JP2008011632A - Direct-current high voltage generator - Google Patents

Direct-current high voltage generator Download PDF

Info

Publication number
JP2008011632A
JP2008011632A JP2006179111A JP2006179111A JP2008011632A JP 2008011632 A JP2008011632 A JP 2008011632A JP 2006179111 A JP2006179111 A JP 2006179111A JP 2006179111 A JP2006179111 A JP 2006179111A JP 2008011632 A JP2008011632 A JP 2008011632A
Authority
JP
Japan
Prior art keywords
voltage generator
high voltage
metal container
heat
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006179111A
Other languages
Japanese (ja)
Other versions
JP4969927B2 (en
Inventor
Mitsuo Kawanami
光雄 川並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2006179111A priority Critical patent/JP4969927B2/en
Publication of JP2008011632A publication Critical patent/JP2008011632A/en
Application granted granted Critical
Publication of JP4969927B2 publication Critical patent/JP4969927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil-immersed enclosed direct-current high voltage generator small in size and excellent in heat radiation efficiency. <P>SOLUTION: Electrical elements, such as a capacitor, a diode, and a resistor, are attached in a metal case filled with insulating oil to form a circuit board. In the direct-current high voltage generator, more than one of this circuit board is housed. The circuit boards are vertically attached to a mounting board with through-holes formed therein, at intervals between them. The interior of the metal case is provided at its upper part with a radiated heat absorbing copper plate and a cooling pipe. The interior of the metal case is further provided at its side face and bottom face with insulating paper. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、密閉形直流高圧発生装置の冷却方法に関するもので、特に金属容器内部の直流高圧発生器から高圧出力ブッシングを介して、10〜200kVの直流高圧を引き出すようにした油浸密閉形の直流高圧発生装置の内部発熱を、効率的に金属容器外に放熱する冷却方法に関するものである。   The present invention relates to a cooling method for a closed DC high voltage generator, and particularly an oil-immersed sealed type in which a DC high voltage of 10 to 200 kV is drawn from a DC high voltage generator inside a metal container through a high voltage output bushing. The present invention relates to a cooling method for efficiently dissipating internal heat generation of a direct-current high-pressure generator to the outside of a metal container.

直流高圧発生装置の一般的な回路図を図6に示す。
商用交流電源をコンバータ1で直流電力に変換後、インバータ2で10〜100kHzの高周波に変換し、高周波変圧器3にて所定の電圧まで昇圧し、直流高圧発生器4に給電している。
直流高圧発生器4に供給される高周波電力は、種々の方式で昇圧整流し、直流高圧に変換されるが、図6の回路はコッククロフト・ウォルトン回路として周知の倍電圧整流回路の一例である。
コッククロフト・ウォルトン回路は、コンデンサ5、5、…、525からなるコンデンサ群5aと、コンデンサ526、527、…、550からなるコンデンサ群5bと、コンデンサ551、552、…、575からなるコンデンサ群5cと、そのコンデンサ間を交互に架橋するダイオード群6a、6bとからなる。
図6の回路では、低圧側入力端子T−E、T−Eより高周波電力が供給されると、その波高値の50倍の直流高電圧を発生することができる回路となっている。
その出力電圧は出力電流に応じてリプル成分が含まれ、その軽減のためコンデンサは平滑用コンデンサが使用されるが、電圧降下時の応答を早めるように放電抵抗器9が併設される。
また、負荷側短絡時の電流抑制用に直列抵抗器7a、7b、8、および出力電圧の電圧検出抵抗器群10が同一の金属容器26内に収容される。
さらに、出力電圧の電圧検出抵抗器群10の低圧側は、低圧側端子Tを介して、金属容器26外に設置された電圧検出抵抗器19を通じて接地される。電圧検出抵抗器群10および電圧検出抵抗器19により分圧された出力電圧は、設定電圧17と比較され、2つの入力電圧差がゼロとなるように、誤差増幅器18を介して、インバータ2に帰還制御され、直流高圧発生器4の出力電圧を安定化させる。
A general circuit diagram of the DC high voltage generator is shown in FIG.
A commercial AC power source is converted into DC power by the converter 1, then converted to a high frequency of 10 to 100 kHz by the inverter 2, boosted to a predetermined voltage by the high frequency transformer 3, and supplied to the DC high voltage generator 4.
The high frequency power supplied to the DC high voltage generator 4 is boosted and rectified by various methods and converted to DC high voltage. The circuit of FIG. 6 is an example of a voltage doubler rectifier circuit known as a Cockcroft-Walton circuit.
Cockcroft-Walton circuit, a capacitor 5 1, 5 2, ..., a capacitor group 5a consisting of 5 25, capacitor 5 26, 5 27, ..., and capacitor group 5b consisting of 5 50, capacitor 5 51, 5 52, ... 5 75, and a group of diodes 6a and 6b alternately bridging between the capacitors.
In the circuit of FIG. 6, when high frequency power is supplied from the low-voltage side input terminals T 1 -E and T 2 -E, a DC high voltage 50 times the peak value can be generated.
The output voltage includes a ripple component according to the output current, and a smoothing capacitor is used as a capacitor to reduce the output current. However, a discharge resistor 9 is provided to speed up the response when the voltage drops.
Further, the series resistors 7a, 7b, 8 and the voltage detection resistor group 10 of the output voltage are accommodated in the same metal container 26 for current suppression when the load side is short-circuited.
Furthermore, the low pressure side of the voltage detecting resistor group 10 of the output voltage via the low-voltage side terminal T 3, is grounded through a voltage sensing resistor 19 installed in the outer metal casing 26. The output voltage divided by the voltage detection resistor group 10 and the voltage detection resistor 19 is compared with the set voltage 17 and is supplied to the inverter 2 via the error amplifier 18 so that the difference between the two input voltages becomes zero. Feedback control is performed to stabilize the output voltage of the DC high voltage generator 4.

図7は、図6で示す直流高圧発生器4に相当する従来例の内部構造図である。
金属製の密封容器である金属容器26内に、コンデンサ群5a、5b、5cおよびダイオード群6a、6bよりなる倍電圧整流回路とともに、放電抵抗器9(図示せず)、直列抵抗器7、8、電圧検出抵抗器群10(図示せず)が収納される。
金属容器26とコンデンサ、ダイオード、抵抗器の電気素子との絶縁を確保するために、金属容器26と電気素子との距離を長くするとともに、金属容器26内に絶縁油25が満たされている。
金属容器の天板20には、直流高圧発生装置としての低圧側入力端子T、E、Tおよび電圧検出抵抗器群10の低圧側端子Tとともに、高圧出力ブッシング23が設置される。前記高圧出力ブッシングは、金属容器の天板20の貫通孔を通して、前記高圧出力ブッシングを形成している封着金具(1)21を溶接、ロウ付けなどにより気密接合して、設置される。しかしながら、絶縁油を対流させて冷却するための流路を確保することが必要となるので、金属容器26と電気素子間の距離が長くなっており、装置の大形化は避けられない。
FIG. 7 is an internal structure diagram of a conventional example corresponding to the DC high voltage generator 4 shown in FIG.
In a metal container 26, which is a metal sealed container, a discharge resistor 9 (not shown) and series resistors 7, 8 together with a voltage doubler rectifier circuit composed of capacitor groups 5a, 5b, 5c and diode groups 6a, 6b. The voltage detection resistor group 10 (not shown) is accommodated.
In order to ensure insulation between the metal container 26 and the electric elements of the capacitor, diode, and resistor, the distance between the metal container 26 and the electric element is increased, and the metal container 26 is filled with insulating oil 25.
The top plate 20 of the metal container is provided with a high voltage output bushing 23 together with low voltage side input terminals T 1 , E, T 2 as a DC high voltage generator and a low voltage side terminal T 3 of the voltage detection resistor group 10. The high-pressure output bushing is installed by hermetically joining the sealing fitting (1) 21 forming the high-pressure output bushing by welding, brazing or the like through the through hole of the top plate 20 of the metal container. However, since it is necessary to secure a flow path for cooling by convection of the insulating oil, the distance between the metal container 26 and the electric element is long, and an increase in size of the apparatus is inevitable.

直流高圧発生器4の発熱は主として、金属容器26内に収納している抵抗器およびダイオードの損失による。これらの発熱体の冷却の大半が、絶縁油25の対流に依存しており、油流は金属容器26内を循環して、金属容器26の全面に伝熱して大気側の気流および輻射で放熱しているが、出力電流が大きくなると内部の発熱量も増加し、上方にある金属容器の天板20の近辺は特に温度が高くなる。
また、特許文献1に示すように、内部発熱を金属容器外に放熱する手段として、高圧出力ブッシングを構成する封着金具に放熱フィンを取付けた装置が知られている。
特開平11−41932号公報
The heat generation of the DC high voltage generator 4 is mainly due to the loss of resistors and diodes housed in the metal container 26. Most of the cooling of these heating elements depends on the convection of the insulating oil 25. The oil flow circulates in the metal container 26, transfers heat to the entire surface of the metal container 26, and dissipates heat by airflow and radiation on the atmosphere side. However, as the output current increases, the amount of heat generated inside increases, and the temperature in the vicinity of the top plate 20 of the metal container located above becomes particularly high.
Moreover, as shown in Patent Document 1, as a means for radiating internal heat generation to the outside of a metal container, a device in which a radiating fin is attached to a sealing metal fitting constituting a high voltage output bushing is known.
JP 11-41932 A

直流高圧発生器の発熱体は、抵抗器、ダイオードであり、その発熱は絶縁油の対流により金属容器の全面に伝熱して放熱している。装置の小形化を図るには、金属容器26と直流高圧発生器4との間の距離を短くする必要があるが、距離を短くするための絶縁バリア(絶縁紙)が存在すると、金属容器側面への伝熱が効果的に行われず、側板に冷却フィンを設けても十分な放熱効果が得られず、金属容器の天板20のみ異常に温度上昇して、内部の冷却効果が阻害されるという課題があった。
また、金属容器の放熱のため、上記の高圧出力ブッシングを構成する封着金属に放熱フィンを取付けた事例では、放熱フィンは熱損失が比較的小さい直流高圧発生装置には有用であるが、内部発熱が大きい直流高圧発生装置の場合は、放熱フィンを大きくする必要があり、装置が大形化するという問題があった。
The heating elements of the DC high voltage generator are resistors and diodes, and the heat is transferred to the entire surface of the metal container by the convection of the insulating oil to dissipate the heat. In order to reduce the size of the apparatus, it is necessary to shorten the distance between the metal container 26 and the DC high voltage generator 4, but if there is an insulation barrier (insulating paper) for shortening the distance, the side surface of the metal container Heat transfer is not performed effectively, and even if a cooling fin is provided on the side plate, a sufficient heat dissipation effect cannot be obtained, and only the top plate 20 of the metal container abnormally rises in temperature, thereby hindering the internal cooling effect. There was a problem.
In addition, in the case where the heat sink is attached to the sealing metal that constitutes the above high voltage output bushing for heat dissipation of the metal container, the heat sink is useful for the DC high voltage generator with relatively small heat loss. In the case of a DC high-voltage generator that generates a large amount of heat, it is necessary to increase the size of the heat dissipating fins, resulting in a problem that the apparatus becomes larger.

上記のような問題があったため、小形で、放熱効果の良い油浸密閉形の直流高圧発生装置が求められていた。   Due to the above-described problems, there has been a demand for a compact, oil-sealed, high-pressure DC high-pressure generator that has a good heat dissipation effect.

本発明は、上記課題を解決するためのもので、絶縁油を充填した金属容器内に、複数の回路基板を収納した直流高圧発生装置において、
前記回路基板が間隔を隔てて垂直に、貫通孔を設けた取付板に取付けられ、前記金属容器内側の上部に放熱吸収用板と冷却パイプとを設けたことを特徴とする直流高圧発生装置である。
さらに、前記金属容器内側の側面および下面に、絶縁紙を設置したことを特徴とする直流高圧発生装置である。
The present invention is to solve the above problems, and in a DC high-voltage generator in which a plurality of circuit boards are housed in a metal container filled with insulating oil,
A DC high-voltage generator characterized in that the circuit board is mounted vertically on a mounting plate provided with a through hole at a distance, and a heat radiation absorbing plate and a cooling pipe are provided at the upper part inside the metal container. is there.
Furthermore, the DC high-voltage generator is characterized in that insulating paper is provided on the inner side surface and the lower surface of the metal container.

本発明は、コンデンサ、ダイオード、抵抗器等の電気素子からなる直流高圧発生器の回路基板を間隔を隔てて垂直に、貫通孔を設けた取付板に取付けるとともに、前記金属容器内側の上面に冷却パイプを設けた放熱吸収用板を配置することで、貫通孔から上昇した絶縁油が回路基板上の電気素子を冷却しながら上昇し、冷媒を通した冷却パイプを通じて冷却される放熱吸収用板で絶縁油を冷却することができるので、発熱する電気素子を効率的に冷却し、直流高圧発生器の発熱を抑制することができる。
また、金属容器内側の側面と下面に絶縁紙を配置することにより直流高圧発生装置の小形化を図ることができる。
The present invention attaches a circuit board of a DC high voltage generator composed of electric elements such as a capacitor, a diode, and a resistor vertically to a mounting plate provided with a through hole, and cools the upper surface inside the metal container. By disposing the heat dissipation absorption plate with the pipe, the insulating oil rising from the through hole rises while cooling the electric elements on the circuit board, and is cooled by the cooling pipe through which the coolant passes. Since the insulating oil can be cooled, the electric element that generates heat can be efficiently cooled, and the heat generation of the DC high-voltage generator can be suppressed.
Further, the DC high voltage generator can be miniaturized by disposing insulating paper on the inner side surface and lower surface of the metal container.

本発明の一実施形態を図1〜5を参照しながら詳細に説明する。
図1は、本発明による直流高圧発生装置の外観斜視図、図2は図1の内部構造図、図3は図2上部の放熱吸収用板と冷却パイプ部の平面図、図4は、図2の直列抵抗器設置箇所の下部断面図、図5(a)は図2上部の外観斜視図、図5(b)は図2の中央部のダイオード、コンデンサの配置を示す概略斜視図である。
図2において、金属容器26の天板20の下部に長方形状の銅またはアルミニウム等からなる放熱吸収用板12が設置される。この放熱吸収用板12に図3および図5(a)に示すS字形の金属の冷却パイプ13がロウ付けされる。冷却パイプの先端は天板20を貫通し、気密保持のために天板20にロウ付けされる。
図4は、金属容器26の下部位置に、発熱体である直列抵抗器7a、7bが取付板27〜30に支持されて組立てられている。また、電圧検出抵抗器群10も組み立てられている。
図5(b)は、金属容器26内にコンデンサ群5a、5b、5cおよび発熱体であるダイオード群6a、6bの各電気素子が回路基板34に取付けられ、各回路基板34はその間を冷却用の絶縁油25が流れるように隙間を空けて垂直に、取付板32に取り付けられている。取付板32には絶縁油が流れるように貫通孔Z、切欠部Z’が設けられている。
なお、回路基板34は、電力変圧器に使用される電気絶縁紙を薄板状に成形したプレスボードであり、取付板27〜33は、ガラス繊維やカーボン繊維に樹脂を浸透させて成形し薄板状にした繊維強化プラスチック板(FRP製)である。
各電気素子は絶縁油が流れるように回路基板34に配置されている。本実施例では電気素子間の配線のしやすさから部品を水平方向に配置しているが、絶縁油の循環を考慮して部品を垂直方向に取り付けてもよい。
直流高圧発生器4の発熱は金属容器26内の抵抗器およびダイオードの損失によるため、絶縁油流は図5(b)の貫通孔Z、切欠部Z’および回路基板34間を循環して銅製の放熱吸収用板12に当たる。放熱吸収用板12にはS字形の冷却パイプ13がロウ付けされており、この冷却パイプ内に外部より冷却水を通し、熱交換を行い、金属容器内の上昇した温度を効果的に下げる。
An embodiment of the present invention will be described in detail with reference to FIGS.
1 is an external perspective view of a DC high-voltage generator according to the present invention, FIG. 2 is an internal structural view of FIG. 1, FIG. 3 is a plan view of a heat-absorbing absorption plate and a cooling pipe portion at the top of FIG. FIG. 5A is an external perspective view of the upper part of FIG. 2, and FIG. 5B is a schematic perspective view showing the arrangement of diodes and capacitors in the central part of FIG. .
In FIG. 2, a heat radiation absorbing plate 12 made of rectangular copper, aluminum, or the like is installed below the top plate 20 of the metal container 26. An S-shaped metal cooling pipe 13 shown in FIGS. 3 and 5A is brazed to the heat radiation absorbing plate 12. The tip of the cooling pipe penetrates the top plate 20 and is brazed to the top plate 20 to keep it airtight.
In FIG. 4, series resistors 7 a and 7 b, which are heating elements, are supported and assembled at lower positions of the metal container 26 by mounting plates 27 to 30. The voltage detection resistor group 10 is also assembled.
In FIG. 5B, electric elements of the capacitor groups 5a, 5b, and 5c and the diode groups 6a and 6b that are heating elements are attached to the circuit board 34 in the metal container 26, and each circuit board 34 is used for cooling between them. The insulating oil 25 is attached to the mounting plate 32 vertically with a gap therebetween so that the insulating oil 25 flows. The mounting plate 32 is provided with a through hole Z and a notch Z ′ so that the insulating oil flows.
The circuit board 34 is a press board obtained by forming an electric insulating paper used for a power transformer into a thin plate shape, and the mounting plates 27 to 33 are formed by impregnating a glass fiber or a carbon fiber with a resin to form a thin plate shape. This is a fiber reinforced plastic plate made of FRP.
Each electric element is arranged on the circuit board 34 so that insulating oil flows. In the present embodiment, the components are arranged in the horizontal direction for ease of wiring between the electric elements, but the components may be attached in the vertical direction in consideration of the circulation of the insulating oil.
Since the heat generation of the DC high voltage generator 4 is due to the loss of the resistors and diodes in the metal container 26, the insulating oil flow circulates between the through hole Z, the notch Z ′ and the circuit board 34 in FIG. It hits the heat dissipation absorbing plate 12. An S-shaped cooling pipe 13 is brazed to the heat radiation absorbing plate 12, and cooling water is passed through the cooling pipe from the outside to perform heat exchange, thereby effectively lowering the elevated temperature in the metal container.

金属容器26の発熱体の冷却は、絶縁油25の自然対流に依存するので、自然対流を良好にするために各電気素子の部品配置および回路基板34の配置間隔を確保し、取付板の貫通孔Z、切欠部Z’を設けて上・下の対流が起こりやすい構造としている。   Since the cooling of the heating element of the metal container 26 depends on the natural convection of the insulating oil 25, in order to improve the natural convection, the component arrangement of each electric element and the arrangement interval of the circuit board 34 are secured, and the mounting plate is penetrated. A hole Z and a notch Z ′ are provided so that upper and lower convection easily occurs.

直流高圧発生装置の小形化を図るためには、金属容器26と各電気素子との距離を短くする必要がある。コンデンサ、ダイオード、抵抗器の電気素子で構成された直流高圧発生器4の側面を絶縁紙24で巻回し、絶縁紙24の下部を直流高圧発生器4の下面に折り曲げるか、絶縁紙24を適切な大きさの長方形状に切断し、必要枚数を重ねて直流高圧発生器4の下面に置き、重ねた絶縁紙24の周辺を直流高圧発生器4の側面に折り曲げることにより、絶縁紙24にて側面および下面を包囲して絶縁壁とし、金属容器26に挿入する。金属容器26と天板20とは気密溶接を行った後、真空にて乾燥後、絶縁油を含浸して密閉する。   In order to reduce the size of the DC high voltage generator, it is necessary to shorten the distance between the metal container 26 and each electric element. The side surface of the DC high voltage generator 4 composed of electric elements such as a capacitor, a diode, and a resistor is wound with the insulating paper 24, and the lower portion of the insulating paper 24 is bent to the lower surface of the DC high voltage generator 4 or the insulating paper 24 is appropriately used. Is cut into a rectangular shape of a certain size, and a necessary number of sheets are stacked and placed on the lower surface of the DC high voltage generator 4, and the periphery of the stacked insulating paper 24 is bent to the side surface of the DC high voltage generator 4. The side wall and the lower surface are surrounded to form an insulating wall and inserted into the metal container 26. The metal container 26 and the top plate 20 are hermetically welded, dried in vacuum, and then impregnated with insulating oil and sealed.

以上の実施形態によれば、本発明の直流高圧発生装置は金属容器内天板の下面に、放熱吸収用板と冷却パイプを設けたことにより、伝熱効果が上がり、効率的に放熱ができるようになり、直流高圧発生器の金属容器の天板の温度上昇を下げ、かつ内部温度を効果的に下げることができた。
また、金属容器と高電圧となる電気素子との絶縁には、電気素子を絶縁紙で側面および下面を包囲し、真空にて乾燥し、油含浸したことにより、絶縁性維持のための空間を縮小でき、金属容器の小形化を図ることができる。
According to the above embodiment, the direct current high voltage generator of the present invention is provided with the heat radiation absorbing plate and the cooling pipe on the lower surface of the top plate in the metal container, so that the heat transfer effect is improved and heat can be efficiently radiated. As a result, it was possible to reduce the temperature rise of the top plate of the metal container of the DC high voltage generator and to effectively reduce the internal temperature.
In addition, the insulation between the metal container and the high-voltage electrical element is performed by surrounding the electrical element with insulating paper on the side and bottom surfaces, drying it in vacuum, and impregnating it with oil. The metal container can be reduced in size.

本発明の一実施形態を示す外観斜視図1 is an external perspective view showing an embodiment of the present invention. 図1の内部構造図Fig. 1 Internal structure 図2上部の放熱吸収銅板と水冷パイプ部の平面図Fig. 2 Top view of heat radiation absorbing copper plate and water-cooled pipe 図2の直列抵抗器設置箇所の下部断面図Lower cross-sectional view of the series resistor installation location of FIG. (a)図2上部の外観斜視図、(b)図2中央部の電気素子の配置を示す概略斜視図2A is an external perspective view of the upper part of FIG. 2, and FIG. 2B is a schematic perspective view showing the arrangement of electric elements in the central part of FIG. 本発明の構成の回路図Circuit diagram of configuration of the present invention 従来例による内部構造図Internal structure diagram according to conventional example

符号の説明Explanation of symbols

1 コンバータ
2 インバータ
3 高周波変圧器
4 直流高圧発生器
5a、5b、5c コンデンサ群
6a、6b ダイオード群
7、7a、7b、8 直列抵抗器
9 放電抵抗器
10 電圧検出抵抗器群
11 コンデンサ群
12 放熱吸収用板
13 冷却パイプ
14 高圧端子
15 接地端子
16 分圧用抵抗器
17 設定電圧
18 誤差増幅器
19 電圧検出抵抗器
20 天板
21 封着金具(1)
22 封着金具(2)
23 高圧出力ブッシング
24 絶縁紙
25 絶縁油
26 金属容器
27〜33 取付板(FRP板)
34 回路基板(プレスボード)
低圧側入力端子
低圧側入力端子
低圧側端子
E 低圧側入力端子(アース)
Z 貫通孔
Z’切欠部
DESCRIPTION OF SYMBOLS 1 Converter 2 Inverter 3 High frequency transformer 4 DC high voltage generator 5a, 5b, 5c Capacitor group 6a, 6b Diode group 7, 7a, 7b, 8 Series resistor 9 Discharge resistor 10 Voltage detection resistor group 11 Capacitor group 12 Heat radiation Absorption plate 13 Cooling pipe 14 High voltage terminal 15 Ground terminal 16 Voltage dividing resistor 17 Setting voltage 18 Error amplifier 19 Voltage detection resistor 20 Top plate 21 Sealing bracket (1)
22 Sealing bracket (2)
23 High-pressure output bushing 24 Insulating paper 25 Insulating oil 26 Metal container 27 to 33 Mounting plate (FRP plate)
34 Circuit board (press board)
T 1 Low voltage input terminal T 2 Low voltage input terminal T 3 Low voltage terminal E Low voltage input terminal (ground)
Z Through-hole Z 'notch

Claims (2)

絶縁油を充填した金属容器内に、複数の回路基板を収納した直流高圧発生装置において、
前記回路基板が間隔を隔てて垂直に、貫通孔を設けた取付板に取付けられ、前記金属容器内側の上部に放熱吸収用板と冷却パイプとを設けたことを特徴とする直流高圧発生装置。
In a DC high voltage generator in which a plurality of circuit boards are housed in a metal container filled with insulating oil,
The DC high-voltage generator according to claim 1, wherein the circuit board is attached to a mounting plate provided with a through-hole vertically at an interval, and a heat radiation absorbing plate and a cooling pipe are provided in an upper portion inside the metal container.
前記金属容器内側の側面および下面に、絶縁紙を設置したことを特徴とする請求項1に記載の直流高圧発生装置。

2. The DC high-voltage generator according to claim 1, wherein insulating paper is provided on a side surface and a lower surface inside the metal container.

JP2006179111A 2006-06-29 2006-06-29 DC high voltage generator Active JP4969927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179111A JP4969927B2 (en) 2006-06-29 2006-06-29 DC high voltage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179111A JP4969927B2 (en) 2006-06-29 2006-06-29 DC high voltage generator

Publications (2)

Publication Number Publication Date
JP2008011632A true JP2008011632A (en) 2008-01-17
JP4969927B2 JP4969927B2 (en) 2012-07-04

Family

ID=39069303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179111A Active JP4969927B2 (en) 2006-06-29 2006-06-29 DC high voltage generator

Country Status (1)

Country Link
JP (1) JP4969927B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011964A (en) * 2015-06-26 2017-01-12 株式会社日立製作所 Power converter and wind power generation system
JP2023084900A (en) * 2021-12-08 2023-06-20 株式会社オリジン High pressure generating tank part, power supply device, electric precipitation device, and method of manufacturing power supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141932A (en) * 1997-07-22 1999-02-12 Nichicon Corp High dc voltage generator
JP2002289951A (en) * 2001-03-26 2002-10-04 Nichicon Corp Pulse laser power source
JP2005243666A (en) * 2004-02-24 2005-09-08 Nissin Electric Co Ltd Power equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141932A (en) * 1997-07-22 1999-02-12 Nichicon Corp High dc voltage generator
JP2002289951A (en) * 2001-03-26 2002-10-04 Nichicon Corp Pulse laser power source
JP2005243666A (en) * 2004-02-24 2005-09-08 Nissin Electric Co Ltd Power equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011964A (en) * 2015-06-26 2017-01-12 株式会社日立製作所 Power converter and wind power generation system
JP2023084900A (en) * 2021-12-08 2023-06-20 株式会社オリジン High pressure generating tank part, power supply device, electric precipitation device, and method of manufacturing power supply device
JP7412404B2 (en) 2021-12-08 2024-01-12 株式会社オリジン High pressure generation tank section, power supply device, electrostatic precipitator, and manufacturing method of power supply device

Also Published As

Publication number Publication date
JP4969927B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
CN111327208B (en) Inverter device with heat dissipation mechanism
US10804023B2 (en) Integrated inductor windings and heat pipes
JP5783212B2 (en) Power supply
JP6158051B2 (en) Power converter
KR20190019890A (en) Electronic devices and power conversion devices
JP2004186674A (en) Transformer assembly used for microwave oven, assembly method of trsansformer assembly used for microwave oven, and the microwave oven
JP4775108B2 (en) Power electronics
JP4955986B2 (en) X-ray generator
JP2005235929A (en) Power converter
US20240107712A1 (en) Cooling Mechanism for Multi-Compartment Power Device
JP4969927B2 (en) DC high voltage generator
JP2007105741A (en) Welding equipment
WO2016185613A1 (en) Electronic device
JP4454270B2 (en) Power supply heat dissipation structure
JP2013252006A (en) Motor driving device and air conditioner including the same
JP2006041314A (en) Inductor element and electronic equipment
JP6379353B2 (en) DC-DC converter
US10939586B2 (en) Heat exchanger structure for a rack assembly
JP5335185B2 (en) High voltage generator
JP6213356B2 (en) Power supply
JP2019092374A (en) Integrated structure of power module and filter of power supply unit
CN117672673B (en) Heat radiation structure of dry-type transformer
JP4670828B2 (en) Electronics
KR101423502B1 (en) Electronic components mounting structure and the method
JP2018018888A (en) Electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250