JP7412404B2 - High pressure generation tank section, power supply device, electrostatic precipitator, and manufacturing method of power supply device - Google Patents

High pressure generation tank section, power supply device, electrostatic precipitator, and manufacturing method of power supply device Download PDF

Info

Publication number
JP7412404B2
JP7412404B2 JP2021199284A JP2021199284A JP7412404B2 JP 7412404 B2 JP7412404 B2 JP 7412404B2 JP 2021199284 A JP2021199284 A JP 2021199284A JP 2021199284 A JP2021199284 A JP 2021199284A JP 7412404 B2 JP7412404 B2 JP 7412404B2
Authority
JP
Japan
Prior art keywords
tank
power supply
supply device
insulator
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021199284A
Other languages
Japanese (ja)
Other versions
JP2023084900A (en
Inventor
正 増田
和貴 兼子
司 大和
喜巳雄 北島
敬一 清水
昭宏 清水
義貴 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Co Ltd
Original Assignee
Origin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Co Ltd filed Critical Origin Co Ltd
Priority to JP2021199284A priority Critical patent/JP7412404B2/en
Publication of JP2023084900A publication Critical patent/JP2023084900A/en
Application granted granted Critical
Publication of JP7412404B2 publication Critical patent/JP7412404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

特許法第30条第2項適用 令和3年11月1日 オリジン テクニカル ジャーナル 第84号,1-16頁 にて公開Article 30, Paragraph 2 of the Patent Act applies November 1, 2021 Published in Origin Technical Journal No. 84, pages 1-16

本開示は、高電圧の電力を供給する電源装置に関する。 The present disclosure relates to a power supply device that supplies high voltage power.

排煙ガスなどを清浄化する電気集塵機などにおいて、高電圧電源装置が用いられる(例えば、特許文献1参照。)。高電圧電源装置において高電圧を発生させる回路は絶縁油の満たされたタンク内に収容され、碍子を用いてタンク内で発生した電力をタンク外に取り出す。 2. Description of the Related Art High-voltage power supplies are used in electrostatic precipitators that clean flue gas and the like (see, for example, Patent Document 1). In a high-voltage power supply, the circuit that generates high voltage is housed in a tank filled with insulating oil, and an insulator is used to extract the power generated inside the tank to the outside of the tank.

従来、タンク内の絶縁油の油面位置までしか碍子内部は絶縁油で満たされていなかった。油漏れを防ぐためにタンク上部に縦方方向に取り付けられている碍子の場合、碍子内に空気が存在すると、碍子内の中心を通る導体の近傍でのコロナ放電などにより、可燃性ガスの発生要因となる場合があった。 Conventionally, the inside of an insulator was filled with insulating oil only up to the level of the insulating oil in the tank. In the case of an insulator installed vertically at the top of a tank to prevent oil leakage, the presence of air inside the insulator can cause the generation of flammable gas due to corona discharge near the conductor passing through the center of the insulator. There were cases where this happened.

可燃性ガスの発生を防ぐために、コンデンサブッシングが用いられている。コンデンサブッシングは、碍子の上面及び底面が共に密閉構造であり、内部に絶縁油が満たされている。コンデンサブッシングは、密閉構造を有するため、碍子の頭部に絶縁油の膨張を吸収する空気層が必要だった。このため、コンデンサブッシングを用いると、碍子自体が大型化し、コストアップの要因となっていた。 Capacitor bushings are used to prevent the generation of flammable gases. The capacitor bushing has a sealed structure on both the top and bottom surfaces of the insulator, and the inside is filled with insulating oil. Since the capacitor bushing has a sealed structure, an air layer was required at the head of the insulator to absorb the expansion of the insulating oil. For this reason, when a capacitor bushing is used, the insulator itself becomes larger, which causes an increase in cost.

特開2003-088132号公報Japanese Patent Application Publication No. 2003-088132

本開示は、碍子内部の導体の周囲を絶縁油で満たすことを小形かつ安価に可能にすることを目的とする。 An object of the present disclosure is to make it possible to fill the area around a conductor inside an insulator with insulating oil in a compact and inexpensive manner.

本開示は、電源装置に備わる高圧発生タンク部であって、
入力信号の電圧を高電圧に変換する回路と、
前記回路を収容するタンクと、
前記タンクの上面に配置され、前記タンクを密閉する蓋と、
前記回路と導体で接続され、前記回路で発生させた高電圧を前記タンクの外に導く碍子と、
前記碍子の底面部より高い位置まで前記タンクに注がれ、前記碍子に備わる前記導体の周囲に充填されている絶縁油と、
を備える。
The present disclosure relates to a high pressure generation tank section included in a power supply device,
A circuit that converts the voltage of an input signal to a high voltage,
a tank accommodating the circuit;
a lid placed on the top of the tank and sealing the tank;
an insulator connected to the circuit with a conductor and guiding the high voltage generated in the circuit to the outside of the tank;
insulating oil poured into the tank to a level higher than the bottom surface of the insulator and filled around the conductor provided in the insulator;
Equipped with

また本開示に係る電源装置の製造方法は、
電源装置に備わるタンク内に電圧を変換する回路を収容し、
前記回路を碍子の導体に接続し、
前記タンクを蓋で密閉し、
前記タンクの内部を真空にし、
その後、絶縁油の油面が前記碍子の底面部よりも高くなるまで、前記タンクの内部に絶縁油を注油し、前記碍子に備わる前記導体の周囲に絶縁油を満たす。
Furthermore, the method for manufacturing a power supply device according to the present disclosure includes:
A circuit that converts voltage is housed in the tank of the power supply,
Connecting the circuit to an insulator conductor,
sealing the tank with a lid;
evacuate the inside of the tank,
Thereafter, insulating oil is poured into the tank until the oil level of the insulating oil becomes higher than the bottom surface of the insulator, and the area around the conductor provided in the insulator is filled with insulating oil.

本開示によれば、碍子内部の導体の周囲を絶縁油で満たすことが小形かつ安価で実現できるため、高電圧電源装置の高圧タンク部を安価に小型化することができる。 According to the present disclosure, it is possible to fill the periphery of the conductor inside the insulator with insulating oil in a small size and at low cost, so that the high voltage tank section of the high voltage power supply device can be downsized at low cost.

本実施形態に係る電源装置の一例を示す。An example of a power supply device according to this embodiment is shown. 本実施形態の高圧発生タンク部の構成例を示す。An example of the configuration of the high pressure generation tank section of this embodiment is shown. 本実施形態に係る電源装置の製造過程の一例を示す。An example of the manufacturing process of the power supply device according to the present embodiment is shown. 本実施形態に係る電源装置の製造過程の一例を示す。An example of the manufacturing process of the power supply device according to the present embodiment is shown. 本実施形態に係る電源装置の製造過程の一例を示す。An example of the manufacturing process of the power supply device according to the present embodiment is shown. 本実施形態の高圧発生タンク部の平面構造の一例を示す。An example of the planar structure of the high pressure generation tank section of this embodiment is shown. 本実施形態のタンク内に収容される回路の一例を示す。An example of a circuit accommodated in the tank of this embodiment is shown.

以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Embodiments of the present disclosure will be described in detail below with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below. These implementation examples are merely illustrative, and the present disclosure can be implemented with various changes and improvements based on the knowledge of those skilled in the art. Note that components with the same reference numerals in this specification and the drawings indicate the same components.

図1に、本実施形態に係る電源装置の一例を示す。本実施形態に係る電源装置は、高電圧を発生させる高圧発生タンク部120と、高圧発生タンク部120で発生させる電圧を制御する制御部110と、を備える。高圧発生タンク部120は、高電圧を発生させる回路24と、回路24を収容するタンク21と、発生させた電力を取り出す碍子23と、を備える。 FIG. 1 shows an example of a power supply device according to this embodiment. The power supply device according to this embodiment includes a high-pressure generation tank section 120 that generates high voltage, and a control section 110 that controls the voltage generated by the high-pressure generation tank section 120. The high pressure generation tank section 120 includes a circuit 24 that generates high voltage, a tank 21 that accommodates the circuit 24, and an insulator 23 that takes out the generated power.

制御部110とタンク21は動力線26で接続されている。タンク21には、制御部110からの出力信号が入力される入力端子25が備わる。回路24は、入力端子25から入力された出力信号に基づいて、高電圧を発生させる。 The control unit 110 and the tank 21 are connected by a power line 26. The tank 21 is equipped with an input terminal 25 to which an output signal from the control section 110 is input. The circuit 24 generates a high voltage based on the output signal input from the input terminal 25.

本実施形態に係る電源装置は、図7に示すような高電圧を発生可能な任意の構成を採用することができる。1は直流電圧を発生する整流器であり、2及び3は低周波フィルタ4を構成するチョークコイル及びコンデンサであり、5は所定の周波数の駆動パルスにより交流電流を生成するインバータであり、24は高周波インバータ5からの高周波出力電圧を直流高電圧に変換する回路である。回路24は、例えば、共振インダクタ12、高電圧トランス9、コンデンサ13及び14、高電圧整流器(整流回路(全波整流ダイオード)10、抵抗R2及びR3を備える。図では、接続点Sから分圧した検出電圧VSに応じて電極11へ供給される電圧を制御する例を示す。 The power supply device according to this embodiment can employ any configuration capable of generating a high voltage as shown in FIG. 7. 1 is a rectifier that generates a DC voltage, 2 and 3 are choke coils and a capacitor that constitute a low frequency filter 4, 5 is an inverter that generates an AC current by driving pulses of a predetermined frequency, and 24 is a high frequency This is a circuit that converts the high frequency output voltage from the inverter 5 into a DC high voltage. The circuit 24 includes, for example, a resonant inductor 12, a high voltage transformer 9, capacitors 13 and 14, a high voltage rectifier (rectifier circuit (full wave rectifier diode) 10, and resistors R2 and R3. An example will be shown in which the voltage supplied to the electrode 11 is controlled according to the detected voltage VS.

本実施形態に係る電源装置は、放電電極11と接地された集塵電極12との間に整流電圧に相当する電圧差を発生させる。電気集塵装置は、放電電極11と集塵電極12との間で放電させることで、放電電極11と集塵電極12との間の粉塵を収集する。電気集塵装置に用いる電圧差は任意であるが、例えば、-45kV~-180kVが例示できる。 The power supply device according to this embodiment generates a voltage difference corresponding to a rectified voltage between the discharge electrode 11 and the grounded dust collection electrode 12. The electrostatic precipitator collects dust between the discharge electrode 11 and the dust collection electrode 12 by causing discharge between the discharge electrode 11 and the dust collection electrode 12 . The voltage difference used in the electrostatic precipitator is arbitrary, and can be, for example, -45 kV to -180 kV.

図1に示すように碍子23は、中心に、回路24で発生した高電圧を出力するための導体31を備える。導体31は碍子23を貫通しており、導体31に沿って空隙32が配置されている。この空隙32に空気が存在する場合、コロナ放電が発生する可能性がある。 As shown in FIG. 1, the insulator 23 includes a conductor 31 at the center for outputting the high voltage generated in the circuit 24. The conductor 31 passes through the insulator 23, and a gap 32 is arranged along the conductor 31. If air is present in this gap 32, corona discharge may occur.

図2に、本実施形態の高圧発生タンク部の構成例を示す。本実施形態のタンク21の上部は蓋22で密閉されており、空隙32の全体に絶縁油27が充填されている。碍子23は蓋22を貫通している。入力端子25はタンク21の側面に配置される。 FIG. 2 shows an example of the configuration of the high pressure generation tank section of this embodiment. The upper part of the tank 21 of this embodiment is sealed with a lid 22, and the entire gap 32 is filled with insulating oil 27. The insulator 23 passes through the lid 22. The input terminal 25 is arranged on the side surface of the tank 21.

本開示の電源装置の製造方法は、高圧タンク部120を製造する際に、
タンク21内に回路24を収容し(図3)、
回路24を碍子23の導体31に接続し(図3)、
タンク21を蓋22で密閉し(図3)、
タンク21の内部を真空にし(図3)、
その後、タンク21の内部に絶縁油27を注油する(図4及び図5)。本開示では、碍子23の底面部23Bを密閉構造にしないため、空隙32の空気が外部に流出して無くなり、代わりに絶縁油27が流入する。
このように、本開示は、タンク21内の絶縁油27を真空注油することにより、碍子23の空隙32に絶縁油27を充填させている。
In the method for manufacturing a power supply device of the present disclosure, when manufacturing the high-pressure tank section 120,
A circuit 24 is housed in the tank 21 (FIG. 3),
Connect the circuit 24 to the conductor 31 of the insulator 23 (Fig. 3),
The tank 21 is sealed with a lid 22 (Fig. 3),
Make the inside of the tank 21 a vacuum (Figure 3),
Thereafter, insulating oil 27 is filled into the tank 21 (FIGS. 4 and 5). In the present disclosure, since the bottom surface portion 23B of the insulator 23 is not made into a sealed structure, the air in the gap 32 flows out to the outside and disappears, and the insulating oil 27 flows in instead.
In this manner, the present disclosure fills the gaps 32 of the insulator 23 with the insulating oil 27 by vacuum filling the insulating oil 27 in the tank 21 .

ここで、本開示では、注油の際、図5に示すように、絶縁油27の油面27Sが、碍子23の空隙32の底面部23B及び端子25よりも高くなるまで絶縁油27を注油する。このため、碍子23の空隙32に空気は存在せず、絶縁油27で満たされているので碍子23内でのコロナ放電の発生を防ぐことができる。また、碍子23の内部の絶縁油27の温度変化による体積膨張は、タンク21の上部の空気層28にて吸収されるため、碍子23の頭部23Tに空気層を設ける必要がないため、碍子23も小型化できる。 Here, in the present disclosure, when lubricating, as shown in FIG. . Therefore, since no air exists in the gap 32 of the insulator 23 and it is filled with the insulating oil 27, it is possible to prevent corona discharge from occurring within the insulator 23. In addition, the volume expansion due to temperature change of the insulating oil 27 inside the insulator 23 is absorbed by the air layer 28 at the top of the tank 21, so there is no need to provide an air layer in the head 23T of the insulator 23. 23 can also be made smaller.

また、本開示では、注油の際、タンク21の蓋22と絶縁油27の油面27Sの間に空間28を残す。これにより、温度変化によるタンク21本体と碍子23内部の絶縁油27の増減に対応することができる。 Further, in the present disclosure, a space 28 is left between the lid 22 of the tank 21 and the oil surface 27S of the insulating oil 27 during oil filling. Thereby, it is possible to cope with increases and decreases in the insulating oil 27 inside the tank 21 body and the insulator 23 due to temperature changes.

図6に、本開示のタンク21の平面構造の一例を示す。本開示のタンク21は、高さ方向の断面形状が八角形を有する。タンク21が八角形を有することで、タンク21の内部の絶縁油27の使用量を削減することができる。 FIG. 6 shows an example of the planar structure of the tank 21 of the present disclosure. The tank 21 of the present disclosure has an octagonal cross-sectional shape in the height direction. Since the tank 21 has an octagonal shape, the amount of insulating oil 27 used inside the tank 21 can be reduced.

また導体31からの高電圧の出力線41はダクト42で保護される。ダクト42の長手方向がタンク21の側面に垂直な方向と一致するように、ダクト42は取り付けられる。図では3方向に出力線41及びダクト42を接続する例を示すが、1方向又は2方向であってもよい。 Further, a high voltage output line 41 from the conductor 31 is protected by a duct 42. The duct 42 is attached so that the longitudinal direction of the duct 42 coincides with the direction perpendicular to the side surface of the tank 21. Although the figure shows an example in which the output line 41 and the duct 42 are connected in three directions, they may be connected in one direction or two directions.

以上説明したように、本開示の電源装置は、コンデンサブッシングを用いずに碍子23の内部の空隙32に絶縁油27を充填することができるため、高圧発生タンク部120を安価に小型化することができる。したがって、本開示は、碍子12内部の導体31の周囲が絶縁油27で満たされている小形な電源装置を安価に提供することができる。 As described above, the power supply device of the present disclosure can fill the gap 32 inside the insulator 23 with the insulating oil 27 without using a capacitor bushing, so the high pressure generation tank section 120 can be miniaturized at low cost. Can be done. Therefore, the present disclosure can provide a small power supply device in which the periphery of the conductor 31 inside the insulator 12 is filled with the insulating oil 27 at a low cost.

本開示は、電気集塵機などの高電圧電源装置を用いる任意の装置に適用することができる。 The present disclosure can be applied to any device that uses a high voltage power supply, such as an electrostatic precipitator.

1:整流器
2:チョークコイル
3:コンデンサ
4:低周波フィルタ
5:インバータ
5A~5D:絶縁ゲート型バイポーラトランジスタ
6A~6D:逆並列ダイオード
9:高電圧トランス
10:整流回路
11、12:電極
13、14:コンデンサ
21:タンク
22:蓋
23:碍子
24:回路
25:入力端子
26:動力線
27:絶縁油
31:導体
32:空隙
41:出力線
42:ダクト
110:制御部
120:高圧発生タンク部
1: Rectifier 2: Choke coil 3: Capacitor 4: Low frequency filter 5: Inverter 5A to 5D: Insulated gate bipolar transistor 6A to 6D: Antiparallel diode 9: High voltage transformer 10: Rectifier circuit 11, 12: Electrode 13, 14: Capacitor 21: Tank 22: Lid 23: Insulator 24: Circuit 25: Input terminal 26: Power line 27: Insulating oil 31: Conductor 32: Gap 41: Output line 42: Duct 110: Control section 120: High pressure generation tank section

Claims (5)

電源装置に備わる高圧発生タンク部であって、
入力信号の電圧を高電圧に変換する回路と、
前記回路を収容するタンクと、
前記タンクの上面に配置され、前記タンクを密閉する蓋と、
前記回路と導体で接続され、前記回路で発生させた高電圧を前記タンクの外に導く碍子と、
前記碍子の底面部より高い位置まで前記タンクに注がれ、前記碍子に備わる前記導体の周囲に充填されている絶縁油と、
を備える高圧発生タンク部。
A high pressure generation tank part provided in the power supply device,
A circuit that converts the voltage of an input signal to a high voltage,
a tank accommodating the circuit;
a lid placed on the top of the tank and sealing the tank;
an insulator connected to the circuit with a conductor and guiding the high voltage generated in the circuit to the outside of the tank;
insulating oil poured into the tank to a level higher than the bottom surface of the insulator and filled around the conductor provided in the insulator;
High pressure generation tank section equipped with.
前記タンクは、前記タンクの高さ方向に垂直な断面形状が八角形である、
請求項1に記載の高圧発生タンク部。
The tank has an octagonal cross-sectional shape perpendicular to the height direction of the tank.
The high pressure generation tank section according to claim 1.
請求項1又は2に記載の高圧発生タンク部と、
前記高圧発生タンク部で発生させる電圧を制御する制御部と、
を備える電源装置。
The high pressure generation tank section according to claim 1 or 2,
a control unit that controls the voltage generated in the high pressure generation tank unit;
A power supply device comprising:
請求項3に記載の電源装置を備え、
前記電源装置で発生させた高電圧を放電させることで集塵を行う、
電気集塵装置。
comprising the power supply device according to claim 3;
collecting dust by discharging the high voltage generated by the power supply device;
Electrostatic precipitator.
電源装置に備わるタンク内に電圧を変換する回路を収容し、
前記回路を碍子の導体に接続し、
前記タンクを蓋で密閉し、
前記タンクの内部を真空にし、
その後、絶縁油の油面が前記碍子の底面部よりも高くなるまで、前記タンクの内部に絶縁油を注油し、前記碍子に備わる前記導体の周囲に絶縁油を満たす、
電源装置の製造方法。
A circuit that converts voltage is housed in the tank of the power supply,
connecting the circuit to an insulator conductor;
sealing the tank with a lid;
evacuate the inside of the tank,
After that, insulating oil is poured into the tank until the oil level of the insulating oil becomes higher than the bottom surface of the insulator, and the insulating oil is filled around the conductor provided in the insulator.
A method of manufacturing a power supply device.
JP2021199284A 2021-12-08 2021-12-08 High pressure generation tank section, power supply device, electrostatic precipitator, and manufacturing method of power supply device Active JP7412404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021199284A JP7412404B2 (en) 2021-12-08 2021-12-08 High pressure generation tank section, power supply device, electrostatic precipitator, and manufacturing method of power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021199284A JP7412404B2 (en) 2021-12-08 2021-12-08 High pressure generation tank section, power supply device, electrostatic precipitator, and manufacturing method of power supply device

Publications (2)

Publication Number Publication Date
JP2023084900A JP2023084900A (en) 2023-06-20
JP7412404B2 true JP7412404B2 (en) 2024-01-12

Family

ID=86775493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021199284A Active JP7412404B2 (en) 2021-12-08 2021-12-08 High pressure generation tank section, power supply device, electrostatic precipitator, and manufacturing method of power supply device

Country Status (1)

Country Link
JP (1) JP7412404B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093708A (en) 2003-09-17 2005-04-07 Daihen Corp Oil-immersed transformer with bushing, its transportation and assembling method after transportation
JP2008011632A (en) 2006-06-29 2008-01-17 Nichicon Corp Direct-current high voltage generator
JP2018037444A (en) 2016-08-29 2018-03-08 東芝産業機器システム株式会社 Tank for stationary induction apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101720U (en) * 1983-12-15 1985-07-11 オリジン電気株式会社 Electrostatic application equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093708A (en) 2003-09-17 2005-04-07 Daihen Corp Oil-immersed transformer with bushing, its transportation and assembling method after transportation
JP2008011632A (en) 2006-06-29 2008-01-17 Nichicon Corp Direct-current high voltage generator
JP2018037444A (en) 2016-08-29 2018-03-08 東芝産業機器システム株式会社 Tank for stationary induction apparatus

Also Published As

Publication number Publication date
JP2023084900A (en) 2023-06-20

Similar Documents

Publication Publication Date Title
US9414520B2 (en) Immersion cooled motor controller
JPS6097062A (en) High voltage generator for electric dust collector or similar equipment
JP7412404B2 (en) High pressure generation tank section, power supply device, electrostatic precipitator, and manufacturing method of power supply device
KR20200113165A (en) Device for Generating a High Voltage or High Field strength
KR101547419B1 (en) High voltage arrangement comprising an insulating structure
AU696580B2 (en) Two-stage, high voltage inductor
JP3868624B2 (en) Power supply for plasma generation
JP4159746B2 (en) Track electric vehicle and power supply unit for track electric vehicle
US5903450A (en) Electrostatic precipitator power supply circuit having a T-filter and pi-filter
JP2011511617A (en) High voltage generator
CN111565853B (en) High-voltage power supply system
JP6104630B2 (en) Power supply for sliding discharge
CN103444035A (en) Hermetically sealed switchgear
JP3352888B2 (en) AC electric vehicle control device
JP2008072827A (en) Power unit using piezoelectric transformer
JP2007037268A (en) Dc high-voltage power supply device and its operation method
JP6381729B1 (en) High frequency ignition device
JP7451422B2 (en) Ion generator, discharge board and electronic equipment
JP2002272143A (en) Pulse power supply unit
WO2017141541A1 (en) Ignition device
JP3873208B2 (en) Power converter for vehicle
KR20230146934A (en) A single packaging type sub-module for semiconductor transformer with excellent insulation performance and induction heating prevention
JP3972343B2 (en) Power converter for vehicle
JPS616814A (en) Transformer
KR20230146935A (en) A single packaging type sub-module for semiconductor transformer with excellent partial discharge reduction and insulation performance

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20211209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231226

R150 Certificate of patent or registration of utility model

Ref document number: 7412404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150