JP2008004356A - Zinc alkaline battery - Google Patents

Zinc alkaline battery Download PDF

Info

Publication number
JP2008004356A
JP2008004356A JP2006172147A JP2006172147A JP2008004356A JP 2008004356 A JP2008004356 A JP 2008004356A JP 2006172147 A JP2006172147 A JP 2006172147A JP 2006172147 A JP2006172147 A JP 2006172147A JP 2008004356 A JP2008004356 A JP 2008004356A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
battery
alkaline battery
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006172147A
Other languages
Japanese (ja)
Inventor
Fumio Kato
文生 加藤
Yuji Mototani
祐司 元谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006172147A priority Critical patent/JP2008004356A/en
Publication of JP2008004356A publication Critical patent/JP2008004356A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc alkaline battery which has solved a problem that discharge reaction of a negative electrode is hindered when a conventional organic anticorrosive is used, and excellent discharge characteristics and leakage resistance performance are realized at the same time. <P>SOLUTION: The zinc alkaline battery which contains an anionic compound having one kind or more of trifluoro-methyl group selected from a group of CF<SB>3</SB>-SO<SB>3</SB>X, CF<SB>3</SB>-O-SO<SB>3</SB>X, CF<SB>3</SB>-COOX, CF<SB>3</SB>-O-PO<SB>3</SB>X<SB>2</SB>(X is H or Na, K) in a negative electrode is manufactured. It is preferable that adding amount of the anticorrosive is 0.02-0.4 wt.% to the zinc or zinc alloy of the negative electrode active material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、負極活物質として亜鉛、電解液としてアルカリ水溶液、正極活物質として二酸化マンガン、オキシ水酸化ニッケル等を用いた亜鉛アルカリ電池に関わるものである。   The present invention relates to a zinc-alkaline battery using zinc as a negative electrode active material, an alkaline aqueous solution as an electrolytic solution, manganese dioxide, nickel oxyhydroxide or the like as a positive electrode active material.

アルカリマンガン乾電池に代表される亜鉛アルカリ電池は、汎用性が高く安価であるため、各種機器の電源として広く普及している。このような亜鉛アルカリ電池では、負極活物質として、ガスアトマイズ法等で作製した不定形の亜鉛粉末を使用する。   Zinc alkaline batteries represented by alkaline manganese batteries are widely used as a power source for various devices because they are versatile and inexpensive. In such a zinc alkaline battery, an amorphous zinc powder produced by a gas atomizing method or the like is used as a negative electrode active material.

亜鉛は両性金属であり、アルカリ電解液中で容易に腐食されて水素ガスを発生し、電池内圧の上昇や漏液を引き起こす原因となる。従って、亜鉛の防食技術が、亜鉛アルカリ電池の信頼性向上のための鍵と言える。古くは、負極中に水銀を添加して亜鉛粉表面をアマルガム化し、水素発生過電圧を高める防食手法が採用されたが、環境への意識の高まりのため、1980〜1990年頃にかけて、アルカリマンガン乾電池を中心に無水銀化が進んだ。そして、これに代わる防食技術として、以下の(1)〜(3)のような内容が多数提案され、現在は、これらを種々組み合わせた亜鉛負極を用いて電池が作製されている。(1)亜鉛粉を作製する際に、亜鉛中にアルミニウム、ビスマス、インジウム等を少量含有させ、耐食性に優れた亜鉛合金粉末にする(例えば特許文献1参照)。
(2)負極の電解液中に、水酸化インジウム、水酸化ビスマス等の無機系防食剤を添加する(例えば特許文献2、3参照)。
(3)負極の電解液中に、各種の界面活性剤(有機系防食剤)を添加する(例えば特許文献4〜7参照)。
特開平5−166507号公報 特開昭48−77332号公報 特許第2606480号公報 特許第2737230号公報 特許第2737232号公報 特許第2737233号公報 特許第2770396号公報
Zinc is an amphoteric metal and is easily corroded in an alkaline electrolyte to generate hydrogen gas, which causes an increase in battery internal pressure and leakage. Therefore, it can be said that the anticorrosion technology of zinc is a key for improving the reliability of the zinc alkaline battery. In the old days, anticorrosion techniques were adopted to amalgamate the surface of zinc powder by adding mercury into the negative electrode to increase the hydrogen overvoltage, but in order to increase environmental awareness, alkaline manganese dry batteries were installed around 1980-1990. At the center, anhydrous silver has progressed. And as a corrosion protection technique which replaces this, many contents such as the following (1) to (3) have been proposed, and currently, batteries are produced using zinc negative electrodes obtained by variously combining them. (1) When producing zinc powder, a small amount of aluminum, bismuth, indium or the like is contained in zinc to obtain a zinc alloy powder having excellent corrosion resistance (see, for example, Patent Document 1).
(2) An inorganic anticorrosive agent such as indium hydroxide or bismuth hydroxide is added to the electrolyte solution of the negative electrode (see, for example, Patent Documents 2 and 3).
(3) Various surfactants (organic anticorrosives) are added to the negative electrode electrolyte (see, for example, Patent Documents 4 to 7).
JP-A-5-166507 JP-A 48-77332 Japanese Patent No. 2606480 Japanese Patent No. 2737230 Japanese Patent No. 2737232 Japanese Patent No. 2737233 Japanese Patent No. 2770396

上記した(1)〜(3)の防食技術のうち、負極の電解液中に界面活性剤(有機系防食剤)を添加した際のメカニズムは、界面活性剤分子の親水基が亜鉛表面に吸着し、疎水基が電解液側に配向することで保護被膜層を形成する効果と考えられている。この保護被膜層の撥水作用によって、水ないしは水酸化物イオンの亜鉛表面への接近が阻止され、以下の式(1)や式(2)の反応が抑制される。   Among the anticorrosion techniques (1) to (3) described above, the mechanism when a surfactant (organic anticorrosive) is added to the negative electrode electrolyte is that the hydrophilic groups of the surfactant molecules are adsorbed on the zinc surface. And it is thought that it is an effect which forms a protective film layer because a hydrophobic group orientates to the electrolyte solution side. The water repellent action of the protective coating layer prevents water or hydroxide ions from approaching the zinc surface, and the reactions of the following formulas (1) and (2) are suppressed.

Zn+4OH-→Zn(OH)4 2-+2e- (1)
2H2O+2e-→2OH-+H2 (2)
一方で、吸着した界面活性剤分子は、負極の放電時には、亜鉛粒子表面から離散して電解液中に拡散する。
Zn + 4OH → Zn (OH) 4 2− + 2e (1)
2H 2 O + 2e → 2OH + H 2 (2)
On the other hand, the adsorbed surfactant molecules are dispersed from the surface of the zinc particles and diffused into the electrolytic solution when the negative electrode is discharged.

しかし、特許文献4〜7等で公知の界面活性剤は、疎水基の炭素数が多くて撥水性が高いので、電解液側から追い出される傾向が強く、亜鉛表面への吸着が強固である。さらに界面活性剤の分子サイズも大きいために、電解液中への拡散速度も遅い。このため、従来の界面活性剤を負極に添加した亜鉛アルカリ電池では、瞬間的な大電流の放電に際して、
界面活性剤分子の亜鉛表面からの離散・拡散が追従できず、式(1)に示す電極反応が阻害されて電池の閉路電圧(CCV)が大きく低下する課題があった。
However, since the surfactants known in Patent Documents 4 to 7 and the like have a large number of carbon atoms in the hydrophobic group and have high water repellency, they have a strong tendency to be expelled from the electrolyte side and are strongly adsorbed on the zinc surface. Furthermore, since the molecular size of the surfactant is large, the diffusion rate into the electrolytic solution is also slow. For this reason, in a zinc alkaline battery in which a conventional surfactant is added to the negative electrode,
There was a problem that the discrete / diffusion of the surfactant molecules from the zinc surface could not follow, and the electrode reaction shown in the formula (1) was hindered, and the closed circuit voltage (CCV) of the battery was greatly reduced.

また、従来の界面活性剤は発泡しやすいため、負極に添加するとその密度が低下し、負極活物質の充填量が減少するため、放電性能の低下が余儀なくされるという、別の側面からの問題もあった。   In addition, since conventional surfactants are easy to foam, when added to the negative electrode, the density decreases and the amount of negative electrode active material decreases, so the discharge performance is inevitably reduced. There was also.

以上のような課題を鑑み、本発明は、負極に、CF3−SO3X、CF3−O−SO3X、CF3−COOX、CF3−O−PO32 (XはHないしはNa、K) の群の中から選ばれる1種以上のトリフルオロメチル基を有するアニオン性化合物を含有した亜鉛アルカリ電池である。 In view of the above problems, the present invention provides the negative electrode with CF 3 —SO 3 X, CF 3 —O—SO 3 X, CF 3 —COOX, CF 3 —O—PO 3 X 2 (where X is H or A zinc-alkaline battery containing an anionic compound having one or more trifluoromethyl groups selected from the group of Na, K).

上記課題に対して、本発明者等が鋭意検討を進めた結果、負極の防食剤にトリフルオロメチル基を有するアニオン性化合物(界面活性剤)を用いた場合には、疎水基のトリフルオロメチル基のサイズや撥水性が、亜鉛表面での保護被膜層の形成と、放電時の離散についての吸/脱着のバランスを保つのに好適で、さらに界面活性剤の分子サイズが小さいので放電時の拡散速度も速く、十分な大電流放電性能を維持しつつ、高い防食効果の得られる点が判明した。   As a result of intensive studies by the present inventors on the above-mentioned problems, when an anionic compound (surfactant) having a trifluoromethyl group is used as the anticorrosive for the negative electrode, a trifluoromethyl having a hydrophobic group is used. The size and water repellency of the base are suitable for maintaining the balance between the formation of the protective coating layer on the zinc surface and the absorption / desorption for the discrete during discharge, and since the molecular size of the surfactant is small, It has been found that the diffusion rate is high, and a high anti-corrosion effect can be obtained while maintaining sufficient high-current discharge performance.

さらに、トリフルオロメチル基を有するアニオン性化合物は、従来のアルカリ電池に用いられていた界面活性剤に比べて発泡性が弱いため、負極の密度低下を抑制する効果も有する。   Furthermore, an anionic compound having a trifluoromethyl group has an effect of suppressing a decrease in density of the negative electrode because the foaming property is weaker than that of a surfactant used in a conventional alkaline battery.

本発明によると、有機系の防食剤(界面活性剤)を含む負極を用いても、放電反応を阻害することなく、ガス発生を効果的に抑制することができるため、優れた放電特性と耐漏液性能とを両立した亜鉛アルカリ電池とすることができる。   According to the present invention, even when a negative electrode containing an organic anticorrosive (surfactant) is used, gas generation can be effectively suppressed without hindering the discharge reaction. A zinc-alkaline battery having both liquid performance can be obtained.

本発明は、負極に、CF3−SO3X、CF3−O−SO3X、CF3−COOX、CF3−O−PO32 (XはHないしはNa、K) の群の中から選ばれる1種以上のトリフルオロメチル基を有するアニオン性化合物を含有した亜鉛アルカリ電池である。 In the present invention, the negative electrode is selected from the group consisting of CF 3 —SO 3 X, CF 3 —O—SO 3 X, CF 3 —COOX, and CF 3 —O—PO 3 X 2 (where X is H or Na, K). A zinc-alkaline battery containing an anionic compound having one or more trifluoromethyl groups selected from:

負極の防食剤にトリフルオロメチル基を有するアニオン性化合物(界面活性剤)を用いることにより、亜鉛表面での保護被膜層の形成と、放電時の離散についての吸/脱着のバランスが好適に保たれ、また界面活性剤サイズが小さいので放電時の拡散速度も速いために、大電流放電性能を損なうことなく、耐漏液特性に優れた電池とすることができる。その際、防食剤の添加量が、負極中の亜鉛ないしは亜鉛合金に対して0.02〜0.5重量%であることが好ましい。防食剤の添加量が、負極活物質である亜鉛ないしは亜鉛合金に対して0.02重量%未満であると、十分な防食効果を得ることが困難になり、一方で0.5重量%超となると、放電性能の低下を引き起こす。これらの点から、防食剤の添加量は、亜鉛ないしは亜鉛合金に対して0.02〜0.5重量%の範囲にするのが最も好ましい。   By using an anionic compound (surfactant) having a trifluoromethyl group as the anticorrosive for the negative electrode, the balance between the formation of the protective coating layer on the zinc surface and the absorption / desorption for the discrete during discharge is suitably maintained. In addition, since the surfactant size is small, the diffusion rate at the time of discharging is also high, so that a battery having excellent leakage resistance can be obtained without impairing the large current discharging performance. In that case, it is preferable that the addition amount of an anticorrosive agent is 0.02 to 0.5 weight% with respect to the zinc or zinc alloy in a negative electrode. When the addition amount of the anticorrosive agent is less than 0.02% by weight with respect to zinc or zinc alloy as the negative electrode active material, it becomes difficult to obtain a sufficient anticorrosive effect, while it exceeds 0.5% by weight. If it becomes, it will cause the fall of discharge performance. From these points, the addition amount of the anticorrosive is most preferably in the range of 0.02 to 0.5% by weight with respect to zinc or zinc alloy.

以下、本発明の実施例について詳細に説明する。
(亜鉛負極の調整)
Al:0.003重量%、Bi:0.02重量%、In:0.01重量%を含有させた亜鉛合金粉をガスアトマイズ法で作製し、篩による分級によって、粒度範囲が35〜30
0メッシュで、200メッシュ(75μm)以下の微粉の比率が30%となるように調整し、これを評価用亜鉛合金粉末とした。
Examples of the present invention will be described in detail below.
(Zinc negative electrode adjustment)
A zinc alloy powder containing Al: 0.003% by weight, Bi: 0.02% by weight, and In: 0.01% by weight is prepared by a gas atomization method, and the particle size range is 35-30 by classification with a sieve.
The ratio of fine powder of 0 mesh and 200 mesh (75 μm) or less was adjusted to be 30%, and this was used as a zinc alloy powder for evaluation.

次に、アルカリ乾電池を構成するためのゲル状負極の調整として、まず36重量%の水酸化カリウム水溶液(水溶液中にZnOを2重量%含む)の100重量部に2.3重量部のポリアクリル酸ナトリウムを加えて混合し、ゲル化させた。得られたゲル状電解液は、その後、24時間静置して十分に熟成させた。そして、このゲル状電解液の所定量に対して、重量比で1.8倍の評価用亜鉛合金粉末と、表1中の(1)〜(16)に示した界面活性剤(東京化成工業株式会社製)とを加えて十分に混合し、それぞれの界面活性剤に対応するゲル状負極(1)〜(16)を作製した。ここで界面活性剤の添加量は、評価用亜鉛合金粉末に対して0.05重量%となるように調整した。   Next, as preparation of the gelled negative electrode for constituting an alkaline battery, first, 2.3 parts by weight of polyacrylic acid was added to 100 parts by weight of 36% by weight aqueous potassium hydroxide solution (containing 2% by weight of ZnO in the aqueous solution). Sodium acid was added and mixed to gel. The obtained gel electrolyte was then allowed to stand for 24 hours and aged sufficiently. And the zinc alloy powder for evaluation 1.8 times in weight ratio with respect to the predetermined amount of this gel electrolyte solution, and the surfactant (Tokyo Chemical Industry Co., Ltd.) shown in (1) to (16) in Table 1 And the mixture was sufficiently mixed to prepare gelled negative electrodes (1) to (16) corresponding to the respective surfactants. Here, the addition amount of the surfactant was adjusted to 0.05% by weight with respect to the zinc alloy powder for evaluation.

さらに、ゲル状電解液の所定量に対して、重量比で1.8倍の評価用亜鉛合金粉末だけを加え、界面活性剤をいっさい添加しない比較用ゲル状負極(17)も作製した。
(アルカリマンガン乾電池の作製)
続いて、アルカリマンガン乾電池の作製を行った。図1は本発明で用いたアルカリマンガン乾電池の一部を断面にした正面図である。正極ケース1は、ニッケルメッキされた鋼板からなる。この正極ケース1の内部には、黒鉛塗装膜2が形成されている。この正極ケース1の内部に、二酸化マンガンを主成分として含む短筒状の正極合剤ペレット3を複数個挿入し、ケース内で再加圧することによってケース1の内面に密着させる。そして、この正極合剤ペレット3の内側にセパレ−タ4および絶縁のための底紙5を挿入した後、セパレ−タ4と正極合剤ペレット3を湿潤させる目的で電解液を注液する。電解液には、30〜40重量%程度の水酸化カリウム水溶液を用いる。注液後、セパレータ4の内側にゲル状負極6を充填する。次に、樹脂製封口板7、負極端子を兼ねる底板8、および絶縁ワッシャ9と一体化された負極集電体10を、ゲル状負極6に差し込む。そして正極ケース1の開口端部を封口板7の端部を介して底板8の周縁部にかしめつけて正極ケース1の開口部を密着する。次いで、正極ケース1の外表面に外装ラベル11を被覆する。こうしてアルカリマンガン乾電池が完成する。
Further, a comparative gelled negative electrode (17) in which only the zinc alloy powder for evaluation 1.8 times by weight with respect to a predetermined amount of the gelled electrolyte solution was added and no surfactant was added was also produced.
(Production of alkaline manganese batteries)
Subsequently, an alkaline manganese dry battery was produced. FIG. 1 is a front view, partly in section, of an alkaline manganese battery used in the present invention. The positive electrode case 1 is made of a nickel-plated steel plate. A graphite coating film 2 is formed inside the positive electrode case 1. A plurality of short cylindrical positive electrode mixture pellets 3 containing manganese dioxide as a main component are inserted into the positive electrode case 1 and are re-pressurized in the case to be brought into close contact with the inner surface of the case 1. Then, after the separator 4 and the bottom paper 5 for insulation are inserted inside the positive electrode mixture pellet 3, an electrolytic solution is injected for the purpose of wetting the separator 4 and the positive electrode mixture pellet 3. As the electrolytic solution, a potassium hydroxide aqueous solution of about 30 to 40% by weight is used. After the injection, the gelled negative electrode 6 is filled inside the separator 4. Next, the negative electrode current collector 10 integrated with the resin sealing plate 7, the bottom plate 8 also serving as the negative electrode terminal, and the insulating washer 9 is inserted into the gelled negative electrode 6. Then, the opening end portion of the positive electrode case 1 is caulked to the peripheral edge portion of the bottom plate 8 via the end portion of the sealing plate 7, thereby closely contacting the opening portion of the positive electrode case 1. Next, the outer label 11 is coated on the outer surface of the positive electrode case 1. Thus, an alkaline manganese battery is completed.

本実施例においては、電解二酸化マンガンおよび黒鉛を重量比94:6の割合で配合し、混合粉100重量部に対して電解液1重量部を混合した後、ミキサ−で均一に撹拌・混合して一定粒度に整粒した。得られた粒状物を中空円筒型に加圧成型して正極合剤とし、セパレータと底紙を挿入後、電解液(ZnOを2重量%含む、36重量%の水酸化カリウム水溶液)の注液と、ゲル状負極(1)の充填を行って、図1に示す単3サイズのアルカリマンガン乾電池(1)を組み立てた。   In this embodiment, electrolytic manganese dioxide and graphite are blended at a weight ratio of 94: 6, and after mixing 1 part by weight of the electrolyte with 100 parts by weight of the mixed powder, the mixture is stirred and mixed uniformly with a mixer. And sized to a certain particle size. The obtained granular material is pressure-molded into a hollow cylindrical shape to form a positive electrode mixture, and after inserting a separator and bottom paper, an electrolyte solution (36 wt% potassium hydroxide aqueous solution containing 2 wt% ZnO) is injected. Then, the gelled negative electrode (1) was filled to assemble an AA size alkaline manganese dry battery (1) shown in FIG.

また、ゲル状負極(1)の代わりにゲル状負極(2)〜(17)を用いること以外はすべて上記したのと同じとして、それぞれのゲル状負極に対応する単3サイズのアルカリマンガン乾電池(2)〜(17)を作製した。
(アルカリマンガン乾電池の評価)
上記で作製した17種のアルカリマンガン乾電池に対して、以下の(1)〜(3)の評価を行った。
(1)1Ω接続時のCCV測定:上記で作製した電池1セルを20℃雰囲気下で、1Ωの抵抗に対して100ミリ秒だけ接続し、この間の閉路電圧(CCV)をオシロスコープで測定した。代表例として、電池(1)、(5)、(17)の測定結果を図2に示す。界面活性剤を添加していない電池(17)と比較して、電池(1)はほぼ同じCCV挙動を示しているが、電池(5)では、初期に急激なCCV低下が認められる。このような差は、ゲル状負極中の界面活性剤分子が放電時に亜鉛表面から円滑に離散・拡散できるか否かによって決まると推察される。それぞれの電池が1Ω接続(100ミリ秒)の間に到達した最低の電圧を読み取って表2に記載した。試験数はn=3で行い、平均値を示した。
(2)DSCパルス放電特性:上記で作製した電池1セルを20℃雰囲気下で、650mWの定電力で28秒間放電させた後、1500mWの定電力で2秒間パルス放電させるというサイクルを、1500mWパルス放電の下限電圧が1.05Vに到達するまで繰り返し、サイクル数を測定した。その結果を試験数n=3で行い、平均値を表2に記載した。なお、この放電パターンは、デジタルスチルカメラ(DSC)の用途を想定したもので、650mW放電がカメラの電源を入れて液晶モニター等を駆動させた状態、1500mW放電がカメラのフラッシュ撮影を行った状態をそれぞれ模擬している。
(3) 耐漏液試験:上記で作製した電池の各50セル(未放電状態)を、80℃の環境下に2週間保存し、漏液した電池数により漏液の発生指数(%)を求めた。結果を表1中に示す。
In addition, the same as described above except that the gelled negative electrodes (2) to (17) are used instead of the gelled negative electrode (1), the AA alkaline manganese batteries (AA size) corresponding to the respective gelled negative electrodes ( 2) to (17) were prepared.
(Evaluation of alkaline manganese batteries)
The following (1) to (3) were evaluated for the 17 types of alkaline manganese dry batteries produced above.
(1) CCV measurement at 1Ω connection: 1 cell produced above was connected to a resistance of 1Ω for 100 milliseconds in an atmosphere of 20 ° C., and the closed circuit voltage (CCV) was measured with an oscilloscope. As a representative example, the measurement results of the batteries (1), (5), and (17) are shown in FIG. Compared with the battery (17) to which no surfactant was added, the battery (1) shows almost the same CCV behavior, but in the battery (5), a rapid CCV decrease is observed in the initial stage. Such a difference is presumed to be determined by whether or not the surfactant molecules in the gelled negative electrode can be smoothly dispersed and diffused from the zinc surface during discharge. The lowest voltage that each battery reached during the 1Ω connection (100 milliseconds) was read and listed in Table 2. The number of tests was n = 3 and the average value was shown.
(2) DSC pulse discharge characteristics: A cycle in which 1 cell produced above was discharged at 20 ° C. with a constant power of 650 mW for 28 seconds and then pulsed with a constant power of 1500 mW for 2 seconds. The number of cycles was measured repeatedly until the lower limit voltage of the discharge reached 1.05V. The results were obtained with the number of tests n = 3, and the average values are shown in Table 2. This discharge pattern is intended for use with a digital still camera (DSC). The state in which a 650 mW discharge is turned on to drive a liquid crystal monitor or the like, and the state in which a 1500 mW discharge is taken with a camera flash. Each is simulated.
(3) Leakage resistance test: 50 cells (undischarged state) of each of the batteries prepared above were stored for 2 weeks in an environment of 80 ° C., and the occurrence index (%) of the leakage was obtained from the number of leaked batteries. It was. The results are shown in Table 1.

Figure 2008004356
負極にトリフルオロメチル基(CF3)を有するアニオン性化合物を添加した電池(1)〜(4)は、界面活性剤を添加していない電池(17)と比較して、1Ω接続時のCCV低下が殆ど無く、また、高レベルのDSCパルス特性を維持し、なお且つ、耐漏液性能については格段に向上している。これに対して、ペンタフルオロエチル基(C25)を有するアニオン性化合物を添加した電池(5)〜(8)では、耐漏液性能は向上するが、1Ω接続時のCCV低下が大きく、DSCパルス特性も低下している。
Figure 2008004356
Batteries (1) to (4) to which an anionic compound having a trifluoromethyl group (CF 3 ) is added to the negative electrode have a CCV at the time of 1Ω connection as compared with the battery (17) to which no surfactant is added. There is almost no decrease, a high level of DSC pulse characteristics is maintained, and the leakage resistance performance is remarkably improved. On the other hand, in the batteries (5) to (8) to which an anionic compound having a pentafluoroethyl group (C 2 F 5 ) is added, the leakage resistance performance is improved, but the CCV drop when connecting 1Ω is large, DSC pulse characteristics are also degraded.

このような差が現れた原因として、疎水基の撥水性の違いが考えられる。ペンタフルオロエチル基はトリフルオロメチル基に比べて撥水性が高いので、電解液/亜鉛の界面において電解液側から追い出される傾向が強い。すなわち亜鉛表面への吸着が強固となる。さらに、界面活性剤のサイズとしても、ペンタフルオロエチル基含有化合物の方が大きいため、電解液中での拡散速度が遅い。このため、ペンタフルオロエチル基含有化合物(5)〜(8)を負極に添加した電池では、瞬間的な大電流の放電に際して、界面活性剤分子の亜鉛表面からの離散・拡散が十分に追従できず、界面活性剤分子が放電反応を阻害して、CCVの低下や、DSCパルス特性の低下を引き起こしたと推察される。   A possible cause of such a difference is the difference in water repellency of the hydrophobic group. Since the pentafluoroethyl group has higher water repellency than the trifluoromethyl group, it tends to be expelled from the electrolyte side at the electrolyte / zinc interface. That is, the adsorption to the zinc surface becomes strong. Furthermore, since the size of the surfactant is larger for the pentafluoroethyl group-containing compound, the diffusion rate in the electrolytic solution is slower. For this reason, in the battery in which the pentafluoroethyl group-containing compounds (5) to (8) are added to the negative electrode, the discrete / diffusion of the surfactant molecules from the zinc surface can be sufficiently followed during the instantaneous high-current discharge. It is presumed that the surfactant molecules hindered the discharge reaction, resulting in a decrease in CCV and a decrease in DSC pulse characteristics.

これに対して、トリフルオロメチル基含有化合物(1)〜(4)では、トリフルオロメチル基のサイズや撥水性が、亜鉛表面での保護被膜層の形成と、放電時の離散についての吸/脱着のバランスを保つのに好適で、さらに界面活性剤サイズが小さくて放電時の離散(拡散)速度も速いため、十分な大電流放電性能を維持しつつ、高い防食効果が得られたと思われる。   On the other hand, in the trifluoromethyl group-containing compounds (1) to (4), the size and water repellency of the trifluoromethyl group are such that the formation of the protective coating layer on the zinc surface and the absorption / dissipation for the discrete during discharge It is suitable for keeping the balance of desorption, and since the surfactant size is small and the discrete (diffusion) speed at the time of discharge is high, it seems that a high anticorrosive effect was obtained while maintaining a sufficiently high current discharge performance. .

一方、メチル基(CH3)やエチル基(C25)を有するアニオン性化合物を添加した系:(9)〜(16)では、CCV低下やDSCパルス特性の低下は認められないが、耐漏液性能を高めることができない。これは、疎水基であるメチル基やエチル基の撥水性が乏しいため、これら界面活性剤が亜鉛表面に吸着しても、腐食に対する十分な保護皮膜層として機能しないためと考えられる。 On the other hand, in the systems (9) to (16) to which an anionic compound having a methyl group (CH 3 ) or an ethyl group (C 2 H 5 ) is added, no CCV reduction or DSC pulse characteristics are observed. The leakage resistance cannot be improved. This is presumably because the hydrophobicity of methyl and ethyl groups, which are poor in water repellency, does not function as a sufficient protective coating layer against corrosion even if these surfactants adsorb on the zinc surface.

以上のように、負極の防食剤にトリフルオロメチル基を有するアニオン性化合物を用いた亜鉛アルカリ電池では、防食剤が放電反応を阻害することなく、ガス発生のみを効果的に抑制するため、優れた放電特性と耐漏液性能とを両立した電池とすることができる。   As described above, in a zinc alkaline battery using an anionic compound having a trifluoromethyl group as an anticorrosive for the negative electrode, the anticorrosive effectively suppresses only gas generation without inhibiting the discharge reaction. Thus, a battery having both excellent discharge characteristics and leak-proof performance can be obtained.

ここでは、トリフルオロメチル基を有するアニオン性化合物(界面活性剤)(東京化成工業株式会社製)の添加量に関する検討を行った。   Here, the amount of the anionic compound (surfactant) having a trifluoromethyl group (manufactured by Tokyo Chemical Industry Co., Ltd.) was examined.

ゲル状負極に添加する界面活性剤および添加量を表2中に示したように変えた以外は実施例1と同様にしてゲル状負極(21)〜(26)、(31)〜(36)、(41)〜(46)、(51)〜(56)、(61)〜(66)、(71)〜(76)を作製した。   The gelled negative electrodes (21) to (26) and (31) to (36) were the same as in Example 1 except that the surfactant added to the gelled negative electrode and the amount added were changed as shown in Table 2. , (41) to (46), (51) to (56), (61) to (66), and (71) to (76) were produced.

こうして作製した電池に対する評価として、実施例1の場合と同様に、(1)1Ω接続時のCCV(到達最低電圧)測定、(2)DSCパルス放電特性、(3)耐漏液試験(80℃)を行った。結果を表2にまとめる。   As for the evaluation of the battery thus manufactured, as in Example 1, (1) CCV (minimum voltage reached) connection at 1Ω, (2) DSC pulse discharge characteristics, (3) Leakage resistance test (80 ° C.) Went. The results are summarized in Table 2.

Figure 2008004356
これより、CF3−SO3Na、CF3−O−SO3Na、CF3−COONa、CF3−O−PO3Na2の何れを用いた場合についても、亜鉛合金に対する添加量が0.01重量%では耐漏液性能(防食効果)が不完全であり、一方、添加量を0.6重量%まで増やすと、CCV低下やDSCパルス放電特性の低下が顕著になることがわかる。
Figure 2008004356
Accordingly, the amount of addition to the zinc alloy is 0. 0 for any of CF 3 —SO 3 Na, CF 3 —O—SO 3 Na, CF 3 —COONa, and CF 3 —O—PO 3 Na 2 . It can be seen that at 01% by weight, the leak-proof performance (anticorrosion effect) is incomplete, and when the addition amount is increased to 0.6% by weight, the CCV drop and the DSC pulse discharge characteristic are markedly reduced.

以上の結果から、トリフルオロメチル基を有するアニオン性化合物の添加量を、亜鉛合
金に対して0.02〜0.5重量%の範囲にすれば、高い放電特性と耐漏液性能とを両立させることが可能であることがわかる。
From the above results, if the addition amount of the anionic compound having a trifluoromethyl group is in the range of 0.02 to 0.5% by weight with respect to the zinc alloy, both high discharge characteristics and liquid leakage resistance performance can be achieved. It can be seen that it is possible.

また、電池(21)〜(26)、(61)〜(66)、(71)〜(76)の結果から、残基がNa、K、Hのいずれの場合でも同様の効果が得られた。   Further, from the results of the batteries (21) to (26), (61) to (66), and (71) to (76), the same effect was obtained regardless of whether the residue is Na, K, or H. .

そして、これらトリフルオロメチル基を有するアニオン性化合物を1種で用いても、複数種混ぜた形で用いても、ほぼ同等の効果が得られる。   Even if these anionic compounds having a trifluoromethyl group are used singly or in a mixed form, almost the same effect can be obtained.

上述の実施例1、2では、負極活物質としてAl:0.003重量%、Bi:0.02重量%、In:0.01重量%を含んだ亜鉛合金粉(粒度範囲:35〜300メッシュ、200メッシュ以下の微粉比率:30%)を使用したが、本発明はこれに限定されるものではなく、他の組成や粒度を有する亜鉛ないしは亜鉛合金粉を負極活物質とした系にも適用可能である。   In Examples 1 and 2 described above, zinc alloy powder containing Al: 0.003% by weight, Bi: 0.02% by weight, and In: 0.01% by weight as the negative electrode active material (particle size range: 35-300 mesh) However, the present invention is not limited to this, and is also applicable to a system using zinc or zinc alloy powder having other composition or particle size as a negative electrode active material. Is possible.

また、上述の実施例1、2では、単3サイズのアルカリマンガン乾電池として電池作製・評価を行ったが、本発明の効果そのものは、単3サイズ以外のアルカリマンガン乾電池や、アルカリボタン型、角型等の別構造の電池にも適応することが可能である。また、正極活物質として二酸化マンガン以外に、オキシ水酸化ニッケルや酸化銀、空気等を用いた亜鉛アルカリ電池でも、同様の効果を期待することができる。   Further, in Examples 1 and 2 described above, the battery was manufactured and evaluated as an AA size alkaline manganese dry battery. However, the effect of the present invention itself is that other than the AA size alkaline manganese dry battery, the alkaline button type, and the corner. It is possible to adapt to a battery having a different structure such as a mold. In addition to manganese dioxide as a positive electrode active material, the same effect can be expected even in a zinc alkaline battery using nickel oxyhydroxide, silver oxide, air, or the like.

本発明にかかる亜鉛アルカリ電池は、優れた放電特性と耐漏液性能とを両立しているため、各種電子機器から玩具・ライト等の汎用機器に到るまでの幅広い用途に対して好適に用いられる。   Since the zinc alkaline battery according to the present invention has both excellent discharge characteristics and leak-proof performance, it is suitably used for a wide range of applications from various electronic devices to general-purpose devices such as toys and lights. .

本発明の実施例に係るアルカリ乾電池の一部を断面にした正面図1 is a cross-sectional front view of an alkaline battery according to an embodiment of the present invention. 電池(1)、(5)、(17)に関して、1Ωの抵抗に接続した際の電圧測定結果を示した図The figure which showed the voltage measurement result at the time of connecting with a resistance of 1 ohm regarding battery (1), (5), (17)

符号の説明Explanation of symbols

1 正極ケース
2 黒鉛塗装膜
3 正極合剤ペレット
4 セパレータ
5 底紙
6 ゲル状負極
7 樹脂製封口板
8 底板
9 絶縁ワッシャ
10 負極集電体
11 外装ラベル
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Graphite coating film 3 Positive electrode mixture pellet 4 Separator 5 Bottom paper 6 Gel-like negative electrode 7 Resin sealing board 8 Bottom plate 9 Insulating washer 10 Negative electrode collector 11 Exterior label

Claims (2)

負極に、CF3−SO3X、CF3−O−SO3X、CF3−COOX、CF3−O−PO32(XはHないしはNa、K)の群の中から選ばれる1種以上のトリフルオロメチル基を有するアニオン性化合物を含有した亜鉛アルカリ電池。 1 selected from the group consisting of CF 3 —SO 3 X, CF 3 —O—SO 3 X, CF 3 —COOX, and CF 3 —O—PO 3 X 2 (X is H or Na, K). A zinc alkaline battery containing an anionic compound having at least one kind of trifluoromethyl group. 前記負極が亜鉛もしくは亜鉛合金からなる活物質を含み、前記アニオン性化合物の添加量が、前記負極活物質に対して0.02〜0.5重量%である請求項1記載の亜鉛アルカリ電池。

2. The zinc alkaline battery according to claim 1, wherein the negative electrode includes an active material made of zinc or a zinc alloy, and the addition amount of the anionic compound is 0.02 to 0.5 wt% with respect to the negative electrode active material.

JP2006172147A 2006-06-22 2006-06-22 Zinc alkaline battery Pending JP2008004356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172147A JP2008004356A (en) 2006-06-22 2006-06-22 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172147A JP2008004356A (en) 2006-06-22 2006-06-22 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JP2008004356A true JP2008004356A (en) 2008-01-10

Family

ID=39008575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172147A Pending JP2008004356A (en) 2006-06-22 2006-06-22 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JP2008004356A (en)

Similar Documents

Publication Publication Date Title
JP5453243B2 (en) Alkaline chemical battery
KR950002957B1 (en) Alkaline batteries
JP2001015106A (en) Alkaline battery
EP2441109A1 (en) Magnesium cell with improved electrolyte
JP5172181B2 (en) Zinc alkaline battery
JP2009064756A (en) Alkaline dry battery
JP5079404B2 (en) Alkaline battery
JP2003017077A (en) Sealed alkaline zinc primary battery
JPWO2008013115A1 (en) Alkaline primary battery
JP2008305742A (en) Alkaline primary battery and size aa alkaline dry cell
JP2008004356A (en) Zinc alkaline battery
JP2008047497A (en) Alkaline battery
JP6934629B2 (en) Alkaline batteries
US8283069B2 (en) Zinc-alkaline battery
JP2008034247A (en) Alkaline primary battery
JPWO2020188900A1 (en) Alkaline batteries
JP2007273406A (en) Alkaline battery
JP2004259454A (en) Cylindrical alkaline battery
JP2007273407A (en) Alkaline battery
JPH10116612A (en) Negative electrode material for alkaline manganese battery and manufacture of negative electrode material
JP2006221831A (en) Alkaline dry cell
JP2000067908A (en) Battery
JP2007048623A (en) Alkaline dry cell
JP2017069097A (en) Alkaline battery
JP6589439B2 (en) Alkaline storage battery