幅器である。
本実施例のものでは、上流側と下流側の感温体の出力が流速0の時以外では交差しないことに注目してなされたものであり、前述の実施例2の構成に感温抵抗体13、14で発生する電圧差を差動増幅器33によって検出する構成を付加したものである。この構成の付加によって、感温抵抗体13、14へのゴミの付着を検出可能としたものである。
このゴミ付着の検出について、図13に基づいて説明する。図13中(A1)、(A2)は、それぞれ、(A)正方向に流れがある時の感温抵抗体13で検出される電圧10及び感温抵抗体14で検出される電圧11と、差動増幅器33からの出力(流速0出力)43とを示し、同様に、(B1)、(B2)、(C1)、(C2)、(D1)、(D2)は、(B)流れが無い時、(C)逆方向に流れがある時及び(D)感温抵抗体13にゴミが付着し、且つ流れがないときにおける感温抵抗体13で検出される電圧10及び感温抵抗体14で検出される電圧11と、差動増幅器33からの出力(流速0出力)43とを示す。
[Example 6]
FIG. 12 is a circuit diagram showing a schematic configuration of a fluid flow velocity measuring apparatus according to another embodiment of the present invention. The same components as those in Example 3 are denoted by the same reference numerals, and description thereof is omitted. In FIG. 12, 33 is a differential amplifier.
In the present embodiment, attention is paid to the fact that the outputs of the upstream and downstream temperature sensing elements do not intersect except when the flow velocity is 0. In this configuration, a differential amplifier 33 detects a voltage difference generated at 13 and 14. By adding this configuration, it is possible to detect adhesion of dust to the temperature sensitive resistors 13 and 14.
This dust detection will be described with reference to FIG. In FIG. 13, (A1) and (A2) are (A) a voltage 10 detected by the temperature-sensitive resistor 13 and a voltage 11 detected by the temperature-sensitive resistor 14 when there is a flow in the positive direction, respectively. Similarly, (B1), (B2), (C1), (C2), (D1), and (D2) indicate the output (B) flow from the differential amplifier 33. When there is no flow, (C) when there is a flow in the reverse direction, and (D) when the dust is attached to the temperature sensing resistor 13 and there is no flow, the voltage 10 detected by the temperature sensing resistor 13 and the temperature sensing resistor 14 shows the voltage 11 detected at 14 and the output (flow velocity 0 output) 43 from the differential amplifier 33.

この図から明らかなように、流速0出力43は、ゴミが付着していない状態では感温抵抗体13、14の出力が0Vを挟んでスイングすることは無いが、ゴミが感温抵抗体13、14のどちらか一方に付着した場合、(D2)に示すように、0Vを挟んでスイングすることになる。これは、ヒータ3から同じ熱量が感温抵抗体13、14に供給されてもゴミが付着している方は、熱容量が大きくなり、温度上昇速度及び温度降下速度が遅くなるために起こる現象である。よって本実施例による流速0出力43の監視を行う事で、流体の種別などに影響されること無くゴミが感温抵抗体に付着したことを確実に検出できる。ゴミ付着時の処理に関しては、ゴミが付着している感温抵抗体に大電流を流してゴミを炭化するなどして粘着力をなくして取り除いたり、ゴミの大きさを流速0出力43から予測して流速信号を補正したり、アラーム信号を発して清掃を促したりなど複数の手段が考えられる。   As is clear from this figure, the flow rate 0 output 43 does not swing when the output of the temperature sensitive resistors 13 and 14 sandwiches 0V when no dust is attached, but the dust does not swing. , 14, when it is attached to either of them, as shown in (D2), it swings across 0V. This is a phenomenon that occurs when dust is attached even if the same amount of heat is supplied from the heater 3 to the temperature sensitive resistors 13 and 14, because the heat capacity increases and the temperature rise rate and the temperature fall rate become slow. is there. Therefore, by monitoring the flow velocity 0 output 43 according to the present embodiment, it is possible to reliably detect that dust has adhered to the temperature sensitive resistor without being affected by the type of fluid. With regard to the treatment at the time of adhering to dust, it is removed by eliminating the adhesive force by flowing a large current through the temperature sensitive resistor to which dust is adhering to carbonize the dust, or predicting the size of dust from the flow rate 0 output 43 A plurality of means are conceivable, such as correcting the flow velocity signal or issuing an alarm signal to prompt cleaning.

本発明による実施例1に係る流体の流速計測装置の概略構成を示す回路図である。1 is a circuit diagram illustrating a schematic configuration of a fluid flow velocity measuring apparatus according to a first embodiment of the present invention. 本発明による実施例1に係る流体の流速計測装置の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the fluid flow velocity measuring apparatus which concerns on Example 1 by this invention. 本発明による実施例1に係る流体の流速計測装置の動作を示す信号の波形図で、(A)は正方向に流体の流れがある時の場合、(B)は流れがない時の場合、(C)は逆方向に流れがある時の場合についての波形図である。In the waveform diagram of the signal showing the operation of the fluid flow velocity measuring device according to the first embodiment of the present invention, (A) when there is a fluid flow in the positive direction, (B) when there is no flow, (C) is a waveform diagram when there is a flow in the reverse direction. 本発明による実施例2に係る流体の流速計測装置の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the flow velocity measuring apparatus of the fluid based on Example 2 by this invention. 本発明による実施例2に係る流体の流速計測装置で使用されるフローセンサの平面図である。It is a top view of the flow sensor used with the flow velocity measuring device of the fluid concerning Example 2 by the present invention. 図5のA−A線上で切断した断面図である。It is sectional drawing cut | disconnected on the AA line of FIG. 本発明による実施例3に係る流体の流速計測装置の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the flow velocity measuring apparatus of the fluid which concerns on Example 3 by this invention. 本発明による実施例3に係る流体の流速計測装置の動作を示す信号の波形図で、(A)は正方向に流体の流れがある時の場合、(B)は流れがない時の場合、(C)は逆方向に流れがある時の場合についての波形図である。In the waveform diagram of the signal showing the operation of the fluid flow velocity measuring device according to the third embodiment of the present invention, (A) when there is a fluid flow in the positive direction, (B) when there is no flow, (C) is a waveform diagram when there is a flow in the reverse direction. 本発明による実施例4に係る流体の流速計測装置の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the flow velocity measuring apparatus of the fluid which concerns on Example 4 by this invention. 本発明による実施例4に係る流体の流速計測装置の動作を示す信号の波形図で、(A)は正方向に流体の流れがある時の場合、(B)は流れがない時の場合、(C)は逆方向に流れがある時の場合についての波形図である。In the waveform diagram of the signal showing the operation of the fluid flow velocity measuring device according to the fourth embodiment of the present invention, (A) when there is a fluid flow in the positive direction, (B) when there is no flow, (C) is a waveform diagram when there is a flow in the reverse direction. 本発明による実施例5に係る流体の流速計測装置の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the flow velocity measuring apparatus of the fluid which concerns on Example 5 by this invention. 本発明による実施例6に係る流体の流速計測装置の概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the flow velocity measuring apparatus of the fluid based on Example 6 by this invention. 本発明による実施例6に係る流体の流速計測装置の動作を示す信号の波形図で、(A)は正方向に流体の流れがある時の場合、(B)は流れがない時の場合、(C)は逆方向に流れがある時の場合、(D)は感温抵抗体にゴミが付着し、且つ、流れがない時の場合についての波形図である。In the waveform diagram of the signal showing the operation of the fluid flow velocity measuring device according to the sixth embodiment of the present invention, (A) when there is a fluid flow in the positive direction, (B) when there is no flow, (C) is a waveform diagram when there is a flow in the reverse direction, and (D) is a waveform diagram when dust is attached to the temperature sensitive resistor and there is no flow.

符号の説明Explanation of symbols

1…第1の感温体、2…第2の感温体、3…ヒータ、4…第2の基準電圧源、5…第1の基準電圧源、6…第1の比較機、7…第2の比較機、8…論理素子、9…ヒータ制御回路、V1…第2の基準電圧、V2…第1の基準電圧、10…第2の感温体による検出電圧、11…第1の感温体による検出電圧、13…第1の感温抵抗体、14…第2の感温抵抗体、15…第3の感温抵抗体、16…第1の固定抵抗、17…第2の固有抵抗、18…第1の定電流源、19…第2の定電流源、20…第3の定電流源、34…演算回路、35…表示手段   DESCRIPTION OF SYMBOLS 1 ... 1st temperature sensor, 2 ... 2nd temperature sensor, 3 ... Heater, 4 ... 2nd reference voltage source, 5 ... 1st reference voltage source, 6 ... 1st comparator, 7 ... 2nd comparator, 8 ... logic element, 9 ... heater control circuit, V1 ... second reference voltage, V2 ... first reference voltage, 10 ... voltage detected by second temperature sensor, 11 ... first Detected voltage by temperature sensing element, 13 ... first temperature sensing resistor, 14 ... second temperature sensing resistor, 15 ... third temperature sensing resistor, 16 ... first fixed resistance, 17 ... second Specific resistance, 18 ... first constant current source, 19 ... second constant current source, 20 ... third constant current source, 34 ... arithmetic circuit, 35 ... display means

Claims (5)

ヒータと、ヒータを挟んで配置された第1の感温体及び第2の感温体を備えたフローセンサと、
第1の感温体で検出される出力電圧と第1の基準電圧とを比較して前記出力電圧が前記第1の基準電圧を超えたとき信号を出力する第1の比較手段と、
第2の感温体で検出される出力電圧と第2の基準電圧とを比較して前記出力電圧が前記第2の基準電圧を超えたとき信号を出力するする第2の比較手段と、
第1の比較手段と第2の比較手段から得られた信号によって出力パルスを発生する論理素子と、
該論理素子から出力される出力パルスに応じて前記ヒータに電流を印加するヒータ制御回路と、を備え、
前記ヒータ制御回路は、前記第1の比較手段からの出力信号によって、前記ヒータへの通電を停止または減少させ、前記第2の比較手からの出力信号によって前記ヒータへの通電を開始または増加させ、前記ヒータ制御回路に供給される前記出力パルスのパルス間隔を計測することによって前記フローセンサ上を流れる流体の流速を計測することを特徴とする流体の流速計測装置。
A flow sensor including a heater, and a first temperature sensor and a second temperature sensor disposed between the heaters;
A first comparing means for comparing the output voltage detected by the first temperature sensing element with the first reference voltage and outputting a signal when the output voltage exceeds the first reference voltage;
A second comparison means for comparing the output voltage detected by the second temperature sensor with a second reference voltage and outputting a signal when the output voltage exceeds the second reference voltage;
A logic element for generating an output pulse by signals obtained from the first comparison means and the second comparison means;
A heater control circuit for applying a current to the heater in response to an output pulse output from the logic element,
The heater control circuit stops or decreases energization to the heater according to an output signal from the first comparison means, and starts or increases energization to the heater according to an output signal from the second comparison hand. An apparatus for measuring a flow velocity of fluid, wherein the flow velocity of the fluid flowing on the flow sensor is measured by measuring a pulse interval of the output pulse supplied to the heater control circuit.
請求項1記載の流体の流速計測装置において、
前記第1の感温体と第2の感温体は、第1の感温抵抗体及び第2の感温抵抗体であり、
前記フローセンサは、流体温度検出用の第3の感温抵抗体を備え、
該第3の感温抵抗体に直列に第1の固定抵抗と第2の固定抵抗を接続し、
前記第1の感温抵抗体、前記第2の感温抵抗体、及び第1の固定抵抗と第2の固定抵抗と第3の感温抵抗体に、それぞれ一定の電流を流す第1、第2及び第3の定電流源を接続し、
前記第1の比較手段は、第1の固定抵抗と第2の固有抵抗と第3の感温抵抗体で発生した電圧を前記第1の基準電圧として第1の感温抵抗体で発生した電圧と比較し、
前記第2の比較手段は、第1の固定抵抗と第3の感温抵抗体で発生した電圧を前記第2の基準電圧として第2の感温抵抗体で発生した電圧と比較することを特徴とする流体の流速計測装置。
In the fluid flow velocity measuring device according to claim 1,
The first temperature sensor and the second temperature sensor are a first temperature sensor and a second temperature sensor,
The flow sensor includes a third temperature sensing resistor for fluid temperature detection,
Connecting a first fixed resistor and a second fixed resistor in series with the third temperature sensitive resistor;
First, first, and second current flowing through the first temperature-sensitive resistor, the second temperature-sensitive resistor, and the first fixed resistor, the second fixed resistor, and the third temperature-sensitive resistor, respectively. Connecting the second and third constant current sources,
The first comparison means uses the voltage generated by the first fixed resistor, the second specific resistance, and the third temperature sensitive resistor as the first reference voltage, and the voltage generated by the first temperature sensitive resistor. Compared to
The second comparing means compares the voltage generated by the first fixed resistor and the third temperature sensitive resistor with the voltage generated by the second temperature sensitive resistor as the second reference voltage. Fluid velocity measuring device.
請求項2記載の流体の流速計測装置において、
前記ヒータ制御回路は、積分回路を備え、当該積分回路によって定められた時定数でヒータへの通電を制御することを特徴とする流体の流速計測装置。
In the fluid flow velocity measuring device according to claim 2,
The heater control circuit includes an integration circuit, and controls the energization of the heater with a time constant determined by the integration circuit.
請求項3記載の流体の流速計測装置において、
前記ヒータへの通電の減少及び増加に伴い生じる第1及び第2の感温抵抗体での電圧を前記積分回路で定められる時定数と一致するようにヒータ制御回路を制御することを特徴とする流体の流速計測装置。
In the fluid flow velocity measuring device according to claim 3,
The heater control circuit is controlled so that the voltage at the first and second temperature sensitive resistors, which is caused by the decrease and increase in energization to the heater, coincides with the time constant determined by the integration circuit. Fluid velocity measuring device.
請求項1乃至4の何れか1項記載の流体の流速計測装置において、
前記ヒータへの通電の停止または減少及びヒータへの通電の開始または増加に伴い生じる第1の感温抵抗体と第2の感熱抵抗体との電圧差を検出する検出回路を備えたことを特徴とする流体の流速計測装置。
In the fluid flow velocity measuring device according to any one of claims 1 to 4,
A detection circuit is provided for detecting a voltage difference between the first temperature-sensitive resistor and the second heat-sensitive resistor that is generated when the energization of the heater is stopped or reduced and when the energization of the heater is started or increased. Fluid velocity measuring device.
JP2006184956A 2006-07-04 2006-07-04 Fluid velocity measuring device Expired - Fee Related JP4939128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184956A JP4939128B2 (en) 2006-07-04 2006-07-04 Fluid velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184956A JP4939128B2 (en) 2006-07-04 2006-07-04 Fluid velocity measuring device

Publications (2)

Publication Number Publication Date
JP2008014729A true JP2008014729A (en) 2008-01-24
JP4939128B2 JP4939128B2 (en) 2012-05-23

Family

ID=39071888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184956A Expired - Fee Related JP4939128B2 (en) 2006-07-04 2006-07-04 Fluid velocity measuring device

Country Status (1)

Country Link
JP (1) JP4939128B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053490B1 (en) * 2009-04-02 2011-08-03 광주과학기술원 System and method for measuring resolution of heat flux sensor
JP2015169552A (en) * 2014-03-07 2015-09-28 株式会社リコー Detection device, detection circuit, sensor module, and image forming apparatus
WO2018047836A1 (en) * 2016-09-08 2018-03-15 株式会社村田製作所 Wind-speed measurement device and wind-volume measurement device
WO2018047385A1 (en) * 2016-09-08 2018-03-15 株式会社村田製作所 Wind-speed measurement device and wind-volume measurement device
WO2019031329A1 (en) * 2017-08-05 2019-02-14 株式会社村田製作所 Wind speed measurement device and air flow measurement device
CN110646017A (en) * 2018-06-26 2020-01-03 美蓓亚三美株式会社 Fluid sensor device and method for detecting failure of fluid sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052958B2 (en) * 2018-06-26 2022-04-12 ミネベアミツミ株式会社 Failure detection method for fluid sensing devices and fluid sensors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413419A (en) * 1987-07-08 1989-01-18 Shimadzu Corp Flow rate sensor
JP2001074529A (en) * 1999-08-31 2001-03-23 Yazaki Corp Flow measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413419A (en) * 1987-07-08 1989-01-18 Shimadzu Corp Flow rate sensor
JP2001074529A (en) * 1999-08-31 2001-03-23 Yazaki Corp Flow measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053490B1 (en) * 2009-04-02 2011-08-03 광주과학기술원 System and method for measuring resolution of heat flux sensor
JP2015169552A (en) * 2014-03-07 2015-09-28 株式会社リコー Detection device, detection circuit, sensor module, and image forming apparatus
WO2018047836A1 (en) * 2016-09-08 2018-03-15 株式会社村田製作所 Wind-speed measurement device and wind-volume measurement device
WO2018047385A1 (en) * 2016-09-08 2018-03-15 株式会社村田製作所 Wind-speed measurement device and wind-volume measurement device
US10823750B2 (en) 2016-09-08 2020-11-03 Murata Manufacturing Co., Ltd. Wind speed measuring device and airflow measuring device
WO2019031329A1 (en) * 2017-08-05 2019-02-14 株式会社村田製作所 Wind speed measurement device and air flow measurement device
US11243223B2 (en) 2017-08-05 2022-02-08 Murata Manufacturing Co., Ltd. Airflow velocity measuring apparatus and airflow rate measuring apparatus
CN110646017A (en) * 2018-06-26 2020-01-03 美蓓亚三美株式会社 Fluid sensor device and method for detecting failure of fluid sensor

Also Published As

Publication number Publication date
JP4939128B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4939128B2 (en) Fluid velocity measuring device
JP5209232B2 (en) Thermal flow meter
WO2000065315A1 (en) Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement
JP5153996B2 (en) Thermal flow meter
JP2007139672A (en) Apparatus and method for measuring fluid
JP2003065820A (en) Flow-measuring instrument
CN110646017B (en) Fluid sensor device and failure detection method for fluid sensor
JP4820174B2 (en) Heater control circuit and thermal conductivity measuring device
EP3287752B1 (en) Low power operational methodology for a flow sensor
JP5111180B2 (en) Thermal flow meter
JP3527657B2 (en) Flow sensor failure determination apparatus and method
JP2001296156A (en) Flow rate measuring device and electronic flowmeter
JPH09306637A (en) Heater control device
JP5178264B2 (en) Thermal flow meter
JP5178261B2 (en) Thermal flow meter
WO2019031329A1 (en) Wind speed measurement device and air flow measurement device
JP2003121227A (en) Thermal type flowmeter
JP7052958B2 (en) Failure detection method for fluid sensing devices and fluid sensors
JP4151596B2 (en) Gas detector
JP4426695B2 (en) Flow rate measuring method, flow rate measuring device, and electronic gas meter
JP2009288096A (en) Thermal flow sensor
JP2010054251A (en) Thermal flow sensor
JPH0663800B2 (en) Heater temperature control circuit
JPH11118567A (en) Flow sensor
JP2008215870A (en) Fluid measuring device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees