JP2008000588A - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
JP2008000588A
JP2008000588A JP2007114909A JP2007114909A JP2008000588A JP 2008000588 A JP2008000588 A JP 2008000588A JP 2007114909 A JP2007114909 A JP 2007114909A JP 2007114909 A JP2007114909 A JP 2007114909A JP 2008000588 A JP2008000588 A JP 2008000588A
Authority
JP
Japan
Prior art keywords
displacement
noise component
elasticity
point
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007114909A
Other languages
English (en)
Other versions
JP5490979B2 (ja
JP2008000588A5 (ja
Inventor
Takuji Osaka
卓司 大坂
Akiko Tonomura
明子 外村
Koji Waki
康治 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2007114909A priority Critical patent/JP5490979B2/ja
Publication of JP2008000588A publication Critical patent/JP2008000588A/ja
Publication of JP2008000588A5 publication Critical patent/JP2008000588A5/ja
Application granted granted Critical
Publication of JP5490979B2 publication Critical patent/JP5490979B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】
ばらつきの少ない変位分布を生成でき、安定した弾性画像の表示を可能とする超音波診断装置を提供する。
【解決手段】
被検体内に超音波を送受信する超音波送受信手段1,4と、被検体内からの反射エコー信号に対し所定の遅延処理を行い、位相を揃えて加算する整相加算手段5と、整相加算手段5の出力信号から断層画像データを演算する断層画像構成手段7と、断層画像構成手段7の出力を超音波断層画像として表示する表示手段9と、整相加算手段5から出力されるRF信号から生体組織の変位を算出する変位計測手段10と、算出された変位に基づき歪みや弾性率の弾性データを算出する弾性演算手段14と、弾性データに基づいて弾性画像を表示手段9に表示する超音波診断装置において、変位分布からノイズ成分を検出するノイズ検出手段11と、ノイズ成分に該当する前記歪み又は弾性率を弾性データから除去するノイズ除去手段14とを備える。
【選択図】 図1

Description

本発明は、超音波を利用して被検体体内の断層画像を表示する超音波診断装置に係り、特に生体組織の硬さ又は軟らかさを弾性画像として表示することができる超音波診断装置に関する。
従来の超音波診断装置は、被検体に超音波を送信及び受信する超音波送受信手段と、この超音波送受信手段からの反射エコー信号を用いて、運動組織を含む被検体内の診断像データを所定周期で繰り返して得る断層走査手段と、この断層走査手段によって得た時系列データを表示する画像表示手段を有して構成されており、被検体内の生体組織の構造を例えばBモード像として表示している。
近年では、探触子で生体組織を圧迫し、その圧迫前後の反射エコー信号を利用し、圧迫によって生じた生体の組織の変位をリアルタイム演算し、弾性画像を表示する弾性イメージング技術が開発されている。探触子を介して行われる連続的な圧迫や拍動・呼吸動などで生じた組織変位から弾性情報を画像化して、安定した弾性画像を表示させるためには、算出された変位などに対して、各種信号処理が必要となる。
また、エコー強度が極端に低い領域が含まれる場合など、変位演算の演算精度が低下すると、それらの領域の変位にばらつきを生じさせてしまう場合があった。そこで、安定した弾性画像を描出させる処理が提案されている。(例えば特許文献1)

国際公開WO2004105615(A1)号公報
ばらつきの大きい変位を含む領域を補正すると、その周囲の正常なデータまでが影響を受けてしまう可能性があり、安定した弾性画像が描出できない場合があった。
そこで本発明は、安定した弾性画像をリアルタイムに表示することを可能とすることを目的とする。
前記課題を解決するために、本発明は以下の様に構成される。
被検体内に超音波を送受信する超音波送受信手段と、被検体内からの反射エコー信号に対し所定の遅延処理を行い、位相を揃えて加算する整相加算手段と、前記整相加算手段の出力信号から断層画像データを演算する断層画像構成手段と、前記断層画像構成手段の出力を超音波断層画像として表示する表示手段と、前記整相加算手段から出力されるRF信号から生体組織の変位を算出する変位計測手段と、算出された変位に基づき歪みや弾性率の弾性データを算出する弾性演算手段と、前記弾性データに基づいて弾性画像を前記表示手段に表示する超音波診断装置において、前記変位分布からノイズ成分を検出するノイズ検出手段と、前記ノイズ成分に該当する前記歪み又は弾性率を前記弾性データから除去するノイズ除去手段とを備える。
前記ノイズ成分として検出された前記変位分布がなめらかになるように補正する補正処理手段を備え、前記ノイズ除去手段は前記補正された変位分布から算出され、前記ノイズ成分に該当する歪み又は弾性率を前記弾性データから除去する。前記補正処理手段は、前記ノイズ成分と正常成分との境界である境界点の前記歪み又は弾性率を正常成分の変位分布を用いて算出する。前記ノイズ成分は、前記変位のばらつきである。
本発明によれば、安定した弾性画像をリアルタイムに表示することができる。
以下、本発明の実施の形態を図を用いて説明する。
図1に本発明における超音波診断装置のブロック図を示す。本発明の超音波診断装置は、被検体に送波する超音波を生成する送信手段1と、超音波の送受信を切換える送受分離手段2と、被検体に当接させて超音波の送受信を行う探触子3と、探触子3より送波された超音波に対する反射エコー信号を増幅させる受信手段4と、受信した反射エコー信号に対し所定の遅延処理を行い、位相を揃えて加算する整相加算手段5と、整相加算手段5の出力信号から生体組織の超音波反射率を演算する白黒像演算手段6と、超音波断層画像として表示させるための変換を行う白黒信号情報変換手段7と、白黒データや各種カラーデータを重ねて表示させるための切換え加算手段8と、これらデータを各種超音波像として表示させる表示手段9と、整相加算手段5の出力信号から、圧迫前後の組織の変位分布を算出する変位計測手段10と、算出された変位分布内に含まれるノイズ成分を検出して、ノイズ成分の変位分布に処理を行なうノイズ成分検出処理手段11と、検出されたノイズ成分の領域と正常な組織領域の境界における境界点を検出する境界点検出手段12と、境界点検出手段12によって検出された境界点を用いて、検出されたノイズ成分の変位分布を補正する補正処理手段13と、変位計測手段10やノイズ成分検出処理手段11や補正処理手段13の出力信号を用いて、歪みや弾性率を算出する弾性データ算出手段14と、算出された弾性データに対し、各種解析処理を施す弾性データ解析手段15と、この弾性データを弾性画像としてカラー画像化するための処理を施すカラー情報変換手段16とから構成される。
まず、この超音波診断装置における超音波送受信部に関する説明をする。送信手段1は、探触子3を駆動して超音波を発生させるための送波パルスを生成するとともに、送信される超音波の収束点をある深さに設定する機能を有している。送受分離手段2は超音波の送波時においては、送信手段1によって生成された送波パルスを探触子3に伝え、超音波の受信時においては、被検体からの反射信号を受信手段4に伝えるといったような、信号の伝達経路を切換える。
探触子3は、複数の振動子を配設して形成されており、電子的にビーム走査を行って、被検体に振動子を介して超音波を送受信する機能を有している。受信手段4は、探触子3で受信した反射エコー信号を所定のゲインで増幅して、超音波受波信号を生成するものである。整相加算手段5は、受信手段4で増幅された超音波受波信号の位相制御を行う。複数の収束点に対し収束した超音波ビームを形成し、超音波生データであるRF信号を生成するものである。
次に、超音波白黒断層画像の構成に関する説明を下記に示す。白黒信号処理手段6は、整相加算手段5から出力されるRF信号に、ゲイン補正・LOG圧縮・検波・輪郭強調・フィルタ処理等の各種信号処理を行い、超音波白黒断層画像データを構成するものである。白黒信号情報変換手段7は、いわゆるスキャンコンバータであり、白黒信号処理手段6の出力信号である超音波白黒断層画像データをデジタル信号に変換するA/D変換器と、変換された複数の断層画像データを時系列に記憶するフレームメモリと、制御コントローラを含んで構成されている。
フレームメモリに格納された被検体内のフレームデータは、テレビ同期で読み出され、切換え加算手段8を介して表示手段9に表示される。切換え加算手段8は、白黒信号情報変換手段7から出力されるフレームデータとカラー情報変換手段16の出力データに重み付けを行って合成し、表示手段9に重複表示させるものである。
変位計測手段10は、整相加算手段5の出力された一組のRF信号に基づいて一次元又は二次元の相関処理を実行し、断層画像上の各計測点の変位を算出するものである。
弾性データ演算手段14は、各計測点の変位に空間微分処理を施すことにより、各計測点の歪みを演算して、歪みの数値データ(弾性データ)を生成する。そして、弾性データ演算手段14は、歪みの数値データ(弾性データ)を弾性データ解析手段15に出力する。
圧力センサ20は、被検体を圧迫することによって圧力を計測するものである。弾性データ演算手段14は、この圧力センサ20によって計測された圧力値と、空間微分処理によって算出された歪みを用いることによって、弾性率を算出させることもできる。
弾性データ解析手段15は、弾性データ演算手段14によって算出された各計測点における歪み及び弾性率の弾性データの表示の要否を判定したり、スムージング処理やカラー階調化処理を行なう。
カラー情報変換手段16は、弾性データ解析手段15でカラー階調化されて変換された弾性データをもとに色相情報に変換するものである。つまり、弾性データに基づいて光の3原色すなわち赤(R)、緑(G)、青(B)に変換するものである。変換例としては、歪みが大きい弾性データを赤色コードに変換し、歪みが小さい弾性データを青色コードに変換するものである。そして、カラー情報変換手段16から出力される弾性データは、切換え加算手段8を介して読み出され、弾性画像として表示手段9に表示される。
ここで、変位計測手段10で算出される変位について図2〜図7を用いて説明を行う。まず、図2に示すファントムモデル100を用いて変位を算出する形態について説明する。ファントムモデル100は、硬さと反射エコー信号の強度が均一なモデルである。このファントムモデル100における超音波の信号解析ラインを17とし、左表面側からファントムモデル100に対して探触子3を用いて圧力を加えながら超音波信号を送受信すると、変位計測手段10によって得られる変位分布は、図5に示すようになる。このファントムモデル100は硬さが均一なモデルであるため、深度方向に変位が積算され、リニア的な増加を示す変位分布が得られる。
次に、図3に示すファントムモデル101を用いて変位を算出する形態について説明する。ファントムモデル101は、反射強度は一定であるが、その中心部に硬さが異なる(周囲より硬い)領域110が含まれている。ファントムモデル101における信号解析ラインを18とし、左表面側からファントムモデル101に対して探触子3を用いて圧力を加えながら、超音波信号を送受信すると、変位計測手段10によって得られる変位分布は図6に示すようになる。このファントムモデル101には硬い領域110が含まれているため、硬い領域110内外における変位が異なって算出される。硬い領域110の外部は、圧迫によって変形するが、硬い領域110の内部は、圧迫によって殆ど変形しないことを示す変位分布が得られる。
次に、図4に示すファントムモデル102を用いて変位を算出する形態について説明する。ファントムモデル102は、その内部の硬さが一定であるが、その中心部に反射強度が異なる領域111が含まれている。領域111は、送信された超音波における反射エコー信号を得るような反射体が存在しない低エコーレベルの領域であり、例えば血管を想定して作成されたものである。そのため、領域111からは正確な反射エコー信号を得ることができない。このファントムモデル102に対する信号解析ラインを19とする。左表面側からファントムモデルに対して探触子3を用いて圧力を加えながら、超音波信号を送受信すると、変位計測手段10によって得られるその変位分布は図7のようになる。領域111の内部の変位分布は、ばらつきを含んでいるため、この領域111内部のばらついた変位分布をそのまま弾性画像として画像化してしまうと、局部的に画質を低下させてしまうことになる。
[第一の実施形態]
本発明の第一の実施形態について図7、図8、図17を用いて説明する。ノイズ成分検出処理手段11は、上記のようなばらつき含んだ変位分布に対し、フィルタ処理を行う。ノイズ成分検出処理手段11は、図7に示したばらつきを生じた変位分布と周囲の変位分布とのばらつき度合いを計測し、周囲の変位分布と比べ、ばらつきが大きい変位分布をノイズ成分120として判定する。具体的には、ノイズ成分検出処理手段11は、変位計測手段10によって得られる変位分布の分散や標準偏差を算出し、これら値が大きい箇所をノイズ成分120として判定する。なお、このノイズ成分では、変位算出の際の相関演算における相関の度合を示す相関係数の値が低い。ノイズ成分検出処理手段11は、この相関係数の値に基づいて、ノイズ成分120を判定してもよい。
また、ノイズ成分検出処理手段11は、この変位分布のスパイク部を用いてノイズ成分120を判定してもよい。ノイズ成分検出処理手段11は、所定の閾値、例えば±60°と設定しておき、算出された変位分布の傾きが±60°を超えた場合、その変位分布をノイズ成分120として判定する。
そして、ノイズ成分検出処理手段11は、図8に示すように、ノイズ成分120と判定された変位分布のスパイク部128が小さくなるようにフィルタ処理を行う。このフィルタ処理では、例えば、突出したスパイク部128を削除し、削除された部分を滑らかに繋ぐ処理を行う。このように、ノイズ成分検出処理手段11は、ばらついたスパイク部128を含む変位分布を、スパイク部128を除いた変位分布に変換することができる。弾性データ演算手段14は、ノイズ成分検出処理手段11から出力される、なめらかな変位分布に空間微分処理を施すことにより、歪み又は弾性率の弾性データに演算することができる。
この弾性データ演算手段14は、ノイズ成分121と正常成分との境界を示す境界点121の歪み又は弾性率を、その境界点121前後の変位分布に空間微分処理を施すことにより求める。
図7に示すように、本来、変位分布122と変位分布124とから境界点121の歪み又は弾性率を算出すべきであるが、境界点121の前後にノイズ成分120がある場合、変位分布122と変位分布123とから境界点121の歪み又は弾性率が算出される。つまり、ノイズ成分120を含む変位分布123を用いて境界点121の歪み又は弾性率が算出されるため、境界点121の歪み又は弾性率が正確に算出されない。
図8に示すように、境界点121の前後のノイズ成分120をフィルタ処理した場合、変位分布122と変位分布125とから境界点121の歪み又は弾性率が算出される。つまり、フィルタ処理された変位分布125を用いて境界点121の歪み又は弾性率が算出されるため、境界点121の歪み又は弾性率が比較的正確に算出される。
ここで、歪み又は弾性率の弾性データを解析する弾性データ解析手段15について、図17を用いて説明する。弾性データ解析手段15は、弾性データ演算手段14によって算出された歪み又は弾性率から弾性フレームの質を判断し、表示すべき弾性フレームであるか否かの判定処理、時間方向へのスムージング処理等を行う信号処理手段15aと、ノイズ成分検出処理手段11で検出したノイズ成分120に該当する弾性フレームのアドレスの歪み又は弾性率を除去するノイズ成分領域除去手段15bと、弾性フレームの歪み又は弾性率をカラーデータとして階調化するためのカラー階調化処理手段15cとから構成される。
ノイズ成分領域除去手段15bについて詳細に説明する。ノイズ成分検出処理手段11は、ノイズ成分120のアドレスを走査線ごとに算出し、弾性フレームにおけるノイズ成分120の二次元アドレス情報をノイズ成分領域除去手段15bに出力する。ノイズ成分領域除去手段15bは、ノイズ成分検出処理手段11から出力されるノイズ成分120の二次元アドレス情報と、弾性データ演算手段14から出力される弾性フレームの歪み又は弾性率を取得し、ノイズ成分120の二次元アドレス情報に該当する歪み又は弾性率の値をゼロにする。すなわち、ノイズ成分120に該当するアドレスの歪み又は弾性率の値を除去する。
そして、カラー階調化処理手段15cは、ノイズ成分120が除去された歪み又は弾性率をカラー階調化し、カラー情報変換手段16はこのカラー階調化されて変換された弾性データをもとに色相情報に変換することにより、低エコーレベルの領域111が取り除かれた弾性画像を表示手段9に表示することができる。
このように、第一の実施形態によれば、ノイズ成分120と判定された変位分布のスパイク部128が小さくなるようにして、境界点121の歪みや弾性率を求めることにより、境界点121における歪み又は弾性率を正確に測定することができ、さらにノイズ成分120を除去することにより、ノイズ成分120と正常成分との境界を鮮明に表示することができる。つまり、安定した弾性画像をリアルタイムに表示することができる。
[第二の実施形態]
第二の実施形態について図9、図19を用いて説明する。図9に示すようにノイズ成分120と判定された変位分布を除去するフィルタ処理について図19(a)を用いて説明する。ノイズ成分検出処理手段11は、一次元ブロック150を用いてフィルタ処理を行なう。
この一次元ブロック150は、深度方向に配置された3画素分の領域であり、中心点151と上点152と下点153とから形成される。ノイズ成分検出処理手段11は、一次元ブロック150の中心点151と上点152と下点153における変位を求め、これらの変位を加算して平均する。そして、ノイズ成分検出処理手段11は、この加算平均値を中心点151の変位として算出して弾性データ演算手段14に出力する。
なお、ノイズ成分検出処理手段11は、加算平均を行なって中央点151の変位を求めたが、メディアンフィルタを用いてもよい。メディアンフィルタでは、中央点151と上点152と下点153の変位をソートして、その中央値を中央点151の変位として算出して弾性データ演算手段14に出力する。
そして、ノイズ成分検出処理手段11は、一次元ブロック150を深度方向に1画素分移動して、上記と同様の方式で移動した先の中心点151について変位の加算平均値を算出する。ノイズ成分検出処理手段11は、この処理を繰り返して、走査線155毎に対してフィルタ処理を行なう。
なお、一次元ブロック150の上点152又は下点153のいずれかが、ばらつきを含む変位分布を含んでいる領域111内にある場合、ノイズ成分検出処理手段11は、領域111内に位置する上点152又は下点153の変位を用いて加算平均しない。例えば、ノイズ成分検出処理手段11は、上点152が領域111内にある場合、中央点151と下点153の変位を加算して平均し、この加算平均値を中心点151の変位として弾性データ演算手段14に出力する。
また、ノイズ成分検出処理手段11は、一次元ブロック150の中心点151が領域111内にある場合、上記のような加算平均を行なわず、中心点151の変位をゼロとして弾性データ演算手段14に出力する。
ここで、このフィルタ処理について詳細に説明する。
(1)(5)の場合、一次元ブロック150の中心点151と上点152と下点153のいずれも領域111内にない。よって、ノイズ成分検出処理手段11は、中心点151と上点152と下点153における変位を加算平均した値を中心点151の変位として弾性データ演算手段14に出力する。
(2)の場合、一次元ブロック150の下点153が領域111内にある。よって、ノイズ成分検出処理手段11は、中心点151と上点152における変位を加算平均した値を中心点151の変位として弾性データ演算手段14に出力する。
(3)の場合、一次元ブロック150の中心点151と上点152と下点153のいずれも領域111内にある。一次元ブロック150全体がノイズ成分120に該当するアドレスであるため、後に一次元ブロック150に該当する歪み又は弾性率がノイズ成分領域除去手段15bで除去される。よって、ノイズ成分検出処理手段11は、変位計測手段10で計測された中心点151の変位をそのまま中心点151の変位として弾性データ演算手段14に出力する。なお、ノイズ成分検出処理手段11は、中心点151の変位をゼロとして弾性データ演算手段14に出力してもよい。
(4)の場合、一次元ブロック150の中心点151と上点152が領域111内にあり、下点153が領域111内にない。この場合、ノイズ成分検出処理手段11は、ノイズ成分120である中心点151の変位を正常成分である下点153の変位に置き換えて弾性データ演算手段14に出力する。
また、図19(b)に示すように、ノイズ成分検出処理手段11は、二次元ブロック160を用いてフィルタ処理を行なってもよい。この二次元ブロック160は、深度方向とその直交方向に配置された9画素分の領域であり、中心点161とその周囲の点(8点)から形成される。
ノイズ成分検出処理手段11は、二次元ブロック160の中心点161と周囲の点における変位を求め、これらの変位を加算して平均する。そして、ノイズ成分検出処理手段11は、この加算平均値を中心点161の変位として算出して弾性データ演算手段14に出力する。
そして、ノイズ成分検出処理手段11は、二次元ブロック160を深度方向に1画素分移動して、上記と同様の方式で移動した先の中心点161について変位の加算平均値を算出する。ノイズ成分検出処理手段11は、この処理を繰り返して、走査線155毎に対してフィルタ処理を行なう。
なお、二次元ブロック160の周囲の点のいずれかが、ばらつきを含む変位分布を含んでいる領域111内にある場合、ノイズ成分検出処理手段11は、領域111内に位置する周囲の点の変位を除いて加算平均を行なう。
また、ノイズ成分検出処理手段11は、二次元ブロック160の中心点161が領域111内にある場合、上記のような加算平均を行なわず、中心点161の変位をゼロとして弾性データ演算手段14に出力する。
ここで、このフィルタ処理について詳細に説明する。(1)(5)の場合、二次元ブロック160の中心点161とその周囲の点はいずれも領域111内にない。よって、ノイズ成分検出処理手段11は、中心点161とその周囲の点における変位を加算平均した値を中心点161の変位として弾性データ演算手段14に出力する。
(2)の場合、二次元ブロック160の中心点160の周囲の点の内、下段の点はいずれも領域111内にある。よって、ノイズ成分検出処理手段11は、中心点161と、中心点160の周囲の点の内、上段と中段の点における変位を加算平均した値を中心点161の変位として弾性データ演算手段14に出力する。
(3)の場合、二次元ブロック160の中心点161と周囲の点がいずれも領域111内にある。二次元ブロック160全体がノイズ成分120に該当するアドレスであるため、後に二次元ブロック160に該当する歪み又は弾性率がノイズ成分領域除去手段15bで除去される。よって、ノイズ成分検出処理手段11は、変位計測手段10で計測された中心点161の変位をそのまま中心点161の変位として弾性データ演算手段14に出力する。なお、ノイズ成分検出処理手段11は、中心点161の変位をゼロとして弾性データ演算手段14に出力してもよい。
(4)の場合、二次元ブロック160の中心点161と上段の点が領域111内にあり、下段の点が領域111内にない。この場合、ノイズ成分検出処理手段11は、ノイズ成分120である中心点160の変位を正常成分である下段の点の変位の加算平均値に置き換えて弾性データ演算手段14に出力する。
このように、ノイズ成分検出処理手段11は、一次元ブロック150や二次元ブロック160の中心点とその周囲の点が領域111内にあるかどうか等から、各点の変位を求める。特にノイズ成分検出処理手段11は、図19(a)(b)の(2)(4)で示すように、ノイズ成分120の境界における中央点151、161の変位をノイズ成分120の変位を含まないように算出する。
そして、弾性データ演算手段14は、このフィルタ処理された変位分布を用いてノイズ成分120の境界における歪み又は弾性率を算出したため、境界点の歪み又は弾性率を正確に算出することができる。
そして、信号処理手段15aの処理を行なった後、ノイズ成分領域除去手段15bで、ノイズ成分検出処理手段11から出力されるノイズ成分120の二次元アドレス情報と、弾性データ演算手段14から出力される弾性フレームの歪み又は弾性率を取得し、ノイズ成分120の二次元アドレス情報に該当する歪み又は弾性率の値をゼロにする。すなわち、ノイズ成分120に該当するアドレスの歪み又は弾性率の値を除去する。そして、ノイズ成分領域除去手段15bから出力される弾性データは、カラー階調化処理手段15cとカラー情報変換手段16などを介すことによって、低エコーレベルの領域111が取り除かれた弾性画像として表示手段9に表示することができる。
このように、第二の実施形態によれば、第一の実施形態と同様に、ノイズ成分120と正常成分との境界を鮮明に表示することができ、安定した弾性画像をリアルタイムに表示することができる。
[第三の実施形態]
次に、第三の実施形態について図10〜図15を用いて説明する。第三の実施形態では、第二の実施形態でノイズ成分120を除去した箇所に補正処理を行う。
ここで、除去されたノイズ成分120と正常な組織領域の境界における境界点を検出する境界点検出手段12の第一の境界点探索手法について、図10を用いて説明する。境界点検出手段12は、図9の変位分布に対し、体表(深度0)S点から探索処理を実施し、ノイズ成分検出処理手段11により変位分布の成分が0となっている境界点Kを探索する。この境界点Kはノイズ成分が除去された領域の左端にあたる。この探索処理は、最終深度点Eまで探索処理を行うものであり、変位が0に落ち込んだ領域が複数ある場合は、夫々の境界点の位置を検出する。
さらに、第二の境界点探索手法について、図11を用いて説明する。境界点検出手段12は、図9の変位分布に対し、最終深度E点から探索処理を実施し、ノイズ成分検出処理手段11により変位分布の成分が0となっている境界点Lを探索する。この境界点Lはノイズ成分が除去された領域の右端にあたる。この探索処理は、体表(深度0)S点まで探索処理を行うものであり、変位が0に落ち込んだ領域が複数ある場合は、夫々の境界点の位置を検出する。
第三の境界点探索手法について、図12を用いて説明する。第三の境界点探索手法は、上記第一の境界点探索手法と第二の境界点探索手法を同時に行なう場合である。
境界点検出手段12は、第一の境界点探索手法を用いて、体表(深度0点)から探索行い、境界点Kを抽出するとともに、再び変位が0でなくなる箇所までの距離D(データ数)をカウントする。また、境界点検出手段12は、第二の境界点探索手法を用いて最終深度点Eから探索を行い、境界点Lを抽出するとともに、再び変位が0でなくなる箇所までの距離D(データ数)をカウントする。二方向から探索することにより、境界点の検出精度を向上させることができる。
次に、本発明における補正処理手段13における説明を図13〜15と、境界点検出手段12によって、検出された境界点K・L、境界点間の距離Dを用いて説明を行う。
補正処理手段13は、境界点検出手段12において算出された境界点K・Lにおける値を利用して除去されたノイズ成分を補正するものである。
図13は、第一の境界点探索手法で求められた境界点Kを用いて補正処理を行う、第一の補正処理を示すものである。補正処理手段13は、境界点検出手段12において抽出された境界点Kから除去されたノイズ成分が終わる点までのノイズ成分の変位を境界点Kにおける変位と同じ変位となるよう補正する。よって、S点から境界点Kまでは変位計測手段10にて取得された変位分布であり、境界点Kから除去されたノイズ成分が終わる点までは補正処理手段13により補正された変位分布であり、除去されたノイズ成分が終わった点からE点までは変位計測手段10にて取得された変位分布となる。
このように、境界点Kの前後のノイズ成分120を補正処理した場合、境界点Kの前後のノイズ成分120がなめらかになっているため、境界点K前後の変位分布の空間微分処理で算出される境界点Kの歪み又は弾性率は比較的正確なものといえる。
図14は、第二の境界点探索手法で求められた境界点Lを用いて補正処理を行う、第二の補正処理を示すものである。補正処理手段13は、境界点検出手段12において抽出された境界点Lから除去されたノイズ成分が終わる点までのノイズ成分の変位を境界点Lにおける変位と同じ変位となるよう補正する。よって、E点から境界点Lまでは変位計測手段10にて取得された変位分布であり、境界点Lから除去されたノイズ成分が終わる点までは補正処理手段13により補正された変位分布であり、除去されたノイズ成分が終わった点からS点までは変位計測手段10にて取得された変位分布となる。
このように、境界点Lの前後のノイズ成分120を補正処理した場合、境界点Lの前後のノイズ成分120がなめらかになっているため、境界点L前後の変位分布の空間微分処理で算出される境界点Kの歪み又は弾性率は比較的正確なものといえる。
図15は、第三の境界点探索手法で求められた境界点K及び境界点Lを用いて補正処理を行う、第三の補正処理を示すものである。境界点検出手段12において抽出された境界点K及び境界点Lと、境界点間の距離Dを利用するものである。
補正処理手段13は、境界点検出手段12において抽出された境界点Kにおける変位及び境界点Lにおける変位を用いて、境界点Kから境界点Kと境界点Lとの中点(距離D/2)までは、境界点Kにおける変位と同じ変位となるよう補正する。また、境界点Lから境界点Kと境界点Lとの中点(距離D/2)までは、境界点Lにおける変位と同じ変位となるよう補正する。よって、S点から境界点Kまでは変位計測手段10にて取得された変位分布であり、境界点Kから境界点Lまでは、補正処理手段13により補正された変位分布であり、境界点LからE点までは変位計測手段10にて取得された変位分布である。
このように、境界点Kと境界点Lの前後のノイズ成分120を補正処理した場合、境界点Kと境界点Lの前後のノイズ成分120がなめらかになっているため、境界点Kと境界点L前後の変位分布の空間微分処理で算出される境界点Kと境界点Kの歪み又は弾性率は比較的正確なものといえる。
第一の補正処理、第二の補正処理では、体表、或いは、最終深度から片側1方向の探索処理であるため他方の境界点との接合部において変位分布にズレが生じるが、演算時間を軽減できるといったメリットがある。
これに対して、第三の補正処理では、演算時間を必要とするが、両境界点における変位分布にズレが生じないので、最も安定した画像を得ることが可能となる。
さらに、図16を用いて、第四の補正処理を説明する。補正処理手段13は、境界点Lにおける変位分布の傾きを算出し、この傾きを用いて除去されたノイズ成分の変位分布を埋める処理を行う。
また、補正処理手段13は、第五の補正処理として検出された境界点Kと境界点Lを結んで変位データを補正してもよい。
なお、補正処理手段13は、演算時間を短縮したい場合、画質の安定性を求める場合等の状況に応じて、上記第一の補正処理〜第五の補正処理を任意に選択できるようになっていいてもよい。
上記第一の補正処理〜第五の補正処理によって得られた変位分布は弾性データ演算手段に出力される。弾性データ演算手段14は、この変位分布に空間微分処理を施すことにより歪みや弾性率を演算する。
[動作手順]
本発明の動作手順を図18に示す。図18における(1)は、図4で記載した反射エコー信号が得られない領域111を含むタイプのファントム102である。このファントム102に対し探触子3を用いて圧迫を行った際に得られる変位分布23が同図18における(2)である。このうち、反射エコー信号が得られない領域21から算出された変位分布が24の領域である。この変位分布24は、ノイズ成分検出処理手段11によって検出される領域であり、実際に検出された変位分布25が同図18の(3)となる。
また、ノイズ成分検出処理手段11は、除去させるノイズ成分の変位分布のアドレス情報26を保持しておく。同図18の(4)における変位分布27は、ノイズ成分検出処理手段11によって検出されたノイズ成分に対し、境界点検出手段12によって境界点を検出し、補正処理手段13にて、ノイズ成分を埋めた状態を示している。この補正された変位分布27が最終的な変位分布となる。
この補正された変位分布27が弾性データ演算手段14に入力され、歪み・弾性率へと処理される。同図18における(5)は、弾性データ演算手段14によって、変位27が歪み分布28に処理された様子を示すものである。弾性データ解析手段15におけるノイズ成分領域除去手段15bは、ノイズ成分検出処理手段11によって検出されたノイズ成分と判断された領域のアドレス情報26により、歪み分布28に対応する箇所の歪み・弾性率を除去する処理を施すものである。
ノイズ成分領域除去手段15bにより処理された弾性データ29が、同図18の(6)であり、最終的に画像化される弾性データであり、後段のカラー階調化処理手段15cにより、カラー像として表示される弾性データに変換される。
以上、反射エコー信号のレベルが極端に低いことに起因して発生するばらつきの影響により、境界付近の正常な変位までが、ばらつきの大きな変位となってしまうことを低減し、安定した弾性画像を表示することができる。
本発明に関する超音波診断装置のブロック図。 硬さと反射エコー強度が均一な弾性ファントムに対する圧迫の様子を示したもの。 反射エコー強度は均一で、硬さが異なる物質が含まれる弾性ファントムに対する圧迫の様子を示したもの。 硬さが均一で、反射エコー強度が殆ど得られない領域を含む弾性ファントムに対する圧迫の様子を示したもの。 図2に示したファントムにおける、変位の分布を示したグラフ。 図3に示したファントムにおける、変位の分布を示したグラフ。 図4に示したファントムにおける、変位の分布を示したグラフ。 本発明の第一の実施形態を示す図。 本発明の第二の実施形態を示す図。 本発明の第三の実施形態の境界点Kを検出した様子を示した図。 本発明の第三の実施形態の境界点Lを検出した様子を示した図。 本発明の第三の実施形態の境界点K・Lと境界点間の距離(データ点数)を検出した様子を示した図。 本発明の第三の実施形態の検出した境界点Kにおいて、除去されたノイズ成分を埋めた様子を示した図。 本発明の第三の実施形態の検出した境界点Lにおいて、除去されたノイズ成分を埋めた様子を示した図。 本発明の第三の実施形態の検出した境界点K・L、境界点間の距離Dを使用し、D/2距離に対し、補正処理を行った様子を示した図。 本発明の第三の実施形態の傾きを利用し、除去されたデータ領域を埋めるような補正処理を行った様子を示した図。 本発明に関する弾性データ解析手段15のブロック図。 本発明に動作手順を説明した図。 本発明の第二の実施形態を示す図。
符号の説明
1 送信手段、2 送受分離手段、3 探触子、4 受信手段、5 整相加算手段、6 白黒信号処理手段、7 白黒信号情報変換手段、8 切換え加算手段、9 表示手段、11 ノイズ成分検出処理手段、12 境界点検出手段、13 補正処理手段、14 弾性データ演算手段、15 弾性データ解析手段、16 カラー情報変換手段、20 圧力センサ

Claims (4)

  1. 被検体内に超音波を送受信する超音波送受信手段と、被検体内からの反射エコー信号に対し所定の遅延処理を行い、位相を揃えて加算する整相加算手段と、前記整相加算手段の出力信号から断層画像データを演算する断層画像構成手段と、前記断層画像構成手段の出力を超音波断層画像として表示する表示手段と、前記整相加算手段から出力されるRF信号から生体組織の変位を算出する変位計測手段と、算出された変位に基づき歪みや弾性率の弾性データを算出する弾性演算手段と、前記弾性データに基づいて弾性画像を前記表示手段に表示する超音波診断装置において、
    前記変位分布からノイズ成分を検出するノイズ検出手段と、前記ノイズ成分に該当する前記歪み又は弾性率を前記弾性データから除去するノイズ除去手段とを備えることを特徴とする超音波診断装置。
  2. 前記ノイズ成分として検出された前記変位分布がなめらかになるように補正する補正処理手段を備え、前記ノイズ除去手段は前記補正された変位分布から算出され、前記ノイズ成分に該当する歪み又は弾性率を前記弾性データから除去することを特徴とする請求項1記載の超音波診断装置。
  3. 前記補正処理手段は、前記ノイズ成分と正常成分との境界である境界点の前記歪み又は弾性率を正常成分の変位分布を用いて算出することを特徴とする請求項1記載の超音波診断装置。
  4. 前記ノイズ成分は、前記変位のばらつきであることを特徴とする請求項1乃至3記載の超音波診断装置。
JP2007114909A 2006-05-25 2007-04-25 超音波診断装置 Active JP5490979B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114909A JP5490979B2 (ja) 2006-05-25 2007-04-25 超音波診断装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006144899 2006-05-25
JP2006144899 2006-05-25
JP2007114909A JP5490979B2 (ja) 2006-05-25 2007-04-25 超音波診断装置

Publications (3)

Publication Number Publication Date
JP2008000588A true JP2008000588A (ja) 2008-01-10
JP2008000588A5 JP2008000588A5 (ja) 2010-05-27
JP5490979B2 JP5490979B2 (ja) 2014-05-14

Family

ID=39005421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114909A Active JP5490979B2 (ja) 2006-05-25 2007-04-25 超音波診断装置

Country Status (1)

Country Link
JP (1) JP5490979B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227487A (ja) * 2009-03-30 2010-10-14 Ge Medical Systems Global Technology Co Llc 超音波診断装置およびその制御プログラム
JP2010246656A (ja) * 2009-04-14 2010-11-04 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びその制御プログラム
WO2010143555A1 (ja) * 2009-06-11 2010-12-16 株式会社 日立メディコ 加振ユニット、超音波探触子、及び超音波診断装置
KR101089743B1 (ko) * 2009-02-27 2011-12-07 삼성메디슨 주식회사 초음파 진단 장치
WO2014103511A1 (ja) * 2012-12-25 2014-07-03 日立アロカメディカル株式会社 超音波診断装置及び弾性解析方法
JP2016034452A (ja) * 2014-08-04 2016-03-17 株式会社東芝 超音波診断装置、画像処理装置及び画像処理プログラム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139638A (ja) * 1985-12-16 1987-06-23 株式会社日立メデイコ 超音波診断装置
JP2000023978A (ja) * 1998-05-19 2000-01-25 Koninkl Philips Electron Nv 弾性変形を検出する方法及び超音波検査装置
JP2003284718A (ja) * 2002-03-28 2003-10-07 Toshiba Corp 超音波診断装置
WO2005020821A1 (ja) * 2003-09-01 2005-03-10 Matsushita Electric Industrial Co., Ltd. 生体信号モニタ装置
JP2005118152A (ja) * 2003-10-14 2005-05-12 Hitachi Medical Corp 超音波診断装置
JP2006174902A (ja) * 2004-12-21 2006-07-06 Hitachi Medical Corp 超音波診断装置
WO2006073088A1 (ja) * 2005-01-04 2006-07-13 Hitachi Medical Corporation 超音波診断装置、超音波撮像プログラム及び超音波撮像方法
JP2007090003A (ja) * 2005-09-30 2007-04-12 Matsushita Electric Ind Co Ltd 超音波診断装置及びその制御方法
JP2007312958A (ja) * 2006-05-25 2007-12-06 Hitachi Medical Corp 超音波診断装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139638A (ja) * 1985-12-16 1987-06-23 株式会社日立メデイコ 超音波診断装置
JP2000023978A (ja) * 1998-05-19 2000-01-25 Koninkl Philips Electron Nv 弾性変形を検出する方法及び超音波検査装置
JP2003284718A (ja) * 2002-03-28 2003-10-07 Toshiba Corp 超音波診断装置
WO2005020821A1 (ja) * 2003-09-01 2005-03-10 Matsushita Electric Industrial Co., Ltd. 生体信号モニタ装置
JP2005118152A (ja) * 2003-10-14 2005-05-12 Hitachi Medical Corp 超音波診断装置
JP2006174902A (ja) * 2004-12-21 2006-07-06 Hitachi Medical Corp 超音波診断装置
WO2006073088A1 (ja) * 2005-01-04 2006-07-13 Hitachi Medical Corporation 超音波診断装置、超音波撮像プログラム及び超音波撮像方法
JP2007090003A (ja) * 2005-09-30 2007-04-12 Matsushita Electric Ind Co Ltd 超音波診断装置及びその制御方法
JP2007312958A (ja) * 2006-05-25 2007-12-06 Hitachi Medical Corp 超音波診断装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089743B1 (ko) * 2009-02-27 2011-12-07 삼성메디슨 주식회사 초음파 진단 장치
JP2010227487A (ja) * 2009-03-30 2010-10-14 Ge Medical Systems Global Technology Co Llc 超音波診断装置およびその制御プログラム
JP2010246656A (ja) * 2009-04-14 2010-11-04 Ge Medical Systems Global Technology Co Llc 超音波診断装置及びその制御プログラム
WO2010143555A1 (ja) * 2009-06-11 2010-12-16 株式会社 日立メディコ 加振ユニット、超音波探触子、及び超音波診断装置
JP5552120B2 (ja) * 2009-06-11 2014-07-16 株式会社日立メディコ 加振ユニット、超音波探触子、及び超音波診断装置
WO2014103511A1 (ja) * 2012-12-25 2014-07-03 日立アロカメディカル株式会社 超音波診断装置及び弾性解析方法
JPWO2014103511A1 (ja) * 2012-12-25 2017-01-12 株式会社日立製作所 超音波診断装置及び弾性解析方法
JP2016034452A (ja) * 2014-08-04 2016-03-17 株式会社東芝 超音波診断装置、画像処理装置及び画像処理プログラム

Also Published As

Publication number Publication date
JP5490979B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
US7628754B2 (en) Ultrasonographic device
US7959572B2 (en) Ultrasonic diagnostic apparatus, IMT measurement method, and IMT measurement program
EP1782736B1 (en) Ultrasonographic device
JP4455003B2 (ja) 超音波診断装置
US20110194748A1 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
US8951194B2 (en) Ultrasound image processing based on motion degree of ultrasound probe
WO2010098233A1 (ja) 超音波診断装置及び弾性画像表示方法
JP5490979B2 (ja) 超音波診断装置
JP5280379B2 (ja) 超音波診断装置、超音波弾性情報処理方法及び超音波弾性情報処理プログラム
JP5166154B2 (ja) 超音波診断装置
JP5473527B2 (ja) 超音波診断装置
JP2005270341A (ja) 超音波診断装置
WO2014103511A1 (ja) 超音波診断装置及び弾性解析方法
JP5623609B2 (ja) 超音波診断装置
JP4368185B2 (ja) 超音波診断装置
JP5128149B2 (ja) 超音波診断装置
KR101107392B1 (ko) 가이드 정보를 제공하는 초음파 시스템 및 방법
JP5209184B2 (ja) 超音波診断装置
JP5156206B2 (ja) 超音波診断装置
KR101175476B1 (ko) 스테레오 스캔에 기초하여 초음파 영상을 제공하는 초음파 시스템 및 방법
JP2017042179A (ja) 超音波診断装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140227

R150 Certificate of patent or registration of utility model

Ref document number: 5490979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250