JP2008006393A - Decarbonation device and method - Google Patents

Decarbonation device and method Download PDF

Info

Publication number
JP2008006393A
JP2008006393A JP2006180737A JP2006180737A JP2008006393A JP 2008006393 A JP2008006393 A JP 2008006393A JP 2006180737 A JP2006180737 A JP 2006180737A JP 2006180737 A JP2006180737 A JP 2006180737A JP 2008006393 A JP2008006393 A JP 2008006393A
Authority
JP
Japan
Prior art keywords
decarbonation
valve
water
reverse osmosis
decarboxylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006180737A
Other languages
Japanese (ja)
Other versions
JP4673804B2 (en
Inventor
Kenichi Aso
健一 阿曽
Isamu Sato
勇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2006180737A priority Critical patent/JP4673804B2/en
Publication of JP2008006393A publication Critical patent/JP2008006393A/en
Application granted granted Critical
Publication of JP4673804B2 publication Critical patent/JP4673804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decarbonation device and method which enable the excellent production of pure water by causing no mixture of gas, such as air, into permeated through a decarbonation membrane. <P>SOLUTION: The decarbonation device B which is connected between a reverse osmosis membrane device A and an ion exchange resin cylinder C, and removes carbon dioxide gas 4a in the permeate 4 passing through the reverse osmosis membrane device A to send the permeate 4 to the ion exchange resin cylinder C comprises the decarbonation membrane B3, a check valve V1 installed upstream of the decarbonation membrane B3 to prevent the backflow of the permeate 4, and a relief valve V2 installed downstream of the check valve V1 to keep degassed water 5 at a positive pressure state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脱炭酸装置及び脱炭酸方法に係り、特に逆浸透膜装置やイオン交換装置を用いた純水製造工程において、逆浸透膜装置透過後の透過水中の炭酸ガスを脱気する脱炭酸装置及び脱炭酸方法に関する。   The present invention relates to a decarboxylation device and a decarboxylation method, and in particular, in a pure water production process using a reverse osmosis membrane device or an ion exchange device, decarboxylation for degassing carbon dioxide gas in permeated water after permeation of the reverse osmosis membrane device. The present invention relates to an apparatus and a decarboxylation method.

工業用水等の原水から純水を製造する純水製造装置にはイオン交換装置が用いられる。イオン交換装置はイオン交換樹脂を有しており、このイオン交換樹脂に原水を通過させることにより、原水中の不純物イオンが除去されて純度の高い精製水(純水)が得られる。   An ion exchange apparatus is used for a pure water production apparatus that produces pure water from raw water such as industrial water. The ion exchange apparatus has an ion exchange resin. By passing raw water through the ion exchange resin, impurity ions in the raw water are removed, and purified water (pure water) having high purity is obtained.

しかしながら、イオン交換装置に直接原水を通過させるとイオン交換樹脂への負荷が過大となり、イオン交換樹脂の再生や交換を頻繁に行わなくてはならない。そこで、純水製造装置においては、イオン交換装置の上流側に逆浸透膜装置を配置することが行われている。   However, if raw water is passed directly through the ion exchange device, the load on the ion exchange resin becomes excessive, and regeneration and exchange of the ion exchange resin must be performed frequently. Therefore, in a pure water production apparatus, a reverse osmosis membrane device is disposed upstream of an ion exchange device.

逆浸透膜装置は逆浸透膜を有しており、この逆浸透膜によって原水中の塩類、微粒子、有機化合物等を除去することができる。したがって、イオン交換樹脂の負荷を軽減することができて、イオン交換樹脂の再生や交換の頻度を低減することが可能である。このように、前段に逆浸透膜装置、後段にイオン交換装置を配して原水を精製することにより、純度の高い純水を得ることができる。   The reverse osmosis membrane apparatus has a reverse osmosis membrane, and salts, fine particles, organic compounds, etc. in raw water can be removed by this reverse osmosis membrane. Therefore, the load of the ion exchange resin can be reduced, and the frequency of regeneration and replacement of the ion exchange resin can be reduced. In this way, pure water with high purity can be obtained by disposing the reverse osmosis membrane device in the former stage and the ion exchange device in the latter stage to purify the raw water.

なお、本出願においては、純水製造装置への流入前(逆浸透膜透過前)の被処理水を原水、逆浸透膜装置透過後の処理水を透過水、イオン交換装置通過後の処理水を純水ということとする。   In this application, the treated water before flowing into the pure water production apparatus (before permeation of the reverse osmosis membrane) is the raw water, the treated water after permeation of the reverse osmosis membrane device is the permeated water, and the treated water after passing through the ion exchange device. Is called pure water.

ところが、原水中に炭酸ガスが含まれている場合、この逆浸透膜装置によっては炭酸ガスを脱気することができない。炭酸ガスを含んだままの透過水がイオン交換装置に至ると、イオン交換樹脂への負荷が大きくなる。そこで、一般に逆浸透膜装置とイオン交換装置との間に脱炭酸装置を接続して透過水中の炭酸ガスを脱気することが行われる。   However, when carbon dioxide is contained in the raw water, this reverse osmosis membrane device cannot degas the carbon dioxide. When the permeated water containing carbon dioxide gas reaches the ion exchange device, the load on the ion exchange resin increases. Therefore, in general, a decarboxylation device is connected between the reverse osmosis membrane device and the ion exchange device to degas the carbon dioxide in the permeated water.

脱炭酸装置は気体が通過可能な脱炭酸膜を有しており、例えば脱炭酸膜の一方の膜面に沿って透過水を通過させ、他方の膜面に沿って空気等の気体を向流に通気させ、透過水中の炭酸ガスを脱炭酸膜を通じて気体中へと放出させる。これにより、透過水中の炭酸ガスが脱気され、イオン交換樹脂への負荷も軽減されて一層純度の高い純水を得ることができる。なお、本出願では透過水が脱炭酸を通過し脱気処理された水を脱気水ということとする。   The decarboxylation device has a decarbonation membrane through which gas can pass. For example, permeate passes through one membrane surface of the decarboxylation membrane and counterflows gas such as air along the other membrane surface. The carbon dioxide gas in the permeated water is released into the gas through the decarbonation film. As a result, the carbon dioxide in the permeated water is degassed, the load on the ion exchange resin is reduced, and pure water with higher purity can be obtained. In the present application, the permeated water that has passed through decarboxylation and degassed is referred to as degassed water.

図9に、逆浸透膜装置101、脱炭酸装置102、イオン交換装置103を有して構成された従来の純水製造装置100の例を示す。ROポンプ104により加圧して送水された原水は、逆浸透膜装置101の逆浸透膜105を透過して後段の脱炭酸装置102へと送られる。脱炭酸装置102へと送られた透過水中の炭酸ガスが脱炭酸膜106を通じて脱気され、脱気水は更に後段のイオン交換装置103へと送られる。脱気水は、このイオン交換装置103においてイオン交換樹脂(図示せず)を通過して純水となり、種々の用途に利用される。   FIG. 9 shows an example of a conventional pure water production apparatus 100 configured to include a reverse osmosis membrane apparatus 101, a decarboxylation apparatus 102, and an ion exchange apparatus 103. The raw water pressurized and sent by the RO pump 104 passes through the reverse osmosis membrane 105 of the reverse osmosis membrane device 101 and is sent to the subsequent decarboxylation device 102. Carbon dioxide gas in the permeated water sent to the decarboxylation device 102 is degassed through the decarbonation film 106, and the degassed water is further sent to the ion exchange device 103 at the subsequent stage. The deaerated water passes through an ion exchange resin (not shown) in the ion exchange device 103 to become pure water, and is used for various purposes.

なお、逆浸透膜装置101内で濃縮された原水は排水管107によって排水される。また、脱炭酸装置102には気体供給装置108によって空気等の気体が供給され、脱炭酸膜106の表裏に気体と透過水とが接触するように構成されている。このような、脱炭酸装置を用いた純水製造装置の例として、例えば特許文献1,2に開示されたものがある。
特開2001−121151号公報 特開2003−80036号公報
The raw water concentrated in the reverse osmosis membrane device 101 is drained through a drain pipe 107. Further, a gas such as air is supplied to the decarboxylation device 102 by a gas supply device 108, and the gas and the permeated water are in contact with the front and back of the decarbonation film 106. As an example of such a pure water production apparatus using a decarboxylation apparatus, there are those disclosed in Patent Documents 1 and 2, for example.
JP 2001-121151 A JP 2003-80036 A

しかしながら、脱炭酸膜106は気体を通過させるので、脱炭酸膜106に接している透過水が負圧となった場合は逆に気体が透過水中に混入してしまう。   However, since the decarbonation film 106 allows gas to pass therethrough, if the permeated water in contact with the decarbonation film 106 has a negative pressure, the gas is mixed into the permeated water.

例えば、原水加圧送水用のROポンプ104を停止して純水製造工程を終了する際に、浸透圧の作用によって逆浸透膜105透過後の透過水が逆浸透膜105を通って上流に逆流する、いわゆるサックバック現象を生じてしまう。そうすると、脱炭酸膜106近傍の透過水が負圧となってしまい、脱炭酸膜106を通じて気体が透過水中に混入してしまう。   For example, when the raw water pressurized water supply RO pump 104 is stopped and the pure water production process is terminated, the permeated water after permeation of the reverse osmosis membrane 105 flows back upstream through the reverse osmosis membrane 105 due to the action of osmotic pressure. This causes a so-called suck back phenomenon. Then, the permeated water near the decarbonation film 106 becomes a negative pressure, and gas is mixed into the permeated water through the decarbonation film 106.

また、例えば脱炭酸装置102よりもその下流側に接続されたイオン交換装置103が低い位置に設置され両者に揚程差が生じている場合は、純水製造工程終了後にも脱炭酸装置102とイオン交換装置103との接続配管内の脱気水がイオン交換装置103側へと流出する、いわゆるサイフォン現象を生じてしまう。そうすると、脱炭酸膜106近傍の透過水が負圧となってしまい、やはり脱炭酸膜106を通じて気体が透過水中に混入してしまう。   In addition, for example, when the ion exchange device 103 connected downstream of the decarboxylation device 102 is installed at a lower position and there is a difference in head height between the two, the decarboxylation device 102 and the ion are also used after the pure water production process is completed. A so-called siphon phenomenon occurs in which degassed water in the pipe connected to the exchange device 103 flows out to the ion exchange device 103 side. Then, the permeated water near the decarbonation film 106 becomes a negative pressure, and gas is mixed into the permeated water through the decarbonation film 106.

上記のように、透過水中に気体が混入してしまうと純水製造工程を再開した際にその気体が脱炭酸装置102の下流側に接続されたイオン交換装置103へと送られ、その内部に溜まってしまう。そうすると、イオン交換樹脂への負荷が大きくなってイオン交換効率が低下し、ひいては純水製造効率が低下してしまうという問題があった。 特に、イオン交換装置103が内部にイオン交換樹脂を密閉封止したイオン交換樹脂ボンベである場合には、内部に溜まってしまった気体を抜気するためにイオン交換樹脂ボンベの上蓋部に設置された気体抜きねじを緩めボンベ内の気体を抜く作業を定期的に行う必要があった。   As described above, if a gas is mixed in the permeated water, when the pure water production process is restarted, the gas is sent to the ion exchange device 103 connected to the downstream side of the decarboxylation device 102, and inside it, It accumulates. If it does so, there existed a problem that the load to ion exchange resin became large and ion exchange efficiency fell, and that pure water production efficiency fell by extension. In particular, when the ion exchange apparatus 103 is an ion exchange resin cylinder in which the ion exchange resin is hermetically sealed, the ion exchange apparatus 103 is installed on the upper lid portion of the ion exchange resin cylinder in order to evacuate the gas accumulated inside. It was necessary to periodically perform the work of loosening the gas vent screw and venting the gas from the cylinder.

本発明は上記の事情に鑑みて為されたもので、脱炭酸膜を通じて透過水中に空気等の気体を混入させてしまうことがなく、良好に純水の製造を行うことができる脱炭酸装置及び脱炭酸方法を提供することを例示的課題とする。   The present invention has been made in view of the above circumstances, and a decarboxylation apparatus capable of producing pure water satisfactorily without mixing a gas such as air into the permeated water through the decarbonation membrane. It is an exemplary problem to provide a decarboxylation method.

上記の課題を解決するために、本発明の例示的側面としての脱炭酸装置は、逆浸透膜装置とイオン交換装置との間に接続され、逆浸透膜装置を透過した透過水中の炭酸ガスを脱気してイオン交換装置に向けて脱気水を送水する脱炭酸装置であって、脱炭酸膜と、脱炭酸膜の上流側に設けられて透過水の逆流を防止する逆流防止手段と、逆流防止手段の下流側に設けられて脱気水を陽圧状態に保持する陽圧保持手段と、を有する。   In order to solve the above-described problems, a decarboxylation device as an exemplary aspect of the present invention is connected between a reverse osmosis membrane device and an ion exchange device, and carbon dioxide gas in permeated water that has permeated the reverse osmosis membrane device. A decarboxylation device for degassing and feeding degassed water toward the ion exchange device, a decarbonation membrane, and a backflow prevention means provided on the upstream side of the decarboxylation membrane to prevent a reverse flow of permeate, And a positive pressure holding means that is provided downstream of the backflow prevention means and holds the deaerated water in a positive pressure state.

脱炭酸膜の上流側に設けられた逆流防止手段が透過水の逆流を防止するので、逆浸透膜装置でサックバック現象が生じても逆流防止手段の下流側の透過水が逆流しない。したがって、脱炭酸膜近傍の透過水が負圧とならず、脱炭酸膜を通じて気体が透過水中に混入しない。   Since the backflow prevention means provided on the upstream side of the decarbonation membrane prevents the backflow of permeate, the permeate on the downstream side of the backflow prevention means does not backflow even if a suck back phenomenon occurs in the reverse osmosis membrane device. Therefore, the permeated water in the vicinity of the decarbonation film does not become negative pressure, and gas does not enter the permeated water through the decarbonation film.

また、陽圧保持手段が逆流防止手段の下流側に設けられているので、例えサイフォン現象によって脱炭酸装置とイオン交換装置との接続配管内の脱気水がイオン交換装置側へと流出しても脱炭酸膜近傍の透過水が負圧とならない。したがって、脱炭酸膜を通じて透過水中に気体が混入しない。   In addition, since the positive pressure holding means is provided on the downstream side of the backflow prevention means, the deaerated water in the connection pipe between the decarboxylation device and the ion exchange device flows out to the ion exchange device side due to siphon phenomenon, for example. However, the permeated water near the decarbonation membrane does not become negative pressure. Therefore, no gas is mixed into the permeated water through the decarbonation membrane.

上記の逆流防止手段が逆止弁であってもよい。例えば、株式会社テイエルブイ製のチャッキ弁(型式:CKF3R)等を逆流防止弁として用いることにより、簡便かつ安価に透過水の逆流を防止することができる。また、陽圧保持手段がアキュムレータや脱炭酸膜の下流側に設けられたリリーフ弁であってもよい。   The check valve may be a check valve. For example, by using a check valve (model: CKF3R) manufactured by T-L Buoy Co., Ltd. as a backflow prevention valve, the backflow of permeate can be prevented easily and inexpensively. Further, the positive pressure holding means may be a relief valve provided on the downstream side of the accumulator or the decarbonation film.

例えば、NOK株式会社製のブラダ型アキュムレータ(型式:AL)等を脱炭酸装置の近傍上流側又は下流側に設けることにより、簡便かつ安価に脱炭酸膜近傍の透過水を陽圧状態に保持できるので、サイフォン現象が生じても脱炭酸膜を通じて透過水中に気体が混入しない。また、例えば、積水化学工業株式会社製リリーフバルブ(型式:Type715)等を脱炭酸膜の下流側に設けることによっても、サイフォン現象による悪影響を排除することができる。   For example, by providing a bladder type accumulator (model: AL) manufactured by NOK Corporation on the upstream side or the downstream side in the vicinity of the decarboxylation device, the permeated water in the vicinity of the decarbonation membrane can be maintained in a positive pressure state easily and inexpensively. Therefore, even if the siphon phenomenon occurs, no gas is mixed into the permeated water through the decarbonation film. Further, for example, by providing a relief valve (model: Type 715) manufactured by Sekisui Chemical Co., Ltd. on the downstream side of the decarbonation film, adverse effects due to the siphon phenomenon can be eliminated.

上記の逆流防止手段が開閉制御可能な第1の開閉弁であり、陽圧保持手段が脱炭酸膜の下流側に設けられて開閉制御可能な第2の開閉弁であり、かつ、逆浸透膜装置への原水供給を停止する際に、第1の開閉弁を閉成させるより先に第2の開閉弁を閉成させるとともに逆浸透膜装置における原水の圧力が0.02MPa以下となる前に第1の開閉弁を閉成させる弁開閉制御装置をさらに有してもよい。   The backflow prevention means is a first on-off valve that can be controlled to open and close, the positive pressure holding means is a second on-off valve that is provided on the downstream side of the decarbonation film and can be controlled to open and close, and a reverse osmosis membrane When stopping the supply of raw water to the apparatus, before closing the second on-off valve before closing the first on-off valve, and before the pressure of the raw water in the reverse osmosis membrane apparatus becomes 0.02 MPa or less A valve opening / closing control device for closing the first opening / closing valve may be further included.

脱炭酸膜の上流と下流とにそれぞれ設けられた第1、第2の開閉弁を弁開閉制御装置により制御することで、脱炭酸膜を通じて透過水中に気体が混入するのを防止することができる。例えば、逆浸透膜装置への原水供給停止(純水製造工程終了)に伴って、脱炭酸膜近傍での透過水の圧力が低下するが、まず第1の開閉弁を閉成させるより先に第2の開閉弁を閉成させることにより、サイフォン現象による悪影響を排除しつつ脱炭酸膜近傍での透過水の陽圧状態を確保することができる。そして、最終的に原水が大気圧開放されるより前に第1の開閉弁を閉成させることにより、サックバック現象による悪影響を排除しつつ脱炭酸膜近傍での透過水の陽圧状態を確保することができる。   By controlling the first and second on-off valves provided respectively upstream and downstream of the decarbonation membrane by the valve on / off control device, it is possible to prevent gas from entering the permeated water through the decarbonation membrane. . For example, the pressure of the permeate near the decarbonation membrane decreases with the stop of the supply of raw water to the reverse osmosis membrane device (end of the pure water production process), but first before the first on-off valve is closed. By closing the second on-off valve, it is possible to ensure a positive pressure state of the permeated water in the vicinity of the decarboxylation film while eliminating an adverse effect due to the siphon phenomenon. Then, by closing the first on-off valve before the raw water is finally released to atmospheric pressure, the positive pressure state of the permeated water in the vicinity of the decarbonation film is secured while eliminating the adverse effects due to the suck back phenomenon. can do.

原水の圧力が0.006MPa以下になると、多くの場合脱炭酸膜106を通じて気体が透過水中に混入してしまう。したがって、より詳細には原水の圧力が0.006MPa以下となる前に第1の開閉弁を閉成させることが望ましい。なお、本出願において原水の「圧力」は「大気圧との差圧」を意味する。   When the pressure of the raw water is 0.006 MPa or less, in many cases, gas is mixed into the permeated water through the decarbonation film 106. Therefore, more specifically, it is desirable to close the first on-off valve before the pressure of raw water becomes 0.006 MPa or less. In the present application, “pressure” of raw water means “differential pressure from atmospheric pressure”.

本発明の他の例示的側面としての脱炭酸方法は、逆浸透膜装置とイオン交換装置との間に接続されて脱炭酸膜を有する脱炭酸装置により、逆浸透膜装置を透過した透過水中の炭酸ガスを脱気する脱炭酸方法であって、逆浸透膜装置への原水供給を停止する際に、脱炭酸膜の上流側に設けられた逆流防止手段によって透過水の逆流を防止する工程と、逆流防止手段の下流側に設けられた陽圧保持手段によって脱気水を陽圧状態に保持する工程と、を有する。   A decarboxylation method according to another exemplary aspect of the present invention includes a decarboxylation device connected between a reverse osmosis membrane device and an ion exchange device and having a decarbonation membrane. A decarbonation method for degassing carbon dioxide gas, the step of preventing backflow of permeate by a backflow prevention means provided upstream of the decarbonation membrane when stopping the supply of raw water to the reverse osmosis membrane device; And maintaining the deaerated water in a positive pressure state by a positive pressure holding means provided on the downstream side of the backflow prevention means.

脱炭酸膜の上流側に設けられた逆流防止手段が透過水の逆流を防止するので、逆浸透膜装置でサックバック現象が生じても逆流防止手段の下流側の透過水が逆流しない。したがって、脱炭酸膜近傍の透過水が負圧とならず、脱炭酸膜を通じて気体が透過水中に混入しない。   Since the backflow prevention means provided on the upstream side of the decarbonation membrane prevents the backflow of permeate, the permeate on the downstream side of the backflow prevention means does not backflow even if a suck back phenomenon occurs in the reverse osmosis membrane device. Therefore, the permeated water in the vicinity of the decarbonation film does not become negative pressure, and gas does not enter the permeated water through the decarbonation film.

また、陽圧保持手段が逆流防止手段の下流側に設けられているので、例えサイフォン現象によって脱炭酸装置とイオン交換装置との接続配管内の脱気水がイオン交換装置側へと流出しても脱炭酸膜近傍の透過水が負圧とならない。したがって、脱炭酸膜を通じて透過水中に気体が混入しない。   In addition, since the positive pressure holding means is provided on the downstream side of the backflow prevention means, the deaerated water in the connection pipe between the decarboxylation device and the ion exchange device flows out to the ion exchange device side due to siphon phenomenon, for example. However, the permeated water near the decarbonation membrane does not become negative pressure. Therefore, no gas is mixed into the permeated water through the decarbonation membrane.

本発明の更に他の例示的側面としての脱炭酸方法は、逆浸透膜装置とイオン交換装置との間に接続されて脱炭酸膜を有する脱炭酸装置により、逆浸透膜装置を透過した透過水中の炭酸ガスを脱気する脱炭酸方法であって、逆浸透膜装置への原水供給を停止する際に、脱炭酸膜の上流側に設けられた第1の開閉弁を閉成させるより先に脱炭酸膜の下流側に設けられた第2の開閉弁を閉成させる工程と、透過水の圧力が0.006MPa以下となる前に第1の開閉弁を閉成させる工程と、を有する。   According to still another exemplary aspect of the present invention, there is provided a decarboxylation method in which permeated water permeated through a reverse osmosis membrane device by a decarboxylation device connected between the reverse osmosis membrane device and an ion exchange device and having the decarbonation membrane. In which the carbon dioxide gas is degassed, and when the supply of raw water to the reverse osmosis membrane device is stopped, the first on-off valve provided upstream of the decarbonation membrane is closed before closing. A step of closing the second on-off valve provided on the downstream side of the decarbonation film, and a step of closing the first on-off valve before the permeated water pressure becomes 0.006 MPa or less.

例えば、逆浸透膜装置への原水供給停止(純水製造工程終了)に伴って、脱炭酸膜近傍での透過水の圧力が低下するが、まず第1の開閉弁を閉成させるより先に脱炭酸膜の下流側に設けられた第2の開閉弁を閉成させることにより、サイフォン現象による悪影響を排除しつつ脱炭酸膜近傍での透過水の陽圧状態を確保することができる。そして、最終的に透過水圧力が大気圧まで降下するより前に脱炭酸膜の上流側に設けられた第1の開閉弁を閉成させることにより、サックバック現象による悪影響を排除しつつ脱炭酸膜近傍での透過水の陽圧状態を確保することができる。   For example, the pressure of the permeate near the decarbonation membrane decreases with the stop of the supply of raw water to the reverse osmosis membrane device (end of the pure water production process), but first before the first on-off valve is closed. By closing the second on-off valve provided on the downstream side of the decarbonation film, the positive pressure state of the permeated water in the vicinity of the decarbonation film can be ensured while eliminating the adverse effects due to the siphon phenomenon. Then, by closing the first on-off valve provided on the upstream side of the decarbonation membrane before the permeated water pressure finally drops to atmospheric pressure, decarboxylation while eliminating the adverse effects due to the suck back phenomenon. A positive pressure state of permeated water in the vicinity of the membrane can be ensured.

透過水の圧力が0.006MPa以下になると、脱炭酸膜を通じて透過水中に気体が混入してしまう。したがって、より詳細には原水の圧力が0.006MPa以下となる前に第1の開閉弁を閉成させることが望ましい。   When the pressure of the permeated water is 0.006 MPa or less, gas is mixed into the permeated water through the decarbonation film. Therefore, more specifically, it is desirable to close the first on-off valve before the pressure of raw water becomes 0.006 MPa or less.

本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。   Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.

本発明によれば、サックバック現象やサイフォン現象による悪影響を受けることなく、脱炭酸膜近傍を陽圧状態に保持することができる。したがって、脱炭酸膜を通じて透過水中に空気等の気体を混入させてしまうことがなく、良好に純水の製造を行うことができる。   According to the present invention, the vicinity of the decarbonized film can be maintained in a positive pressure state without being adversely affected by the suck back phenomenon or siphon phenomenon. Therefore, pure water can be produced satisfactorily without mixing a gas such as air into the permeated water through the decarbonation film.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

[実施の形態1]
以下、図面を用いて本発明の実施の形態1に係る脱炭酸装置Bを用いた純水製造装置Sについて説明する。図1は、純水製造装置Sの全体構成を示す概略ブロック図である。純水製造装置Sは、上流側から順に逆浸透膜装置A、脱炭酸装置B、イオン交換樹脂ボンベ(イオン交換装置)Cが配管により接続されて大略構成されている。
[Embodiment 1]
Hereinafter, the pure water manufacturing apparatus S using the decarboxylation apparatus B which concerns on Embodiment 1 of this invention using drawings is demonstrated. FIG. 1 is a schematic block diagram showing the overall configuration of the pure water production apparatus S. The pure water production apparatus S is generally configured by connecting a reverse osmosis membrane apparatus A, a decarbonation apparatus B, and an ion exchange resin cylinder (ion exchange apparatus) C in order from the upstream side.

逆浸透膜装置Aは内部に逆浸透膜A1を有し、原水加圧用のROポンプEから送水された原水2から塩類、微粒子、有機化合物等を除去するためのものである。逆浸透膜A1を透過した透過水4は、接続配管P1を通って脱炭酸装置Bへと送られるようになっている。   The reverse osmosis membrane device A has a reverse osmosis membrane A1 inside, and is for removing salts, fine particles, organic compounds and the like from the raw water 2 fed from the RO pump E for pressurizing the raw water. The permeated water 4 that has permeated the reverse osmosis membrane A1 is sent to the decarboxylation device B through the connection pipe P1.

逆浸透膜装置Aの逆浸透膜A1前段側には排水管A2が設けられ、逆浸透膜A1を透過できず、濃縮された原水2の一部を排水できるようになっている。また、ROポンプEはインバータ回路E1によってインバータ制御可能とされており、送水開始及び停止時の急激な圧力変化を防止することができるようになっていてもよい。   A drain pipe A2 is provided on the upstream side of the reverse osmosis membrane device A1 so that it cannot pass through the reverse osmosis membrane A1 and can drain part of the concentrated raw water 2. Further, the RO pump E can be controlled by an inverter circuit E1, and may be capable of preventing sudden pressure changes at the start and stop of water supply.

脱炭酸装置Bは脱炭酸ベッセルB1、逆流防止手段としての逆止弁V1、陽圧保持手段としてのリリーフ弁V2を有して逆浸透膜装置Aの後段に接続されている。逆止弁V1は脱炭酸ベッセルB1の上流側に設けられ、リリーフ弁V2は脱炭酸ベッセルB1の下流側に設けられており、接続配管P1から送られてきた透過水4が逆止弁V1、脱炭酸ベッセルB1、リリーフ弁V2を通って接続配管P4を介して後段のイオン交換樹脂ボンベCへと送られるようになっている。   The decarbonation apparatus B has a decarbonation vessel B1, a check valve V1 as a backflow prevention means, and a relief valve V2 as a positive pressure holding means, and is connected to the subsequent stage of the reverse osmosis membrane apparatus A. The check valve V1 is provided on the upstream side of the decarboxylation vessel B1, the relief valve V2 is provided on the downstream side of the decarboxylation vessel B1, and the permeated water 4 sent from the connection pipe P1 is added to the check valve V1, The decarbonation vessel B1 and the relief valve V2 are sent to the ion exchange resin cylinder C in the subsequent stage through the connection pipe P4.

図2は、脱炭酸ベッセルB1の内部構成を示す概略構成図である。脱炭酸ベッセルB1は、大略円筒形状のベッセル本体B2の内部に中空糸膜状の脱炭酸膜B3が設けられて大略構成されたもので、中空糸内部に気体供給装置Dから供給された空気等の気体6を透過水4と向流方向に(すなわち、図1中上から下に向けて接続配管P6から接続配管P7へと)通気させるようになっている。一方、透過水4は中空糸外部を図1中下から上に向けて接続配管P2から接続配管P3へと送水され、透過水4と気体6とは脱炭酸膜B3の表裏にそれぞれ接触するように構成されている(以下、気体6が通過する中空糸内部を脱炭酸膜B3の内側、透過水4が通過する中空糸外部を脱炭酸膜B3の外側と定義する。)。このように、脱炭酸膜B3の表裏に透過水4と気体6とをそれぞれ接触させ、かつ互いに向流となるように流下させることで、透過水4中の炭酸ガス4aを効率よく気体6中へと脱気させることができるようになっている。   FIG. 2 is a schematic configuration diagram showing an internal configuration of the decarboxylation vessel B1. The decarbonation vessel B1 is generally configured by providing a hollow fiber membrane-like decarbonation membrane B3 inside a generally cylindrical vessel body B2, and the air supplied from the gas supply device D inside the hollow fiber, etc. The gas 6 is aerated in the counterflow direction with the permeated water 4 (that is, from the upper side to the lower side in FIG. 1 from the connection pipe P6 to the connection pipe P7). On the other hand, the permeated water 4 is sent from the connecting pipe P2 to the connecting pipe P3 with the outside of the hollow fiber facing from the bottom to the top in FIG. 1, so that the permeated water 4 and the gas 6 are in contact with the front and back of the decarbonation membrane B3. (Hereinafter, the inside of the hollow fiber through which the gas 6 passes is defined as the inside of the decarbonation membrane B3, and the outside of the hollow fiber through which the permeated water 4 passes is defined as the outside of the decarbonation membrane B3). In this way, the permeated water 4 and the gas 6 are brought into contact with the front and back of the decarbonation film B3, and the carbon dioxide gas 4a in the permeated water 4 is efficiently flown into the gas 6 by causing them to flow countercurrently to each other. It can be degassed.

逆止弁V1は、接続配管P2中の透過水4が接続配管P1内へと逆流するのを防止するためのものである。これにより、逆浸透膜装置A内においてサックバック現象が生じたとしても、脱炭酸装置Bへと伝わらないようにその影響を遮断することができる。   The check valve V1 is for preventing the permeated water 4 in the connection pipe P2 from flowing back into the connection pipe P1. Thereby, even if a suck back phenomenon occurs in the reverse osmosis membrane device A, the influence can be blocked so as not to be transmitted to the decarboxylation device B.

リリーフ弁V2は、脱炭酸膜B3近傍すなわち脱炭酸ベッセルB1内部、接続配管P2内部、接続配管P3内部を陽圧状態に保持するためのものである。リリーフ弁V2は、その上流側の管路内の圧力が一定圧力以上となると、下流側に開放する弁である。換言すると、上流側の管路内の圧力が一定圧力以上とならないと下流側に開放しないので、その作用を利用して上流側(すなわち接続配管P3内部、脱炭酸ベッセルB1内部、接続配管P2内部)を一定圧力以上に保持する機能が実現できる。したがって、例えば脱炭酸装置Bとイオン交換樹脂ボンベCとの間の揚程差を原因とするサイフォン現象により下流側の接続配管P4内の脱気水5がイオン交換樹脂ボンベC側に流出しても、それによりリリーフ弁V2の上流側が負圧になることはない。   The relief valve V2 is for maintaining the vicinity of the decarbonation film B3, that is, the inside of the decarbonation vessel B1, the inside of the connection pipe P2, and the inside of the connection pipe P3 in a positive pressure state. The relief valve V2 is a valve that opens to the downstream side when the pressure in the pipe line on the upstream side becomes equal to or higher than a certain pressure. In other words, if the pressure in the upstream pipe line does not exceed a certain pressure, it does not open to the downstream side. Therefore, the upstream side (that is, the inside of the connecting pipe P3, the inside of the decarboxylation vessel B1, the inside of the connecting pipe P2) is utilized. ) Can be realized at a certain pressure or higher. Therefore, for example, even if the deaerated water 5 in the downstream connection pipe P4 flows out to the ion exchange resin cylinder C side due to a siphon phenomenon caused by a head difference between the decarbonator B and the ion exchange resin cylinder C. Thus, the upstream side of the relief valve V2 does not become negative pressure.

イオン交換樹脂ボンベCの内部構成の概略を図3に示す。イオン交換樹脂ボンベCは、ボンベ本体C1内にイオン交換樹脂C2が充填されて大略構成され、脱炭酸装置Bの後段に接続されている。接続配管P4から流入した脱気水5は、イオン交換樹脂C2を通過した後に取水管C3から純水8として取り出され、接続配管P5から外部に送水されるようになっている。   An outline of the internal configuration of the ion exchange resin cylinder C is shown in FIG. The ion exchange resin cylinder C is generally configured by filling the cylinder body C1 with the ion exchange resin C2, and is connected to the subsequent stage of the decarbonation apparatus B. The deaerated water 5 that has flowed in from the connection pipe P4 passes through the ion exchange resin C2, and then is taken out as pure water 8 from the intake pipe C3 and is sent to the outside from the connection pipe P5.

次に、この純水製造装置Sによる純水製造工程について図4に示すフローチャートを用いて説明する。   Next, the pure water manufacturing process by this pure water manufacturing apparatus S is demonstrated using the flowchart shown in FIG.

まず、ROポンプEの稼動を開始し、原水2の送水を開始する(S.1)。それとともに、気体供給装置Dから気体6を脱炭酸膜B3の内側に向けて供給する(S.2)。   First, operation of the RO pump E is started, and water supply of the raw water 2 is started (S.1). At the same time, the gas 6 is supplied from the gas supply device D toward the inside of the decarboxylation film B3 (S.2).

原水2は、逆浸透膜装置Aの逆浸透膜A1を透過し、塩類等が除去され、逆止弁V1を通って脱炭酸装置Bへと送られる(S.3)。逆浸透膜A1により濃縮された原水2は、排水管A2から排水される(S.4)。   The raw water 2 permeates the reverse osmosis membrane A1 of the reverse osmosis membrane device A to remove salts and the like, and is sent to the decarboxylation device B through the check valve V1 (S.3). The raw water 2 concentrated by the reverse osmosis membrane A1 is drained from the drain pipe A2 (S.4).

脱炭酸装置Bへと送られた透過水4は、脱炭酸膜B3の外側を流れる。それに伴い、透過水4中の炭酸ガス4aが脱炭酸膜B3を通じて気体6側へと脱気される(S.5)。   The permeated water 4 sent to the decarboxylation device B flows outside the decarboxylation film B3. Accordingly, the carbon dioxide gas 4a in the permeated water 4 is degassed to the gas 6 side through the decarbonation film B3 (S.5).

炭酸ガスが脱気された脱気水5は、リリーフ弁V2を通ってイオン交換樹脂ボンベCへと送られる(S.6)。リリーフ弁V2によって、接続配管P2内や脱炭酸装置B内の透過水4、接続配管P3内の脱気水5は、純水製造中も常時一定圧力以上の陽圧状態とされている(S.7)。イオン交換樹脂ボンベCへと送られた脱気水5は、ボンベ内部でイオン交換樹脂C2を通過して純水8となって接続配管P5から外部へと送水される(S.8)。   The degassed water 5 from which the carbon dioxide gas has been degassed is sent to the ion exchange resin cylinder C through the relief valve V2 (S.6). By the relief valve V2, the permeated water 4 in the connection pipe P2 and the decarbonator B and the deaerated water 5 in the connection pipe P3 are always in a positive pressure state of a certain pressure or higher even during the production of pure water (S .7). The deaerated water 5 sent to the ion exchange resin cylinder C passes through the ion exchange resin C2 inside the cylinder and becomes pure water 8 and is sent from the connection pipe P5 to the outside (S.8).

上記の工程が継続され、純水製造が行われるが、純水製造を終了する際には(S.9)、ROポンプEを停止させる(S.10)。ここで、ROポンプEがインバータ回路E1によりインバータ制御されている場合には、急激な圧力低下が防止され、原水2の圧力が徐々に減圧されていく。   The above process is continued and pure water production is performed. When pure water production is terminated (S.9), the RO pump E is stopped (S.10). Here, when the RO pump E is inverter-controlled by the inverter circuit E1, a rapid pressure drop is prevented, and the pressure of the raw water 2 is gradually reduced.

そして、ROポンプEが略停止状態となり、逆浸透膜A1上流側の原水2の圧力が略大気圧まで降下すると、浸透圧の作用により下流側の透過水4が逆浸透膜A1を通過して上流側へと逆流しようとする(S.11)。しかし、逆浸透膜装置Aと脱炭酸装置Bとの間に設けられた逆止弁V1が、逆止弁V1より下流側の透過水4の逆止弁V1より上流側への逆流を防止するので(S.12)、脱炭酸膜B3近傍では透過水4は逆流しない。したがって、脱炭酸膜B3近傍の透過水4が負圧とならず、気体6が脱炭酸膜B3を通じて透過水4中に混入しない。   Then, when the RO pump E is substantially stopped and the pressure of the raw water 2 on the upstream side of the reverse osmosis membrane A1 drops to substantially atmospheric pressure, the permeate 4 on the downstream side passes through the reverse osmosis membrane A1 due to the action of the osmotic pressure. It tries to flow backward to the upstream side (S.11). However, the check valve V1 provided between the reverse osmosis membrane device A and the decarboxylation device B prevents the reverse flow of the permeate 4 downstream from the check valve V1 upstream from the check valve V1. Therefore (S.12), the permeated water 4 does not flow backward in the vicinity of the decarbonation film B3. Therefore, the permeated water 4 in the vicinity of the decarbonized film B3 does not become negative pressure, and the gas 6 does not enter the permeated water 4 through the decarbonized film B3.

一方、イオン交換樹脂ボンベCが脱炭酸装置Bより低い位置に設置されて両者間に揚程差が存在するような場合、ROポンプEの停止後もサイフォン現象により接続配管P4内の脱気水5がイオン交換樹脂ボンベC側へと流出しようとする(S.13)。しかし、脱炭酸装置Bとイオン交換樹脂ボンベCとの間に設けられたリリーフ弁V2が、リリーフ弁V2より上流側を陽圧状態に保持する(S.14)。したがって、接続配管P3内の脱気水5及び脱炭酸膜B3近傍の透過水4が負圧とならず、気体6が脱炭酸膜B3を通じて透過水4中に混入しない。   On the other hand, when the ion exchange resin cylinder C is installed at a position lower than the decarbonator B and there is a difference in the head height between the two, the deaerated water 5 in the connection pipe P4 is caused by the siphon phenomenon even after the RO pump E is stopped. Tries to flow out to the ion exchange resin cylinder C side (S.13). However, the relief valve V2 provided between the decarboxylation device B and the ion exchange resin cylinder C keeps the upstream side of the relief valve V2 in a positive pressure state (S.14). Therefore, the deaerated water 5 in the connection pipe P3 and the permeated water 4 in the vicinity of the decarbonized film B3 do not become negative pressure, and the gas 6 does not enter the permeated water 4 through the decarbonized film B3.

上記説明においては、脱炭酸装置Bと逆浸透膜装置Aとの間(すなわち脱炭酸装置Bの上流側)に逆止弁V1を用いたが、逆止弁の代わりにここにもリリーフ弁を用い、リリーフ弁の逆流防止機能を利用してももちろんよい。   In the above description, the check valve V1 is used between the decarboxylation device B and the reverse osmosis membrane device A (that is, upstream of the decarboxylation device B), but a relief valve is also used here instead of the check valve. Of course, the backflow prevention function of the relief valve may be used.

[実施の形態2]
図5は、本発明の実施の形態2に係る脱炭酸装置Fを用いた純水製造装置Tの全体構成を示す概略ブロック図である。この純水製造装置Tは、上流側より順に逆浸透膜装置A、脱炭酸装置F、イオン交換樹脂ボンベCが配管により接続されて大略構成され、更に制御装置(弁開閉制御装置)Gを有している。なお、本実施の形態2において上記実施の形態1と同様の構成については、同様の符号を付し説明を省略する。
[Embodiment 2]
FIG. 5 is a schematic block diagram showing the overall configuration of a pure water production apparatus T using the decarboxylation apparatus F according to Embodiment 2 of the present invention. The pure water production apparatus T is generally configured by connecting a reverse osmosis membrane apparatus A, a decarbonation apparatus F, and an ion exchange resin cylinder C in order from the upstream side, and further includes a control device (valve opening / closing control device) G. is doing. Note that the same reference numerals in the second embodiment denote the same parts as those in the first embodiment, and a description thereof will be omitted.

脱炭酸装置Fは、脱炭酸ベッセルB1、逆流防止手段としての開閉弁VC1(第1の開閉弁)、陽圧保持手段としての開閉弁VC2(第2の開閉弁)を有して逆浸透膜装置Aとイオン交換樹脂ボンベCとの間に接続されている。開閉弁VC1は脱炭酸ベッセルB1の上流側に設けられ、開閉弁VC2は脱炭酸ベッセルB1の下流側に設けられている。   The decarboxylation device F includes a decarbonation vessel B1, an on-off valve VC1 (first on-off valve) as a backflow prevention means, and an on-off valve VC2 (second on-off valve) as a positive pressure holding means, and a reverse osmosis membrane. It is connected between the apparatus A and the ion exchange resin cylinder C. The on-off valve VC1 is provided on the upstream side of the decarbonation vessel B1, and the on-off valve VC2 is provided on the downstream side of the decarbonation vessel B1.

制御装置Gは開閉弁VC1、開閉弁VC2の開閉制御を行うためのものであり、両開閉弁VC1,VC2と接続されている。制御装置Gは、例えばコンピュータであってもよいし、シーケンサのように動作プログラムの記憶が可能なコントローラであってもよい。なお、開閉弁VC1と脱炭酸ベッセルB1との間には透過水4の圧力を検出する圧力センサ10が設けられ、センサ出力が制御装置Gに入力されるようになっている。   The control device G is for performing on / off control of the on-off valve VC1 and on-off valve VC2, and is connected to both the on-off valves VC1 and VC2. The control device G may be, for example, a computer or a controller capable of storing an operation program such as a sequencer. A pressure sensor 10 for detecting the pressure of the permeated water 4 is provided between the on-off valve VC1 and the decarboxylation vessel B1, and the sensor output is input to the control device G.

この純水製造装置Tによる純水製造工程のうち、ROポンプEを停止させて精製を終了する工程について図6に示すフローチャートを用いて説明する。   Of the pure water production process by the pure water production apparatus T, the process of stopping the RO pump E and finishing the purification will be described with reference to the flowchart shown in FIG.

純水製造中はROポンプEが稼動するとともに開閉弁VC1,VC2とも開成状態となっており、原水2、透過水4及び脱気水5が逆浸透膜装置A、脱炭酸装置F、イオン交換樹脂ボンベCを通って純水8となって外部に送水されている(S.21)。純水製造終了時(S.22)には、まずROポンプEを徐々に停止させる(S.23)。ROポンプEがインバータ回路E1によってインバータ制御可能となっている場合は、脱炭酸膜B3近傍の陽圧保持制御を容易に行うことができる。その際、透過水4の圧力状態は圧力センサ10によって常に監視され、制御装置Gへと入力される。   During the production of pure water, the RO pump E operates and both the on-off valves VC1 and VC2 are opened, and the raw water 2, the permeated water 4 and the degassed water 5 are the reverse osmosis membrane device A, decarbonation device F, ion exchange. The pure water 8 passes through the resin cylinder C and is sent to the outside (S.21). At the end of pure water production (S.22), the RO pump E is first gradually stopped (S.23). When the RO pump E can be controlled by the inverter circuit E1, the positive pressure holding control in the vicinity of the decarbonation film B3 can be easily performed. At that time, the pressure state of the permeate 4 is constantly monitored by the pressure sensor 10 and input to the control device G.

透過水4の圧力が第1の所定圧力となったとき(S.24)、まず制御装置Gは開閉弁VC2を閉成する(S.25)。そして、透過水4の圧力が第1の所定圧力よりも低圧であって正圧の第2の所定圧力となったとき(S.26)、制御装置Gは開閉弁VC1を閉成する(S.27)。   When the pressure of the permeated water 4 becomes the first predetermined pressure (S.24), the control device G first closes the on-off valve VC2 (S.25). When the pressure of the permeated water 4 is lower than the first predetermined pressure and becomes the second predetermined pressure that is positive (S.26), the control device G closes the on-off valve VC1 (S.26). .27).

透過水4の圧力が第1の所定圧力となった時点で開閉弁VC1より先に開閉弁VC2を閉成するので、接続配管P3内の脱気水5及び脱炭酸膜B3近傍の透過水4は開閉弁VC2より後段部分の、例えばサイフォン現象等による影響を受けない。したがって、接続配管P3内の脱気水5及び脱炭酸膜B3近傍の透過水4が負圧とならず、気体6が脱炭酸膜B3を通じて透過水4中に混入しない。   Since the on-off valve VC2 is closed before the on-off valve VC1 when the pressure of the permeated water 4 reaches the first predetermined pressure, the permeated water 4 in the vicinity of the deaerated water 5 and the decarbonized film B3 in the connection pipe P3. Is not affected by, for example, siphoning or the like subsequent to the on-off valve VC2. Therefore, the deaerated water 5 in the connection pipe P3 and the permeated water 4 in the vicinity of the decarbonized film B3 do not become negative pressure, and the gas 6 does not enter the permeated water 4 through the decarbonized film B3.

また、透過水4の圧力が第2の所定圧力となった時点で開閉弁VC1を閉成するので、脱炭酸膜B3近傍の透過水4は開閉弁VC1より前段部分の、例えば浸透圧による逆流等による影響を受けない。したがって、脱炭酸膜B3近傍の透過水4が負圧とならず、気体6が脱炭酸膜B3を通じて透過水4中に混入しない。   Further, since the on-off valve VC1 is closed when the pressure of the permeated water 4 reaches the second predetermined pressure, the permeated water 4 in the vicinity of the decarbonation film B3 flows backward, for example, due to osmotic pressure from the on-off valve VC1. Not affected by etc. Therefore, the permeated water 4 in the vicinity of the decarbonized film B3 does not become negative pressure, and the gas 6 does not enter the permeated water 4 through the decarbonized film B3.

なお、第2の所定圧力は0.02MPaより大きいことが望ましい。0.02MPa以下となると、脱炭酸膜B3を通じて透過水4中に気体が混入してしまう可能性があるからである。   The second predetermined pressure is preferably greater than 0.02 MPa. This is because if the pressure is 0.02 MPa or less, gas may be mixed into the permeated water 4 through the decarbonation film B3.

第2の開閉弁VC2の閉成から第1の開閉弁VC1の閉成までの時間(遅れ時間)をタイマー制御する場合、ROポンプEと脱炭酸膜B3との間の配管長が長い場合は、慣性抵抗の影響を考慮して遅れ時間を長く設定するのが好ましい。一方、脱炭酸膜B3の後段にあるイオン交換樹脂ボンベCが低い位置にありサイフォン現象を強く引き起こす場合は、遅れ時間を短く設定するのが好ましい。   When controlling the time (delay time) from the closing of the second on-off valve VC2 to the closing of the first on-off valve VC1, when the piping length between the RO pump E and the decarbonation film B3 is long It is preferable to set the delay time long in consideration of the influence of inertial resistance. On the other hand, when the ion exchange resin cylinder C in the subsequent stage of the decarbonation film B3 is at a low position and strongly causes the siphon phenomenon, it is preferable to set the delay time short.

また、ポンプ固有の性能によるが、インバーター制御機能付きのポンプのように、ROポンプEが停止信号発信からインペラ停止までに数秒を要するポンプの場合、遅れ時間を長く設定することが好ましい。設置条件にもよるが、1〜3秒が好ましい。   Further, depending on the performance inherent to the pump, it is preferable to set a long delay time when the RO pump E requires a few seconds from the stop signal transmission to the impeller stop, such as a pump with an inverter control function. Although it depends on installation conditions, 1 to 3 seconds are preferable.

[実施の形態3]
図7は、本発明の実施の形態3に係る脱炭酸装置Hを用いた純水製造装置Uの全体構成を示す概略ブロック図である。この純水製造装置Uは、上流側より順に逆浸透膜装置A、脱炭酸装置H、イオン交換樹脂ボンベCが配管により接続されて大略構成され、更に制御装置(弁開閉制御装置)Gを有している。なお、本実施の形態3において上記実施の形態1,2と同様の構成については、同様の符号を付し説明を省略する。
[Embodiment 3]
FIG. 7 is a schematic block diagram showing an overall configuration of a pure water production apparatus U using a decarboxylation apparatus H according to Embodiment 3 of the present invention. This pure water production device U is generally configured by connecting a reverse osmosis membrane device A, a decarbonation device H, and an ion exchange resin cylinder C in order from the upstream side, and further has a control device (valve opening / closing control device) G. is doing. Note that the same reference numerals in the third embodiment denote the same parts as in the first and second embodiments, and a description thereof will be omitted.

脱炭酸装置Hは、脱炭酸ベッセルB1、逆流防止手段としての逆止弁V1、陽圧保持手段としてのアキュムレータ12及び開閉弁VC2を有して逆浸透膜装置Aとイオン交換樹脂ボンベCとの間に接続されている。逆止弁V1は脱炭酸ベッセルB1の上流側に設けられ、開閉弁VC2は脱炭酸ベッセルB1の下流側に設けられている。また、アキュムレータ12が逆止弁V1と脱炭酸ベッセルB1との間に設けられている。   The decarboxylation apparatus H includes a decarbonation vessel B1, a check valve V1 as a backflow prevention means, an accumulator 12 as a positive pressure holding means, and an on-off valve VC2, and includes a reverse osmosis membrane apparatus A and an ion exchange resin cylinder C. Connected between. The check valve V1 is provided on the upstream side of the decarboxylation vessel B1, and the on-off valve VC2 is provided on the downstream side of the decarboxylation vessel B1. An accumulator 12 is provided between the check valve V1 and the decarbonation vessel B1.

制御装置Gは開閉弁VC2の開閉制御を行うためのものであり、開閉弁VC2と接続されている。逆止弁V1と脱炭酸ベッセルB1との間には透過水4の圧力を検出する圧力センサ10が設けられ、センサ出力が制御装置Gに入力されるようになっている。   The control device G is for performing on / off control of the on-off valve VC2, and is connected to the on-off valve VC2. A pressure sensor 10 for detecting the pressure of the permeated water 4 is provided between the check valve V1 and the decarboxylation vessel B1, and the sensor output is input to the control device G.

アキュムレータ12は、図8(a)にその内部構成を示すように、本体ケース12a内部にニトリルゴム等の弾性樹脂を材料とするブラダ12bを有して構成され、接続配管P2に接続されている。ブラダ12b内部には蓄圧用のガスが封入され、ブラダ12b外部と本体ケース12a内部とで区画された空間12cが接続配管P2内部と連通されて空間12c内に透過水4が充満するようになっている。   As shown in FIG. 8A, the accumulator 12 has a body 12b having a bladder 12b made of an elastic resin such as nitrile rubber, and is connected to the connection pipe P2. . A gas for accumulating pressure is sealed inside the bladder 12b, and a space 12c defined by the outside of the bladder 12b and the inside of the main body case 12a is communicated with the inside of the connection pipe P2, and the permeated water 4 is filled in the space 12c. ing.

このアキュムレータ12は、透過水4に高い圧力が加わった場合には図8(a)に示すようにブラダ12bが圧縮され、透過水4の圧力が減少した場合には図8(b)に示すようにブラダ12bが拡張されることにより、透過水4の圧力変化を減少させる機能を有している。アキュムレータ12は、一般に配管中を流下する液体の脈動を減少させる目的で使用されるが、本実施の形態3においては、脱炭酸膜B3近傍の透過水4の陽圧を保持する目的で使用する。なお、本実施の形態3においては、アキュムレータ12を逆止弁V1と脱炭酸ベッセルB1との間に設けたが、脱炭酸ベッセルB1と開閉弁VC2との間に設けてもよい。   This accumulator 12 is shown in FIG. 8 (b) when the pressure of the permeated water 4 is compressed and the bladder 12b is compressed as shown in FIG. 8 (a). As described above, the bladder 12b is expanded to have a function of reducing the pressure change of the permeate 4. The accumulator 12 is generally used for the purpose of reducing the pulsation of the liquid flowing down in the pipe. In the third embodiment, the accumulator 12 is used for the purpose of maintaining the positive pressure of the permeate 4 near the decarbonation film B3. . In the third embodiment, the accumulator 12 is provided between the check valve V1 and the decarboxylation vessel B1, but may be provided between the decarboxylation vessel B1 and the on-off valve VC2.

この純水製造装置Uにおいて、ROポンプEを停止させて純水製造を終了する工程については、実施の形態2における工程(S.21)〜工程(S.24)と同様である。すなわち、純水製造中はROポンプEが稼動し、開閉弁VC2が開成状態となっているが(S.21)、純水製造工程終了時にはROポンプEを徐々に停止させ(S.22)、透過水4の圧力が第1の所定圧力(アキュムレータ12の設定圧力)となったとき(S.23)、制御装置Gが開閉弁VC2を閉成する(S.24)。   In the pure water production apparatus U, the process of stopping the RO pump E and terminating the production of pure water is the same as the process (S.21) to the process (S.24) in the second embodiment. That is, the RO pump E is in operation during the production of pure water and the on-off valve VC2 is open (S.21), but the RO pump E is gradually stopped at the end of the pure water production process (S.22). When the pressure of the permeated water 4 becomes the first predetermined pressure (set pressure of the accumulator 12) (S.23), the control device G closes the on-off valve VC2 (S.24).

透過水4の圧力が第1の所定圧力となった時点で開閉弁VC2を閉成するので、接続配管P3内の脱気水5及び脱炭酸膜B3近傍の透過水4は開閉弁VC2より後段部分の、例えばサイフォン現象等による影響を受けない。また、脱炭酸装置Hの上流側に逆止弁V1が設けられているので、脱炭酸膜B3近傍の透過水4は逆止弁V1より前段部分の、例えばサックバック現象等による影響を受けない。更に、逆止弁V1と脱炭酸ベッセルB1との間にアキュムレータ12が設けられているので、ROポンプE停止後も脱炭酸膜B3近傍の透過水4を常に陽圧状態に保持することができる。したがって、接続配管P3内の脱気水5及び脱炭酸膜B3近傍の透過水4が負圧とならず、気体6が脱炭酸膜B3を通じて透過水4中に混入しない。   Since the on-off valve VC2 is closed when the pressure of the permeated water 4 reaches the first predetermined pressure, the deaerated water 5 in the connection pipe P3 and the permeated water 4 in the vicinity of the decarbonized film B3 are downstream of the on-off valve VC2. The part is not affected by, for example, siphon phenomenon. Further, since the check valve V1 is provided on the upstream side of the decarboxylation device H, the permeated water 4 in the vicinity of the decarboxylation film B3 is not affected by, for example, a suck-back phenomenon or the like in a portion preceding the check valve V1. . Furthermore, since the accumulator 12 is provided between the check valve V1 and the decarboxylation vessel B1, the permeated water 4 in the vicinity of the decarboxylation membrane B3 can be always kept in a positive pressure state even after the RO pump E is stopped. . Therefore, the deaerated water 5 in the connection pipe P3 and the permeated water 4 in the vicinity of the decarbonized film B3 do not become negative pressure, and the gas 6 does not enter the permeated water 4 through the decarbonized film B3.

以上、本発明の好ましい実施の形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形や変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these, A various deformation | transformation and change are possible within the range of the summary.

[実施例1]
上記実施の形態1で説明した純水製造装置Sを用い、リリーフ弁V2の設定圧力を種々変更して脱炭酸膜106を通じて透過水4中に気体6が混入するか否かについての実験を行った。実験は、原水2の流量1m/hで所定時間純水製造工程を行った後にROポンプEを停止させ、そのまま一定時間放置後にイオン交換樹脂ボンベC内の混入気体量をボンベ本体C1のサイトグラスより目視確認することにより行った。なお、流量計(図示せず)は逆浸透膜装置Aと逆止弁V1との間に設置した。実験に使用した機器、計器類について表1に示す。
[Example 1]
Using the pure water production apparatus S described in the first embodiment, an experiment was conducted as to whether or not the gas 6 is mixed in the permeated water 4 through the decarbonation film 106 by changing the set pressure of the relief valve V2 in various ways. It was. In the experiment, after the pure water production process was performed for a predetermined time at a flow rate of 1 m 3 / h of the raw water 2, the RO pump E was stopped and left for a certain period of time, and the amount of gas contained in the ion exchange resin cylinder C was changed to the site of the cylinder main body C1. This was done by visual confirmation from a glass. A flow meter (not shown) was installed between the reverse osmosis membrane device A and the check valve V1. Table 1 shows the equipment and instruments used in the experiment.

Figure 2008006393
Figure 2008006393

実験結果について、表2に示す。リリーフ弁V2の設定圧力が0.02MPaの場合、原水2の流量が1〜10m/hのいずれの場合にも透過水4への気体6の混入は見られなかった。なお、リリーフ弁V2の陽圧保持力は、圧力計(DU3/8×φ75×0.6MPa:東洋計器興業株式会社製)によって測定した。 The experimental results are shown in Table 2. When the set pressure of the relief valve V2 was 0.02 MPa, mixing of the gas 6 into the permeated water 4 was not observed when the flow rate of the raw water 2 was 1 to 10 m 3 / h. The positive pressure holding force of the relief valve V2 was measured with a pressure gauge (DU3 / 8 × φ75 × 0.6 MPa: manufactured by Toyo Keiki Co., Ltd.).

Figure 2008006393
Figure 2008006393

本発明の実施の形態1に係る脱炭酸装置を用いた純水製造装置の全体構成を示す概略ブロック図である。It is a schematic block diagram which shows the whole structure of the pure water manufacturing apparatus using the decarboxylation apparatus which concerns on Embodiment 1 of this invention. 図1に示す脱炭酸装置に用いられる脱炭酸ベッセルの内部構成を示す概略構成図である。It is a schematic block diagram which shows the internal structure of the decarboxylation vessel used for the decarboxylation apparatus shown in FIG. 図1に示すイオン交換樹脂ボンベの内部構成を示す概略構成図である。It is a schematic block diagram which shows the internal structure of the ion exchange resin cylinder shown in FIG. 図1に示す純水製造装置による純水製造工程を説明するフローチャートである。It is a flowchart explaining the pure water manufacturing process by the pure water manufacturing apparatus shown in FIG. 本発明の実施の形態2に係る脱炭酸装置を用いた純水製造装置の全体構成を示す概略ブロック図である。It is a schematic block diagram which shows the whole structure of the pure water manufacturing apparatus using the decarboxylation apparatus which concerns on Embodiment 2 of this invention. 図2に示す純水製造装置による純水製造工程のうち、ROポンプを停止させて純水製造工程を終了する工程について説明するフローチャートである。It is a flowchart explaining the process which stops a RO pump and complete | finishes a pure water manufacturing process among the pure water manufacturing processes by the pure water manufacturing apparatus shown in FIG. 本発明の実施の形態3に係る脱炭酸装置を用いた純水製造装置の全体構成を示す概略ブロック図である。It is a schematic block diagram which shows the whole structure of the pure water manufacturing apparatus using the decarboxylation apparatus which concerns on Embodiment 3 of this invention. 図7に示すアキュムレータの内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the accumulator shown in FIG. 従来の脱炭酸装置を用いた純水製造装置の全体構成を示す概略ブロック図である。It is a schematic block diagram which shows the whole structure of the pure water manufacturing apparatus using the conventional decarboxylation apparatus.

符号の説明Explanation of symbols

2:原水
4:透過水
4a:炭酸ガス
5:脱気水
6:気体
8:純水
10:圧力センサ
12:アキュムレータ
12a:本体ケース
12b:ブラダ
12c:空間
100:純水製造装置
101:逆浸透膜装置
102:脱炭酸装置
103:イオン交換装置
104:ROポンプ
105:逆浸透膜
106:脱炭酸膜
107:排水管
108:気体供給装置
S,T,U:純水製造装置
A:逆浸透膜装置
A1:逆浸透膜
A2:排水管
B,F,H:脱炭酸装置
B1:脱炭酸ベッセル
B2:ベッセル本体
B3:脱炭酸膜
C:イオン交換樹脂ボンベ(イオン交換装置)
C1:ボンベ本体
C2:イオン交換樹脂
C3:取水管
D:気体供給装置
E:ROポンプ
E1:インバータ回路
G:制御装置(弁開閉制御装置)
P1〜P7:接続配管
V1:逆止弁(逆流防止手段)
V2:リリーフ弁(陽圧保持手段)
VC1:第1の開閉弁(逆流防止手段)
VC2:第2の開閉弁(陽圧保持手段)
2: Raw water 4: Permeated water 4a: Carbon dioxide gas 5: Deaerated water 6: Gas 8: Pure water 10: Pressure sensor 12: Accumulator 12a: Main body case 12b: Bladder 12c: Space 100: Pure water production apparatus 101: Reverse osmosis Membrane device 102: Decarbonation device 103: Ion exchange device 104: RO pump 105: Reverse osmosis membrane 106: Decarbonation membrane 107: Drain pipe 108: Gas supply device S, T, U: Pure water production device A: Reverse osmosis membrane Device A1: Reverse osmosis membrane A2: Drainage pipes B, F, H: Decarbonation device B1: Decarbonation vessel B2: Vessel body B3: Decarbonation membrane C: Ion exchange resin cylinder (ion exchange device)
C1: cylinder main body C2: ion exchange resin C3: intake pipe D: gas supply device E: RO pump E1: inverter circuit G: control device (valve opening / closing control device)
P1 to P7: Connection piping V1: Check valve (backflow prevention means)
V2: Relief valve (positive pressure holding means)
VC1: first on-off valve (backflow prevention means)
VC2: second on-off valve (positive pressure holding means)

Claims (6)

逆浸透膜装置とイオン交換装置との間に接続され、前記逆浸透膜装置を透過した透過水中の炭酸ガスを脱気して前記イオン交換装置に向けて脱気水を送水する脱炭酸装置であって、
脱炭酸膜と、
該脱炭酸膜の上流側に設けられ、前記透過水の逆流を防止する逆流防止手段と、
該逆流防止手段の下流側に設けられ、前記脱気水を陽圧状態に保持する陽圧保持手段と、を有する脱炭酸装置。
A decarboxylation device connected between a reverse osmosis membrane device and an ion exchange device, for degassing the carbon dioxide gas in the permeated water that has passed through the reverse osmosis membrane device and feeding degassed water toward the ion exchange device. There,
A decarbonation membrane,
A backflow prevention means provided on the upstream side of the decarboxylation film, for preventing backflow of the permeate;
And a positive pressure holding means that is provided downstream of the backflow prevention means and holds the degassed water in a positive pressure state.
前記逆流防止手段が逆止弁であり、前記陽圧保持手段がアキュムレータである請求項1に記載の脱炭酸装置。   The decarboxylation apparatus according to claim 1, wherein the backflow prevention means is a check valve, and the positive pressure holding means is an accumulator. 前記逆流防止手段が逆止弁であり、前記陽圧保持手段が前記脱炭酸膜の下流側に設けられたリリーフ弁である請求項1に記載の脱炭酸装置。   The decarboxylation apparatus according to claim 1, wherein the backflow prevention means is a check valve, and the positive pressure holding means is a relief valve provided on the downstream side of the decarbonation film. 前記逆流防止手段が開閉制御可能な第1の開閉弁であり、前記陽圧保持手段が前記脱炭酸膜の下流側に設けられて開閉制御可能な第2の開閉弁であり、かつ、
原水の送水を停止する際に、前記第1の開閉弁を閉成させるより先に前記第2の開閉弁を閉成させるとともに前記透過水の圧力が0.02MPa以下となる前に前記第1の開閉弁を閉成させる弁開閉制御装置を更に有する請求項1に記載の脱炭酸装置。
The backflow prevention means is a first on-off valve capable of opening / closing control, and the positive pressure holding means is a second on-off valve provided on the downstream side of the decarbonation film and capable of opening / closing control, and
When stopping the feed of raw water, the first on-off valve is closed before the first on-off valve is closed, and the first permeated water pressure becomes 0.02 MPa or less before the first on-off valve is closed. The decarboxylation device according to claim 1, further comprising a valve opening / closing control device for closing the opening / closing valve.
逆浸透膜装置とイオン交換装置との間に接続されて脱炭酸膜を有する脱炭酸装置により、前記逆浸透膜装置を透過した透過水中の炭酸ガスを脱気する脱炭酸方法であって、
前記逆浸透膜装置への原水供給を停止する際に、前記脱炭酸膜の上流側に設けられた逆流防止手段によって前記透過水の逆流を防止する工程と、
該逆流防止手段の下流側に設けられた陽圧保持手段によって前記脱気水を陽圧状態に保持する工程と、を有する脱炭酸方法。
A decarbonation method for degassing carbon dioxide gas in permeated water that has permeated through the reverse osmosis membrane device by a decarboxylation device connected between a reverse osmosis membrane device and an ion exchange device and having a decarbonation membrane,
A step of preventing reverse flow of the permeated water by a reverse flow preventing means provided upstream of the decarbonation membrane when stopping the supply of raw water to the reverse osmosis membrane device;
And a step of holding the degassed water in a positive pressure state by a positive pressure holding means provided on the downstream side of the backflow preventing means.
逆浸透膜装置とイオン交換装置との間に接続されて脱炭酸膜を有する脱炭酸装置により、前記逆浸透膜装置を透過した透過水中の炭酸ガスを脱気する脱炭酸方法であって、
前記逆浸透膜装置への原水供給を停止する際に、前記脱炭酸膜の上流側に設けられた第1の開閉弁を閉成させるより先に前記脱炭酸膜の下流側に設けられた第2の開閉弁を閉成させる工程と、
前記透過水の圧力が0.02MPa以下となる前に前記第1の開閉弁を閉成させる工程と、を有する脱炭酸方法。
A decarbonation method for degassing carbon dioxide gas in permeated water that has permeated through the reverse osmosis membrane device by a decarboxylation device connected between a reverse osmosis membrane device and an ion exchange device and having a decarbonation membrane,
When stopping the supply of raw water to the reverse osmosis membrane device, the first on-off valve provided on the upstream side of the decarbonation membrane is closed before the first on-off valve provided on the downstream side of the decarbonation membrane. Closing the two on-off valves;
And a step of closing the first on-off valve before the pressure of the permeated water becomes 0.02 MPa or less.
JP2006180737A 2006-06-30 2006-06-30 Decarbonation apparatus and decarbonation method Active JP4673804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180737A JP4673804B2 (en) 2006-06-30 2006-06-30 Decarbonation apparatus and decarbonation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180737A JP4673804B2 (en) 2006-06-30 2006-06-30 Decarbonation apparatus and decarbonation method

Publications (2)

Publication Number Publication Date
JP2008006393A true JP2008006393A (en) 2008-01-17
JP4673804B2 JP4673804B2 (en) 2011-04-20

Family

ID=39065090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180737A Active JP4673804B2 (en) 2006-06-30 2006-06-30 Decarbonation apparatus and decarbonation method

Country Status (1)

Country Link
JP (1) JP4673804B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040260A (en) * 2009-10-16 2011-05-04 奥加诺株式会社 Water treatment device of fuel cell and water treatment method of fuel cell
DE102010032736A1 (en) 2010-07-30 2012-02-02 Sartorius Stedim Biotech Gmbh Apparatus and method for degassing aqueous media
US20120224987A1 (en) * 2011-03-03 2012-09-06 Brian Carter Jones Precision fluid transport and metering system with modular and disposable elements
JP2014091095A (en) * 2012-11-05 2014-05-19 Nomura Micro Sci Co Ltd Pure water manufacturing system
WO2016199725A1 (en) * 2015-06-09 2016-12-15 東レ株式会社 Fresh water production device and method for operating fresh water production device
WO2020110853A1 (en) * 2018-11-27 2020-06-04 シャープ株式会社 Water purification device and household water purifier

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332724A (en) * 1989-06-30 1991-02-13 Miura Co Ltd Automatic backwashing device in deoxidation water supply system
JPH05154359A (en) * 1991-12-03 1993-06-22 Toto Ltd Membrane separator
JPH07136472A (en) * 1993-11-17 1995-05-30 Miura Co Ltd Method and apparatus for washing gas separation membrane
JPH07185210A (en) * 1993-12-24 1995-07-25 Miura Co Ltd Filtration device
JP2000084368A (en) * 1998-09-08 2000-03-28 Mitsubishi Rayon Co Ltd Multiple hollow fiber membrane for liquid chemical deaeration
JP2000185203A (en) * 1998-12-22 2000-07-04 Kurita Water Ind Ltd Operating method for membrane deaeration device
JP2003080245A (en) * 2001-09-13 2003-03-18 Nippon Rensui Co Ltd Water purifying apparatus
JP2003080036A (en) * 2001-09-07 2003-03-18 Mitsubishi Heavy Ind Ltd Method for manufacturing purified water
JP2006034202A (en) * 2004-07-29 2006-02-09 Miura Co Ltd Agricultural crop raising system and agricultural crop raising method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332724A (en) * 1989-06-30 1991-02-13 Miura Co Ltd Automatic backwashing device in deoxidation water supply system
JPH05154359A (en) * 1991-12-03 1993-06-22 Toto Ltd Membrane separator
JPH07136472A (en) * 1993-11-17 1995-05-30 Miura Co Ltd Method and apparatus for washing gas separation membrane
JPH07185210A (en) * 1993-12-24 1995-07-25 Miura Co Ltd Filtration device
JP2000084368A (en) * 1998-09-08 2000-03-28 Mitsubishi Rayon Co Ltd Multiple hollow fiber membrane for liquid chemical deaeration
JP2000185203A (en) * 1998-12-22 2000-07-04 Kurita Water Ind Ltd Operating method for membrane deaeration device
JP2003080036A (en) * 2001-09-07 2003-03-18 Mitsubishi Heavy Ind Ltd Method for manufacturing purified water
JP2003080245A (en) * 2001-09-13 2003-03-18 Nippon Rensui Co Ltd Water purifying apparatus
JP2006034202A (en) * 2004-07-29 2006-02-09 Miura Co Ltd Agricultural crop raising system and agricultural crop raising method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102040260A (en) * 2009-10-16 2011-05-04 奥加诺株式会社 Water treatment device of fuel cell and water treatment method of fuel cell
US8979977B2 (en) 2010-07-30 2015-03-17 Sartorius Stedim Biotech Gmbh Device and method for degassing aqueous media
DE102010032736A1 (en) 2010-07-30 2012-02-02 Sartorius Stedim Biotech Gmbh Apparatus and method for degassing aqueous media
WO2012013256A1 (en) 2010-07-30 2012-02-02 Sartorius Stedim Biotech Gmbh Device and method for degassing aqueous media
DE102010032736B4 (en) * 2010-07-30 2012-07-26 Sartorius Stedim Biotech Gmbh Apparatus and method for degassing aqueous media
US20130118347A1 (en) * 2010-07-30 2013-05-16 Sartorius Stedim Biotech Gmbh Device and method for degassing aqueous media
JP2013535321A (en) * 2010-07-30 2013-09-12 ザルトリウス・シュテーディム・ビーオテヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for degassing aqueous media
US20120224987A1 (en) * 2011-03-03 2012-09-06 Brian Carter Jones Precision fluid transport and metering system with modular and disposable elements
US9353757B2 (en) * 2011-03-03 2016-05-31 Brian Carter Jones Magnetically actuated fluid pump
US10280909B2 (en) 2011-03-03 2019-05-07 Brian Carter Jones Magnetically actuated fluid pump
JP2014091095A (en) * 2012-11-05 2014-05-19 Nomura Micro Sci Co Ltd Pure water manufacturing system
WO2016199725A1 (en) * 2015-06-09 2016-12-15 東レ株式会社 Fresh water production device and method for operating fresh water production device
US10583398B2 (en) 2015-06-09 2020-03-10 Toray Industries, Inc. Fresh water production device and method for operating fresh water production device
WO2020110853A1 (en) * 2018-11-27 2020-06-04 シャープ株式会社 Water purification device and household water purifier
JPWO2020110853A1 (en) * 2018-11-27 2021-10-07 シャープ株式会社 Water purifier and household water purifier
JP7346447B2 (en) 2018-11-27 2023-09-19 シャープ株式会社 Water purification equipment and household water purifiers

Also Published As

Publication number Publication date
JP4673804B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4673804B2 (en) Decarbonation apparatus and decarbonation method
KR102263669B1 (en) Cleaning apparatus and cleaning method for water treatment membrane, and water treatment system
JP6072994B1 (en) Membrane filtration apparatus, filtration membrane cleaning method, and filtration membrane manufacturing method
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
JP5910675B2 (en) Pure water production apparatus and pure water production method
JP2007289940A (en) Washing method of hollow fiber membrane module
WO2017191829A1 (en) Method for starting ultrapure water production apparatus
TW201838930A (en) Cleaning water supply device
JP2006255567A (en) Immersion type membrane separation device and its chemical washing method
JP2008006332A (en) Method for manufacturing specific-gas-dissolved water, and apparatus and method for circulating specific-gas-dissolved water
JP5380870B2 (en) Method and apparatus for producing gas-dissolved water
CN107879517B (en) Ultrapure water degasser for immersion lithography
JP2007185559A (en) Method and device for dissolving gas
JP2011110439A (en) Washing method of membrane module
JP4180019B2 (en) Reverse osmosis membrane cleaning method and wastewater recovery method using this method
JP2000185203A (en) Operating method for membrane deaeration device
JP2003126854A (en) Manufacturing device for primary water purification
JPH0580248B2 (en)
KR101692689B1 (en) System and Method for Filtering Using Positive Pressure Type Module
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP7155373B1 (en) Method for operating liquid ring pump, membrane degassing device, pure water production system, and pure water production method
WO2023286457A1 (en) Wastewater treatment method
JP2002126468A (en) Method of cleaning membrane module and membrane filter apparatus
JP7213711B2 (en) Water treatment device and water treatment method
RU20256U1 (en) SOLUTION SEPARATION INSTALLATION

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent or registration of utility model

Ref document number: 4673804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250