JP2008006724A - Manufacturing method of microflow pipe chip - Google Patents

Manufacturing method of microflow pipe chip Download PDF

Info

Publication number
JP2008006724A
JP2008006724A JP2006179949A JP2006179949A JP2008006724A JP 2008006724 A JP2008006724 A JP 2008006724A JP 2006179949 A JP2006179949 A JP 2006179949A JP 2006179949 A JP2006179949 A JP 2006179949A JP 2008006724 A JP2008006724 A JP 2008006724A
Authority
JP
Japan
Prior art keywords
plate member
flat plate
flow tube
energy director
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006179949A
Other languages
Japanese (ja)
Inventor
Nobuhiko Ishikawa
信彦 石川
Masanobu Tanaka
正信 田中
Kunio Yamamoto
国雄 山本
Yoshijiro Kato
吉次郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IPM KK
Mitsubishi Materials Techno Corp
Original Assignee
IPM KK
Mitsubishi Materials Techno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IPM KK, Mitsubishi Materials Techno Corp filed Critical IPM KK
Priority to JP2006179949A priority Critical patent/JP2008006724A/en
Publication of JP2008006724A publication Critical patent/JP2008006724A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12463Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being tapered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30223Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/322Providing cavities in the joined article to collect the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/324Avoiding burr formation
    • B29C66/3242Avoiding burr formation on the inside of a tubular or hollow article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/232Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a microflow pipe chip capable of preventing the closure of a flow pipe or a change in the flow channel cross-sectional area of the flow pipe and the lowering of airtightness caused by adhesive irregularity. <P>SOLUTION: First flat sheet members 1 and 3 having elongated grooves 11 and 31 becoming a flow pipe formed to the surfaces thereof and the second flat sheet members 2 and 4 arranged in opposed relation to the surfaces of the first flat sheet members are set so that the mutually opposed surfaces of them are superposed one upon another. Subsequently, energy directors 14 and 34, which have a triangular vertical cross-sectional shape, are integrated with one of the first and second flat sheet members so as to be respectively provided along the grooves and formed into ridges toward to the other flat sheet members, are melted from the leading end parts of them and the molten parts of them are allowed to flow in the recessed parts 13 and 43 formed to the surfaces of the opposed parts of the energy directors of the other flat sheet members arranged in opposed relation to the base end parts or leading end parts of the energy directors and cured to integrate the first and second flat sheet members to form the flow pipe due to the grooves. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロ化学工場や医薬品・食品などの研究施設、あるいは緊急治療その他の医療現場で用いられるマイクロリアクターの基本ユニットとなるマイクロ流管チップを製造する方法に関するものである。   The present invention relates to a method of manufacturing a micro flow tube chip that is a basic unit of a microreactor used in a microchemical factory, a research facility such as pharmaceuticals and foods, emergency treatment, and other medical sites.

上記マイクロ流管チップは、ミクロン単位の空間を利用した化学反応や物品生産のため部品であり、例えば、表面に細長状の溝を形成した第1の平板部材と、この第1の平板部材の表面に対向配置される第2の平板部材とを一体化させることにより、上記溝による管径100ミクロン以下の流管が形成されている(例えば、特許文献1)。   The micro flow tube chip is a component for chemical reaction and article production using a space in units of microns. For example, a first flat plate member having an elongated groove formed on the surface thereof, and the first flat plate member By integrating the second flat plate member disposed opposite to the surface, a flow tube having a tube diameter of 100 microns or less is formed by the groove (for example, Patent Document 1).

これらの平板部材の一体化は、接着剤を用いて、溝の外周を接着することによりなされており、接着剤の使用量や貼付圧力などの条件によって接着層の厚さが変動し、その変動量が上記流管の管径に対して無視できないほど大きいため、実際の流路断面積が大幅に変化するといった問題がある。
特に、接着剤の使用量が多い場合には、接着剤が溝内に流れ込んで閉塞してしまう恐れがある。逆に、接着剤の使用量が少ない場合には、接着むらが発生し、接着剤が少ない部分で気密性が低下して、流管内を流通する流体の漏れに繋がる危険性がある。
このため、こうした不具合を回避するために、接着剤の使用量や貼付圧力が規定値からずれないように平板部材同士の貼付作業を慎重に行うことが要求される。
These flat plate members are integrated by adhering the outer periphery of the groove using an adhesive, and the thickness of the adhesive layer varies depending on conditions such as the amount of adhesive used and the pressure applied. Since the amount is so large that it cannot be ignored with respect to the diameter of the flow tube, there is a problem that the actual flow path cross-sectional area changes significantly.
In particular, when the amount of adhesive used is large, the adhesive may flow into the groove and become blocked. On the contrary, when the amount of the adhesive used is small, uneven adhesion occurs, and there is a risk that the airtightness is lowered at a portion where the adhesive is small, leading to leakage of the fluid circulating in the flow tube.
For this reason, in order to avoid such a problem, it is required to carefully perform the affixing work between the flat plate members so that the usage amount and the affixing pressure of the adhesive do not deviate from the specified values.

特開平2005−22364号公報Japanese Patent Laid-Open No. 2005-22364

本発明は、かかる事情に鑑みてなされたもので、流管の閉塞や実際の流路断面積の変化を防止でき、かつ接着ムラによる流管の気密性の低下を阻止できるマイクロ流管チップの製造方法の提供を課題とする。   The present invention has been made in view of such circumstances, and is a micro flow tube chip that can prevent a flow tube from being blocked and a change in an actual flow path cross-sectional area, and can prevent a decrease in the airtightness of the flow tube due to uneven adhesion. It is an object to provide a manufacturing method.

請求項1に記載の本発明に係るマイクロ流管チップの製造方法は、表面に流管となる細長状の溝が形成された第1の平板部材と、この第1の平板部材の上記表面に対向して配設された第2の平板部材とを一体化させることにより、上記溝により流管を形成するとともに、この流管の端部に対応する位置に、それぞれ上記第1の平板部材又は第2の平板部材の当該板厚方向に形成されている貫通口によって上記流管の流出入口を形成するマイクロ流管チップの製造方法であって、上記第1の平板部材及び上記第2の平板部材を、それぞれ加圧力によって溶着可能な素材により形成するとともに、上記第1の平板部材又は上記第2の平板部材の一方と一体に上記溝の両側部外方において、それぞれ上記溝に沿うとともに、他方の上記平板部材に向けて突条に形成された縦断面三角形状のエネルギーダイレクタを形成し、上記エネルギーダイレクタの基端部又は上記エネルギーダイレクタの先端部に対向して配設された上記他方の平板部材の上記エネルギーダイレクタの対向部表面に、上記エネルギーダイレクタの上記一方の平板部材の表面から突出している突出体積容量以上の容積を有する凹部を形成し、次いで、上記エネルギーダイレクタを、それぞれ当該先端部を上記他方の平板部材の表面に線接触するように配設して、上記第1の平板部材及び第2の平板部材を、互いに対向表面同士を重ね合わせた後に、超音波溶着によって、上記エネルギーダイレクタを上記先端部から溶融させ、このエネルギーダイレクタの溶融部を上記凹部に流入させた後に、この溶融部を上記凹部内において硬化させることによって、上記第1の平板部材と第2の平板部材とを一体化させ、上記溝による流管を形成することを特徴としている。   The method of manufacturing a micro flow tube chip according to the first aspect of the present invention includes a first flat plate member in which an elongated groove serving as a flow tube is formed on the surface, and the surface of the first flat plate member. By integrating the second flat plate member arranged opposite to each other, the flow tube is formed by the groove, and the first flat plate member or the position corresponding to the end of the flow tube is formed respectively. A method of manufacturing a micro flow tube chip, wherein an outflow port of the flow tube is formed by a through-hole formed in the plate thickness direction of a second flat plate member, the first flat plate member and the second flat plate Each member is formed of a material that can be welded by pressing force, and along the groove, respectively, on both sides of the groove integrally with one of the first flat plate member or the second flat plate member, Suitable for the other flat plate member Forming an energy director having a triangular shape in the longitudinal section formed on the ridge, and the energy director of the other flat plate member disposed opposite the base end of the energy director or the tip of the energy director. A recess having a volume equal to or larger than a protruding volume capacity protruding from the surface of the one flat plate member of the energy director is formed on the surface of the opposing portion, and then the energy director is connected to the tip of the other flat plate member. After the first flat plate member and the second flat plate member are overlapped with each other, the energy director is removed from the tip portion by ultrasonic welding. After melting and flowing the melted portion of the energy director into the recess, the melted portion is placed in the recess. By curing Te, it is integrated and the first flat member and the second flat plate member, is characterized by forming the flow tubes by the groove.

ここで、エネルギーダイレクタとは、超音波溶着による加圧力を集中的に吸収可能に形成されたものであり、超音波溶着による溶融、硬化によって、当該エネルギーダイレクタと一体に形成されている第1の平板部材と、この第一の平板部材と対向して配置される第2の平板部材とを確実に一体化させるように形成されている。   Here, the energy director is formed so as to be able to absorb the pressure applied by ultrasonic welding in a concentrated manner, and is a first formed integrally with the energy director by melting and curing by ultrasonic welding. It forms so that a flat plate member and the 2nd flat plate member arrange | positioned facing this 1st flat plate member may be integrated reliably.

請求項2に記載の発明は、請求項1に記載のマイクロ流管チップの製造方法において、上記エネルギーダイレクタを、上記溝の両側部外方に、それぞれ2本以上形成したことを特徴としている。   According to a second aspect of the present invention, in the micro flow tube chip manufacturing method according to the first aspect of the present invention, two or more of the energy directors are formed outside both sides of the groove.

請求項3に記載の発明は、請求項1又は2に記載のマイクロ流管チップの製造方法において、上記流出入口及び上記凹部を、いずれも上記第1の平板部材に形成し、かつ上記エネルギーダイレクタを、上記凹部内に形成したことを特徴としている。   According to a third aspect of the present invention, in the method for manufacturing a micro flow tube chip according to the first or second aspect, the outflow inlet and the concave portion are both formed in the first flat plate member, and the energy director is provided. Is formed in the recess.

請求項4に記載の発明は、請求項2に記載のマイクロ流管チップの製造方法において、上記凹部を、上記第2の平板部材の上記溝の両側部外方に対応する位置に、それぞれ幅広に形成するとともに、上記エネルギーダイレクタを、第1の平板部材の上記凹部の幅方向の両端部に対応する位置に形成したことを特徴としている。   According to a fourth aspect of the present invention, in the method of manufacturing a micro flow tube chip according to the second aspect, the concave portion is widened at a position corresponding to the outer side of both sides of the groove of the second flat plate member. And the energy director is formed at positions corresponding to both end portions in the width direction of the concave portion of the first flat plate member.

請求項5に記載の発明は、請求項4に記載のマイクロ流管チップの製造方法において、上記第1の平板部材には、上記溝の両側部に、その板表面よりも一段低い切り欠き段部を形成するとともに、この切り欠き段部の側壁を上記溝の近傍に配設された上記エネルギーダイレクタの側壁の基端部と一体に形成し、かつ上記第2の平板部材には、当該第2の平板部材と一体に上記切り欠き段部に向けて突条に形成するとともに、上記切り欠き段部に嵌め込み可能に形成された蓋部を形成したことを特徴としている。   According to a fifth aspect of the present invention, in the micro flow tube chip manufacturing method according to the fourth aspect of the present invention, the first flat plate member has a notch step that is one step lower than the plate surface on both sides of the groove. And forming a side wall of the notch step portion integrally with a base end portion of the side wall of the energy director disposed in the vicinity of the groove, and the second flat plate member includes the second flat plate member. The flat plate member is formed integrally with the flat plate member 2 toward the notch step portion, and a lid portion formed so as to be fitted into the notch step portion is formed.

請求項1ないし5のいずれか一項に記載のマイクロ流管チップの製造方法によれば、第1の平板部材及び第2の平板部材を、それぞれ加圧力によって溶着可能な素材により形成するとともに、第1の平板部材に流管となる細長状の溝を形成したため、第1の平板部材及び第2の平板部材の対向表面同士を重ね合わせた後に、超音波溶着することによって、上記溝による流管が形成される。
その際、第1の平板部材又は第2の平板部材の一方と一体に形成されたエネルギーダイレクタに加圧力が集中的して吸収されるため、エネルギーダイレクタの先端部と他方の平板部材とを溶着させることによって、上記流管の両側部外方において、第1の平板部材と第2の平板部材とを確実に一体化させることができるとともに、上記流管を気密的に形成することができる。
According to the manufacturing method of the micro flow tube chip according to any one of claims 1 to 5, the first flat plate member and the second flat plate member are each formed of a material that can be welded by pressure, Since the elongate groove serving as the flow tube is formed on the first flat plate member, the opposing surfaces of the first flat plate member and the second flat plate member are overlapped and then ultrasonically welded, whereby A tube is formed.
At that time, the pressure is concentrated and absorbed by the energy director formed integrally with one of the first flat plate member and the second flat plate member, so that the tip of the energy director and the other flat plate member are welded together. By doing so, the first flat plate member and the second flat plate member can be reliably integrated outside the both sides of the flow tube, and the flow tube can be formed airtight.

また、エネルギーダイレクタを縦断面三角形状に構成するとともに、その先端部を上記他方の平板部材の表面に線接触するように配設して、上記第1の平板部材及び第2の平板部材を、互いの対向表面同士を重ね合わせたため、超音波による加圧力がエネルギーダイレクタの線状先端部に集中し、少ない加圧力によって多量の溶融部を凹部内に流入させることができる。
一方、上記エネルギーダイレクタの基端部又は上記エネルギーダイレクタの先端部に対向して配設された他方の平板部材のエネルギーダイレクタの対向部表面に、エネルギーダイレクタの突出体積容量以上の容積を有する凹部を形成したため、エネルギーダイレクタの溶融部が凹部から溢れ出ることを防止することができる。
このため、エネルギーダイレクタの溶融部を凹部に流入させ、この溶融部を上記凹部内において硬化させる際に生じうる流管の閉塞や実際の流路断面積の変化を防止することができる。
Further, the energy director is configured to have a triangular shape in the longitudinal section, and the tip portion thereof is arranged so as to be in line contact with the surface of the other flat plate member, and the first flat plate member and the second flat plate member are Since the opposing surfaces are overlapped with each other, the pressure applied by the ultrasonic waves is concentrated on the linear tip of the energy director, and a large amount of the melted portion can be caused to flow into the recess with a small pressure.
On the other hand, a concave portion having a volume equal to or larger than the protruding volume capacity of the energy director is formed on the surface of the opposing portion of the energy director of the other flat plate member disposed to face the base end of the energy director or the tip of the energy director. Since it formed, it can prevent that the fusion | melting part of an energy director overflows from a recessed part.
For this reason, it is possible to prevent the flow tube from being blocked or the actual flow cross-sectional area from changing when the melting portion of the energy director flows into the recess and the melting portion is cured in the recess.

特に、請求項2に記載の発明によれば、溝の両側部外方に、それぞれ2本以上のエネルギーダイレクタを設けたため、得られたマイクロ流管チップは、板厚方向に向けて曲げ応力が作用した場合にも、流管に近接して配設された内側のエネルギーダイレクタの溶融部による接合部分が流管の移動方向に追随するとともに、流管から離間して配設された外側のエネルギーダイレクタの溶融部による接合部分がマイクロ流管チップの外周部分の移動方向に追随することができる。これにより、マイクロ流管チップの曲げ応力に対する強度を高めることができる。   In particular, according to the second aspect of the present invention, since two or more energy directors are provided outside both sides of the groove, the obtained micro flow tube chip has a bending stress in the thickness direction. Even in the case of the action, the joined portion of the inner energy director disposed close to the flow tube follows the moving direction of the flow tube, and the outer energy disposed away from the flow tube. The joining portion by the melting portion of the director can follow the moving direction of the outer peripheral portion of the micro flow tube tip. Thereby, the intensity | strength with respect to the bending stress of a micro flow tube tip can be raised.

請求項3に記載の発明によれば、流出入口及び凹部を流管となる溝が形成された第1の平板部材に形成し、かつエネルギーダイレクタを上記凹部内に形成したため、第1の平板部材のみに凹部等を成形することにより、第2の平板部材の成形が不要となる。このため、平板部材の成形の手間を省くことができるとともに、第1の平板部材にエネルギーダイレクタを設け、第2の平板部材に凹部を形成した場合のように、エネルギーダイレクタと凹部とを位置合わせする必要がなく、第1の平板部材と第2の平板部材とを容易に重ね合わせることができる。
さらに、エネルギーダイレクタを、上記凹部内に形成したため、超音波溶着によって先端部から溶融されるエネルギーダイレクタの溶融部を確実に凹部内に流入させることができる。このため、第1の平板部材の板表面において凹部の外方に、エネルギーダイレクタの溶融部が垂れ落ちることがなく、第1の平板部材と第2の平板部材との間に隙間が生じ、実際の流路断面積が増加することを確実に阻止できる。
According to the invention described in claim 3, since the outflow inlet and the recess are formed in the first flat plate member in which the groove serving as the flow tube is formed, and the energy director is formed in the concave portion, the first flat plate member By forming the recess or the like only in the second plate, it is not necessary to form the second flat plate member. For this reason, it is possible to save the effort of forming the flat plate member, and align the energy director and the concave portion as in the case where the first flat plate member is provided with the energy director and the concave portion is formed in the second flat plate member. The first flat plate member and the second flat plate member can be easily overlapped.
Furthermore, since the energy director is formed in the recess, the melted portion of the energy director that is melted from the tip by ultrasonic welding can be surely flowed into the recess. For this reason, the melted portion of the energy director does not sag outside the concave portion on the plate surface of the first flat plate member, and a gap is generated between the first flat plate member and the second flat plate member. It is possible to reliably prevent the flow path cross-sectional area from increasing.

請求項4に記載の発明によれば、上記凹部を、第2の平板部材の溝の両側部外方に対応する位置に、それぞれ幅広に形成するとともに、上記エネルギーダイレクタを上記凹部の幅方向の両端部に対応する位置に各々配設したため、第1の平板部材及び第2の平板部材を対向配置した後に、超音波溶着によって上記エネルギーダイレクタを溶融することにより、凹部の幅方向の両端部において第1の平板部材及び第2の平板部材を一体化させることができる。
このため、マイクロ流管チップに板厚方向に向けて曲げ応力が作用した場合にも、流管に近接して配設された内側のエネルギーダイレクタの溶融部による接合部分が流管の移動方向に追随するとともに、流管から離間して配設された外側のエネルギーダイレクタの溶融部による接合部分がマイクロ流管チップの外周部分の移動方向に追随し、凹部の幅方向の両端部において、曲げ応力を吸収することができる。その結果、マイクロ流管チップの曲げ応力に対する強度を一層と高めることができる。
According to invention of Claim 4, while forming the said recessed part in the position corresponding to the outer side of the both sides of the groove | channel of a 2nd flat plate member, respectively, the said energy director is the width direction of the said recessed part. Since the first flat plate member and the second flat plate member are arranged opposite to each other at positions corresponding to both end portions, the energy director is melted by ultrasonic welding at both end portions in the width direction of the concave portion. The first flat plate member and the second flat plate member can be integrated.
For this reason, even when a bending stress acts on the micro flow tube tip in the thickness direction, the joint portion by the melting portion of the inner energy director disposed in the vicinity of the flow tube is in the moving direction of the flow tube. The joined portion of the outer energy director located apart from the flow tube follows the moving direction of the outer peripheral portion of the micro flow tube chip and follows bending stress at both end portions in the width direction of the recess. Can be absorbed. As a result, the strength of the micro flow tube tip against bending stress can be further increased.

請求項5に記載の発明によれば、超音波溶着によって、切り欠き段部に嵌め込み可能に形成した蓋部の側壁等により、切り欠き段部の側壁と一体に形成された溝の近傍に配設された内側のエネルギーダイレクタを凹部の幅方向の中央部に向けて加圧した状態において溶融させることができる。これにより、溶融部を効率的に上記凹部内の上記中央部に流入させることができるとともに、切り欠き段部に蓋部が嵌め込まれるため、溶融物の流管内の流入を確実に阻止できる。
その結果、エネルギーダイレクタの溶融部が全て凹部の中央部に向けて流入するため、凹部の幅方向の両端部において接着ムラなく、第1の平板部材と第2の平板部材とを一体化させることができ、流管の気密性を一層高めることができる。
According to the fifth aspect of the present invention, the side wall of the lid portion formed so as to be able to be fitted into the notch step portion by ultrasonic welding is disposed in the vicinity of the groove formed integrally with the side wall of the notch step portion. The inner energy director provided can be melted in a state of being pressed toward the center in the width direction of the recess. As a result, the molten part can be efficiently allowed to flow into the central part in the recess, and the lid part is fitted into the notch step part, so that the melt can be reliably prevented from flowing into the flow tube.
As a result, since all the melted portions of the energy director flow toward the central portion of the recess, the first flat plate member and the second flat plate member can be integrated without adhesion unevenness at both ends in the width direction of the recess. And the airtightness of the flow tube can be further enhanced.

以下、本発明のマイクロ流管チップの製造方法に係る3つの実施形態について、図1ないし図6を用いて説明する。   Hereinafter, three embodiments according to the method of manufacturing a micro flow tube chip of the present invention will be described with reference to FIGS.

{第1の実施形態}
まず、第1の実施形態におけるマイクロ流管チップの製造方法について、図1〜図4を用いて説明する。
まず、矩形状の透明樹脂板からなる第1の平板部材1と、第1の平板部材1と同形状の透明樹脂板からなる第2の平板部材2とを用意する。これらの第1の平板部材1及び第2の平板部材2は、それぞれ加圧力によって溶着可能な素材によって構成されており、少なくとも一方の表面が平滑に形成されている。
{First embodiment}
First, the manufacturing method of the micro flow tube chip in the first embodiment will be described with reference to FIGS.
First, a first flat plate member 1 made of a rectangular transparent resin plate and a second flat plate member 2 made of a transparent resin plate having the same shape as the first flat plate member 1 are prepared. Each of the first flat plate member 1 and the second flat plate member 2 is made of a material that can be welded by applying pressure, and at least one surface thereof is formed smoothly.

この第1の平板部材1は、射出後、圧縮成形することにより形成されており、その平滑な表面に深さ0.1〜0.3mm、幅0.1〜0.3mmの溝11がT字状に形成されている。また、このT字状に形成された溝11の左右端部及び下端部に、それぞれ溝11の底部から板厚方向に向けて貫通口12a、12bが形成されている。
さらに、図3及び図4に示すように、溝11の両側部外方に、それぞれ溝11に沿って、幅広の凹部13が形成されるとともに、これらの凹部13内には、それぞれ2本のエネルギーダイレクタ14が互いに近接して突条に設けられている。
The first flat plate member 1 is formed by compression molding after injection, and a groove 11 having a depth of 0.1 to 0.3 mm and a width of 0.1 to 0.3 mm is formed on the smooth surface thereof. It is formed in a letter shape. Further, through-holes 12a and 12b are formed in the left and right end portions and the lower end portion of the groove 11 formed in a T shape from the bottom portion of the groove 11 toward the plate thickness direction, respectively.
Further, as shown in FIG. 3 and FIG. 4, wide concave portions 13 are formed on both sides of the groove 11 along the grooves 11, respectively. Energy directors 14 are provided on the protrusions close to each other.

これらのエネルギーダイレクタ14は、それぞれ従断面略三角形状に形成され、凹部13の長手方向に向けて、平板部材1と一体に形成されている。また、凹部13内において、2本のエネルギーダイレクタ14の隣接する基端部同士が隙間を介して配設されるとともに、凹部13の縁13aの近傍に位置する基端部がそれぞれ縁13aから離間して配設されている。これにより、凹部13の底部が2本のエネルギーダイレクタ14同士の間及び凹部13の縁13aとエネルギーダイレクタ14との間に露出されており、凹部13の容積が第1の平板部材1の表面からのエネルギーダイレクタ14の突出体積容量以上になるように形成されている。   Each of these energy directors 14 is formed in a substantially triangular shape in the cross section, and is formed integrally with the flat plate member 1 in the longitudinal direction of the recess 13. In the recess 13, adjacent base end portions of the two energy directors 14 are arranged with a gap therebetween, and base end portions located in the vicinity of the edge 13 a of the recess 13 are separated from the edge 13 a. Arranged. As a result, the bottom of the recess 13 is exposed between the two energy directors 14 and between the edge 13 a of the recess 13 and the energy director 14, and the volume of the recess 13 is increased from the surface of the first flat plate member 1. It is formed so as to be larger than the protruding volume capacity of the energy director 14.

次いで、上述の第1の平板部材1及び第2の平板部材2を、それぞれ平滑な表面同士を対向配置させ、エネルギーダイレクタ14の先端部が平板部材2の平滑な表面に略線接触するように重ね合わせる。   Next, the above-described first flat plate member 1 and second flat plate member 2 are arranged so that the smooth surfaces thereof are opposed to each other, and the tip portion of the energy director 14 is in substantially line contact with the smooth surface of the flat plate member 2. Overlapping.

次に、超音波溶着によって、第1の平板部材1及び第2の平板部材2の表面同士を溶着させる。その際に、エネルギーダイレクタ14の先端部に加圧力を集中的に吸収させて、エネルギーダイレクタ14を先端部から溶融させ、このエネルギーダイレクタ14の溶融部を凹部13に流入させた後に、エネルギーダイレクタ14の溶融部を第1の平板部材1及び第2の平板部材2とともに冷却することにより、硬化させる。
そして、エネルギーダイレクタ14の溶融部の硬化により、確実に第1の平板部材1と第2の平板部材2とを一体化させるとともに、溝11による流管を気密的に形成する。
Next, the surfaces of the first flat plate member 1 and the second flat plate member 2 are welded together by ultrasonic welding. At this time, the applied pressure is concentratedly absorbed at the tip of the energy director 14, the energy director 14 is melted from the tip, and the melted portion of the energy director 14 flows into the recess 13, and then the energy director 14. The molten portion is cured by being cooled together with the first flat plate member 1 and the second flat plate member 2.
Then, the first flat plate member 1 and the second flat plate member 2 are reliably integrated by curing the melted portion of the energy director 14, and the flow tube formed by the grooves 11 is formed in an airtight manner.

これにより、第1の平板部材に、溝11によるT字状の流管と貫通口12a、12bによる流管の流出入口とが形成されたマイクロ流管チップが得られる。
このマイクロ流管チップは、流管の両側部外方に、それぞれ流管に沿って形成された凹部13において第1の平板部材1及び第2の平板部材2が確実に一体化されており、流管が気密的に形成されている。また、凹部43内に互いに近接して配設された2本のエネルギーダイレクタ14の溶融部が第2の平板部材2と一体化されるため、板厚方向の曲げ応力に対して優れた強度を有する。
As a result, a micro flow tube chip in which a T-shaped flow tube formed by the groove 11 and an outflow port of the flow tube formed by the through holes 12a and 12b are formed on the first flat plate member is obtained.
In this micro flow tube chip, the first flat plate member 1 and the second flat plate member 2 are reliably integrated in the recesses 13 formed along the flow tube on both sides of the flow tube, The flow tube is formed airtight. In addition, since the melted portion of the two energy directors 14 disposed close to each other in the recess 43 is integrated with the second flat plate member 2, it has excellent strength against bending stress in the thickness direction. Have.

そして、T字状の流管の左右端部にそれぞれ配設された貫通口12aによる2口の流入口からそれぞれ異なる流体が注入され、これらの流体がT字状の流管の合流部において混合され、効率的に反応するとともに下端部に向けて流通し、下端部に形成された貫通口12bによる流管の排出口から排出されるようになっている。   Then, different fluids are injected from the two inlets by the through-holes 12a respectively arranged at the left and right ends of the T-shaped flow tube, and these fluids are mixed at the junction of the T-shaped flow tube. In addition, it reacts efficiently and flows toward the lower end, and is discharged from the outlet of the flow tube by the through-hole 12b formed at the lower end.

{第2の実施形態}
次に、第2の実施形態におけるマイクロ流管チップの製造方法について、図5を用いて説明する。
まず、第1の実施形態における第1の平板部材1と同一素材の第1の平板部材3と、第2の平板部材2と同一素材の第2の平板部材4とを用意する。これらの第1の平板部材3及び第2の平板部材4は、それぞれ射出後、圧縮成形することにより形成されており、同一の外回り寸法の矩形板状に形成され、少なくとも一方の表面が平滑に形成されている。
{Second Embodiment}
Next, the manufacturing method of the micro flow tube chip in the second embodiment will be described with reference to FIG.
First, a first flat plate member 3 made of the same material as that of the first flat plate member 1 in the first embodiment and a second flat plate member 4 made of the same material as that of the second flat plate member 2 are prepared. Each of the first flat plate member 3 and the second flat plate member 4 is formed by compression molding after injection, is formed in a rectangular plate shape having the same outer dimension, and at least one surface is smooth. Is formed.

この第1の平板部材3には、第1の実施形態と同様に、その平滑な表面に溝11と同一の溝31が形成されるとともに、貫通口12と同様の貫通口32が形成されている。
また、溝31の両側部外方に、それぞれ溝31に沿って、エネルギーダイレクタ34が2本ずつ突条に設けられている。
これらのエネルギーダイレクタ34は、それぞれ縦断面略三角形状に形成されるとともに、平板部材3と一体に形成されている。また、それぞれ2本のエネルギーダイレクタ34が互いに離間して配設されている。
In the first flat plate member 3, the same groove 31 as the groove 11 is formed on the smooth surface, and the through-hole 32 similar to the through-hole 12 is formed in the same manner as in the first embodiment. Yes.
Further, two energy directors 34 are provided on the ridges on the outer sides of the grooves 31 along the grooves 31.
Each of these energy directors 34 is formed in a substantially triangular shape in the longitudinal section and is formed integrally with the flat plate member 3. In addition, two energy directors 34 are disposed apart from each other.

他方、第2の平板部材4には、溝31の両側部外方に対応する位置に、それぞれ溝31に沿って、凹部43が形成されている。
この凹部43は、それぞれ第2の平板部材4の平滑な表面に形成されており、その両端部に、第1の平板部材3と第2の平板部材4とを一体化させた際に、離間して配設された2本のエネルギーダイレクタ34が配設され、かつエネルギーダイレクタ34の基端部が全て収容されるように、幅広に形成されている。
また、凹部13と同様に、その容量がエネルギーダイレクタ34の突出体積容量以上になるように形成されている。
On the other hand, in the second flat plate member 4, concave portions 43 are formed along the grooves 31 at positions corresponding to the outer sides of the both sides of the groove 31.
The concave portions 43 are respectively formed on the smooth surface of the second flat plate member 4, and are separated when the first flat plate member 3 and the second flat plate member 4 are integrated at both ends thereof. The two energy directors 34 arranged in this manner are arranged, and the energy director 34 is formed wide so that all the base end portions of the energy directors 34 are accommodated.
Further, like the recess 13, the capacity is formed to be equal to or larger than the protruding volume capacity of the energy director 34.

次いで、上述の第1の平板部材3及び第2の平板部材4を、それぞれ平滑な表面同士を対向配置させ、エネルギーダイレクタ34の先端部が凹部43の幅方向の両端部に略線接触するように重ね合わせる。   Next, the above-described first flat plate member 3 and second flat plate member 4 are arranged so that the smooth surfaces thereof are opposed to each other, so that the front end portion of the energy director 34 is substantially in line contact with both end portions in the width direction of the recess 43. To overlay.

次に、超音波溶着によって、第1の平板部材3及び第2の平板部材4の表面同士を溶着させる。その際に、第1の実施形態と同様に、エネルギーダイレクタ14を溶融させ、凹部43に流入させた後に、硬化させることにより、確実に第1の平板部材3と第2の平板部材4とを一体化させるとともに、溝31による流管を気密的に形成する。   Next, the surfaces of the first flat plate member 3 and the second flat plate member 4 are welded together by ultrasonic welding. At that time, the first flat plate member 3 and the second flat plate member 4 are securely bonded by melting the energy director 14 and allowing it to flow into the concave portion 43 and then curing the same as in the first embodiment. In addition to being integrated, the flow tube by the groove 31 is formed in an airtight manner.

これにより、第1の平板部材3に溝31よる流管及び貫通口32による流管の流出入口が形成されたマイクロ流管チップが得られる。
このマイクロ流管チップは、流管の両側部外方に、それぞれ流管に沿って幅広に形成された凹部43において第1の平板部材3及び第2の平板部材4が確実に一体化されており、流管が気密的に形成されている。また、凹部43の幅方向に互いに離間して配設された2本のエネルギーダイレクタ34の溶融部が第2の平板部材4と一体化されるため、第1の実施形態と比較し、一段と板厚方向の曲げ応力に対して優れた強度を有する。
Thereby, the micro flow tube chip in which the flow tube by the groove 31 and the flow tube outlet / outlet port by the through-hole 32 are formed in the first flat plate member 3 is obtained.
In this micro flow tube chip, the first flat plate member 3 and the second flat plate member 4 are reliably integrated in the recesses 43 formed wide along the flow tube on both sides of the flow tube. The flow tube is formed in an airtight manner. Further, since the melted portions of the two energy directors 34 that are spaced apart from each other in the width direction of the concave portion 43 are integrated with the second flat plate member 4, compared with the first embodiment, the plate is further improved. Excellent strength against bending stress in the thickness direction.

そして、第1の実施形態と同様に、貫通口32aによる2口の流入口からそれぞれ異なる流体が注入され、流管の合流部において混合され、効率的に反応するとともに下端部に向けて流通し、貫通口32bによる流管の排出口から排出されるようになっている。   In the same manner as in the first embodiment, different fluids are injected from the two inlets of the through-hole 32a, mixed at the junction of the flow tube, react efficiently, and flow toward the lower end. In addition, the gas is discharged from the outlet of the flow tube by the through-hole 32b.

{第3の実施形態}
次に、第3の実施形態におけるマイクロ流管チップの製造方法について、図6を用いて説明する。
本実施形態におけるマイクロ流管チップの製造方法は、第2の実施形態における第1の平板部材3及び第2の平板部材4をさらに加工することによりなされるものであるため、第2の実施形態と同一の符号を付すことにより第2の実施形態と同一の構成の説明を省略する。
{Third embodiment}
Next, the manufacturing method of the micro flow tube chip in the third embodiment will be described with reference to FIG.
Since the manufacturing method of the micro flow tube chip in this embodiment is made by further processing the first flat plate member 3 and the second flat plate member 4 in the second embodiment, the second embodiment. The description of the same configuration as that of the second embodiment is omitted by attaching the same reference numerals.

本実施形態のマイクロ流管チップの製造方法は、まず、第1の平板部材3の溝31の両側部に、第1の平板部材3の板表面よりも一段低い切り欠き段部35が形成されている点において、第2の実施形態と異なる。
この切り欠き段部35は、漸次、平板部材3の板表面に向けて開口が広くなるように、その両側部外壁が両側部外方に向けて傾斜しているとともに、溝31に近接して配設された内側のエネルギーダイレクタ34の側壁の基端部と一体に形成されている。
In the manufacturing method of the micro flow tube chip according to the present embodiment, first, notched step portions 35 that are one step lower than the plate surface of the first flat plate member 3 are formed on both sides of the groove 31 of the first flat plate member 3. This is different from the second embodiment.
The notch steps 35 are gradually inclined toward the outer sides of the both sides so that the openings are gradually widened toward the plate surface of the flat plate member 3, and close to the grooves 31. It is formed integrally with the base end portion of the side wall of the disposed inner energy director 34.

また、第2の平板部材4は、溝31の両側部外方に対応する位置に形成された凹部43同士の間に、切り欠き段部35に嵌め込み可能な縦断面台形状の蓋部45が平板部材4と一体に形成されている。   In addition, the second flat plate member 4 has a trapezoidal lid 45 having a trapezoidal section that can be fitted into the notch step 35 between the recesses 43 formed at positions corresponding to the outer sides of the both sides of the groove 31. It is formed integrally with the flat plate member 4.

この蓋部45は、先端部よりも基端部が幅広に形成されるとともに、その側部が切り欠き段部35の側壁に接するように、逆テーパ形状に形成されている。また、先端部の平面が切り欠き段部35の底面と略同一形状に形成されるとともに、基端部の横断面が切り欠き段部35によって形成された第1の平板部材3の板表面における開口面と略同一形状に形成されており、切り欠き段部35の深さと同一の高さを有するように形成されている。   The lid portion 45 is formed in a reverse taper shape so that the base end portion is formed wider than the tip end portion, and the side portion is in contact with the side wall of the notch step portion 35. Further, the flat surface of the front end portion is formed in substantially the same shape as the bottom surface of the cutout step portion 35, and the cross section of the base end portion is formed on the plate surface of the first flat plate member 3 formed by the cutout step portion 35. It is formed in substantially the same shape as the opening surface, and is formed so as to have the same height as the depth of the notch step 35.

次いで、上述の第1の平板部材3及び第2の平板部材4を、それぞれ平滑な表面同士を対向配置させ、エネルギーダイレクタ34の先端部が凹部43の幅方向の両端部に線接触し、かつ蓋部45が切り欠き段部35に嵌め込まれるようにして重ね合わせる。   Next, the above-described first flat plate member 3 and second flat plate member 4 are arranged so that the smooth surfaces thereof are opposed to each other, the tip portion of the energy director 34 is in line contact with both end portions in the width direction of the recess 43, and The lid 45 is overlapped so as to be fitted into the notch step 35.

次に、超音波溶着によって、第1の平板部材3及び第2の平板部材4の表面同士を溶着させる。その際に、第2の実施形態と同様に、エネルギーダイレクタ14を溶融させ、凹部43に流入させた後に、硬化させることにより、確実に第1の平板部材3と第2の平板部材4とを一体化させるとともに、溝31による流管を気密的に形成する。   Next, the surfaces of the first flat plate member 3 and the second flat plate member 4 are welded together by ultrasonic welding. At that time, the first flat plate member 3 and the second flat plate member 4 are securely bonded by melting the energy director 14 and allowing it to flow into the recess 43 and then curing, as in the second embodiment. In addition to being integrated, the flow tube by the groove 31 is formed in an airtight manner.

これにより、第1の平板部材3に溝31よる流管及び貫通口32による流管の流出入口が形成されたマイクロ流管チップが得られる。
このマイクロ流管チップは、第2の実施形態と同様に、流管の両側部外方に、それぞれ流管に沿って幅広に形成された凹部43において第1の平板部材3及び第2の平板部材4が確実に一体化され、流管が気密的に形成されているとともに、第1の実施形態と比較し、一段と板厚方向の曲げ応力に対して優れた強度を有する。
そして、第1及び第2の実施形態と同様に、貫通口32aによる2口の流入口からそれぞれ異なる流体が注入され、流管の合流部において混合され、効率的に反応するとともに下端部に向けて流通し、貫通口32bによる流管の排出口から排出されるようになっている。
Thereby, the micro flow tube chip in which the flow tube by the groove 31 and the flow tube outlet / outlet port by the through-hole 32 are formed in the first flat plate member 3 is obtained.
Similar to the second embodiment, the micro flow tube chip is configured such that the first flat plate member 3 and the second flat plate are formed on the outer sides of the flow tube at the recesses 43 formed wide along the flow tube. The member 4 is surely integrated and the flow tube is hermetically formed, and has an excellent strength against bending stress in the plate thickness direction as compared with the first embodiment.
In the same manner as in the first and second embodiments, different fluids are injected from the two inlets by the through-hole 32a, mixed at the junction of the flow tubes, react efficiently, and directed toward the lower end. And is discharged from the outlet of the flow tube by the through-hole 32b.

上述の第1ないし第3の実施形態によるマイクロ流管チップの製造方法によれば、第1の平板部材1、3及び第2の平板部材2、4を加圧力によって溶着可能な透明樹脂板によって構成するとともに、それぞれ少なくとも一方の表面を平滑に形成しているため、この平滑な表面同士を対向配置させ、重ね合わせた後に、超音波溶着することによって、溝11、31による流管が形成される。
その際、第1の平板部材1、3に一体に形成されたエネルギーダイレクタ14、34の先端部に加圧力が集中的に吸収されるため、上記溝11、31の両側部外方において、確実に第1の平板部材1、3と第2の平板部材2、4とを一体化させることができるとともに、上記流管を気密的に形成することができる。
According to the manufacturing method of the micro flow tube chip according to the first to third embodiments described above, the first flat plate members 1, 3 and the second flat plate members 2, 4 are made of the transparent resin plate that can be welded by the applied pressure. In addition, since at least one of the surfaces is formed smoothly, the flow surfaces formed by the grooves 11 and 31 are formed by ultrasonically welding the smooth surfaces after placing the smooth surfaces facing each other. The
At that time, since the applied pressure is intensively absorbed by the tip portions of the energy directors 14 and 34 formed integrally with the first flat plate members 1 and 3, it is ensured that the outer sides of the grooves 11 and 31 are outside. In addition, the first flat plate members 1 and 3 and the second flat plate members 2 and 4 can be integrated, and the flow tube can be formed airtight.

他方、第1の平板部材1のエネルギーダイレクタ14の基端部又は第2の平板部材4のエネルギーダイレクタ34の先端部の対向部表面に、エネルギーダイレクタ14、34の突出体積容量以上の容積を有する凹部13、43を形成したため、エネルギーダイレクタ14、34の溶融部が凹部13、43から溢れ出ることを防止することができる。このため、溶融部を凹部13、43に流入させ、硬化させる際に生じうる流管の閉塞や実際の流度断面積の変化を防止することができる。   On the other hand, the base plate of the energy director 14 of the first flat plate member 1 or the opposed surface of the tip of the energy director 34 of the second flat plate member 4 has a volume that is equal to or larger than the protruding volume capacity of the energy directors 14, 34. Since the recesses 13 and 43 are formed, it is possible to prevent the melted portions of the energy directors 14 and 34 from overflowing from the recesses 13 and 43. For this reason, it is possible to prevent the flow tube from being blocked and the actual flow rate cross-sectional area from being changed when the melted portion flows into the recesses 13 and 43 and hardened.

加えて、エネルギーダイレクタ14、34を溝11、31両側部外方に、それぞれ2本形成したため、得られたマイクロ流管チップは、板厚方向に向けて曲げ応力が作用した場合にも、流管に近接して配設された内側のエネルギーダイレクタ14、34の溶融部による接合部分が流管の移動方向に追随するとともに、流管から離間して配設された外側のエネルギーダイレクタ14、34の溶融部による接合部分がマイクロ流管チップの外周部分の移動方向に追随することができる。これにより、マイクロ流管チップの曲げ応力に対する強度を高めることができる。   In addition, since two energy directors 14 and 34 are formed on the outer sides of the grooves 11 and 31, respectively, the obtained micro flow tube tip can be used even when bending stress acts in the plate thickness direction. The joint portion of the inner energy directors 14 and 34 disposed in the vicinity of the pipes by the melted portion follows the moving direction of the flow tube, and the outer energy directors 14 and 34 disposed away from the flow tube. The joining portion by the melted portion can follow the moving direction of the outer peripheral portion of the micro flow tube tip. Thereby, the intensity | strength with respect to the bending stress of a micro flow tube tip can be raised.

特に、第1の実施形態のマイクロ流管チップの製造方法によれば、凹部13内において2本のエネルギーダイレクタ14の隣接する基端部同士が隙間を介して配設されるとともに、凹部13の縁13aの近傍に位置するエネルギーダイレクタ14の基端部がそれぞれ縁13aから離間して配設されることにより、2本のエネルギーダイレクタ14の周囲に凹部13の底部が露出されており、エネルギーダイレクタ14の溶融部を確実に凹部13内に流入させることができる。このため、第1の平板部材の板表面において凹部13の外方に、エネルギーダイレクタ14の溶融部が流出することを阻止でき、第1の平板部材と第2の平板部材との間に隙間が生じ、実際の流路断面積が増加することを阻止できる。   In particular, according to the manufacturing method of the micro flow tube chip of the first embodiment, adjacent base end portions of the two energy directors 14 are disposed in the recess 13 with a gap therebetween, and Since the base end portions of the energy directors 14 located in the vicinity of the edge 13a are spaced apart from the edges 13a, the bottoms of the recesses 13 are exposed around the two energy directors 14, and the energy directors are exposed. Thus, the 14 melted portions can surely flow into the recess 13. For this reason, it can prevent that the fusion | melting part of the energy director 14 flows out of the recessed part 13 in the plate | board surface of a 1st flat plate member, and a clearance gap exists between a 1st flat plate member and a 2nd flat plate member. It is possible to prevent the actual channel cross-sectional area from increasing.

また、第3の実施形態のマイクロ流管チップの製造方法によれば、超音波溶着によって、蓋部45の側壁等により、溝31に近接して配設された内側のエネルギーダイレクタ34を凹部43の幅方向の中央部に向けて加圧した状態において溶融させることができる。このため、溶融部を効率的に上記凹部43内の上記中央部に流入させることができる。   Moreover, according to the manufacturing method of the micro flow tube chip of the third embodiment, the inner energy director 34 disposed in the vicinity of the groove 31 by the side wall of the lid portion 45 or the like is formed by the ultrasonic welding. It can be melted in a state of being pressurized toward the center in the width direction. For this reason, a fusion | melting part can be efficiently made to flow in into the said center part in the said recessed part 43. FIG.

また、蓋部45は、その先端部の平面が切り欠き段部35の底面と略同形状に形成されるとともに、その基端部の横断面が切り欠き段部35によって形成された第1の平板部材3の板表面における開口面と略同一形状に形成され、かつ切り欠き段部35の深さと同一の高さを有するため、第1の平板部材3と第1の平板部材4とを一体化させた際に、隙間なく切り欠き段部35に嵌め込まれ、溶融物の流管内の流入を確実に阻止できるとともに、第1の平板部材3と第2の平板部材4とを隙間なく一体化させることができ、流管の実際の流路断面積の増加を阻止することができる。   Further, the lid 45 has a first surface in which the flat surface of the front end portion is formed in substantially the same shape as the bottom surface of the notch step portion 35 and the cross section of the base end portion is formed by the notch step portion 35. The first flat plate member 3 and the first flat plate member 4 are integrated with each other because the flat plate member 3 is formed in substantially the same shape as the opening surface on the plate surface and has the same height as the depth of the notched step 35. When the first flat plate member 3 and the second flat plate member 4 are integrated into the notch step portion 35 without any gap, it is possible to reliably prevent the melt from flowing into the flow tube. And an increase in the actual flow cross-sectional area of the flow tube can be prevented.

なお、本発明は、上述の実施形態に何ら限定されるものではなく、例えばエネルギーダイレクタ14、34を溝11、31の両側部外方にそれぞれ3本以上形成してもよい。この場合には、エネルギーダイレクタ14、34を凹部13、43の幅方向に均等に配設することが望ましい。   In addition, this invention is not limited to the above-mentioned embodiment at all, For example, you may form three or more energy directors 14 and 34 in the outer side of the both sides of the grooves 11 and 31, respectively. In this case, it is desirable to arrange the energy directors 14 and 34 evenly in the width direction of the recesses 13 and 43.

本発明のマイクロ流管チップの製造方法により得られたマイクロ流管チップの一実施形態を示す正面模式図である。It is a front schematic diagram which shows one Embodiment of the micro flow tube chip | tip obtained by the manufacturing method of the micro flow tube chip | tip of this invention. 図1の側面図である。It is a side view of FIG. 第1実施形態のマイクロ流管チップの製造方法において超音波溶着する前に、第1の平板部材1及び第2の平板部材2を対向配置させた際の図1におけるIII−III線矢示図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1 when the first flat plate member 1 and the second flat plate member 2 are arranged to face each other before ultrasonic welding in the method of manufacturing the micro flow tube chip of the first embodiment. It is. 第1実施形態のマイクロ流管チップの製造方法において超音波溶着する前に、第1の平板部材1及び第2の平板部材2を対向配置させた際の図1におけるIV−IV線矢示図である。The IV-IV line arrow figure in FIG. 1 at the time of arrange | positioning the 1st flat plate member 1 and the 2nd flat plate member 2 facing each other before ultrasonic welding in the manufacturing method of the micro flow tube chip of 1st Embodiment. It is. 第2実施形態のマイクロ流管チップの製造方法において超音波溶着する前に、第1の平板部材1及び第2の平板部材2を対向配置させた際の図1におけるV−V線矢示図である。The VV arrow in FIG. 1 at the time of arrange | positioning the 1st flat plate member 1 and the 2nd flat plate member 2 facing each other before ultrasonic welding in the manufacturing method of the micro flow tube chip of 2nd Embodiment. It is. 第3実施形態のマイクロ流管チップの製造方法において超音波溶着する前に、第1の平板部材1及び第2の平板部材2を対向配置させた際の図1におけるVI−VI線矢示図である。The VI-VI line arrow figure in FIG. 1 at the time of arrange | positioning the 1st flat plate member 1 and the 2nd flat plate member 2 facing each other before ultrasonic welding in the manufacturing method of the micro flow tube chip | tip of 3rd Embodiment. It is.

符号の説明Explanation of symbols

1、3 第1の平板部材
2、4 第2の平板部材
14、34 エネルギーダイレクタ
13、43 凹部
1, 3 First flat plate member 2, 4 Second flat plate member 14, 34 Energy director 13, 43 Recess

Claims (5)

表面に流管となる細長状の溝が形成された第1の平板部材と、この第1の平板部材の上記表面に対向して配設された第2の平板部材とを一体化させることにより、上記溝により流管を形成するとともに、この流管の端部に対応する位置に、それぞれ上記第1の平板部材又は第2の平板部材の当該板厚方向に形成されている貫通口によって上記流管の流出入口を形成するマイクロ流管チップの製造方法であって、
上記第1の平板部材及び上記第2の平板部材を、それぞれ加圧力によって溶着可能な素材により形成するとともに、
上記第1の平板部材又は上記第2の平板部材の一方と一体に上記溝の両側部外方において、それぞれ上記溝に沿うとともに、他方の上記平板部材に向けて突条に形成された縦断面三角形状のエネルギーダイレクタを形成し、
上記エネルギーダイレクタの基端部又は上記エネルギーダイレクタの先端部に対向して配設された上記他方の平板部材の上記エネルギーダイレクタの対向部表面に、上記エネルギーダイレクタの上記一方の平板部材の表面から突出している突出体積容量以上の容積を有する凹部を形成し、
次いで、上記エネルギーダイレクタを、それぞれ当該先端部を上記他方の平板部材の表面に線接触するように配設して、上記第1の平板部材及び第2の平板部材を、互いに対向表面同士を重ね合わせた後に、
超音波溶着によって、上記エネルギーダイレクタを上記先端部から溶融させ、
このエネルギーダイレクタの溶融部を上記凹部に流入させた後に、
この溶融部を上記凹部内において硬化させることによって、上記第1の平板部材と第2の平板部材とを一体化させ、上記溝による流管を形成することを特徴とするマイクロ流管チップの製造方法。
By integrating the first flat plate member having an elongated groove serving as a flow tube on the surface and the second flat plate member disposed facing the surface of the first flat plate member The flow tube is formed by the groove, and the through hole formed in the plate thickness direction of the first flat plate member or the second flat plate member at a position corresponding to the end of the flow tube, respectively. A method of manufacturing a micro flow tube chip that forms an outflow inlet of a flow tube,
The first flat plate member and the second flat plate member are each formed of a material that can be welded by pressure,
A longitudinal section formed integrally with one of the first flat plate member or the second flat plate member on the outer side of the both sides of the groove, along the groove and toward the other flat plate member. Forming a triangular energy director,
Projecting from the surface of the one plate member of the energy director on the surface of the energy director facing the energy director of the other plate member arranged to face the base end of the energy director or the tip of the energy director. Forming a recess having a volume greater than the protruding volume capacity,
Next, the energy director is disposed so that the tip portion is in line contact with the surface of the other flat plate member, and the first flat plate member and the second flat plate member are overlapped with each other. After matching
The energy director is melted from the tip by ultrasonic welding,
After flowing the melting part of this energy director into the recess,
Manufacturing the micro flow tube chip, wherein the melted portion is hardened in the recess to integrate the first flat plate member and the second flat plate member to form a flow tube by the groove. Method.
上記エネルギーダイレクタを、上記溝の両側部外方に、それぞれ2本以上形成したことを特徴とする請求項1に記載のマイクロ流管チップの製造方法。   2. The method of manufacturing a micro flow tube chip according to claim 1, wherein two or more energy directors are formed outside both sides of the groove. 上記流出入口及び上記凹部を、いずれも上記第1の平板部材に形成し、かつ
上記エネルギーダイレクタを、上記凹部内に形成したことを特徴とする請求項1又は2に記載のマイクロ流管チップの製造方法。
3. The micro flow tube chip according to claim 1, wherein both the outflow inlet and the recess are formed in the first flat plate member, and the energy director is formed in the recess. 4. Production method.
上記凹部を、上記第2の平板部材の上記溝の両側部外方に対応する位置に、それぞれ幅広に形成するとともに、上記エネルギーダイレクタを、上記第1の平板部材の上記凹部の幅方向の両端部に対応する位置に形成したことを特徴とする請求項2に記載のマイクロ流管チップの製造方法。   The recesses are formed wide at positions corresponding to the outer sides of both sides of the groove of the second flat plate member, and the energy directors are arranged at both ends in the width direction of the concave portion of the first flat plate member. The micro flow tube chip manufacturing method according to claim 2, wherein the micro flow tube chip is formed at a position corresponding to the portion. 上記第1の平板部材には、上記溝の両側部に、その板表面よりも一段低い切り欠き段部を形成するとともに、この切り欠き段部の側壁を上記溝の近傍に配設された上記エネルギーダイレクタの側壁の基端部と一体に形成し、かつ
上記第2の平板部材には、当該第2の平板部材と一体に上記切り欠き段部に向けて突条に形成するとともに、上記切り欠き段部に嵌め込み可能に形成された蓋部を形成したことを特徴とする請求項4に記載のマイクロ流管チップの製造方法。
The first flat plate member is formed with a notch step portion that is one step lower than the plate surface at both sides of the groove, and the side wall of the notch step portion is disposed in the vicinity of the groove. The second flat plate member is formed integrally with the second flat plate member, and is formed in a protrusion toward the notch step portion. 5. The method of manufacturing a micro flow tube chip according to claim 4, wherein a lid portion formed so as to be fitted into the notch step portion is formed.
JP2006179949A 2006-06-29 2006-06-29 Manufacturing method of microflow pipe chip Withdrawn JP2008006724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179949A JP2008006724A (en) 2006-06-29 2006-06-29 Manufacturing method of microflow pipe chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179949A JP2008006724A (en) 2006-06-29 2006-06-29 Manufacturing method of microflow pipe chip

Publications (1)

Publication Number Publication Date
JP2008006724A true JP2008006724A (en) 2008-01-17

Family

ID=39065359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179949A Withdrawn JP2008006724A (en) 2006-06-29 2006-06-29 Manufacturing method of microflow pipe chip

Country Status (1)

Country Link
JP (1) JP2008006724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221448A (en) * 2009-03-23 2010-10-07 Sumitomo Bakelite Co Ltd Method of joining microchip substrate and microchip
WO2018095829A1 (en) * 2016-11-23 2018-05-31 Koninklijke Philips N.V. Ultrasonic welding of a microfluidic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221448A (en) * 2009-03-23 2010-10-07 Sumitomo Bakelite Co Ltd Method of joining microchip substrate and microchip
WO2018095829A1 (en) * 2016-11-23 2018-05-31 Koninklijke Philips N.V. Ultrasonic welding of a microfluidic device
CN110023062A (en) * 2016-11-23 2019-07-16 皇家飞利浦有限公司 The ultrasonic welding of microfluidic device
US10549480B2 (en) 2016-11-23 2020-02-04 Koninklijke Philips N.V. Ultrasonic welding of a microfluidic device
CN110023062B (en) * 2016-11-23 2020-03-03 皇家飞利浦有限公司 Ultrasonic welding of microfluidic devices

Similar Documents

Publication Publication Date Title
EP2851121B1 (en) Devices for and methods of forming microchannels or microfluid reservoirs
US10295441B2 (en) Method and device for producing a microfluidic analysis cartridge
EP1960488B1 (en) Fine line sealing and channel lining system and method
JP2008518225A5 (en)
KR20090064936A (en) Microfluidic device and method for microfluidic device based on ultrasonic welding
US8939195B2 (en) Heat exchanger
JP4856494B2 (en) Flat plate flow path and manufacturing method thereof
JP2009095800A (en) Fine passage structure and its manufacturing method
JP4540491B2 (en) Manufacturing method of microreactor
EP0837730B1 (en) Distributor device, in particular for a chemical analysis arrangement
US20150086446A1 (en) Channel device
JP2008006724A (en) Manufacturing method of microflow pipe chip
CN202191912U (en) Diaphragm movable polymer microfluidic chip
JP2014122831A (en) Microfluidic device
JP2008216121A (en) Method for manufacturing microchip
JP5598432B2 (en) Microchannel device manufacturing method and microchannel chip
JP2005224688A (en) Method for manufacturing microreactor chip
JP5251983B2 (en) Microchip manufacturing method
WO2009101845A1 (en) Microchip and method for manufacturing the same
KR20110075448A (en) A method for manufacturing a microfluidic device and a microfluidic divice manufactured using the same method
EP3544790B1 (en) Ultrasonic welding of a microfluidic device
CN102319593A (en) Cytosis polymer microfluidic chip and preparation method thereof
US20240025735A1 (en) Methods for ultrasonic fabrication and sealing of microfluidics
WO2009101850A1 (en) Method for manufacturing microchip and microchip
US20230324131A1 (en) Device for controlling the temperature of a component and method for manufacturing the device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901