JP2007538159A - Plasma enhanced chemical vapor deposition of metal oxides. - Google Patents

Plasma enhanced chemical vapor deposition of metal oxides. Download PDF

Info

Publication number
JP2007538159A
JP2007538159A JP2007527479A JP2007527479A JP2007538159A JP 2007538159 A JP2007538159 A JP 2007538159A JP 2007527479 A JP2007527479 A JP 2007527479A JP 2007527479 A JP2007527479 A JP 2007527479A JP 2007538159 A JP2007538159 A JP 2007538159A
Authority
JP
Japan
Prior art keywords
oxide
metal
precursor
substrate
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007527479A
Other languages
Japanese (ja)
Inventor
ピー. ディネガ,ドミトリー
エム. ウェイカート,クリストファー
Original Assignee
ダウ グローバル テクノロジーズ インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ グローバル テクノロジーズ インコーポレイティド filed Critical ダウ グローバル テクノロジーズ インコーポレイティド
Publication of JP2007538159A publication Critical patent/JP2007538159A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Abstract

金属酸化物被覆は、金属酸化物先駆体(10)及び酸化剤を、コロナ放電(40)又は誘電体バリア放電を通して搬送して金属酸化物を生成させ、それを基材上に付着させることにより、比較的低温で、且つ大気圧又はその近傍で、基材(60)に適用することができる。  The metal oxide coating is produced by delivering a metal oxide precursor (10) and an oxidant through a corona discharge (40) or a dielectric barrier discharge to form a metal oxide and depositing it on a substrate. It can be applied to the substrate (60) at a relatively low temperature and at or near atmospheric pressure.

Description

本発明は、基材(substrate)、特にプラスチック基材上への金属酸化物のプラズマ強化化学蒸着に関する。   The present invention relates to plasma enhanced chemical vapor deposition of metal oxides on a substrate, particularly a plastic substrate.

金属酸化物被覆は、様々な用途のために、ガラス基材上に付着されている。例えば、特許文献1においてJonesは、250℃〜400℃の範囲の温度、大気圧又は減圧における、ガラス基材上への半導体SnO2の化学蒸着(CVD)被覆について記載している。同様に、McCurdyは、特許文献2の中で、630℃及び大気圧で、ガラス基材上に錫又はチタンの酸化物被覆を施すためのCDV法について記載している。 Metal oxide coatings are deposited on glass substrates for a variety of applications. For example, in Patent Document 1, Jones describes chemical vapor deposition (CVD) coating of semiconductor SnO 2 on a glass substrate at a temperature in the range of 250 ° C. to 400 ° C., atmospheric pressure or reduced pressure. Similarly, McCurdy describes a CDV method in US Pat. No. 6,057,836 for applying a tin or titanium oxide coating on a glass substrate at 630 ° C. and atmospheric pressure.

特許文献3において、Shiozakiらは、高減圧(2.2ミリトル)下、マグネトロンスパッターを用いて、光電子変換器の裏面上に透明な導電性酸化亜鉛被覆を付着させる方法について記載している。   In Patent Document 3, Shiozaki et al. Describe a method of depositing a transparent conductive zinc oxide coating on the back surface of a photoelectric converter using magnetron sputtering under high vacuum (2.2 mTorr).

特許文献4において、Siddleらは、ガラス基材上に導電性の低放射率被覆を製造する方法であって、1)基材上に反射性金属層を付着させ、次いで2)酸素掃去剤の存在下に、反射性金属層の上に金属酸化物層を反応性スパッター付着させ(reactive sputter depositing)、次に3)その基材を400℃〜720℃で熱処理することを含む方法について記載している。金属酸化物は、錫、亜鉛、タングステン、ニッケル、モリブデン、マンガン、ジルコニウム、バナジウム、ニオブ、タンタル、セリウムもしくはチタンの酸化物又はそれらの混合物であると記載されている。   In Patent Document 4, Siddle et al. Is a method for producing a conductive low emissivity coating on a glass substrate, 1) depositing a reflective metal layer on the substrate, and then 2) oxygen scavenger. Describes a method comprising reactive sputter depositing a metal oxide layer on a reflective metal layer in the presence of, and then 3) heat treating the substrate at 400 ° C. to 720 ° C. is doing. The metal oxide is described as being an oxide of tin, zinc, tungsten, nickel, molybdenum, manganese, zirconium, vanadium, niobium, tantalum, cerium or titanium or a mixture thereof.

Wooは、特許文献5の中で、金属−有機化学蒸着(metal-organic chemical vapor deposition)(MOCVD)に使用できる有機チタン先駆体の製造について記載している。酸化チタンの薄膜は、375℃〜475℃に加熱したガラス基材上に形成されるように記載している。逆に、Hitchmanらは、特許文献6の中で、ガラス、サファイア、鋼、アルミニウム及び酸化マグネシウムを含む多様な基材上に、268℃程度の低温ではあるが減圧(1トル)下で、ルチル型二酸化チタンの薄膜を付着することについて記載している。   Woo, in US Pat. No. 5,637,099, describes the preparation of an organic titanium precursor that can be used for metal-organic chemical vapor deposition (MOCVD). The thin film of titanium oxide is described as being formed on a glass substrate heated to 375 ° C to 475 ° C. On the other hand, Hitman et al., In Patent Document 6, on a variety of substrates including glass, sapphire, steel, aluminum and magnesium oxide, at a low temperature of about 268 ° C. but under reduced pressure (1 torr), rutile Describes depositing a thin film of type titanium dioxide.

米国特許第5,830,530号明細書US Pat. No. 5,830,530 米国特許第6,238,738号明細書US Pat. No. 6,238,738 米国特許第6,136,162号明細書US Pat. No. 6,136,162 米国特許第6,540,884号明細書US Pat. No. 6,540,884 米国特許第6,603,033号明細書US Pat. No. 6,603,033 国際公開第00/47797号パンフレットInternational Publication No. 00/47797 Pamphlet

従来技術が示唆するように、ガラスなどの耐熱性基材上への金属酸化物の付着は、ガラスを品質低下させずに、比較的高い温度で実施することができる。しかしながら、プラスチック基材上への金属酸化物の付着には、相当に低い温度が要求される。その上、実用的な理由で、そのような付着を大気圧又はその近傍で実施することが更に望ましい。従って、基材のガラス転移温度より低い温度で、好ましくは大気圧又はその近傍で、プラスチック基材上に金属酸化物を付着する方法を見出すことが有利である。   As the prior art suggests, the deposition of metal oxides on a heat resistant substrate such as glass can be carried out at a relatively high temperature without degrading the quality of the glass. However, a considerably lower temperature is required for the deposition of the metal oxide on the plastic substrate. Moreover, for practical reasons, it is further desirable to perform such deposition at or near atmospheric pressure. Therefore, it would be advantageous to find a method for depositing metal oxides on a plastic substrate at a temperature below the glass transition temperature of the substrate, preferably at or near atmospheric pressure.

本発明は、1)金属−酸化物先駆体を、酸化剤の存在下に、コロナ放電又は誘電体バリア放電を通して搬送して、その先駆体をプラズマ強化化学蒸着(PECVD)により金属酸化物に転化せしめる工程並びに2)その金属酸化物を基材上に付着させる工程を含んでなる方法を提供することにより、この技術分野におけるニーズに対応するものである。   The present invention 1) transports a metal-oxide precursor through a corona discharge or dielectric barrier discharge in the presence of an oxidant and converts the precursor to a metal oxide by plasma enhanced chemical vapor deposition (PECVD). The present invention addresses the needs in this technical field by providing a method comprising the steps of: 2) and 2) depositing the metal oxide on a substrate.

必要に応じて、有機シロキサン及びSiOxの被覆の、PECVDに順応する他の先駆体を、引き続いて金属酸化物を付着又は共付着させて、基材の上の多層の組成物及び/又は複合体組成物を提供することができる。   Multi-layer compositions and / or composites on the substrate, optionally with other precursors conforming to PECVD, followed by metal oxide deposition or co-deposition of organosiloxane and SiOx coatings A composition can be provided.

本発明は、プラズマ強化化学蒸着を用いて金属酸化物を基材の上に付着させる方法である。第一の工程では、酸化剤、及び好ましくはキャリヤーガス、の存在下に、金属−有機先駆体をコロナ放電又は誘電体バリア放電を通して搬送する。前記放電が先駆体を金属酸化物に転化せしめ、基材の上に付着させる。   The present invention is a method of depositing a metal oxide on a substrate using plasma enhanced chemical vapor deposition. In the first step, the metal-organic precursor is delivered through a corona discharge or a dielectric barrier discharge in the presence of an oxidant and preferably a carrier gas. The discharge converts the precursor to a metal oxide and deposits it on the substrate.

ここで用いら用語「金属−酸化物先駆体」は、プラズマ強化化学蒸着(PECVD)を受けたときに、金属酸化物を生成することができる物質を指す。適当な金属−酸化物先駆体の例としては、ジエチル亜鉛、ジメチル亜鉛、酢酸亜鉛、四塩化チタン、ジメチル錫二酢酸塩、亜鉛アセチルアセトン塩、ジルコニウムヘキサフルオロアセチルアセトン塩、カルバミン酸亜鉛、トリメチルインジウム、トリエチルインジウム、セリウム(IV)(2,2,6,6−テトラメチル−3,5−ヘプタンジオン塩)及びそれらの混合物が含まれる。金属酸化物の例としては、亜鉛、錫、チタン、インジウム、セリウム及びジルコニウムの酸化物、並びにそれらの混合物が含まれる。特に有用な金属酸化物の例としては、インジウム−錫−酸化物(ITO)であり、それは電子工学の用途のための透明導電性酸化物として使用することができる。   As used herein, the term “metal-oxide precursor” refers to a material capable of producing a metal oxide when subjected to plasma enhanced chemical vapor deposition (PECVD). Examples of suitable metal-oxide precursors include diethyl zinc, dimethyl zinc, zinc acetate, titanium tetrachloride, dimethyl tin diacetate, zinc acetylacetone salt, zirconium hexafluoroacetylacetone salt, zinc carbamate, trimethylindium, triethyl. Indium, cerium (IV) (2,2,6,6-tetramethyl-3,5-heptanedione salt) and mixtures thereof are included. Examples of metal oxides include zinc, tin, titanium, indium, cerium and zirconium oxides, and mixtures thereof. An example of a particularly useful metal oxide is indium-tin-oxide (ITO), which can be used as a transparent conductive oxide for electronics applications.

本発明の方法は、図1(a)に図示したような周知のコロナ放電技法を用いて有利に実施することができる。ここで図1(a)を参照すれば、先駆体(10)からのヘッドスペース(ガス)、先駆体のためのキャリヤー及び酸化剤を、第一のガス取入口(30)を通ってノズル(20)の中に、そしてコロナ放電(40)―それがガスを2つの電極50(a)及び50(b)の間で分解する―の中に流して、金属酸化物を生成させ、基材(60)、好ましくはそこに整然と分配するため加熱されたプラスチック基材の上に付着させる。プラスチック基材を用いる場合には、プラスチックは、有利には金属酸化物の付着に先立ち、及びその間に、そのTgに近傍の温度、好ましくはそのTgより50℃を超えない温度に維持する。この方法は、好ましくは大気圧又はその近傍、典型的には700〜800トルの範囲で実施するのがよい。 The method of the present invention can be advantageously carried out using the well-known corona discharge technique as illustrated in FIG. Referring now to FIG. 1 (a), the headspace (gas) from the precursor (10), the carrier for the precursor and the oxidant are passed through the first gas inlet (30) through the nozzle ( 20) and into the corona discharge (40) —it decomposes the gas between the two electrodes 50 (a) and 50 (b) —to produce the metal oxide and (60), preferably deposited on a heated plastic substrate for orderly distribution there. If a plastic substrate is used, the plastic is advantageously maintained at a temperature close to its T g , preferably no more than 50 ° C. above its T g , prior to and during metal oxide deposition. . This process is preferably carried out at or near atmospheric pressure, typically in the range of 700-800 torr.

先駆体のためのキャリヤーは、典型的には窒素又はアルゴンであり、窒素が好ましく;酸化剤は酸素含有ガス、例えばO2、N2O、空気、O3、CO2、NO又はN24であり、空気が好ましい。もし先駆体が酸化剤と非常に反応性が高ければ―例えば、もし先駆体が自然発火性であれば―図1(b)に図示されているように、酸化剤を先駆体と分離することが好ましい。このスキームによれば、キャリヤー及び先駆体は、コロナ放電(40)の真上に設けられた第二のガス取入口(70)を通って流し、酸化剤は第一のガス取入口(30)を通って流れる。更に、ノズル(20)への導入の前に先駆体の濃度を更に希釈するため、第二のキャリヤーを用いてもよい。酸化剤は、もしそれがコロナ放電又は誘電体バリア放電の領域に大気から得られるのであれば、その領域に必ずしも積極的に供給しなくてもよい。 The carrier for the precursor is typically nitrogen or argon, preferably nitrogen; the oxidant is an oxygen-containing gas such as O 2 , N 2 O, air, O 3 , CO 2 , NO or N 2 O 4 and air is preferred. If the precursor is very reactive with the oxidant—for example, if the precursor is pyrophoric—separate the oxidant from the precursor as illustrated in FIG. 1 (b). Is preferred. According to this scheme, the carrier and precursor flow through a second gas inlet (70) provided directly above the corona discharge (40), and the oxidant flows through the first gas inlet (30). Flowing through. In addition, a second carrier may be used to further dilute the precursor concentration prior to introduction into the nozzle (20). The oxidant need not necessarily be actively supplied to the area if it is obtained from the atmosphere in the area of corona discharge or dielectric barrier discharge.

コロナ放電(40)は、好ましくは約2〜20kVの範囲の電圧に維持するのがよい。コロナ放電(40)と基材(60)との間隔は、典型的には約1mm〜50mmの間で変わる。   The corona discharge (40) is preferably maintained at a voltage in the range of about 2-20 kV. The spacing between the corona discharge (40) and the substrate (60) typically varies between about 1 mm and 50 mm.

容器を先駆体でヘッドスペースを残して部分的に満たし、そしてヘッドスペースを、ノズル(10)へのキャリヤーで清掃する(sweep)ことによって、先駆体をノズルに配送することができる。先駆体の所望の蒸気圧を発生させるため、必要ならその容器を加熱することができる。先駆体が感湿性、感気性(air-sensitive)又はその両方であるとき、先駆体は、実質的に湿気及び酸素を含まない容器に容れることが好ましい。   The precursor can be delivered to the nozzle by partially filling the container with the precursor leaving a headspace and sweeping the headspace with a carrier to the nozzle (10). The vessel can be heated if necessary to generate the desired vapor pressure of the precursor. When the precursor is moisture sensitive, air-sensitive or both, the precursor is preferably contained in a container that is substantially free of moisture and oxygen.

「サイレント」且つ「大気圧グロー」放電としても知られる誘電体バリア放電も、本発明方法の実施に使用することができる。図2は、誘電体バリア放電装置(100)の概略図を図示するものであり、2つの金属電極(110及び120)を含み、その少なくとも一方は誘電体層(130)で被覆され、その上に基材(150)を重ねて置く。電極(110及び120)の間の間隙は、典型的には1〜100mmの範囲であり、負荷される電圧は大体10〜50kVである。プラズマ(140)は、約10〜100ns(ナノ秒)の間持続し、空間及び時間に不規則に生じる一連のミクロアーク(micro-arc)を通して発生する。   Dielectric barrier discharges, also known as “silent” and “atmospheric pressure glow” discharges, can also be used to practice the method of the present invention. FIG. 2 illustrates a schematic diagram of a dielectric barrier discharge device (100), including two metal electrodes (110 and 120), at least one of which is coated with a dielectric layer (130), over which A base material (150) is placed on top of each other. The gap between the electrodes (110 and 120) is typically in the range of 1-100 mm and the applied voltage is approximately 10-50 kV. The plasma (140) lasts for about 10-100 ns (nanoseconds) and is generated through a series of micro-arcs that occur randomly in space and time.

総ガス混合物(先駆体、酸化剤及びキャリヤーガス)中の先駆体の濃度は、好ましくは体積/体積として10ppm〜1%の範囲である。先駆体の流量は、好ましくは0.1〜10sccmの範囲であり、酸化剤の流量は、好ましくは10〜100scfm(2.7×105〜2.7×106sccm)の範囲である。基材上の被覆の厚さは用途に依存するが、典型的には10nm〜1μmの範囲である。 The concentration of precursor in the total gas mixture (precursor, oxidant and carrier gas) is preferably in the range of 10 ppm to 1% as volume / volume. The flow rate of the precursor is preferably in the range of 0.1 to 10 sccm, and the flow rate of the oxidant is preferably in the range of 10 to 100 scfm (2.7 × 10 5 to 2.7 × 10 6 sccm). The thickness of the coating on the substrate depends on the application, but typically ranges from 10 nm to 1 μm.

基材は限定するものではないが、好ましくはプラスチックであり、その例としては、ポリカーボネート、ポリウレタン、熱可塑性ポリウレタン、ポリ(メチルメタクリレート)、ポリプロピレン、低密度ポリエチレン、高密度ポリエチレン、エチレン−α−オレフィンコポリマー、スチレン(コ)ポリマー、スチレン−アクリロニトリルコポリマー、ポリエチレンテレフタレート及びポリブチレンテレフタレートを含む。本発明の方法は、低温で、且つ大気圧又はその近傍で、プラスチック基材にUV防護被覆を供給することができる。   The substrate is not limited, but is preferably a plastic, examples of which include polycarbonate, polyurethane, thermoplastic polyurethane, poly (methyl methacrylate), polypropylene, low density polyethylene, high density polyethylene, ethylene-α-olefin. Copolymers, styrene (co) polymers, styrene-acrylonitrile copolymers, polyethylene terephthalate and polybutylene terephthalate. The method of the present invention can provide a UV protective coating to a plastic substrate at low temperatures and at or near atmospheric pressure.

以下の実施例は、例示のみを目的としたものであり、本発明の範囲を限定することを意図するものではない。   The following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.

実施例1−ポリカーボネート基材上への酸化錫の付着
ジメチル錫ジアセテートを密閉された先駆体受容器中に容れ、62℃に加熱した。窒素ガスを3000sccmで受容器を通して流し、15scfm(420,000sccm)で通る空気の流れと一緒にした。受容器の排出ガス(outcoming gas)配管は70℃に加熱した。ガス混合物の全部は“PLASMA−JET(登録商標)”コロナ放電(装置)(Corotec Corp.,Farminton,CT.より入手可能、電極間隔1cm)を通り、ポリカーボネート基材に導いた。10分後、走査型電子顕微鏡及びX線光電子分光光度計(XPS)から明らかなように、酸化錫の透明な一体型の被覆が形成された。
Example 1-Attachment of tin oxide on polycarbonate substrate Dimethyltin diacetate was placed in a sealed precursor receptor and heated to 62 ° C. Nitrogen gas was flowed through the receiver at 3000 sccm, combined with air flow through 15 scfm (420,000 sccm). The incoming gas piping of the receiver was heated to 70 ° C. All of the gas mixture passed through a “PLASMA-JET®” corona discharge (apparatus) (available from Corotec Corp., Farmington, CT., Electrode spacing 1 cm) and led to a polycarbonate substrate. After 10 minutes, a clear monolithic coating of tin oxide was formed, as evidenced by a scanning electron microscope and X-ray photoelectron spectrophotometer (XPS).

実施例2−ポリカーボネート基材上への酸化チタンの付着
四塩化チタンを密閉された先駆体受容器中に容れ、0℃に冷却した。窒素ガスを600sccmで受容器を通して流し、20scfm(570,000sccm)で通る乾燥空気(TOCグレード)の流れと一緒にした。ガス混合物の全部はプラズマジェット装置を通り、ポリカーボネート基材に導かれた。8分後、走査型電子顕微鏡及びXPSから明らかなように、酸化チタンの透明な一体型の被覆が形成された。
Example 2-Titanium Oxide Adhesion on a Polycarbonate Substrate Titanium tetrachloride was placed in a sealed precursor receptor and cooled to 0 ° C. Nitrogen gas was passed through the receiver at 600 sccm, combined with a flow of dry air (TOC grade) passing through 20 scfm (570,000 sccm). All of the gas mixture passed through the plasma jet apparatus and was directed to the polycarbonate substrate. After 8 minutes, a clear monolithic coating of titanium oxide was formed, as evidenced by scanning electron microscopy and XPS.

実施例3−ポリカーボネート基材上への酸化亜鉛の付着
ジエチル亜鉛を密閉された先駆体受容器中に容れた。窒素ガスを150sccmで受容器を通して流し3500sccmで通る別の窒素流と一緒にした。このガス混合物は、プラズマジェット装置によって発生した空気プラズマ(air plasma)の流れの中に導入され、ポリカーボネート基材上に導かれた。その空気(TOCグレード)の流量は20scfm(570,000sccm)であった。10分後、走査型電子顕微鏡及びXPSから明らかなように、酸化亜鉛の透明な被覆が形成された。
Example 3-Zinc Oxide Adhesion on Polycarbonate Substrate Diethyl zinc was placed in a sealed precursor receptor. Nitrogen gas was passed through the receiver at 150 sccm and combined with another stream of nitrogen passing at 3500 sccm. This gas mixture was introduced into an air plasma stream generated by a plasma jet apparatus and directed onto a polycarbonate substrate. The air (TOC grade) flow rate was 20 scfm (570,000 sccm). After 10 minutes, a clear coating of zinc oxide was formed as evidenced by scanning electron microscopy and XPS.

実施例4−ポリカーボネート基材上へのUV吸収性酸化亜鉛の付着
ジエチル亜鉛を密閉された先駆体受容器中に容れた。窒素ガスを100sccmで受容器を通して流し、3800sccmで通る別の窒素流と一緒にした。このガス混合物は、プラズマジェット装置によって発生した空気プラズマ(air plasma)の流れの中に導入し、ポリカーボネート基材上に導いた。空気(低湿度調整空気)の流量は15scfm(570,000sccm)であった。電極に掛けられた電力は720Wであり、噴射口から基材までの間隔は20mmであった。15分後、走査型電子顕微鏡及びXPSから明らかなように、酸化亜鉛の約0.6μm厚の透明な被覆がポリカーボネートシート上に形成された。XRD分析から明らかなように、その被覆の中に結晶化を誘発するため、付着の間、ポリカーボネートシート(Tg=150℃)を180℃の温度まで加熱した。酸化亜鉛の被覆は、ASTM G53−96による“QUV−B”耐候性試験1000時間後でも官能性(in tact)があった。被覆は、黄色度指数<5、δヘイズ<18%、光透過度85%、及びUV吸収性約360nm遮断を示した。
Example 4-Adsorption of UV-absorbing zinc oxide on polycarbonate substrate Diethyl zinc was placed in a sealed precursor receptor. Nitrogen gas was flowed through the receiver at 100 sccm and combined with another nitrogen flow passing at 3800 sccm. This gas mixture was introduced into a stream of air plasma generated by a plasma jet device and directed onto a polycarbonate substrate. The flow rate of air (low humidity adjusted air) was 15 scfm (570,000 sccm). The electric power applied to the electrode was 720 W, and the distance from the injection port to the substrate was 20 mm. After 15 minutes, a clear coating of about 0.6 μm thick zinc oxide was formed on the polycarbonate sheet, as evidenced by scanning electron microscopy and XPS. As evident from XRD analysis, the polycarbonate sheet (T g = 150 ° C.) was heated to a temperature of 180 ° C. during deposition to induce crystallization in the coating. The zinc oxide coating was still inactive after 1000 hours of the “QUV-B” weathering test according to ASTM G53-96. The coating exhibited a yellowness index <5, δ haze <18%, light transmission 85%, and UV absorption about 360 nm blocking.

実施例5−誘電体バリア放電を用いた酸化亜鉛のポリカーボネート基材上への付着
ジエチル亜鉛を密閉された受容器中に容れた。窒素ガスを150sccmで受容器を通して流し、60scfmの別の窒素流と一緒にした。このガス混合物は下流に導き、電極を出て、ポリカーボネート基材と接触する放電ゾーンに入る前に空気と混合した。空気の流量は11357sccmであった。電極に掛けられた電力は1,000Wであり、電極から基材までの間隔は約4mmであった。10分後、走査型電子顕微鏡及びXPSから明らかなように、酸化亜鉛の透明な被覆がポリカーボネートフィルム上に形成された。
Example 5 Adhesion of Zinc Oxide on a Polycarbonate Substrate Using Dielectric Barrier Discharge Diethyl zinc was placed in a sealed receiver. Nitrogen gas was passed through the receiver at 150 sccm, combined with another nitrogen flow of 60 scfm. This gas mixture was led downstream and exited the electrode and mixed with air before entering the discharge zone in contact with the polycarbonate substrate. The air flow rate was 11357 sccm. The electric power applied to the electrode was 1,000 W, and the distance from the electrode to the substrate was about 4 mm. After 10 minutes, a clear coating of zinc oxide was formed on the polycarbonate film as evidenced by scanning electron microscopy and XPS.

実施例6−SiOxCyHz又はSiOx/酸化亜鉛多層被覆
米国特許第5,718,967号明細書によるVPPに類似した、有機シロキサン被覆を、ポリカーボネート基材上に付着させた。6000sccmで流れる先駆体テトラメチルジシロキサンを、流量1000sccmのN2Oと混合する。このガス混合物は、プラズマジェット装置によって発生した窒素プラズマの流れの中に導入され、ポリカーボネート基材上に導かれた。残余の窒素ガス(balance gas of nitrogen)は25scfmで流した。電極に掛けられた電力は78Wであり、噴射口から基材までの間隔は5mmであった。
Example 6 SiOxCyHz or SiOx / Zinc Oxide Multilayer Coating An organosiloxane coating, similar to VPP according to US Pat. No. 5,718,967, was deposited on a polycarbonate substrate. The precursor tetramethyldisiloxane flowing at 6000 sccm is mixed with N 2 O at a flow rate of 1000 sccm. This gas mixture was introduced into a stream of nitrogen plasma generated by a plasma jet device and directed onto a polycarbonate substrate. The remaining nitrogen gas (balance gas of nitrogen) was flowed at 25 scfm. The electric power applied to the electrode was 78 W, and the distance from the injection port to the base material was 5 mm.

酸化亜鉛の被覆は、実施例4に従って有機シロキサン被覆の上に付着した。必要に応じて、別の有機シロキサン層が酸化亜鉛層の上に付着した。   A zinc oxide coating was deposited on top of the organosiloxane coating according to Example 4. If necessary, another organosiloxane layer was deposited on the zinc oxide layer.

図1は、金属酸化物を発生させて基材の上に付着させる、コロナ放電法を示す図面である。FIG. 1 shows a corona discharge method in which a metal oxide is generated and deposited on a substrate. 図2は誘電体バリア放電装置を示す図面である。FIG. 2 shows a dielectric barrier discharge device.

Claims (13)

1)金属−酸化物先駆体を、酸化剤の存在下に、コロナ放電又は誘電体バリア放電を通して搬送し、その先駆体をプラズマ強化化学蒸着により金属酸化物に転化せしめる工程及び2)前記金属酸化物を基材上に付着させる工程を含んでなる方法。   1) a step of conveying a metal-oxide precursor through a corona discharge or a dielectric barrier discharge in the presence of an oxidant and converting the precursor to a metal oxide by plasma enhanced chemical vapor deposition; and 2) the metal oxidation A method comprising the step of depositing an object on a substrate. 金属−酸化物先駆体を、大気圧又はその近傍で、コロナ放電を通して搬送される請求項1に記載の方法。   The method of claim 1, wherein the metal-oxide precursor is conveyed through a corona discharge at or near atmospheric pressure. 基材が、そのTgより50℃より高い温度を超えない温度に加熱されたプラスチックである請求項2に記載の方法。 The method of claim 2 wherein the substrate is a plastic heated to a temperature not exceeding a temperature above its Tg of greater than 50C. 金属−酸化物先駆体が、ジエチル亜鉛、ジメチル亜鉛、酢酸亜鉛、四塩化チタン、ジメチル錫二酢酸塩、亜鉛アセチルアセトネート、ジルコニウムヘキサフルオロアセチルアセトネート、トリメチルインジウム、トリエチルインジウム、セリウム(IV)(2,2,6,6−テトラメチル−3,5−ヘプタンジオネート)及びカルバミン酸亜鉛よりなる群から選ばれる請求項3に記載の方法。   The metal-oxide precursor is diethyl zinc, dimethyl zinc, zinc acetate, titanium tetrachloride, dimethyl tin diacetate, zinc acetylacetonate, zirconium hexafluoroacetylacetonate, trimethylindium, triethylindium, cerium (IV) ( The method according to claim 3, selected from the group consisting of 2,2,6,6-tetramethyl-3,5-heptanedionate) and zinc carbamate. 金属−酸化物先駆体が、ジエチル亜鉛、四塩化チタン、トリメチルインジウム、トリエチルインジウム及びジメチル錫二酢酸塩よりなる群から選ばれる請求項3に記載の方法。   4. The method of claim 3, wherein the metal-oxide precursor is selected from the group consisting of diethyl zinc, titanium tetrachloride, trimethylindium, triethylindium and dimethyltin diacetate. 酸化剤が、空気、O2、N2O、CO2、H2O、CO、N24及びO3又はそれらの組合せよりなる群から選ばれる請求項3に記載の方法。 The method according to oxidant, air, O 2, N 2 O, CO 2, H 2 O, CO, N 2 O 4 and O 3 or claim 3 selected from the group consisting of combinations thereof. 不活性なガスキャリヤーが先駆体に使用され、且つ酸化剤が大気からのものである請求項3に記載の方法。   4. A process according to claim 3, wherein an inert gas carrier is used for the precursor and the oxidant is from the atmosphere. 金属酸化物が酸化亜鉛、酸化チタン、酸化錫、酸化ジルコニウム及び酸化セリウムよりなる群から選ばれる請求項2に記載の方法。   The method of claim 2, wherein the metal oxide is selected from the group consisting of zinc oxide, titanium oxide, tin oxide, zirconium oxide and cerium oxide. 金属酸化物がインジウム−錫−酸化物である請求項2に記載の方法。   The method of claim 2 wherein the metal oxide is indium-tin-oxide. 1)金属−酸化物先駆体及び酸化剤を、コロナ放電又は誘電体バリア放電を通して搬送して、プラズマ強化化学蒸着により前記先駆体を金属酸化物に転化せしめる工程並びに2)金属酸化物を基材上に付着させる工程を含んでなり、前記放電を大気圧又はその近傍に維持し、且つ前記基材を、そのTgより50℃より高い温度を超えない温度に加熱するプラスチック基材上に金属酸化物被覆を付着させる方法。 1) the step of conveying the metal-oxide precursor and oxidant through corona discharge or dielectric barrier discharge to convert the precursor to metal oxide by plasma enhanced chemical vapor deposition; and 2) the base material of the metal oxide. Depositing on a metal on a plastic substrate that maintains the discharge at or near atmospheric pressure and heats the substrate to a temperature not exceeding 50 ° C. above its T g A method of depositing an oxide coating. 金属酸化物を、プラスチック基材上への別の物質のプラズマ強化化学蒸着と同時に、又はそれに引き続いて、付着させる請求項9に記載の方法。   10. The method of claim 9, wherein the metal oxide is deposited simultaneously with or subsequent to plasma enhanced chemical vapor deposition of another material on the plastic substrate. 請求項11の方法で製造された物品。   An article made by the method of claim 11. 前記別の物質がオルガノシラン又はSiOx付着物である物品。   Articles wherein said another substance is an organosilane or SiOx deposit.
JP2007527479A 2004-05-20 2005-05-20 Plasma enhanced chemical vapor deposition of metal oxides. Withdrawn JP2007538159A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57281304P 2004-05-20 2004-05-20
PCT/US2005/017747 WO2005113856A1 (en) 2004-05-20 2005-05-20 Plasma enhanced chemical vapor deposition of metal oxide

Publications (1)

Publication Number Publication Date
JP2007538159A true JP2007538159A (en) 2007-12-27

Family

ID=34970263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007527479A Withdrawn JP2007538159A (en) 2004-05-20 2005-05-20 Plasma enhanced chemical vapor deposition of metal oxides.

Country Status (10)

Country Link
EP (1) EP1756329A1 (en)
JP (1) JP2007538159A (en)
KR (1) KR20070012718A (en)
CN (1) CN1957109A (en)
BR (1) BRPI0510823A (en)
CA (1) CA2562914A1 (en)
MX (1) MXPA06013380A (en)
RU (1) RU2006145309A (en)
SG (1) SG151324A1 (en)
WO (1) WO2005113856A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526210A (en) * 2007-05-01 2010-07-29 エクスアテック、エル.エル.シー. Plasma coating edge healing and field repair
JP2016113698A (en) * 2014-12-12 2016-06-23 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Deposition method of transparent multilayer system having scratch resistance properties

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736698B2 (en) * 2006-05-05 2010-06-15 Pilkington Group Limited Method of depositing zinc oxide coatings on a substrate
DE102007025151A1 (en) * 2007-05-29 2008-09-04 Innovent E.V. Coating method comprises producing plasma jet from process gas and introducing precursor material into it, coating being deposited from jet on to substrate or existing coating on it and substrate being heated
EP2145978A1 (en) 2008-07-16 2010-01-20 AGC Flat Glass Europe SA Method and installation for depositing layers on a substrate
EP2145979A1 (en) 2008-07-16 2010-01-20 AGC Flat Glass Europe SA Method and installation for depositing layers on both sides of a substrate simultaneously
ES2335638B1 (en) * 2008-08-01 2011-02-09 Cosentino, S.A. ARTICLE IN THE FORM OF A TABLE OR Slab MANUFACTURED OF PETREO AGLOMERATE COATED WITH TRANSPARENT THIN SHEETS OF TIO2 OR ZNO THROUGH DRY DEPOSITION TECHNIQUES WITH HIGH RESISTANCE AGAINST SOLAR DEGRADATION.
JP2010250088A (en) * 2009-04-16 2010-11-04 Konica Minolta Business Technologies Inc Intermediate transfer member, method for manufacturing intermediate transfer member, and image forming apparatus
KR101133250B1 (en) * 2009-09-29 2012-04-05 부산대학교 산학협력단 manufacturing mathod of transparency electrode using polymer substrate atmosphere plasma treated
DE102012003943B4 (en) * 2012-02-24 2017-09-14 Innovent E.V. Technologieentwicklung Process for the preparation of antibacterial nanosheets on threads or textile materials in the form of woven, knitted or nonwoven fabric, product produced by this process and its use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457767A (en) * 1987-08-28 1989-03-06 Seiko Epson Corp Josephson effect element
EP0618942A4 (en) * 1991-12-23 1994-11-17 Akzo Nobel Nv Blend of polyethylene terephthalate matrix and thermotropic liquid crystal block copolymer.
JP4024546B2 (en) * 2002-01-25 2007-12-19 住友ベークライト株式会社 Method for producing film with inorganic thin film
GB0217553D0 (en) * 2002-07-30 2002-09-11 Sheel David W Titania coatings by CVD at atmospheric pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526210A (en) * 2007-05-01 2010-07-29 エクスアテック、エル.エル.シー. Plasma coating edge healing and field repair
JP2016113698A (en) * 2014-12-12 2016-06-23 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Deposition method of transparent multilayer system having scratch resistance properties

Also Published As

Publication number Publication date
KR20070012718A (en) 2007-01-26
MXPA06013380A (en) 2007-01-23
WO2005113856A1 (en) 2005-12-01
CA2562914A1 (en) 2005-12-01
EP1756329A1 (en) 2007-02-28
RU2006145309A (en) 2008-06-27
CN1957109A (en) 2007-05-02
SG151324A1 (en) 2009-04-30
BRPI0510823A (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP2007538159A (en) Plasma enhanced chemical vapor deposition of metal oxides.
US20070212486A1 (en) Plasma Enhanced Chemical Vapor Deposition of Metal Oxide
JP5349455B2 (en) Transparent barrier films and methods for producing them
JP5394867B2 (en) Gas barrier film and gas barrier film
JP4833388B2 (en) Protective coating by high-speed arc plasma deposition
US6890656B2 (en) High rate deposition of titanium dioxide
EP1525336B1 (en) Titania coatings by plasma cvd at atmospheric pressure
EP2714961B1 (en) Method for depositing layers on a glass substrate by means of low-pressure pecvd
JP4571315B2 (en) Ultraviolet filter with improved weather resistance and method for producing the same
US20020110695A1 (en) Multilayer article and method of making by arc plasma deposition
Lee et al. UV-enhanced atomic layer deposition of ZrO2 thin films at room temperature
O'Neill et al. Atmospheric pressure plasma liquid deposition–a novel route to barrier coatings
WO2012172266A1 (en) Process for manufacturing glazing comprising a porous layer
TW200827469A (en) Improved plasma-enhanced chemical vapor deposition coating process
JP2003340971A (en) Gas barrier plastic film
US20120052244A1 (en) Layer system having barrier properties and a structured conductive layer, method for producing the same, and use of such a layer system
US20090109536A1 (en) Plastic optical element with gas barrier film, its manufacturing method and optical pickup device employing the element
US20170066890A1 (en) Multi-layer structure having good uv protection and scratch protection
KR20090013852A (en) Method of fabricating organic-inorganic complex thin films using surface-modified substrate
JP4024546B2 (en) Method for producing film with inorganic thin film
KR101644038B1 (en) Transparent conductive film, method for manufacturing the same and touch panel containing the same
JP2020205293A (en) Solar cell module
WO2017153747A1 (en) Barrier coated substrates
Li et al. Low temperature deposition of functional coatings in a high density plasma
Yu et al. Effects of Oxygen on Preparation of TiO2 Thin Films by MOCVD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100514