JP2008008353A - Vacuum heat insulator - Google Patents

Vacuum heat insulator Download PDF

Info

Publication number
JP2008008353A
JP2008008353A JP2006177905A JP2006177905A JP2008008353A JP 2008008353 A JP2008008353 A JP 2008008353A JP 2006177905 A JP2006177905 A JP 2006177905A JP 2006177905 A JP2006177905 A JP 2006177905A JP 2008008353 A JP2008008353 A JP 2008008353A
Authority
JP
Japan
Prior art keywords
film
gas barrier
layer
vacuum
laminate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006177905A
Other languages
Japanese (ja)
Inventor
Atsushi Tsujii
篤 辻井
Ikuno Shino
郁乃 示野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006177905A priority Critical patent/JP2008008353A/en
Publication of JP2008008353A publication Critical patent/JP2008008353A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum heat insulator which can keep excellent heat insulating performance for a long time. <P>SOLUTION: The vacuum heat insulator is configured such that a core material is contained in a bag having a gas barrier laminated material A and a gas barrier laminated material B overlying its respective surfaces respectively, and is wrapped by vacuum sealing. The gas barrier laminated material A is composed of a laminated body overlaid with metal foil layers. The gas barrier laminated material B is composed of a laminated body overlaid with a reinforcing film, other barrier film A, and a sealant layer on the barrier film A overlaid with the gas barrier film layer composed of vapor deposited thin film layer of aluminum oxide having a tilting structure continuously changing within the range of an atomic ratio of (aluminum/oxygen)=(1/2 to 1/1) in the direction of the film thickness from an elongated film side and the material containing water soluble polymer and metal alkoxide of one or more kinds or its hydrolysate on the surface treated layer surface of the elongated film having the surface treated layer for improving adhesive property. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷蔵庫、ショーケース、クーラーボックス等に使用する真空断熱体に関するものである。   The present invention relates to a vacuum insulator used for a refrigerator, a showcase, a cooler box, and the like.

近年、冷蔵庫、ショーケース、クーラーボックス等に使用する真空断熱体として、内部の真空度を長期に保持する為にアルミニウムやステンレスなどの金属箔が積層されたガスバリア性積層材料を用いて、パーライト等の粉末からなる芯材を真空密封包装した形状のものが使用されている。ステンレス箔が積層されているガスバリア性積層材料を両面に使用した袋に芯材を真空密封した真空断熱体が提案されている(例えば、特許文献1参照。)。
特開平8−159376号公報
In recent years, as a vacuum insulator used for refrigerators, showcases, cooler boxes, etc., a gas barrier laminate material in which metal foils such as aluminum and stainless steel are laminated in order to maintain the internal vacuum for a long time, pearlite etc. The core material made of the above powder is used in a vacuum-sealed package. There has been proposed a vacuum heat insulating body in which a core material is vacuum-sealed in a bag using a gas barrier laminate material laminated with stainless steel foil on both sides (see, for example, Patent Document 1).
JP-A-8-159376

しかしながら、前記提案されている真空断熱体は、両面にステンレス箔が積層されているので、熱移動が生じ易く、使用中に断熱性能が低下してしまう弊害があった。   However, since the proposed vacuum heat insulating material has stainless steel foil laminated on both surfaces, heat transfer is likely to occur, and there is a problem that the heat insulating performance is deteriorated during use.

本発明の課題は、内部の真空状態を長期間保持し、熱移動が生じ難く、使用中に断熱性能が低下しない真空断熱体を提供することにある。   An object of the present invention is to provide a vacuum heat insulating body that keeps an internal vacuum state for a long period of time, hardly causes heat transfer, and does not deteriorate heat insulating performance during use.

本発明の請求項1に係る発明は、ガスバリア性積層材料Aとガスバリア性積層材料Bをそれぞれ片面に用いてなる袋に芯材を収納し、真空密封包装してなる真空断熱体において、該ガスバリア性積層材料Aが、基材フィルムの片面に強度補強用フィルム、金属箔層、シーラント層を順次積層した積層体からなり、該ガスバリア性積層材料Bが、表面にプラズマを利用したリアクティブイオンエッチング処理を施してなる表面処理層を有する延伸フィルムの表面処理層面に、膜厚5〜300nmの傾斜構造の酸化アルミニウムの蒸着薄膜層、ガスバリア性被膜層を積層した構成のバリアフィルムAのガスバリア性被膜層面に、強度補強用フィルム、前記と同一構成の他のバリアフィルムA、シーラント層を積層した積層体からなることを特徴とする真空断熱体である。   The invention according to claim 1 of the present invention is a vacuum heat insulating body in which a core material is housed in a bag using gas barrier laminate material A and gas barrier laminate material B on each side, and vacuum-sealed and packaged. The reactive laminate material A is composed of a laminate in which a strength reinforcing film, a metal foil layer, and a sealant layer are sequentially laminated on one side of a base film, and the gas barrier laminate material B is formed by reactive ion etching using plasma on the surface. Gas barrier film of barrier film A having a structure in which a vapor-deposited thin film layer of aluminum oxide having a gradient structure with a film thickness of 5 to 300 nm and a gas barrier film layer are laminated on the surface treatment layer surface of a stretched film having a surface treatment layer formed by treatment It consists of a laminate in which a layer for reinforcing strength, another barrier film A having the same configuration as described above, and a sealant layer are laminated on the layer surface. That is a vacuum thermal insulator.

本発明の請求項2に係る発明は、上記請求項1に係る発明において、前記酸化アルミニウムの傾斜構造が、延伸フイルム側から膜厚方向にアルミニウムと酸素の原子比がアルミニウム:酸素=1:2〜1:1の範囲で連続的に変化している構造であること特徴とする真空断熱体である。   The invention according to claim 2 of the present invention is the invention according to claim 1, wherein the inclined structure of aluminum oxide has an aluminum / oxygen atomic ratio of aluminum: oxygen = 1: 2 in the film thickness direction from the stretched film side. It is a vacuum heat insulator characterized by having a structure continuously changing in a range of ˜1: 1.

本発明の請求項3に係る発明は、上記請求項1又は請求項2に係る発明において、前記ガスバリア性被膜層が、水溶性高分子と、(a)1種以上の金属アルコキシド又は/及びその加水分解物または(b)塩化錫の少なくとも一方を含むものからなることを特徴とする真空断熱体である。   The invention according to claim 3 of the present invention is the invention according to claim 1 or 2, wherein the gas barrier coating layer comprises a water-soluble polymer, (a) one or more metal alkoxides and / or the same. It is a vacuum heat insulator characterized by comprising a hydrolyzate or at least one of (b) tin chloride.

本発明の真空断熱体は、ガスバリア性積層材料Aとガスバリア性積層材料Bをそれぞれ片面に用いてなる袋に芯材を収納し、真空密封包装してなる真空断熱体において、ガスバリア性積層材料Aが、基材フィルムの片面に強度補強用フィルム、金属箔層、シーラント
層を順次積層した積層体からなり、該ガスバリア性積層材料Bが、表面にプラズマを利用したリアクティブイオンエッチング処理を施してなる表面処理層を有する延伸フィルムの表面処理層面に、膜厚5〜300nmの酸化アルミニウムの蒸着薄膜層、ガスバリア性被膜層を積層した構成のバリアフィルムAのガスバリア性被膜層面に、強度補強用フィルム、前記と同一構成の他のバリアフィルムA、シーラント層を積層した積層体からなり、前記酸化アルミニウムの傾斜構造が、延伸フイルム側から膜厚方向にアルミニウムと酸素の原子比がアルミニウム:酸素=1:2〜1:1の範囲で連続的に変化している構造であり、前記ガスバリア性被膜層が、水溶性高分子と、(a)1種以上の金属アルコキシド又は/及びその加水分解物または(b)塩化錫の少なくとも一方を含むものからなっているので、前記ガスバリア性積層材料Aとガスバリア性積層材料Bが共に優れたガスバリア性を有し、さらにガスバリア性積層材料Bが低い熱伝導性を有することにより、真空状態を長期間維持でき、優れた断熱性能を長く保持する。
The vacuum heat insulator of the present invention is a vacuum heat insulator in which a core material is housed in a bag formed by using the gas barrier laminate material A and the gas barrier laminate material B on one side and vacuum sealed and packaged. Is composed of a laminate in which a strength reinforcing film, a metal foil layer, and a sealant layer are sequentially laminated on one side of a base film, and the gas barrier laminate material B is subjected to reactive ion etching treatment using plasma on the surface. A film for strengthening strength on the surface of the gas barrier coating layer of the barrier film A having a structure in which a vapor-deposited thin film layer of aluminum oxide having a thickness of 5 to 300 nm and a gas barrier coating layer are laminated on the surface treatment layer surface of the stretched film having the surface treatment layer. , Another barrier film A having the same structure as described above, and a laminated body in which a sealant layer is laminated, and the inclined structure of the aluminum oxide. The atomic ratio of aluminum and oxygen continuously changes in the film thickness direction from the stretched film side in the range of aluminum: oxygen = 1: 2 to 1: 1, and the gas barrier coating layer is water-soluble. Since the polymer comprises at least one of (a) one or more metal alkoxides and / or hydrolysates thereof and (b) tin chloride, the gas barrier laminate material A and the gas barrier laminate material B Both have excellent gas barrier properties, and the gas barrier laminate material B has low thermal conductivity, so that a vacuum state can be maintained for a long period of time and excellent heat insulating performance can be maintained for a long time.

本発明の真空断熱体を実施の形態に沿って以下に詳細に説明する。図2(a)は本発明の真空断熱体の片面に使用するガスバリア性積層材料Aの一実施形態を示す側断面図であり、ガスバリア性積層材料A(100)は、厚み方向に順に、基材フィルム(11)、接着剤層(30)、強度補強用フィルム(12)、接着剤層(31)、金属箔層(13)、接着剤層(32)、シーラント層(14)を積層した構成になっており、図2(b)は本発明の真空断熱体の片面に使用するガスバリア性積層材料Bの一実施形態を示す側断面図であり、ガスバリア性積層材料B(101)は、厚み方向に順に、バリアフィルムA(20)、接着剤層(30)、強度補強用フィルム(12)、接着剤層(31)、バリアフィルムA(20′)、接着剤層(32)、シーラント層(14)を積層した構成になっており、前記バリアフィルムA(20、20′)は、接着性向上の為の表面処理層(21a)を片側表面に有する延伸フィルム(21)の表面処理層(21a)面に、傾斜構造の酸化アルミニウムの蒸着薄膜層(22)、ガスバリア性被膜層(23)を積層した構成のものからなっている。   The vacuum heat insulating body of the present invention will be described in detail below along the embodiments. FIG. 2 (a) is a side sectional view showing an embodiment of the gas barrier laminate material A used on one side of the vacuum insulator of the present invention. The gas barrier laminate material A (100) is a base layer in order in the thickness direction. A material film (11), an adhesive layer (30), a strength reinforcing film (12), an adhesive layer (31), a metal foil layer (13), an adhesive layer (32), and a sealant layer (14) were laminated. 2 (b) is a side sectional view showing an embodiment of a gas barrier laminate material B used on one side of the vacuum heat insulator of the present invention, and the gas barrier laminate material B (101) is Barrier film A (20), adhesive layer (30), strength reinforcing film (12), adhesive layer (31), barrier film A (20 ′), adhesive layer (32), sealant in the thickness direction The layer (14) is laminated, The rear film A (20, 20 ') is a vapor deposited aluminum oxide having an inclined structure on the surface treatment layer (21a) surface of the stretched film (21) having a surface treatment layer (21a) on one side surface for improving adhesion. The thin film layer (22) and the gas barrier film layer (23) are laminated.

なお、前記ガスバリア性積層材料B(101)は、バリアフィルムA(20′)をバリアフィルムA(20)の接着剤層(30)側に直接重ねて積層した構成でも良く、又、バリアフィルムA(20)及びバリアフィルムA(20′)をそれぞれ複数枚積層した構成でも良く、さらに、バリアフィルムA(20′)は面を逆にして積層しても良い。   The gas barrier laminate material B (101) may have a structure in which the barrier film A (20 ′) is directly laminated on the adhesive layer (30) side of the barrier film A (20) and laminated. A structure in which a plurality of (20) and barrier films A (20 ′) are laminated may be used. Further, the barrier film A (20 ′) may be laminated with the surfaces reversed.

前記基材フィルム(11)には、二軸延伸ポリエステルフィルムや二軸延伸ナイロンフィルムが使用されるが、二軸延伸ポリエステルフィルムの方が耐熱性などの点で好ましい。   As the base film (11), a biaxially stretched polyester film or a biaxially stretched nylon film is used, but the biaxially stretched polyester film is preferable in terms of heat resistance.

前記強度補強用フィルム(12)は、ガスバリア性積層材料A(100)やガスバリア性積層材料B(101)の機械的強度等を向上させ、破袋やピンホールの発生を防止する為に設けるものであり、フィルムの種類としては、二軸延伸ポリエステルフィルム、二軸延伸ナイロンフィルム、無延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムなどが使用されるが、特に、厚み20〜30μmの無延伸ナイロンフィルムが好ましい。   The strength reinforcing film (12) is provided to improve the mechanical strength of the gas barrier laminate material A (100) and the gas barrier laminate material B (101) and prevent the occurrence of bag breakage and pinholes. As the type of film, a biaxially stretched polyester film, a biaxially stretched nylon film, an unstretched nylon film, a biaxially stretched polypropylene film, or the like is used, and in particular, an unstretched nylon film having a thickness of 20 to 30 μm is used. preferable.

前記金属箔層(13)には、アルミニウム箔やステンレス箔等が使用されるが、コスト他の点でアルミニウム箔が好ましい。厚みは適宜選定する。   For the metal foil layer (13), an aluminum foil, a stainless steel foil or the like is used, but an aluminum foil is preferable in terms of cost and the like. The thickness is appropriately selected.

前記シーラント層(14)は、ポリオレフィン系樹脂若しくはポリオレフィン系樹脂フィルムからなっており、樹脂の種類としては、低密度ポリエチレン樹脂、中密度ポリエチレン樹脂、高密度ポリエチレン樹脂、直鎖状低密度ポリエチレン樹脂、エチレン・酢酸ビニル共重合体樹脂、アイオノマー樹脂、ホモポリプロピレン樹脂、プロピレン・エチレン
ランダム共重合体樹脂、プロピレン・エチレンブロック共重合体樹脂、ポリプロピレン・α−オレフィン共重合体樹脂などを適宜選定し、積層方法は公知の溶融押出法あるいはドライラミネーション法で積層する。厚みは30〜100μmの範囲で適宜選定する。
The sealant layer (14) is made of a polyolefin-based resin or a polyolefin-based resin film, and the types of resin include a low density polyethylene resin, a medium density polyethylene resin, a high density polyethylene resin, a linear low density polyethylene resin, Ethylene / vinyl acetate copolymer resin, ionomer resin, homopolypropylene resin, propylene / ethylene random copolymer resin, propylene / ethylene block copolymer resin, polypropylene / α-olefin copolymer resin, etc. are appropriately selected and laminated Lamination is performed by a known melt extrusion method or dry lamination method. The thickness is appropriately selected within the range of 30 to 100 μm.

前記延伸フィルム(21)としては、二軸延伸ポリエステルフィルム、二軸延伸ナイロンフィルム又は二軸延伸ポリプロピレンフィルムなどが使用可能であるが、特に、二軸延伸ポリエステルフィルムが好ましい。使用する延伸フィルムはいずれも、少なくとも片側表面にプラズマを利用したリアクティブイオンエッチング処理を施した接着性向上の為の表面処理層(21a)を有している。   As the stretched film (21), a biaxially stretched polyester film, a biaxially stretched nylon film or a biaxially stretched polypropylene film can be used, and a biaxially stretched polyester film is particularly preferable. Each of the stretched films used has a surface treatment layer (21a) for improving adhesion, which has been subjected to reactive ion etching treatment using plasma on at least one surface.

前記表面処理層(21a)は、真空成膜装置内で、延伸フィルム(21)に酸化アルミニウムの蒸着薄膜層(22)を積層する直前に、延伸フィルム(21)の表面に形成する。表面処理層(21a)に施されるリアクティブイオンエッチング処理は、アルゴン、窒素、酸素、水素のいずれか1種若しくはこれらの混合物のガスを導入し、高周波電源等から電極に電力を供給して低温プラズマを発生させ、自己バイアス値が200〜2000Vで、Ed=プラズマ密度×処理時間で定義されるEd値が100〜10000V・s/m2 の処理条件下での処理が好ましく、自己バイアス値が200V未満であると処理が不十分となる場合があり、2000Vを超えるとプラズマが不安定になり易い。 The surface treatment layer (21a) is formed on the surface of the stretched film (21) immediately before the aluminum oxide vapor-deposited thin film layer (22) is laminated on the stretched film (21) in a vacuum film forming apparatus. In the reactive ion etching process applied to the surface treatment layer (21a), a gas of any one of argon, nitrogen, oxygen and hydrogen or a mixture thereof is introduced, and power is supplied to the electrode from a high frequency power source or the like. It is preferable to generate a low-temperature plasma, and the self-bias value is 200 to 2000 V, and the processing is preferably performed under the processing conditions where Ed = plasma density × Ed value defined by processing time is 100 to 10,000 V · s / m 2. If it is less than 200V, the treatment may be insufficient, and if it exceeds 2000V, the plasma tends to become unstable.

前記蒸着薄膜層(22)は、全体膜厚が5〜300nmの傾斜構造の酸化アルミニウムからなり、前記傾斜構造は延伸フイルム(21)側から膜厚方向に、酸化アルミニウムのアルミニウムと酸素の原子比がアルミニウム:酸素=1:2〜1:1の範囲で連続的に変化している構造になっている。前記傾斜構造になっていることで、延伸フィルム(21)に施された表面処理層(21a)への密着性が向上し、さらに優れた透明性とガスバリア性が得られる。なお、膜厚が5nm未満であると均一な膜が得られ難いことや層厚が十分ではないことがあり、ガスバリア材としての機能を十分に果たすことができない場合があり、膜厚が300nmを越える場合は蒸着薄膜層にフレキシビリティを保持させることが難しく、成膜後に折り曲げや引っ張りなどの外部応力が加わると薄膜に亀裂を生じる恐れがあり良くない。   The vapor-deposited thin film layer (22) is made of aluminum oxide having an inclined structure with a total film thickness of 5 to 300 nm, and the inclined structure has an atomic ratio of aluminum to aluminum in the thickness direction from the stretched film (21) side. However, it has the structure which is changing continuously in the range of aluminum: oxygen = 1: 2 to 1: 1. By being the said inclination structure, the adhesiveness to the surface treatment layer (21a) given to the stretched film (21) improves, and also the outstanding transparency and gas barrier property are obtained. If the film thickness is less than 5 nm, it may be difficult to obtain a uniform film, or the layer thickness may not be sufficient, and the function as a gas barrier material may not be sufficiently achieved. When exceeding, it is difficult to maintain flexibility in the deposited thin film layer, and if an external stress such as bending or pulling is applied after the film formation, the thin film may be cracked, which is not good.

前記ガスバリア性被膜層(23)は、高いガスバリア性を付与するために前記蒸着薄膜層(22)の上にさらに積層されるものであり、その構成成分は水溶性高分子と、(a)1種以上の金属アルコキシド及び加水分解物または(b)塩化錫の少なくとも一方を含む水溶液あるいは水/アルコール混合溶液を主剤とするコーティング剤を塗布して形成する。水溶性高分子と塩化錫を水系(水あるいは水/アルコール混合)溶媒で溶解させた溶液、あるいはこれに金属アルコキシドを直接または予め加水分解させるなど処理を行ったものを混合した溶液を蒸着薄膜層(22)上にコーティング、加熱乾燥し形成する。   The gas barrier coating layer (23) is further laminated on the vapor-deposited thin film layer (22) in order to impart high gas barrier properties, and its constituent components are a water-soluble polymer and (a) 1 It is formed by applying a coating agent mainly composed of an aqueous solution or a water / alcohol mixed solution containing at least one of at least one of a metal alkoxide and a hydrolyzate or (b) tin chloride. Evaporation thin film layer: A solution in which water-soluble polymer and tin chloride are dissolved in an aqueous (water or water / alcohol mixed) solvent, or a solution in which metal alkoxide is directly or previously hydrolyzed is mixed. (22) Coating and heat drying to form.

前記ガスバリア性被膜層(23)に用いられる水溶性高分子は、ポリビニルアルコール、ポリビニルピロリドン、デンプン、メチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム等が挙げられる。特にポリビニルアルコール(以下、PVAとする)を用いた場合にガスバリア性が最も優れる。ここでいうPVAは、一般にポリ酢酸ビニルを鹸化して得られるもので、酢酸基が数十%残存している、いわゆる部分鹸化PVAから酢酸基が数%しか残存していない完全鹸化PVAまでを含み、特に限定されない。   Examples of the water-soluble polymer used in the gas barrier coating layer (23) include polyvinyl alcohol, polyvinyl pyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, and sodium alginate. In particular, when polyvinyl alcohol (hereinafter referred to as PVA) is used, the gas barrier property is most excellent. The PVA as used herein is generally obtained by saponifying polyvinyl acetate, ranging from a so-called partially saponified PVA in which several tens percent of acetic acid groups remain to completely saponified PVA in which only several percent of acetic acid groups remain. Including, but not limited to.

また、前記塩化錫は塩化第一錫(SnCl2)、塩化第二錫(SnCl4)あるいはこれらの混合物であっても良く、無水物でも水和物でも良い。 The tin chloride may be stannous chloride (SnCl 2 ), stannic chloride (SnCl 4 ), or a mixture thereof, and may be an anhydride or a hydrate.

さらに、前記金属アルコキシドはテトラエトキシシラン又はトリイソプロポキシアルミニウムあるいはそれらの混合物が好ましい。   Further, the metal alkoxide is preferably tetraethoxysilane, triisopropoxyaluminum or a mixture thereof.

前記ガスバリア性被膜層(23)の塗布方法には、通常用いられるディッピング法、ロールコーティング法、スクリーン印刷法、スプレー法などの従来公知の手段を用いることができる。乾燥後の被膜厚さは0.1μm以上あればよいが、厚さが50μmを超えると膜にクラックが生じ易くなるため、0.1〜50μmの範囲が好ましい。   As the method for applying the gas barrier coating layer (23), conventionally known means such as a dipping method, a roll coating method, a screen printing method, and a spray method can be used. The film thickness after drying may be 0.1 μm or more, but if the thickness exceeds 50 μm, cracks are likely to occur in the film, so a range of 0.1 to 50 μm is preferable.

前記接着剤層(30、31、32)には、一般的にポリウレタン系接着剤を使用する。通常、水酸基を持った主剤とイソシアネート基を持った硬化剤とを2液混合して使用する2液型が使用される。その積層方法は公知のグラビアコート方式で積層する。塗布量は1〜5g/m2(乾燥状態)が良い。 Generally, a polyurethane-based adhesive is used for the adhesive layer (30, 31, 32). Usually, a two-component type is used in which a main component having a hydroxyl group and a curing agent having an isocyanate group are mixed in two components. The lamination is performed by a known gravure coating method. The coating amount is preferably 1 to 5 g / m 2 (dry state).

図1は本発明の真空断熱体の一実施形態を示す断面図であり、真空断熱体(1)は、一方の面が前記ガスバリア性積層材料A(100)からなり、他方の面が前記ガスバリア性積層材料B(101)からなっており、両側にヒートシール部(3)を有する袋(2)の中に芯材(4)を真空密封包装したものからなっている。なお、ガスバリア性積層材料A(100)とガスバリア性積層材料B(101)は、図示していないが、共にシーラント層(14)面が芯材(4)側になっている。   FIG. 1 is a cross-sectional view showing an embodiment of the vacuum heat insulator of the present invention. The vacuum heat insulator (1) has one surface made of the gas barrier laminate material A (100) and the other surface is the gas barrier. Made of a conductive laminate material B (101), and is formed by vacuum-sealing and packaging a core material (4) in a bag (2) having heat seal portions (3) on both sides. Although the gas barrier laminate material A (100) and the gas barrier laminate material B (101) are not shown, the sealant layer (14) surface is on the core (4) side.

前記芯材(4)には、パーライト粉末、シリカ粉末、グラスウール、発泡ポリウレタンなどが使用される。   For the core material (4), pearlite powder, silica powder, glass wool, polyurethane foam or the like is used.

本発明の真空断熱体の特徴とするところは、前記記載のごとく、芯材を真空密封する袋の一方の面に、優れたガスバリア性を有し、かつ熱伝導性が小さいバリアフィルムAが少なくとも二枚積層されているガスバリア性積層材料Bを使用しているので、内部の真空状態を長期に保持でき、熱の移動も少なく、使用中の断熱性能の低下が無い。   As described above, the vacuum heat insulator of the present invention is characterized in that the barrier film A having excellent gas barrier properties and low thermal conductivity is provided on one surface of the bag for vacuum-sealing the core material. Since the gas barrier laminate material B laminated in two sheets is used, the internal vacuum state can be maintained for a long time, the heat transfer is small, and the heat insulation performance during use is not deteriorated.

本発明の真空断熱体を、以下に具体的な実施例に従って説明するが、本発明がこれらの実施例に限定されるものではない。
〈ガスバリア性被膜層(13)に用いる塗布液の準備〉
テトラエトキシシラン10.4gに0.1N塩酸89.6gを加え、30分間撹拌し加水分解させた固形分3重量%(SiO2 換算)の加水分解溶液とポリビニルアルコールの3重量%水/イソプロピルアルコール溶液(水/イソプロピルアルコールは重量%比で90/10)を重量%比で60/40に配合した塗布液を作成した。
〈バリアフィルムAの作成〉
真空成膜装置内に、厚さ12μmの二軸延伸ポリエステルフイルムからなる延伸フィルム(21)を供給後、処理ガスとしてアルゴン/酸素=3/1の混合ガスを用いて、周波数13.56HMzの高周波電源から電極に電力を供給して低温プラズマを発生させ、自己バイアス値が800Vで、Ed値が450V・s/m2の処理条件下でのリアクティブイオンエッチング処理で、前記延伸フィルム(21)表面を処理して表面処理層(21a)を形成し、その上にアルミニウムと酸素の原子比を二軸延伸ポリエステルフィルム側から膜厚方向にアルミニウム:酸素=1:2〜1:1に連続的に変化させた傾斜構造で、膜厚20nmの酸化アルミニウムの蒸着薄膜層(22)を積層し、さらにその上に前記準備した塗布液を塗布してなる厚さ0.5μmのガスバリア性被膜層(23)を積層した構成のバリアフィルムAを作成。
〈バリアフィルムBの作成〉
厚さ12μmの二軸延伸ポリエステルフィルムの片面に膜厚20nmの酸化アルミニウムの蒸着薄膜層、前記準備した塗布液を塗布してなる厚さ0.5μmのガスバリア性被膜層、膜厚20nmの酸化アルミニウムの蒸着薄膜層を積層した構成のバリアフィルムBを作成。
〈バリアフィルムCの作成〉
厚さ12μmの二軸延伸ポリエステルフィルムの片面に膜厚50nmの酸化珪素の蒸着薄膜層、前記準備した塗布液を塗布してなる厚さ0.5μmのガスバリア性被膜層を積層した構成のバリアフィルムCを作成。
Although the vacuum heat insulating body of this invention is demonstrated according to a specific Example below, this invention is not limited to these Examples.
<Preparation of coating solution used for gas barrier coating layer (13)>
89.6 g of 0.1N hydrochloric acid was added to 10.4 g of tetraethoxysilane, and the mixture was stirred and hydrolyzed for 30 minutes to obtain a hydrolyzed solution having a solid content of 3% by weight (in terms of SiO 2 ) and 3% by weight of polyvinyl alcohol in water / isopropyl alcohol. A coating solution was prepared by blending a solution (water / isopropyl alcohol in a weight percent ratio of 90/10) at a weight percent ratio of 60/40.
<Creation of barrier film A>
After supplying a stretched film (21) made of a biaxially stretched polyester film having a thickness of 12 μm into a vacuum film forming apparatus, a mixed gas of argon / oxygen = 3/1 is used as a processing gas, and a high frequency of 13.56 HMz. The stretched film (21) is formed by a reactive ion etching process under a processing condition in which power is supplied from the power source to the electrode to generate low-temperature plasma, the self-bias value is 800V, and the Ed value is 450V · s / m 2. A surface treatment layer (21a) is formed by treating the surface, and an atomic ratio of aluminum and oxygen is continuously formed from the biaxially stretched polyester film side to aluminum: oxygen = 1: 2 to 1: 1 on the film thickness direction. A thickness of 0 nm, which is obtained by laminating an aluminum oxide vapor-deposited thin film layer (22) having a thickness of 20 nm and coating the prepared coating solution thereon. A barrier film A having a structure in which a gas barrier film layer (23) having a thickness of 5 μm is laminated is prepared.
<Creation of barrier film B>
A vapor-deposited thin film layer of aluminum oxide with a thickness of 20 nm on one side of a biaxially stretched polyester film with a thickness of 12 μm, a gas barrier coating layer with a thickness of 0.5 μm obtained by applying the prepared coating solution, and an aluminum oxide with a thickness of 20 nm A barrier film B having a structure in which the deposited thin film layers are laminated is prepared.
<Creation of barrier film C>
A barrier film having a structure in which a vapor-deposited thin film layer of silicon oxide having a thickness of 50 nm and a gas barrier coating layer having a thickness of 0.5 μm formed by applying the prepared coating liquid are laminated on one side of a biaxially stretched polyester film having a thickness of 12 μm. Create C.

二軸延伸ポリエステルフィルム(12μm)/ポリウレタン系接着剤(3g/m2)/二軸延伸ナイロンフィルム(15μm)/ポリウレタン系接着剤(3g/m2)/アルミニウム箔(6μm)/ポリウレタン系接着剤(3g/m2)/高密度ポリエチレンフィルム(50μm)の積層構成のガスバリア性積層材料A(100)を作成し、さらに、前記作成したバリアフィルムAを使用して、バリアフィルムA/ポリウレタン系接着剤(3g/m2)/二軸延伸ナイロンフィルム(25μm)/ポリウレタン系接着剤(3g/m2)/バリアフィルムA/ポリウレタン系接着剤(3g/m2)/高密度ポリエチレンフィルム(50μm)の積層構成のガスバリア性積層材料B(101)を作成後、そのガスバリア性積層材料A(100)及びガスバリア性積層材料B(101)をそれぞれ片面に用いて三方シール袋を作成、その袋の中に粉末シリカからなる芯材(4)を充填し、真空密封包装して、本発明の真空断熱体を作成した。 Biaxially stretched polyester film (12 μm) / polyurethane adhesive (3 g / m 2 ) / biaxially stretched nylon film (15 μm) / polyurethane adhesive (3 g / m 2 ) / aluminum foil (6 μm) / polyurethane adhesive A gas barrier laminate material A (100) having a laminate structure of (3 g / m 2 ) / high-density polyethylene film (50 μm) was prepared, and further using the created barrier film A, barrier film A / polyurethane adhesive Agent (3 g / m 2 ) / biaxially stretched nylon film (25 μm) / polyurethane adhesive (3 g / m 2 ) / barrier film A / polyurethane adhesive (3 g / m 2 ) / high density polyethylene film (50 μm) After preparing the gas barrier laminate material B (101) having the laminated structure, the gas barrier laminate material A (100) and the gas barrier laminate material B (101) A barrier laminate material B (101) is used for each side to prepare a three-side sealed bag, and the bag is filled with a core material (4) made of powdered silica and vacuum-sealed and packaged. It was created.

以下に、本発明の比較用の実施例について説明する。   Hereinafter, comparative examples of the present invention will be described.

両面に、ガスバリア性積層材料Aと同一構成の積層材料を使用した以外は、実施例1と同様にして比較用の真空断熱体を作成した。   A comparative vacuum heat insulator was prepared in the same manner as in Example 1 except that a laminated material having the same configuration as the gas barrier laminate material A was used on both sides.

ガスバリア性積層材料Bの代わりに、二軸延伸ナイロンフィルム(25μm)/ポリウレタン系接着剤(塗布量、3g/m2)/バリアフィルムB/ポリウレタン系接着剤(塗布量、3g/m2)/バリアフィルムB/ポリウレタン系接着剤(塗布量、3g/m2)/高密度ポリエチレンフィルム(50μm)の積層構成のガスバリア性積層材料Cを使用した以外は、実施例1と同様にして比較用の真空断熱体を作成した。 Instead of gas barrier laminate material B, biaxially stretched nylon film (25 μm) / polyurethane adhesive (coating amount, 3 g / m 2 ) / barrier film B / polyurethane adhesive (coating amount, 3 g / m 2 ) / Comparative example was used in the same manner as in Example 1 except that the gas barrier laminate material C having a laminate configuration of barrier film B / polyurethane adhesive (coating amount, 3 g / m 2 ) / high-density polyethylene film (50 μm) was used. A vacuum insulation was created.

両面に、バリアフィルムC/ポリウレタン系接着剤(塗布量、3g/m2)/二軸延伸ナイロンフィルム(25μm)/ポリウレタン系接着剤(塗布量、3g/m2)/高密度ポリエチレンフィルム(50μm)の積層構成のガスバリア性積層材料Dを使用した以外は、実施例1と同様にして比較用の真空断熱体を作成した。 On both sides, barrier film C / polyurethane adhesive (coating amount, 3 g / m 2 ) / biaxially stretched nylon film (25 μm) / polyurethane adhesive (coating amount, 3 g / m 2 ) / high density polyethylene film (50 μm) A vacuum insulator for comparison was prepared in the same manner as in Example 1 except that the gas barrier laminate material D having a laminate configuration of

〈評価〉
実施例1の本発明の真空断熱体の袋に使用したガスバリア性積層材料B、実施例2〜3の比較用の真空断熱体の袋に使用したガスバリア性積層材料A、C及びDの水蒸気透過度を以下の試験方法で測定し、さらにそれらの価格を比較すると共に、作成した真空断熱体の真空状態の保持性、熱移動の大小を評価した。その結果を表1に示す。
(1)水蒸気透過度試験方法
JIS K−7129の水蒸気透過度試験方法に準拠して、測定した。試験条件:40℃、90%RH
<Evaluation>
Water vapor permeation of the gas barrier laminate material B used in the vacuum insulator bag of Example 1 of the present invention, and the gas barrier laminate materials A, C and D used in the vacuum insulator bags for comparison of Examples 2-3. The degree was measured by the following test methods, and the prices were compared, and the vacuum insulation of the vacuum insulators prepared was evaluated for the degree of heat transfer. The results are shown in Table 1.
(1) Water vapor permeability test method The water vapor permeability test method was measured in accordance with the water vapor permeability test method of JIS K-7129. Test conditions: 40 ° C., 90% RH

Figure 2008008353
表1に示すように、実施例1の本発明の真空断熱体の袋の片面に使用したガスバリア性積層材料Bは水蒸気透過度は小さく、従って真空断熱体の真空状態の保持性も良く、熱移動も小さかった。一方、実施例2の比較用の真空断熱体はアルミニウム箔が両面に使用されているので、熱移動が大きく、実施例3の比較用の真空断熱体の袋の片面に使用したガ
スバリア性積層材料Cは価格が高く、従って真空断熱体の価格も高くなり、実施例4の比較用の真空断熱体の袋の両面に使用したガスバリア性積層材料Dは水蒸気透過度が大であり、従って真空断熱体の真空状態の保持性も悪かった。
Figure 2008008353
As shown in Table 1, the gas barrier laminate material B used on one side of the bag of the vacuum heat insulating body of the present invention of Example 1 has a low water vapor transmission rate, and therefore the vacuum heat insulating body has good vacuum state retention, The movement was also small. On the other hand, since the aluminum vacuum foil is used for both sides of the vacuum insulator for comparison in Example 2, the heat transfer is large, and the gas barrier laminate material used for one side of the bag of the vacuum insulator for comparison in Example 3 C is expensive and therefore the price of the vacuum insulator is also high, and the gas barrier laminate D used on both sides of the bag of the comparative vacuum insulator of Example 4 has a high water vapor permeability, and therefore vacuum insulation. The body's vacuum retention was also poor.

本発明の真空断熱体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the vacuum heat insulating body of this invention. (a)は本発明の真空断熱体に使用するガスバリア性積層材料Aの一実施形態を示す側断面図であり、(b)はガスバリア性積層材料Bの一実施形態を示す側断面図である。(A) is a side sectional view showing one embodiment of gas barrier laminate material A used for the vacuum heat insulating material of the present invention, and (b) is a sectional side view showing one embodiment of gas barrier laminate material B. .

符号の説明Explanation of symbols

1…真空断熱体
2…袋
3…ヒートシール部
4…芯材
11…基材フィルム
12…強度補強用フィルム
13…金属箔層
14…シーラント層
20,20′…バリアフィルムA
21…延伸フィルム
21a…表面処理層
22…蒸着薄膜層
23…ガスバリア性被膜層
30,31,32…接着剤層
100…ガスバリア性積層材料A
101…ガスバリア性積層材料B
DESCRIPTION OF SYMBOLS 1 ... Vacuum heat insulating body 2 ... Bag 3 ... Heat seal part 4 ... Core material 11 ... Base film 12 ... Strengthening film 13 ... Metal foil layer 14 ... Sealant layer 20, 20 '... Barrier film A
21 ... Stretched film 21a ... Surface treatment layer 22 ... Evaporated thin film layer 23 ... Gas barrier coating layers 30, 31, 32 ... Adhesive layer 100 ... Gas barrier laminate material A
101 ... Gas barrier laminate material B

Claims (3)

ガスバリア性積層材料Aとガスバリア性積層材料Bをそれぞれ片面に用いてなる袋に芯材を収納し、真空密封包装してなる真空断熱体において、該ガスバリア性積層材料Aが、基材フィルムの片面に強度補強用フィルム、金属箔層、シーラント層を順次積層した積層体からなり、該ガスバリア性積層材料Bが、表面にプラズマを利用したリアクティブイオンエッチング処理を施してなる表面処理層を有する延伸フィルムの表面処理層面に、膜厚5〜300nmの傾斜構造の酸化アルミニウムの蒸着薄膜層、ガスバリア性被膜層を積層した構成のバリアフィルムAのガスバリア性被膜層面に、強度補強用フィルム、前記と同一構成の他のバリアフィルムA、シーラント層を積層した積層体からなることを特徴とする真空断熱体。   In a vacuum heat insulating body in which a core material is housed in a bag using gas barrier laminate material A and gas barrier laminate material B on one side and vacuum-sealed, the gas barrier laminate material A is provided on one side of a base film. Stretch film having a surface treatment layer formed by sequentially applying a reactive ion etching process using plasma on the surface of the gas barrier laminate material B. The film for strength reinforcement is the same as described above on the surface of the gas barrier coating layer of the barrier film A having a structure in which a vapor-deposited thin film layer and a gas barrier coating layer having an inclined structure with a thickness of 5 to 300 nm are laminated on the surface treatment layer surface of the film. It consists of the laminated body which laminated | stacked the other barrier film A and the sealant layer of the structure, The vacuum heat insulating body characterized by the above-mentioned. 前記酸化アルミニウムの傾斜構造が、延伸フイルム側から膜厚方向にアルミニウムと酸素の原子比がアルミニウム:酸素=1:2〜1:1の範囲で連続的に変化している構造であること特徴とする請求項1記載の真空断熱体。   The inclined structure of the aluminum oxide is a structure in which the atomic ratio of aluminum to oxygen continuously changes in the film thickness direction from the stretched film side in a range of aluminum: oxygen = 1: 2 to 1: 1. The vacuum insulator according to claim 1. 前記ガスバリア性被膜層が、水溶性高分子と、(a)1種以上の金属アルコキシド又は/及びその加水分解物または(b)塩化錫の少なくとも一方を含むものからなることを特徴とする請求項1又は請求項2記載の真空断熱体。   The gas barrier coating layer comprises a water-soluble polymer and at least one of (a) one or more metal alkoxides and / or a hydrolyzate thereof or (b) tin chloride. The vacuum heat insulating body of Claim 1 or Claim 2.
JP2006177905A 2006-06-28 2006-06-28 Vacuum heat insulator Pending JP2008008353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177905A JP2008008353A (en) 2006-06-28 2006-06-28 Vacuum heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177905A JP2008008353A (en) 2006-06-28 2006-06-28 Vacuum heat insulator

Publications (1)

Publication Number Publication Date
JP2008008353A true JP2008008353A (en) 2008-01-17

Family

ID=39066756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177905A Pending JP2008008353A (en) 2006-06-28 2006-06-28 Vacuum heat insulator

Country Status (1)

Country Link
JP (1) JP2008008353A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555972A (en) * 2009-05-13 2009-10-14 郭世明 Vacuum thermal isolating film and manufacturing method thereof
JP2013512396A (en) * 2010-03-09 2013-04-11 エルジー・ハウシス・リミテッド Core material for vacuum insulation panel and method for producing the same
JP2013540607A (en) * 2010-08-17 2013-11-07 エルジー・ハウシス・リミテッド Composite core material for vacuum heat insulating material, manufacturing method thereof, and vacuum heat insulating material using the same
WO2015163650A1 (en) * 2014-04-23 2015-10-29 (주)엘지하우시스 Outer covering material for vacuum heat insulation material and vacuum heat insulation material comprising same
JP2015218773A (en) * 2014-05-15 2015-12-07 凸版印刷株式会社 Laminate for vacuum heat insulation material, vacuum heat insulator with laminate and hot insulation and cold insulation with laminate
JPWO2015087976A1 (en) * 2013-12-11 2017-03-16 凸版印刷株式会社 Vacuum insulation material exterior, vacuum insulation material, and insulation container
CN106838546A (en) * 2016-12-27 2017-06-13 苏州市君悦新材料科技股份有限公司 A kind of detachable type steam pipeline and insulation of equipment set
EP2884208B1 (en) * 2013-12-10 2021-04-21 Samsung Electronics Co., Ltd. Vacuum insulation panel and refrigerator including a vacuum insulation panel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555972A (en) * 2009-05-13 2009-10-14 郭世明 Vacuum thermal isolating film and manufacturing method thereof
JP2013512396A (en) * 2010-03-09 2013-04-11 エルジー・ハウシス・リミテッド Core material for vacuum insulation panel and method for producing the same
US8961843B2 (en) 2010-03-09 2015-02-24 Lg Hausys, Ltd. Core material for vacuum insulation panel and method of manufacturing the same
JP2013540607A (en) * 2010-08-17 2013-11-07 エルジー・ハウシス・リミテッド Composite core material for vacuum heat insulating material, manufacturing method thereof, and vacuum heat insulating material using the same
EP2884208B1 (en) * 2013-12-10 2021-04-21 Samsung Electronics Co., Ltd. Vacuum insulation panel and refrigerator including a vacuum insulation panel
JPWO2015087976A1 (en) * 2013-12-11 2017-03-16 凸版印刷株式会社 Vacuum insulation material exterior, vacuum insulation material, and insulation container
CN106232356A (en) * 2014-04-23 2016-12-14 乐金华奥斯有限公司 Vacuum heat insulation materials skin material and comprise its vacuum heat insulation materials
EP3135486A1 (en) * 2014-04-23 2017-03-01 LG Hausys, Ltd. Outer covering material for vacuum heat insulation material and vacuum heat insulation material comprising same
EP3135486A4 (en) * 2014-04-23 2017-05-03 LG Hausys, Ltd. Outer covering material for vacuum heat insulation material and vacuum heat insulation material comprising same
KR101773230B1 (en) * 2014-04-23 2017-09-13 (주)엘지하우시스 Envelope for vacuum insulation panel and vacuum insulation panel inculding the same
US10150276B2 (en) 2014-04-23 2018-12-11 Lg Hausys, Ltd. Outer covering material for vacuum heat insulation material and vacuum heat insulation material comprising same
WO2015163650A1 (en) * 2014-04-23 2015-10-29 (주)엘지하우시스 Outer covering material for vacuum heat insulation material and vacuum heat insulation material comprising same
JP2015218773A (en) * 2014-05-15 2015-12-07 凸版印刷株式会社 Laminate for vacuum heat insulation material, vacuum heat insulator with laminate and hot insulation and cold insulation with laminate
CN106838546A (en) * 2016-12-27 2017-06-13 苏州市君悦新材料科技股份有限公司 A kind of detachable type steam pipeline and insulation of equipment set

Similar Documents

Publication Publication Date Title
JP2008008353A (en) Vacuum heat insulator
JP4085814B2 (en) Laminated body
JP4835014B2 (en) Vacuum insulation
JP5298656B2 (en) Strong adhesion gas barrier film
JP4629363B2 (en) Barrier film and laminated material using the same
JP2008008316A (en) Vacuum heat insulator
JP2005132004A (en) Barrier exterior material for thermal insulation panel and thermal insulation panel
JP4784039B2 (en) Strong adhesion deposition film with antistatic performance
JP2004203023A (en) High performance barrier film
JPH02194944A (en) Transparent barrier composite film having retort resistance
JP4626329B2 (en) Retort laminate
EP3896325A1 (en) Layered body for vacuum thermal insulation material and vacuum thermal insulation material using same
JP2005335109A (en) Heat-resistant transparent barrier film
JP5034258B2 (en) Transparent deposited film and method for producing the same
JP2009023114A (en) Gas-barrir film
JP2008008315A (en) Vacuum heat insulator
JP3119107B2 (en) Transparent laminate having gas barrier properties
JP2006142494A (en) Laminate for retort
JP2021109381A (en) Gas barrier film, laminate using the same, and method for producing gas barrier film
JP2006062115A (en) Transparent barrier film for retort
JP4720037B2 (en) Gas barrier transparent laminate with strong adhesion
JP2021001649A (en) Laminate for vacuum heat insulation material and vacuum heat insulation material using the same
JP2003320608A (en) Gas barrier film laminate
JP2005239230A (en) Laminated material for paper-made container and paper-made container for liquid using it
JP6623563B2 (en) Laminated body for vacuum heat insulating material and vacuum heat insulating material using the same