JP2008004971A - Semiconductor device, and its manufacturing method - Google Patents

Semiconductor device, and its manufacturing method Download PDF

Info

Publication number
JP2008004971A
JP2008004971A JP2007249579A JP2007249579A JP2008004971A JP 2008004971 A JP2008004971 A JP 2008004971A JP 2007249579 A JP2007249579 A JP 2007249579A JP 2007249579 A JP2007249579 A JP 2007249579A JP 2008004971 A JP2008004971 A JP 2008004971A
Authority
JP
Japan
Prior art keywords
resin
mold
resin sheet
semiconductor device
die pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007249579A
Other languages
Japanese (ja)
Other versions
JP2008004971A5 (en
Inventor
Kenichi Hayashi
建一 林
Hisashi Kawato
寿 川藤
Tatsuyuki Takeshita
竜征 竹下
Nobuhito Funakoshi
信仁 船越
Hiroyuki Ozaki
弘幸 尾崎
Kazuhiro Tada
和弘 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007249579A priority Critical patent/JP2008004971A/en
Publication of JP2008004971A publication Critical patent/JP2008004971A/en
Publication of JP2008004971A5 publication Critical patent/JP2008004971A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power semiconductor device in which the heat radiation characteristic is superior, insulating properties are high, and further a miniaturization is possible. <P>SOLUTION: The power semiconductor device composed of a resin-molded chip includes: a frame with a top surface and a rear surface, containing a die pad; a power chip mounted on the top surface of the die pad; an insulating resin sheet with a first surface and a second surface facing to each other, which is arranged so that the rear surface of the die pad is brought into contact with the first surface thereof, has a size containing the die pad, and has thermal conductivity higher than that of the mold resin; a metal foil disposed on the second surface of the resin sheet; and a mixture layer of the resin sheet and the mold resin in which both of them are mixed in a liquefied state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置に関し、特に、パワーチップを含む電力用の半導体装置に関する。   The present invention relates to a semiconductor device, and more particularly to a power semiconductor device including a power chip.

従来の電力用の半導体装置では、パワーチップやICチップが、それぞれフレーム上にダイボンドされ、更に、これらのチップは樹脂により封止されている。パワーチップは放熱量が大きいため、例えば、半導体装置の裏面に冷却フィンを取り付けて、放熱効率を高めている。パワーチップを載置するフレームは樹脂に覆われて、裏面に取り付けられる冷却フィンから絶縁される(例えば、特許文献1)。   In a conventional power semiconductor device, a power chip and an IC chip are each die-bonded on a frame, and these chips are sealed with a resin. Since the power chip has a large heat dissipation amount, for example, a cooling fin is attached to the back surface of the semiconductor device to increase the heat dissipation efficiency. The frame on which the power chip is placed is covered with resin and insulated from cooling fins attached to the back surface (for example, Patent Document 1).

また、半導体装置の放熱特性を向上させるために、半導体装置の裏面にアルミナ等からなる薄板の絶縁体を取り付けた半導体装置も提案されている(例えば、特許文献2)。
特開2000−138343号公報 特開2001−156253号公報
In addition, in order to improve the heat dissipation characteristics of the semiconductor device, a semiconductor device in which a thin plate insulator made of alumina or the like is attached to the back surface of the semiconductor device has also been proposed (for example, Patent Document 2).
JP 2000-138343 A JP 2001-156253 A

しかしながら、前者の半導体装置では、放熱特性を向上させるには、パワーチップを載置したフレームを覆う樹脂、具体的には、パワーチップを載置したフレームの裏面と半導体装置の裏面との間の樹脂を薄くする必要があるが、この部分の樹脂を薄くすると絶縁特性が逆に低下するという問題があった。   However, in the former semiconductor device, in order to improve the heat dissipation characteristics, the resin covering the frame on which the power chip is placed, specifically, the gap between the back surface of the frame on which the power chip is placed and the back surface of the semiconductor device. Although it is necessary to make the resin thinner, there is a problem that if this portion of the resin is made thinner, the insulating properties are lowered.

一方、後者の半導体装置では、絶縁体と樹脂との熱膨張係数が大きく異なるため、パワーチップの発熱により樹脂から絶縁体が剥離するという問題があった。また、絶縁体と樹脂との間に界面ができるため、かかる界面での沿面絶縁を確保するためには沿面絶縁距離を確保しなければならず、半導体装置が大型化するという問題もあった。   On the other hand, in the latter semiconductor device, since the thermal expansion coefficients of the insulator and the resin are greatly different, there is a problem that the insulator is separated from the resin due to heat generated by the power chip. In addition, since an interface is formed between the insulator and the resin, it is necessary to ensure a creeping insulation distance in order to ensure creeping insulation at the interface, and there is a problem that the semiconductor device is enlarged.

そこで、本発明は、放熱特性に優れ、かつ絶縁性が高く、更に小型化が可能な半導体装置の提供を目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that has excellent heat dissipation characteristics, high insulating properties, and can be further miniaturized.

本発明は、チップが樹脂モールドされた半導体装置において、表面と裏面を備えダイパッドを含むフレームと、ダイパッドの表面に載置されたパワーチップと、対向する第1面と第2面とを備えダイパッドの裏面がその第1面と接するように配置された絶縁性の樹脂シートと、樹脂シートの第1面上にパワーチップを封止するように設けられたモールド樹脂とを含むものである。かかる半導体装置において、樹脂シートの熱伝導率は、モールド樹脂の熱伝導率より大きい。   The present invention relates to a semiconductor device in which a chip is resin-molded, and includes a frame including a die pad including a front surface and a back surface, a power chip mounted on the surface of the die pad, and a first surface and a second surface facing each other. Insulating resin sheet disposed so that its back surface is in contact with the first surface, and a mold resin provided so as to seal the power chip on the first surface of the resin sheet. In such a semiconductor device, the thermal conductivity of the resin sheet is larger than the thermal conductivity of the mold resin.

また、本発明は、チップを樹脂モールドした半導体装置の製造方法であって、表面と裏面を備えダイパッドを有するフレームを準備するフレーム準備工程と、第1面と第2面を有する絶縁性の樹脂シートを準備する工程と、ダイパッドの表面上にパワーチップを載置する工程と、ダイパッドの裏面が樹脂シートの第1面に接するように樹脂シートの第1面上にフレームを配置する工程と、樹脂シートの第1面上に、パワーチップを埋め込むように封止用樹脂を充填する樹脂モールド工程とを含む。樹脂シートには、封止用樹脂より熱伝導率の大きな樹脂を用いる。   The present invention also relates to a method of manufacturing a semiconductor device in which a chip is resin-molded, a frame preparation step of preparing a frame having a front surface and a back surface and having a die pad, and an insulating resin having a first surface and a second surface A step of preparing a sheet, a step of placing a power chip on the surface of the die pad, a step of arranging a frame on the first surface of the resin sheet so that the back surface of the die pad is in contact with the first surface of the resin sheet, And a resin molding step of filling a sealing resin so as to embed the power chip on the first surface of the resin sheet. As the resin sheet, a resin having a higher thermal conductivity than the sealing resin is used.

本発明にかかる半導体装置では、樹脂シートを用いることにより、放熱特性に優れ、かつ、絶縁性を高くすることができる。更には、半導体装置の小型化も可能となる。   In the semiconductor device according to the present invention, by using the resin sheet, the heat dissipation characteristics are excellent and the insulating property can be increased. Furthermore, the semiconductor device can be downsized.

実施の形態1.
図1は、全体が100で表される、本実施の形態にかかる半導体装置の斜視図である。また、図2は、図1の半導体装置100の裏面図、図3は、図1の半導体装置100の、I−I方向に見た断面図である。更に、図4は、図1の半導体装置100の内部の一部分を示す斜視図である。
Embodiment 1 FIG.
FIG. 1 is a perspective view of the semiconductor device according to the present embodiment, indicated as a whole by 100. 2 is a back view of the semiconductor device 100 of FIG. 1, and FIG. 3 is a cross-sectional view of the semiconductor device 100 of FIG. FIG. 4 is a perspective view showing a part of the inside of the semiconductor device 100 of FIG.

図1に示すように、半導体装置100は、樹脂モールド型パッケージ構造からなり、複数の金属製のフレーム1が両側に設けられたモールド樹脂2を含む。モールド樹脂2は、好適にはエポキシ樹脂からなる。   As shown in FIG. 1, a semiconductor device 100 has a resin mold type package structure and includes a mold resin 2 in which a plurality of metal frames 1 are provided on both sides. The mold resin 2 is preferably made of an epoxy resin.

図2に示すように、モールド樹脂2の裏面には、例えば銅からなる金属箔4が裏面に取り付けられた絶縁性の樹脂シート3が設けられている。樹脂シート3は、好適には、フィラーを含むエポキシ樹脂からなる。フィラーは、好適には、SiO、Al、AlN、Si、及びBNから選択される1又は複数の材料からなる。樹脂シート3の熱伝導率は、モールド樹脂2の熱伝導率より大きくなっている。 As shown in FIG. 2, an insulating resin sheet 3 in which a metal foil 4 made of, for example, copper is attached to the back surface is provided on the back surface of the mold resin 2. The resin sheet 3 is preferably made of an epoxy resin containing a filler. Filler is preferably composed of one or more materials selected from SiO 2, Al 2 O 3, AlN, Si 3 N 4, and BN. The thermal conductivity of the resin sheet 3 is larger than the thermal conductivity of the mold resin 2.

図3に示すように、半導体装置100は、複数のフレーム1を含む。図4に、更に詳しく示すように、一のフレーム1には、ロジックチップのようなICチップ7が載置されている。また、他方のフレーム1は、ダイパッド部1aと段差部1bとを含み、ダイパッド部1aの上に、IGBT5aやFWDiode5bのようなパワーチップ5が載置されている。パワーチップ5、ICチップ7、及びフレーム1の間は、例えば金やアルミニウムからなるボンディボンディングワイヤ6、8で接続され、ICチップ7により、パワーチップ5の動作が制御される。
一般に、パワーチップ5やICチップ7は、はんだや銀ペーストを用いてフレーム1に固定される。また、パワーチップ5の接続にはアルミニウムのボンディングワイヤ8が用いられ、ICチップ7の接続には、これより直径の小さな金のボンディングワイヤ6が用いられる。
なお、パワーチップ5やICチップ7は、半導体装置100の機能に応じて複数個設けても構わない。
As shown in FIG. 3, the semiconductor device 100 includes a plurality of frames 1. As shown in more detail in FIG. 4, an IC chip 7 such as a logic chip is placed on one frame 1. The other frame 1 includes a die pad portion 1a and a step portion 1b, and a power chip 5 such as an IGBT 5a or an FWDiode 5b is placed on the die pad portion 1a. The power chip 5, the IC chip 7, and the frame 1 are connected by bond bonding wires 6 and 8 made of, for example, gold or aluminum, and the operation of the power chip 5 is controlled by the IC chip 7.
In general, the power chip 5 and the IC chip 7 are fixed to the frame 1 using solder or silver paste. Further, an aluminum bonding wire 8 is used for connecting the power chip 5, and a gold bonding wire 6 having a smaller diameter is used for connecting the IC chip 7.
A plurality of power chips 5 and IC chips 7 may be provided according to the function of the semiconductor device 100.

上述のように、モールド樹脂2は、金属箔4が取り付けられた絶縁性の樹脂シート3を含み、モールド樹脂2の裏面から金属箔4が露出している。かかる金属箔4は、樹脂シート3をダメージから保護するため、樹脂シート3は高い絶縁性を維持できる。かかるダメージとしては、例えば、半導体装置100を外部ヒートシンク(図示せず)に、ねじ止めする際に、半導体装置100と外部ヒートシンクとの間に異物を噛み込んだままでねじ止めを行なった場合に発生するダメージが考えられる。なお、ダメージが発生しにくい場合は、金属箔4を設けない構造を採用してもよい。この場合、モールド樹脂2の裏面からは、樹脂シート3が露出することとなる。   As described above, the mold resin 2 includes the insulating resin sheet 3 to which the metal foil 4 is attached, and the metal foil 4 is exposed from the back surface of the mold resin 2. Since the metal foil 4 protects the resin sheet 3 from damage, the resin sheet 3 can maintain high insulation. Such damage occurs, for example, when the semiconductor device 100 is screwed to an external heat sink (not shown) and the foreign material is caught between the semiconductor device 100 and the external heat sink. Damage to be considered. If damage is unlikely to occur, a structure in which the metal foil 4 is not provided may be employed. In this case, the resin sheet 3 is exposed from the back surface of the mold resin 2.

樹脂シート3の上には、ダイパッド部1aの裏面が直接接するように、フレーム1が載置されている。樹脂シート3の面積は、ダイパッド部1aの面積よりも大きくなっている。更に、パワーチップ5、ICチップ7等は、モールド樹脂2で封止されている。   On the resin sheet 3, the frame 1 is placed so that the back surface of the die pad portion 1a is in direct contact. The area of the resin sheet 3 is larger than the area of the die pad portion 1a. Further, the power chip 5, the IC chip 7, etc. are sealed with the mold resin 2.

樹脂シート3とモールド樹脂2とが接触する領域には、両方の樹脂が混合した混合層9が形成されている。このように、混合層9を介して樹脂シート3とモールド樹脂2とが接続されるため、混合層9のない場合に比較して、樹脂シート3とモールド樹脂2との間の熱伝導性が高くなり、放熱特性が向上する。混合層9の形成方法については後述する。   A mixed layer 9 in which both resins are mixed is formed in a region where the resin sheet 3 and the mold resin 2 are in contact with each other. As described above, since the resin sheet 3 and the mold resin 2 are connected via the mixed layer 9, the thermal conductivity between the resin sheet 3 and the mold resin 2 is lower than when the mixed layer 9 is not provided. Increases heat dissipation characteristics. A method for forming the mixed layer 9 will be described later.

樹脂シート3の熱伝導率は、モールド樹脂2の熱伝導率より大きく、特に、2倍以上であることが好ましい。これにより、放熱特性に優れた半導体装置100を得ることができる。   The thermal conductivity of the resin sheet 3 is larger than the thermal conductivity of the mold resin 2, and is particularly preferably twice or more. Thereby, the semiconductor device 100 excellent in heat dissipation characteristics can be obtained.

次に、図5、6を参照しながら、半導体装置100の製造方法について説明する。かかる製造方法は、以下の工程1〜8を含む。なお、図5、6は、図1のI−Iと同じ方向に見た断面図である。   Next, a method for manufacturing the semiconductor device 100 will be described with reference to FIGS. Such a manufacturing method includes the following steps 1 to 8. 5 and 6 are cross-sectional views seen in the same direction as II in FIG.

工程1:図5(a)に示すように、例えば銅からなるフレーム1を準備する。続いて、一のフレーム1の上にICチップ7を、他方のフレーム1のダイパッド部1aの上にパワーチップ6を、それぞれ、はんだや銀ペースト等を用いて固定する。   Step 1: As shown in FIG. 5A, a frame 1 made of, for example, copper is prepared. Subsequently, the IC chip 7 is fixed on one frame 1 and the power chip 6 is fixed on the die pad portion 1a of the other frame 1 using solder, silver paste, or the like.

工程2:図5(b)に示すように、アルミニウムのボンディングワイヤ6を用いて、パワーチップ5同士、パワーチップ5とフレーム1、フレーム1同士を接続する(アルミワイヤボンド工程)。なお、ボンディングワイヤ6には、アルミニウムを主成分とする合金や、他の金属を用いても構わない。   Step 2: As shown in FIG. 5B, the power chips 5 and the power chips 5 and the frames 1 and 1 are connected to each other using an aluminum bonding wire 6 (aluminum wire bonding step). The bonding wire 6 may be made of an alloy mainly composed of aluminum or other metal.

工程3:図5(c)に示すように、金のボンディングワイヤ7を用いて、ICチップ7とフレーム1を接続する(金ワイヤボンド工程)。なお、ボンディングワイヤ7には、金を主成分とする合金や、他の金属を用いても構わない。   Step 3: As shown in FIG. 5C, the IC chip 7 and the frame 1 are connected using a gold bonding wire 7 (gold wire bonding step). The bonding wire 7 may be made of an alloy mainly composed of gold or other metal.

工程4:図5(d)に示すように、樹脂封止用金型20を準備する。樹脂封止用金型20は、上部金型21と下部金型22に分かれるようになっている。続いて、裏面に金属箔4を取り付けた絶縁性の樹脂シート3を準備し、樹脂封止用金型20の内部の所定の位置に配置する。この場合、金属箔4の裏面が下部金型22の内部底面に接するように、樹脂シート3が配置される。ここで、樹脂シート3には、半硬化状態の樹脂が用いられる。樹脂シート3は、例えばエポキシ樹脂からなり、上述のように、フィラーを含むことが好ましい。
なお、半硬化状態の樹脂とは、常温では固体であるが、高温では一旦溶融した後に完全硬化に向かう、硬化が未完全状態な熱硬化樹脂をいう。
Step 4: As shown in FIG. 5D, a resin sealing mold 20 is prepared. The resin sealing mold 20 is divided into an upper mold 21 and a lower mold 22. Subsequently, the insulating resin sheet 3 having the metal foil 4 attached to the back surface is prepared and disposed at a predetermined position inside the resin sealing mold 20. In this case, the resin sheet 3 is disposed so that the back surface of the metal foil 4 is in contact with the inner bottom surface of the lower mold 22. Here, a semi-cured resin is used for the resin sheet 3. The resin sheet 3 is made of, for example, an epoxy resin, and preferably includes a filler as described above.
The semi-cured resin refers to a thermosetting resin that is solid at normal temperature but is once melted at high temperature and then proceeds to complete curing and is not completely cured.

工程5:図6(e)に示すように、パワーチップ5等を実装したフレーム1を、樹脂封止用金型20中の所定の位置に配置する。この場合、フレーム1のダイパッド部の裏面が樹脂シート3の上面に接するように、フレーム1を配置する。   Step 5: As shown in FIG. 6E, the frame 1 on which the power chip 5 and the like are mounted is disposed at a predetermined position in the resin sealing mold 20. In this case, the frame 1 is arranged so that the back surface of the die pad portion of the frame 1 is in contact with the upper surface of the resin sheet 3.

工程6:図6(f)に示すように、下部金型22に上部金型21を取り付けて固定する。続いて、トランスファモールド成形法により、例えばエポキシ樹脂からなる封止用樹脂12を樹脂封止用金型20内に充填する。図6(f)では、左方から充填する。
かかる工程で、樹脂封止用金型20内に設置された半硬化状態の樹脂シート3は、まず、高温の樹脂封止用金型20から熱をもらい、一旦溶融する。更に、溶融した樹脂シート3と、ダイパッド1aとが、加圧状態で注入される封止用樹脂12により加圧され、固着される。
Step 6: As shown in FIG. 6F, the upper mold 21 is attached and fixed to the lower mold 22. Subsequently, a sealing resin 12 made of, for example, an epoxy resin is filled in the resin sealing mold 20 by a transfer mold molding method. In FIG. 6F, the filling is performed from the left side.
In this process, the semi-cured resin sheet 3 installed in the resin sealing mold 20 is first melted by receiving heat from the high temperature resin sealing mold 20. Further, the molten resin sheet 3 and the die pad 1a are pressed and fixed by the sealing resin 12 injected in a pressurized state.

工程7:図6(g)に示すように、封止用樹脂2、樹脂シート3を加熱硬化させる。かかる工程で、樹脂シート3と封止用樹脂12とは、共に溶融した状態で接触するため、混合し、その接触部分に混合層9が形成される。
工程4〜7は、いわゆるトランスファモールド工程となる。かかる工程では、樹脂シート3が溶融時に加圧されるが、樹脂封止用金型20内全体が封止用樹脂12により加圧されているため、樹脂シート3の厚さはほとんど変化しない。一方、樹脂封止用金型20内の各部が封止用樹脂12により同時に充填されるわけではなく、各部に圧力が均等にかかるまでの時間には、僅かであるが時間のずれが生じる。従って、樹脂シート3の特性としては、溶融時の流動性が小さい方が望ましい。
Step 7: As shown in FIG. 6G, the sealing resin 2 and the resin sheet 3 are heat-cured. In this process, since the resin sheet 3 and the sealing resin 12 are in contact with each other in a molten state, they are mixed and a mixed layer 9 is formed at the contact portion.
Steps 4 to 7 are so-called transfer molding steps. In such a process, the resin sheet 3 is pressurized when it is melted, but since the entire inside of the resin sealing mold 20 is pressurized by the sealing resin 12, the thickness of the resin sheet 3 hardly changes. On the other hand, each part in the resin sealing mold 20 is not filled with the sealing resin 12 at the same time, and there is a slight time shift until the pressure is uniformly applied to each part. Therefore, as a characteristic of the resin sheet 3, it is desirable that the fluidity at the time of melting is small.

工程8:樹脂封止用金型20から取り出した後、モールド樹脂を完全硬化させるためのポストキュア、タイバーなどのフレーム余分部の切断等を行なう。更に、フレーム(外部端子)1の成形を行なうことにより、図1に示すような半導体装置100が完成する。   Step 8: After taking out from the mold 20 for resin sealing, cutting of extra frame parts such as post-cure and tie bar for completely curing the mold resin is performed. Further, by forming the frame (external terminal) 1, the semiconductor device 100 as shown in FIG. 1 is completed.

なお、樹脂シート3は、エポキシ樹脂を主成分とし、主に熱伝導性を高める目的から、上述のようにSiO等の絶縁性フィラーが充填されていることが好ましい。これらのフィラーは、また、絶縁シート3の線膨張係数を小さくする効果を持つため、ダイパッド1aや金属箔4との熱膨張係数の差が小さくなる。このため、温度変化に起因する剥離が発生しにくい、信頼性に優れたものとすることができる。 In addition, it is preferable that the resin sheet 3 is mainly filled with an insulating filler such as SiO 2 as described above for the purpose of mainly increasing the thermal conductivity with an epoxy resin as a main component. Since these fillers also have the effect of reducing the linear expansion coefficient of the insulating sheet 3, the difference in thermal expansion coefficient between the die pad 1a and the metal foil 4 is reduced. For this reason, peeling due to temperature change hardly occurs, and excellent reliability can be achieved.

また、封止用樹脂12も、樹脂シート3と同様に、エポキシ樹脂を主成分とする材料とすると、混合層9を安定して形成できる。かかる場合、封止用樹脂12と樹脂シート3との明確な界面が無くなり、その間での沿面絶縁を考慮する必要がなくなり、結果として半導体装置の小型化が可能となる。   Moreover, if the sealing resin 12 is also made of a material mainly composed of an epoxy resin, like the resin sheet 3, the mixed layer 9 can be stably formed. In such a case, there is no clear interface between the sealing resin 12 and the resin sheet 3, and it is not necessary to consider creeping insulation therebetween, and as a result, the semiconductor device can be miniaturized.

更に、樹脂シート3では、フィラーの形状を鱗片状にすることで、粒状とする場合に比べ、絶縁性を安定的に確保できることが、後述のように実験により明らかになっている。
かかる実験では、鱗片状フィラーを充填した樹脂シートと、同量の粒状フィラーを充填した樹脂シートを用いて、半導体装置100を製作し、絶縁試験を行った。絶縁試験の結果を表1に示す。
Furthermore, in the resin sheet 3, it has been clarified by experiments as will be described later that the insulating property can be stably ensured by making the shape of the filler scaly as compared with the case where the filler is granular.
In this experiment, the semiconductor device 100 was manufactured by using a resin sheet filled with scaly filler and a resin sheet filled with the same amount of granular filler, and an insulation test was performed. The results of the insulation test are shown in Table 1.

(表1)
鱗片状 r/N = 0/10
粒状 r/N = 3/10
ここで、rは不合格となったサンプルの数量、Nは試験に投入したサンプルの数量を示す。
(Table 1)
Scaly r / N = 0/10
Granular r / N = 3/10
Here, r represents the number of rejected samples, and N represents the number of samples put into the test.

更に、鱗片状フィラーでは、粒状フィラーに比べ、フィラーの比表面積が大きいため、シート樹脂との接触面積も大きくなり、溶融時の流動性を小さくすることができる。   Furthermore, in the scale-like filler, since the specific surface area of the filler is larger than that of the granular filler, the contact area with the sheet resin is also increased, and the fluidity at the time of melting can be reduced.

また、フィラーのサイズについては、大きいサイズの(最大直径の大きな)フィラーと、小さいサイズの(最大直径の小さな)フィラーとを、混ぜて用いても良い。図7は、2種のサイズのフィラーを含む樹脂シート3の断面の拡大図である。樹脂シート3は、大きいサイズのフィラー31と、小さいサイズのフィラー32とが、エポキシ樹脂等の樹脂層33に含まれた構造となっている。
図7のように、大きいサイズのフィラー31間の間隙に、小さなサイズのフィラー32を充填することが出来るため、樹脂シート3の熱伝導性を更に向上できる。
Moreover, about the size of a filler, you may mix and use a filler with a large size (large largest diameter) and a filler with a small size (small maximum diameter). FIG. 7 is an enlarged view of a cross section of the resin sheet 3 including fillers of two sizes. The resin sheet 3 has a structure in which a filler 31 having a large size and a filler 32 having a small size are included in a resin layer 33 such as an epoxy resin.
As shown in FIG. 7, the gap between the large-sized fillers 31 can be filled with the small-sized fillers 32, so that the thermal conductivity of the resin sheet 3 can be further improved.

以上のように、本実施の形態にかかる半導体装置100では、絶縁層の厚みを予め規定できる絶縁性の樹脂シート3を用いる。このため、樹脂シート3の膜厚を調整することにより、絶縁特性と放熱特性が両立するように制御できる。   As described above, in the semiconductor device 100 according to the present embodiment, the insulating resin sheet 3 capable of predefining the thickness of the insulating layer is used. For this reason, it is controllable by adjusting the film thickness of the resin sheet 3 so that an insulation characteristic and a thermal radiation characteristic may be compatible.

また、必要な領域にのみ樹脂シート3を設けるため、無駄なコストの削減が可能となる。   Moreover, since the resin sheet 3 is provided only in a necessary area, it is possible to reduce useless cost.

更に、半導体装置100では、樹脂シート3とモールド樹脂2との界面に混合層9が形成されるため、沿面絶縁を考慮する必要がなくなり、結果として半導体装置の小型化が可能となる。
なお、本実施の形態1では、ICチップ7等をボンディングワイヤにて接続しているが、例えば、金属薄板等の他の部材を用いても良い。更には、ICチップ7とパワーチップ5の間の接続は、一旦中継フレームを介して接続する例を示したが、直接接続してもかまわない。
Furthermore, in the semiconductor device 100, since the mixed layer 9 is formed at the interface between the resin sheet 3 and the mold resin 2, it is not necessary to consider creeping insulation, and as a result, the semiconductor device can be miniaturized.
In the first embodiment, the IC chip 7 and the like are connected by bonding wires, but other members such as a metal thin plate may be used. Furthermore, although the example in which the connection between the IC chip 7 and the power chip 5 is once connected via a relay frame is shown, it may be directly connected.

実施の形態2.
図8は、全体が200で表される、本実施の形態にかかる半導体装置の断面図である。図8は、図1のI−Iと同じ方向に見た断面図である。図8中、図1〜3と同一符号は、同一又は相当箇所を示す。
Embodiment 2. FIG.
FIG. 8 is a cross-sectional view of the semiconductor device according to the present embodiment, indicated as a whole by 200. 8 is a cross-sectional view seen in the same direction as II in FIG. In FIG. 8, the same reference numerals as those in FIGS.

本実施の形態2にかかる半導体装置200では、金属箔4が取り付けられた樹脂シート3が、モールド樹脂2の裏面全面を覆う大きさとなっている。他の構造は、上述の半導体装置100と同じである。   In the semiconductor device 200 according to the second embodiment, the resin sheet 3 to which the metal foil 4 is attached is large enough to cover the entire back surface of the mold resin 2. Other structures are the same as those of the semiconductor device 100 described above.

半導体装置200では、放熱特性が向上するとともに、製造工程(上述の工程4)において、樹脂シート3の配置決めが不要となる。即ち、樹脂シート3は、樹脂封止用金型20の内部底面の大きさに等しいため、配置位置を正確に制御する必要が無くなる。これにより、製造工程が簡略化される。   In the semiconductor device 200, the heat dissipation characteristics are improved and the arrangement of the resin sheet 3 is not required in the manufacturing process (the above-described process 4). That is, since the resin sheet 3 is equal to the size of the inner bottom surface of the resin sealing mold 20, it is not necessary to accurately control the arrangement position. Thereby, a manufacturing process is simplified.

実施の形態3.
図9は、全体が300で表される、本実施の形態にかかる半導体装置の裏面図である。また、図10は、図9をIIIV―IIIV方向に見た断面図である。図9、10中、図1〜3と同一符号は、同一又は相当箇所を示す。
Embodiment 3 FIG.
FIG. 9 is a rear view of the semiconductor device according to the present embodiment, the whole being represented by 300. FIG. FIG. 10 is a cross-sectional view of FIG. 9 viewed in the IIIV-IIIV direction. 9 and 10, the same reference numerals as those in FIGS. 1 to 3 denote the same or corresponding parts.

半導体装置300は、シート樹脂3の周囲に沿って、複数の凹部40を有する。また、冷却用フィン(図示せず)を取り付けるためのねじ穴35を備える。   The semiconductor device 300 has a plurality of recesses 40 along the periphery of the sheet resin 3. Further, a screw hole 35 for attaching a cooling fin (not shown) is provided.

かかる凹部40は、上述の工程4(図5(d))において、樹脂シート3に位置合わせを容易にするために、樹脂封止用金型20の内部底面に、複数の突起部(図示せず)を設けたために形成されたものである。樹脂封止用金型20の内部底面には、樹脂シート3の配置領域に沿って突起部が設けられている。   The recess 40 has a plurality of protrusions (not shown) on the inner bottom surface of the resin sealing mold 20 in order to facilitate alignment with the resin sheet 3 in the above-described step 4 (FIG. 5D). Z)). On the inner bottom surface of the resin sealing mold 20, a protrusion is provided along the arrangement region of the resin sheet 3.

このように、樹脂封止用金型20の内部底面に突起部を設けることにより、樹脂シート3の位置合わせが容易になり、製造工程の簡略化が可能となる。   In this manner, by providing the protrusion on the inner bottom surface of the resin sealing mold 20, the alignment of the resin sheet 3 is facilitated, and the manufacturing process can be simplified.

なお、図9、10では、凹部40の形状を略円柱形状としたが、かかる機能を有する形状であれば、他の形状であっても構わない。また、凹部40の数も、かかる機能を有する限り、いくつであってもかまわない。
更に、凹部40の深さは、金属箔4の厚さよりも薄いことが望ましい。これは、凹部40が誤って金属箔4に重なっても、その先端は樹脂シート3には到達せず、樹脂シート3が損傷を受けないためである。
9 and 10, the shape of the recess 40 is a substantially cylindrical shape, but other shapes may be used as long as the shape has such a function. Further, the number of the recesses 40 is not limited as long as it has such a function.
Further, it is desirable that the depth of the recess 40 is thinner than the thickness of the metal foil 4. This is because even if the concave portion 40 mistakenly overlaps the metal foil 4, the tip does not reach the resin sheet 3 and the resin sheet 3 is not damaged.

本発明の実施の形態1にかかる半導体装置の斜視図である。1 is a perspective view of a semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態1にかかる半導体装置の裏面図である。It is a rear view of the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体装置の断面図である。It is sectional drawing of the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態にかかる半導体装置の内部の一部分を示す斜視図である。It is a perspective view which shows a part of inside of the semiconductor device concerning embodiment of this invention. 本発明の実施の形態1にかかる半導体装置の製造工程の断面図である。It is sectional drawing of the manufacturing process of the semiconductor device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体装置の製造工程の断面図である。It is sectional drawing of the manufacturing process of the semiconductor device concerning Embodiment 1 of this invention. 樹脂シートの拡大断面図である。It is an expanded sectional view of a resin sheet. 本発明の実施の形態2にかかる半導体装置の断面図である。It is sectional drawing of the semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる半導体装置の裏面図である。It is a back view of the semiconductor device concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる半導体装置の断面図である。It is sectional drawing of the semiconductor device concerning Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 フレーム、2 モールド樹脂、3 樹脂シート、4 金属箔、5 パワーチップ、6、8 ボンディングワイヤ、7 ICチップ、9 混合層、100 半導体装置。   1 frame, 2 mold resin, 3 resin sheet, 4 metal foil, 5 power chip, 6, 8 bonding wire, 7 IC chip, 9 mixed layer, 100 semiconductor device.

Claims (2)

チップが樹脂モールドされた半導体装置であって、
表面と裏面を備え、ダイパッドを含むフレームと、
該ダイパッドの表面に載置されたパワーチップと、
該パワーチップを封止するように設けられたモールド樹脂と、
対向する第1面と第2面とを備え、該ダイパッドの裏面がその第1面と接するように配置され、該ダイパッドを包含するサイズで、かつ該モールド樹脂よりも熱伝導率が大きい絶縁性の樹脂シートと、
該樹脂シートの第2面上に設けられた金属箔と、
該樹脂シートと該モールド樹脂とが共に液状化された状態で混合した混合層と、を含むことを特徴とする半導体装置。
A semiconductor device in which a chip is resin-molded,
A frame having a front surface and a back surface, including a die pad;
A power chip placed on the surface of the die pad;
A mold resin provided to seal the power chip;
Insulating property that has a first surface and a second surface facing each other, is disposed so that the back surface of the die pad is in contact with the first surface, has a size including the die pad, and has a higher thermal conductivity than the mold resin. Resin sheet,
A metal foil provided on the second surface of the resin sheet;
A semiconductor device comprising: a mixed layer in which the resin sheet and the mold resin are mixed in a liquefied state.
チップを樹脂モールドした半導体装置の製造方法であって、
a)第1面と第2面とを有し、絶縁性でかつ樹脂モールドに用いるモールド樹脂よりも熱伝導率が大きい樹脂シートであって、
該樹脂シートは第2面を金属箔で覆われており、
更には常温では固体であるが高温では一旦溶融した後に完全硬化に向かう特徴を有する半硬化状態の樹脂からなる該樹脂シートを準備する工程と、
b)表面と裏面を備え、ダイパッドを有するフレームを準備するフレーム準備工程と、
c)該ダイパッドの表面上にパワーチップを載置する工程と、
d)該樹脂シートの溶融温度より高温の樹脂封止樹脂用金型を準備する工程と、
e)該樹脂封止用金型の内部底面に該金属箔が接するように、該樹脂封止用金型内に該樹脂シートを載置する工程と、
f)該ダイパッドの裏面が該樹脂シートの第1面に接するように、該樹脂シートの第1面上に該フレームを載置する工程と、
g)該樹脂封止用金型内に液状化した該モールド樹脂を加熱加圧注入し、該金型内を充填するとともに、該金型内で該モールド樹脂と該樹脂シートとを加熱硬化させるモールド工程と、を含み、
上記g)モールド工程が、
該ダイパッドの裏面と該樹脂シートの第1面とを固着するとともに、
溶融し液状化した該樹脂シートと、液状化した該モールド樹脂との間で、これらを構成する樹脂を混合させて混合層を形成する工程であることを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device in which a chip is resin-molded,
a) a resin sheet having a first surface and a second surface, which is insulative and has a higher thermal conductivity than a mold resin used for a resin mold,
The resin sheet has a second surface covered with a metal foil,
Further, a step of preparing the resin sheet made of a resin in a semi-cured state having a characteristic of being solid at room temperature but once melted at a high temperature and then proceeding to complete curing;
b) a frame preparation step of preparing a frame having a front surface and a back surface and having a die pad;
c) placing a power chip on the surface of the die pad;
d) preparing a mold for resin-encapsulating resin having a temperature higher than the melting temperature of the resin sheet;
e) placing the resin sheet in the resin sealing mold such that the metal foil contacts the inner bottom surface of the resin sealing mold;
f) placing the frame on the first surface of the resin sheet such that the back surface of the die pad is in contact with the first surface of the resin sheet;
g) The mold resin liquefied in the mold for resin sealing is heated and pressurized to fill the mold, and the mold resin and the resin sheet are heated and cured in the mold. A molding process,
G) the molding step
While fixing the back surface of the die pad and the first surface of the resin sheet,
A method of manufacturing a semiconductor device, comprising a step of forming a mixed layer by mixing a resin constituting these between the molten and liquefied resin sheet and the liquefied mold resin.
JP2007249579A 2007-09-26 2007-09-26 Semiconductor device, and its manufacturing method Pending JP2008004971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249579A JP2008004971A (en) 2007-09-26 2007-09-26 Semiconductor device, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249579A JP2008004971A (en) 2007-09-26 2007-09-26 Semiconductor device, and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003339730A Division JP2005109100A (en) 2003-09-30 2003-09-30 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008004971A true JP2008004971A (en) 2008-01-10
JP2008004971A5 JP2008004971A5 (en) 2009-10-15

Family

ID=39009047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249579A Pending JP2008004971A (en) 2007-09-26 2007-09-26 Semiconductor device, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008004971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061011A1 (en) 2009-12-04 2011-06-09 Denso Corporation, Kariya-City Semiconductor package and method of making the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125826A (en) * 1996-10-24 1998-05-15 Hitachi Ltd Semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125826A (en) * 1996-10-24 1998-05-15 Hitachi Ltd Semiconductor device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061011A1 (en) 2009-12-04 2011-06-09 Denso Corporation, Kariya-City Semiconductor package and method of making the same
US8368203B2 (en) 2009-12-04 2013-02-05 Denso Corporation Heat radiation member for a semiconductor package with a power element and a control circuit

Similar Documents

Publication Publication Date Title
JP2005109100A (en) Semiconductor device and manufacturing method thereof
JP5873998B2 (en) Semiconductor device and manufacturing method thereof
JP4302607B2 (en) Semiconductor device
JP3854957B2 (en) Semiconductor device manufacturing method and semiconductor device
KR101323978B1 (en) High thermal performance packaging for circuit dies
JPH04291948A (en) Semiconductor device and its manufacture; radiating fin
JP2011029589A (en) Semiconductor device and method of manufacturing the same
JP2012028510A (en) Circuit device and method for manufacturing the same
JP2005191071A (en) Semiconductor device
US11862542B2 (en) Dual side cooling power module and manufacturing method of the same
JP6469660B2 (en) Manufacturing method of semiconductor device
JP2009252838A (en) Semiconductor device
JP6360035B2 (en) Semiconductor device
US7602060B2 (en) Heat spreader in a flip chip package
JP5258825B2 (en) Power semiconductor device and manufacturing method thereof
WO2019116910A1 (en) Semiconductor device and method for producing semiconductor device
KR101490751B1 (en) Semiconductor device and manufacturing method thereof
JP4515810B2 (en) Semiconductor device and manufacturing method thereof
JP5488645B2 (en) Semiconductor device and manufacturing method thereof
US8686545B2 (en) Semiconductor device and method for manufacturing the same
US6696750B1 (en) Semiconductor package with heat dissipating structure
JP2008004971A (en) Semiconductor device, and its manufacturing method
JP2005116963A (en) Semiconductor device
JP5308107B2 (en) Circuit device manufacturing method
JP2014120619A (en) Semiconductor device and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322