JP2007524869A - 性能を高める境界領域を含む構造化された導波管のための装置、方法及びコンピュータプログラム製品 - Google Patents

性能を高める境界領域を含む構造化された導波管のための装置、方法及びコンピュータプログラム製品 Download PDF

Info

Publication number
JP2007524869A
JP2007524869A JP2006552759A JP2006552759A JP2007524869A JP 2007524869 A JP2007524869 A JP 2007524869A JP 2006552759 A JP2006552759 A JP 2006552759A JP 2006552759 A JP2006552759 A JP 2006552759A JP 2007524869 A JP2007524869 A JP 2007524869A
Authority
JP
Japan
Prior art keywords
waveguide
magnetic
channel region
magnetic field
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006552759A
Other languages
English (en)
Other versions
JP2007524869A5 (ja
Inventor
エルウッド,サザーランド
Original Assignee
パノラマ ラブズ ピーティーワイ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/812,295 external-priority patent/US20050180674A1/en
Application filed by パノラマ ラブズ ピーティーワイ リミテッド filed Critical パノラマ ラブズ ピーティーワイ リミテッド
Publication of JP2007524869A publication Critical patent/JP2007524869A/ja
Publication of JP2007524869A5 publication Critical patent/JP2007524869A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/095Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

導波管軸を画定する1つのチャネル領域と、1つまたは複数の境界領域と、実質的に該導波管軸に垂直な磁場を生成するために該領域の内の少なくとも1つに(好ましくは1つまたは複数の境界領域内に)配置される複数の磁気成分とを含む導波管。放射線信号を送信するために該導波管を操作するための方法は、(a)導波管軸を画定する1つのチャネル領域と、1つまたは複数の境界領域とを含む該導波管を通る該放射線信号を送信することと、(b)該領域の内の少なくとも1つに配置される複数の磁気成分を使用して該導波管軸に対して実質的に垂直な磁場を生じさせることとを含む。

Description

(関連出願の相互参照)
本願は、2004年2月12日に提出された米国仮出願番号第60/544,591号の、及び以下の米国特許出願、つまり(それぞれ2004年3月29日に出願された)第10/812,294号、第10/811,782号、及び第10/812,295号、及び(それぞれ2004年12月14日に出願された)米国特許出願、第11/011,761号、第11/011,751号、第11/011,496号、第11/011,762号、及び第11/011,770号、及び(それぞれ2005年2月9日に出願された)米国特許出願、第10/906,220号、第10/906,221号、第10/906,222号、第10/906,223号、第10/906,224号、第10/906,226号、及び第10/906,226号及び(それぞれ2005年2月9日に出願された)米国特許出願、第10/906,255号、第10/906,256号、第10/906,257号、第10/906,258号、第10/906,259号、第10/906,260号、第10/906,261号、第10/906,262号、及び第10/906,263号(それぞれ2005年2月11日に出願された)。その開示はそれぞれすべての目的のためにその全体として参照することにより組み込まれている。
(技術分野)
本発明は概して放射線を伝播するためのトランスポートに関し、さらに詳細には、外部影響に対する導波管の放射線に影響を及ぼす特性の反応性を強化する光学的にアクティブな構成要素を含む誘導チャネルを有する導波管に関する。
ファラデー効果は、光が磁場に配置された透明な媒体を通して、且つ該磁場に平行に伝播されるときに直線偏光の偏光面が回転する現象である。偏光回転の大きさの有効性は磁場の強さ、該媒体に固有のベルデ定数、及び光路長に応じて変化する。実験に基づいた回転角は、以下により示される。
β=VBd
(方程式1)
により示され、ここではVはベルデ定数と呼ばれ(角度分cm−1ガウスー1という単位を有し)、Bは磁場であり、dは該場にさらされる伝播距離である。量子力学記述では、ファラデー回転は、磁場の押し付けがエネルギーレベルを改変するために発生する。
(電流の強度を評価する方法として電流により引き起こされる磁場等の)磁場の測定には高いベルデ定数を有する、あるいは光アイソレータで使用されるファラデー回転子としての単位体(例えば、鉄を含有するガーネット結晶)を使用することが公知である。光アイソレータは、偏光面を45°回転するためのファラデー回転子、磁場の適用のための磁石、偏光器、及びアナライザを含む。従来の光アイソレータは、導波管(例えば光ファイバ)が使用されない、かさばるタイプであった。
従来の光学では、磁気光学変調器は常磁性体と強磁性体を含む別々の結晶、特にガーネット(例えばイットリウム/鉄ガーネット)から製造されていた。これらのような装置はかなりの磁気制御場を必要とする。磁気光学効果は薄層技術、特に非可逆ジャンクション等の非可逆性装置を生産するためにも使用されている。これらのような装置はファラデー効果による、あるいはコットン−ムートン効果によるモードの変換に基づいている。
磁気光学装置において常磁性体と強磁性体を使用することの追加の欠点は、これらの物質が、例えば、振幅、位相、及び/または周波数等、偏光角以外の放射線の特性に悪影響を及ぼす可能性があるという点である。
従来の技術では、ディスプレイ装置を集合的に定義するために別々の(結晶等の)磁気光学バルク装置を使用することが知られていた。これらの従来の技術のディスプレイは、相対的に高いピクチャエレメント(ピクセル)あたりコスト、個々のピクセルを制御するための高い操作費用、相対的に大型のディスプレイ装置に対してうまく拡大縮小しない高まる制御複雑性を含むいくつかの欠点を有している。
従来のイメージングシステムはおおまかに以下の2つのカテゴリに分類されてよい。つまり(a)フラットパネルディスプレイ(FPD)及び(b)(発光型表示として陰極線管(CRT)を含む)投影システムである。一般的には、該2種類のシステムのための優勢な技術は、例外はあるものの同じではない。これらの2つのカテゴリは将来の技術のための明確な課題を有し、既存の技術はまだ満足が行くようにこれらの課題を克服していない。
優勢な陰極線管(CRT)技術と比べて既存のFPD技術が直面する主要な課題は、コストである(「フラットパネル」は、その標準的な奥行きが表示面積の幅にほぼ等しいCRTディスプレイと比較して「平坦な」つまり「薄い」ことを意味している)。
解像度、輝度、及びコントラストを含む既定のイメージング規格の一式を達成するためには、FPD技術はCRT技術のほぼ3倍から4倍高価である。ただし、特に表示面積が拡大されるときのCRT技術のかさ高性及び重量は重大な欠点である。薄いディスプレイに対する希求がFPDの活動領域での数多くの技術の開発を動かしてきた。
FPDの高いコストはおもに優勢な液晶ダイオード(LCD)技術における、あるいはあまり一般的ではないガスプラズマ技術における精巧なコンポーネント材料の使用によるものである。LCDで使用されているネマチック材料の凹凸が、相対的に高い欠陥率をもたらし、多くの場合、個々の細胞に不具合があるLCD素子のアレイがディスプレイ全体の廃棄、または欠陥のある素子の高価な置換につながる。
LCD技術とガスプラズマディスプレイ技術の両方にとって、このようなディスプレイの製造において液体または気体を制御するという固有の困難が根本的な技術的な且つコストの制限である。
高いコストのさらなる原因は、既存の技術における各光弁/発光エレメントでの相対的に高い動作過電圧に対する需要である。次々に液体セルを通して伝達される光の偏光、またはガスプラズマディスプレイにおける気体電池内での励起を変更するLCDディスプレイのネマチック材を回転するためであるかどうかに関係なく、画像形成要素で高速切り替え速度を達成するためには相対的に高い電圧が必要とされる。LCDの場合、個々のトランジスタ要素が各画像形成位置に割り当てられる「アクティブマトリックス」が高コストの解決策となっている。
高精細度テレビ(HDTV)またはそれ以上の製品に対する画質基準が高まるにつれて、現在、既存のFPD技術は、CRTと競合するコストで画質を配信することはできない。 品質範囲のこの末端でのコスト差は最も顕著である。そして35mmのフィルム品質解像度を配信することは、技術的には実現可能であるが、テレビ用であるのか、コンピュータディスプレイ用であるのかに関係なく、それには家庭用電化用品の範囲を超えさせるコストを伴うと予想されている。
投影システムの場合、テレビ(またはコンピュータ)ディスプレイと劇場映画投影システムという2つの基本的なサブクラスがある。相対的なコストは従来の35mmのフィルム投影装置との競争の関連では重要な問題である。しかしながら、HDTVの場合、従来のCRT、LCD FPDまたはガスプラズマFPDに比較されれば投影システムは低コスト解決策となる。
現在の投影システム技術は他の課題にも直面している。HDTV投影システムは、ディスプレイ表面への相対的に短い投射距離(throw−distance)という制約の中で均一な画質を維持する一方でディスプレイの奥行きを最小限に抑えるという二重の課題に直面している。通常、この均衡をとると、相対的に低いコストを犠牲にして満足の行かない妥協をすることになる。
しかしながら、投影システム用の技術的に要求が厳しい未研究分野は映画館の領域にある。映画の画面装置は投影システムにとって新興の用途であり、この用途では、コンソール奥行き対均一な画質に関する問題は通常当てはまらない。代わりに、課題は、従来の35mmのフィルムプロジェクタの品質に競争価格で(最低でも)等しくなることにある。ダイレクトドライブイメージライトアンプリファイアー(「D−ILA」)、デジタル光処理(「DLP(登録商標)」)、及びグレーティングライトバルブ(「GLV」)をベースにしたシステム等を含む既存の技術は、最近では従来のフィルム投影装置の質に等しくなったが、従来のフィルムプロジェクタに比較するとかなりのコストの格差を有する。
ダイレクトドライブイメージライトアンプリファイアーは、JVCプロジェクタ(JVC Projectors)によって開発された反射液晶光弁装置である。駆動集積回路(「IC」)がCMOSベースの光弁の上にじかに画像を書き込む。液晶は信号レベルに比例して反射率を変更する。これらの垂直に整列した(homeoptropic)結晶が、16ミリ秒未満の降下時間を加えた上昇時間で非常に高速な応答時間を達成する。キセノンつまり超高性能(「UHP」)メタルハライドランプからの光は偏光ビームスプリッタから移動し、D−ILA素子から反射され、画面上に投影される。
DLP(登録商標)投影システムの中心にあるのは、1987年にテキサスインスツルメンツ(Texas Instruments)のLarry Hornbeck博士が先駆者となったデジタルマイクロミラーデバイス、つまりDMDチップとして知られている光半導体である。 DMDチップは高度な光スイッチである。それは最高130万のヒンジが取り付けられた顕微鏡的な鏡からなる矩形のアレイを含み、これらのマイクロミラーのそれぞれは人間の髪の毛の幅の5分の1未満と測定され、投影される画像の1ピクセルに相当する。DMDチップがデジタルビデオ信号またはグラフィック信号と調整されると、光源及び映写レンズ、つまりそのミラーが画面または他の表面の上に全デジタル画像を反射する。DMD及びそれを取り囲む高度電子回路はデジタル光処理TM技術と呼ばれている。
GLV(グレーティング−ライト−バルブ)と呼ばれているプロセスが開発されている。該技術に基づいた試作品の装置は3000:1というコントラスト比を達成した(典型的なハイエンド投影ディスプレイは今日1000:1しか達成していない)。該装置は、色を送達するために特殊な波長で選ばれる3つのレーザを使用する。該3つのレーザが赤(642nm)、緑(532nm)、及び青(457nm)である。該プロセスはMEMS技術(微小電気機械)を使用し、1行に1,080ピクセルのマイクロリボンアレイからなる。各ピクセルは6本のリボンからなり、3本は固定され、3本は上下に移動する。電気エネルギーが印加されると、3本の可動リボンが光を「ろ過」して取り除いた一種の回折格子を形成する。
コスト格差の一部はそれらの技術が低コストで特定の重要な画質パラメータを達成する際に直面する固有の困難のためである。コントラストは、特に「黒」の質において、マイクロミラーDLPにとって達成が困難である。GLVは、(光学格子波動干渉を通してピクセル零度、つまり黒を達成する)この困難に直面していないが、代わりにラインアレイスキャンソースで事実上フィルムのような間欠画像を達成するという困難に直面している。
既存の技術は、LCDベースなのか、MEMSベースなのかに関係なく、少なくとも1Kx1Kのアレイの素子(マイクロミラー、反射型液晶素子(「LCoS」等)の製造の経済的な側面によっても制約されている。必要とされている技術標準で動作するこれらの数の素子を必要とするときチップベースのシステムでは欠陥率は高い。
多様な電気通信用途に段階的な指数の光ファイバをファラデー効果と協調して使用することは公知である。分散及び他の性能の数的指標はファラデー効果のために最適化されておらず、ファラデー効果のための最適化によって劣化している場合もあるために、ファラデー効果を光ファイバに適用するには固有の矛盾があるが、従来の光ファイバの電気通信特性は光ファイバの電気通信応用例は周知である。いくつかの従来の光ファイバ応用例では、九十度の偏光回転は、五十四メートルの経路長で百エルステッド磁場を適用することによって達成される。ファイバをソレノイドの内部に設置し、所望される磁場を、該ソレノイドを通して電流を導くことによって生じさせると、所望される場が適用される。電気通信用途の場合、該五十四メートルの経路長は、それがキロメートルで測定される総経路長を有するシステムで使用されるために設計されていることを考慮するときに許容できる。
光ファイバ関連でのファラデー効果のための別の従来の用途は、ファイバを通るデータの従来の高速伝送の上に低速データ伝送をオーバレイするためのシステムとしてである。ファラデー効果は帯域外周波数信号方式または制御を提供するためにゆっくりと高速データを変調するために使用される。再び、この用途は、有力な(predominate)検討材料としての電気通信の用途で実現される。
これらの従来の応用例では、ファイバは電気通信の使用のために設計され、ファラデー効果での関与のためのファイバ特性の修正では、通常、キロメートル+−長のファイバチャネルのための減衰及び分散性能の数的指標を含む電気通信特性を劣化されることを許されていない。
電気通信での使用を可能にするために光ファイバーの性能測定基準のためにいったん許容レベルが達成されると、光ファイバ製造技法はきわめて長い距離の光学的に純粋且つ均一なファイバの効率的且つ費用効果の高い製造を可能にするために開発され、磨きをかけられてきた。光ファイバの基本的な製造プロセスの高レベルの概要は、プリフォームからファイバを引き出し、該ファイバを試験するプリフォーム(perform)ガラス外筒の製造を含む。通常、プリフォーム(perform)ブランクは、最終的なファイバの(屈折率、膨張率、融点等の)所望される属性を生じさせるために必要な必須化学組成を有するシリコン溶液を通して酸素を泡立てる改良型化学蒸着(MCVD)プロセスを使用して作られる。気体蒸気は特殊な旋盤内の合成石英管または石英管(クラッディング)の内部に導かれる。該旋盤は回転され、トーチが該管の外部に沿って移動する。該トーチからの熱により気体中の化学物質が酸素と反応し、二酸化ケイ素及び酸化ゲルマニウムを形成し、これらの二酸化物が該管の内部に蒸着し、ガラスを形成するためにともに融合する。このプロセスが終了するとブランクプリフォームが生じる。
ブランクプリフォームは、作られ、冷却され、試験された後、グラファイト炉の近くの上部に該プリフォームを有するファイバ引き上げタワーの内部に設置される。該炉は該プリフォームの先端を溶かし、その結果、重量のために落下し始める溶融「小滴」を形成する。溶融「小滴」は落下する時に冷却されガラスのストランドを形成する。このストランドは、所望されるコーティングを塗布し、該コーティングを硬化させるために一連の処理ステーションの中を通され、該ストランドが所望される厚さを有するようにコンピュータで監視される速度で該ストランドを引っ張る牽引車に取り付けられる。ファイバは毎秒約33フィートから66フィートの速度で引っ張られ、引き出されたストランドはスプール上に巻き付けられる。これらのスプールが1.4マイルより多い光ファイバを含むことは異常ではない。
性能の数的指標についての試験を含め、この仕上げられたファイバが試験される。電気通信グレードのファイバについてのこれらの性能数的指標は、引っ張り強さ(1平方インチあたり100,000ポンド以上)、屈折率プロファイル(開口数、及び光学欠陥がないかのスクリーン)、ファイバ幾何学形状(コア径、クラッディング寸法、及びコーティング直径)、減衰(距離での多様な波長の光の劣化)、帯域幅、波長分散、動作温度/範囲、減衰に対する温度依存、及び海中で光を伝導する能力を含む。
1996年には、それ以降フォトニック結晶ファイバ(PCF)と名付けられた前述された光ファイバの変動が立証された。PCFは、より高い屈折率のバックグラウンド材料の中で低い率の材料の微細構造の配列を使用する光ファイバ/導波構造である。該バックグラウンド材料は多くの場合非ドープシリカであり、低い率の領域は通常ファイバの前長に沿って通る空気の細孔によって提供される。PCFは2つの一般的なカテゴリ、つまり(1)高指数誘導ファイバと(2)低指数誘導ファイバに分けられる。
前述された従来の光ファイバと同様に、高指数誘導ファイバは改良型全反射(MTIR)原則によってソリッドコアの中で光を誘導している。全反射は微細構造の空気で充填された領域の中の低い有効指数により引き起こされる。
低指数誘導ファイバはフォトニックバンドギャップ(PBG)効果を使用して光を誘導する。PGB効果は微細構造クラッディング領域内での伝播を不可能にするため、光は低指数コアに制限される。
用語「従来の導波管構造」は、広範囲の導波構造及び方法を含むために使用されているが、これらの構造の範囲は本発明の実施形態を実現するためにここで説明されるように修正されてよい。異なるファイバタイプ補佐(aides)の特徴は、それらが使用される多くの異なる応用例に適応される。光ファイバシステムを適切に操作することは、どのタイプのファイバが使用されているのか、及びなぜ使用されているのかを知ることに依存している。
従来のシステムはシングルモード、マルチモード、及びPCF導波管を含み、多くの亜変種も含んでいる。例えば、マルチモードファイバはステップ型ファイバとグレイデッドファイバを含み、シングルモードファイバはステップ型ファイバ、マッチドクラッド構造、陥凹クラッド(depressed clad)構造、及び他の非標準型構造を含む。マルチモードファイバはより短い伝送距離に最良に設計され、LANシステム及びビデオ監視で使用するために適している。シングルモードファイバは長い伝送距離に最良に設計され、長距離電話システム及びマルチチャネルテレビ放送システムに適切になる。「エアクラッド」またはエバネセント結合の導波管は光ワイヤまたは光ナノワイヤを含む。
ステップ指数は通常導波管のための屈折率の突然の変化の提供を指す――コアはクラッディングの屈折率より大きい屈折率を有する。グレイデッド指数は、コアの中心から遠くに徐々に減少する(例えば、コアは放物線プロファイルを有する)屈折率プロファイルを提供する構造を指す。シングルモードファイバは、非分散シフトファイバ(NDSF)、分散シフトファイバ(DSF)、及び非ゼロ分散シフトファイバ(NZ−DSF)等の長さ及び放射線周波数(複数の場合がある等)特定の応用例のために合わせられた多くの異なるプロファイルを作成してきた。偏光維持(PM)ファイバと呼ばれる重要な種々のシングルモードファイバが開発されてきた。これまで説明されてきた他のすべてのシングルモードファイバは、無作為に偏光された光を伝播できた。PMファイバは入力光の1つの偏光だけを伝播することを目的とする。PMファイバは他のファイバタイプには見られない特徴を含む。コアに加えて、応力ロッドと呼ばれる追加の(2つの)長手方向領域がある。その名前が暗示するように、これらの応力ロッドはただ1つの光の偏光面だけの伝達が好まれるようにファイバのコアの中に応力を生じさせる。
前述されたように、従来の磁気光学システム、特にファラデー回転子及びアイソレータは、希土ドープガーネット結晶及び他の特殊材料、通常はイットリウム−鉄−ガーネット(YIG)またはビスマス置換YIGを含む特殊な磁気光学材料を利用してきた。YIG単結晶は浮遊帯(FZ)法を使用して育てられる。この方法では、YIGの化学量論的組成と合うためにY203及びFe203が混合され、次に該混合物は焼結される。YIG種結晶は残りのシャフト上にセットされるが、その結果生じる焼結物はFZ炉の中の1つのシャフト上でmother stickとしてセットされる。所定の調製の焼結された材料は、YIG単結晶の付着を促進するために必要な流体を生じさせるために該mother stickと該種結晶の間の中心領域に設置される。2本のシャフトが回転される間、ハロゲンランプからの光が該中心領域に焦点を合せられる。該中心領域は酸素を含む雰囲気の中で加熱されると溶融帯を形成する。この条件下で、該mother stickと該種は一定の速度で移動し、該溶融帯が該mother stickに沿って移動し、YIG焼結物から単結晶を育てる。
FZ法は空気中に吊り下げられているmother stickから結晶を育てるため、汚染は排除され、高純度の結晶が育てられる。FZ法は012x120mmと測定されるインゴットを作り出す。
Bi−置換された鉄ガーネット厚膜は、LPE炉を含む液相エピタキシー(LPE)法によって育てられる。結晶材料及びPbO−B2O3フラックスは加熱され、白金るつぼの中で溶融される。(GdCa)(GaMgZr)12等の単結晶ウェハは、回転時に溶融面上で浸され、Bi−置換された鉄ガーネット厚膜をウェハ上で育てる。直径3インチほどと測定される厚膜を育てることができる。
45°のファラデー回転子を獲得するために、これらの膜は特定の厚さまで研磨され、反射防止膜を塗布され、次にアイソレータに適合するように1平方ミリメートルから2平方ミリメートルに切断される。YIG単結晶より大きなファラデー回転容量を有するため、Bi−置換された鉄ガーネット厚膜は約100μm単位で薄くされなければならず、したがって高精度処理が必要とされる。
さらに新しいシステムはビスマス置換イットリウム−鉄−ガーネット(Bi−YIG)材料、薄膜及びナノ粉末の製造及び合成に対処する。 30341ジョージア州、アトランタ、ピーチツリー工業通り(Peachtree Industrial Boulevard,Atlanta, GA)5313にあるnGimat社は薄膜コーティングの製造のための燃焼化学蒸着(CCVD)システムを使用する。CCVDプロセスでは、オブジェクトを被覆するために使用される金属を含有する化学物質である先駆物質が通常は可燃性の燃料である溶液に溶解している。この溶液は特殊なノズルによって顕微鏡的な小滴を形成するために噴霧される。次に、酸素ストリームがこれらの小滴を、それらが燃焼される炎まで運ぶ。基材(被覆されている材料)は単に炎の前にそれを引き出すことによって被覆される。炎の熱が、小滴を蒸発させ、該先駆物質が反応し、該基材上に蒸着する(凝縮する)ために必要なエネルギーを提供する。
さらに、エピタキシャルリフトオフは、多くのIII−V系及び元素半導体系の異種統合を達成するために使用されてきた。しかしながら、多くの他の重要な材料系の装置を統合することは、いくつかのプロセスを使用しても困難であった。この問題の好例が、単結晶遷移金属酸化物の、オンチップ薄膜光アイソレータに必要なシステムである半導体プラットホーム上での統合である。磁気ガーネットにおけるエピタキシャルリフトオフの実現が報告された。ガドリニウムガリウムガーネット(GGG)上で育てられた単結晶イットリウム鉄ガーネット(YIG)及びビスマス置換YIG(Bi−YIG)エピタキシャルの層内に埋め込み犠牲層を生じさせるためにディープイオンインプランテーションが使用される。注入により生じる損傷は犠牲層とガーネットの残りの部分の間に大きなエッチング選択性を生じさせる。十ミクロンの厚膜が、燐酸でのエッチングにより元のGGG基材から離昇される。ミリメートルサイズの部分品がシリコン基材及びガリウム砒素基材に移された。
さらに、研究者は、同じ厚さの単一層ビスマス鉄ガーネット膜より、百四十パーセント(140%)大きい748nmでのファラデー回転を示す磁気光学フォトニック結晶と呼ぶ多層構造を報告した。現在のファラデー回転子は、概して単結晶またはエピタキシャル膜である。しかしながら、単結晶装置はやや大きく、光集積回路等の応用例でのそれらの使用を困難にする。そして、膜は約500μmの厚さも示すため、代替材料系が望ましい。鉄ガーネット、特にビスマスガーネットとイットリウム鉄ガーネットの積み重ねられた膜の使用が調査された。750nmの光と使用するために設計され、厚さ70nmのビスマス鉄ガーネット(BIG)の上に厚さ81nmのイットリウム鉄ガーネットの4つのヘテロエピタキシャル層、BIGの厚さ279nmの中心層及びYIGの上のBIGの4つの層を特徴とした。該積み重ねを製造するために、LPX305i 248nm KrFエキシマレーザを使用するパルス化レーザ付着が使用された。
前記説明から分かるように、従来の技術は大部分の磁気光学システムで特殊磁気光学材料を利用するが、電気通信測度が妥協されない限り、必要な磁場強さを生じさせることによって非PCF光ファイバ等のより従来ではない磁気光学材とともにファラデー効果を利用することも公知であった。いくつかのケースでは、製造後の(post−manufacturing)方法が特定の磁気光学応用例での使用のために特定の特殊コーティングを提供するために、あらかじめ作られた光ファイバとの関連で使用される。あらかじめ作られた材料の製造後処理が多様な所望される結果を達成するためにときおり必要となるという点で、同じことは特殊磁気光学結晶及び他のバルクインプリメンテーションでも当てはまる。このような特別な処理は特殊なファイバの最終コストを増額し、ファイバが仕様を満たすことができない可能性があるという追加の状況を生じさせる。多くの磁気応用例は、通常、少数の(通常は1個または2個の)磁気光学構成部品を含むので、相対的に高い1個あたりコストは耐えられる。しかしながら、所望される磁気光学構成部品の数が増えるにつれて、(ドルと時間という単位での)最終的なコストは拡大し、数百または数千のこのような構成部品を使用する応用例では、単位原価を大幅に削減することは必須である。
必要とされているのは、単位原価を削減し、製造可能性、再現性、均一性、及び信頼性を高める一方で、外部影響に対する導波管の放射線に影響を及ぼす特性の反応性を強化するために従来の技術に優る優位点を提供する代替導波管技術である。
開示されているのは、導波管軸を画定する1つのチャネル領域と、1つまたは複数の境界領域と、該導波管軸に実質的に垂直に磁場を生じさせるために該領域の内の少なくとも1つに(好ましくは1つまたは複数の境界領域内に)配置される複数の磁気成分とを含む導波管のための装置及び方法である。放射線信号を送信するために該導波管を操作するための方法は、(a)導波管軸を画定する1つのチャネル領域と、1つまたは複数の境界領域とを含む該導波管を通って該放射線信号を送信することと、(b)該領域の内の少なくとも1つに配置されている複数の磁気成分を使用して該導波管軸に対して実質的に垂直な磁場を生じさせることとを含む。
それはまた、導波管製造方法のための本発明の好適実施形態でもあり、該方法は、(a)該導波管の1つまたは複数の領域を複数の磁気成分でドーピングし、該導波管のチャネル領域と関連する少なくとも1つのドーピング済み領域を生じさせ、該チャネル領域は該導波管のための導波管軸を画定することと、(b)十分な量の該成分を共通の磁化方向に向け、該導波管軸に対して平行に大きな磁界強度がない該導波管軸に一般的に垂直な磁場を恒久的に生じさせることとを含む。
本発明の該装置、方法、コンピュータプログラム製品及び伝播された信号は、改良され、成熟した導波管製造プロセスを使用することの優位点を提供する。好適実施形態では、該導波管は光学トランスポート、好ましくは放射線の所望される属性を保ちながらも光学的にアクティブな構成物質を含むことにより該インフルエンサの特徴に影響を及ぼす短距離特性を強化するように適応された光ファイバまたは導波管チャネルである。好適実施形態では、影響を受ける放射線の特性は放射線の偏光状態を含み、該インフルエンサは該光学トランスポートの伝達軸に平行に伝播される制御可能な可変磁場を使用して偏光回転角度を制御するためにファラデー効果を使用する。該光学トランスポートは、非常に短い光学経路上で低い磁場強度を使用して偏光を迅速に制御できるようにするために構築される。
放射線は、当初、1つの特定の偏光を有する波動成分を生成するために制御される。その波動成分の偏光は、第2の偏光フィルタが該影響を及ぼす効果に応えて発せられる放射線の振幅を変調するように影響を受ける。好適実施形態では、この変調は発せられた放射線を消すことを含む。該組み込まれた特許出願、優先出願、及び関連出願はファラデー構造の導波管、ファラデー構造導波管変調器、ディスプレイ及び本発明と協調する他の導波管構造、及び方法を開示している。該ドーピングされた領域(例えば、該ドーピングされた境界領域)は該伝達軸に対して垂直な磁場を生じさせ、所望されるインフルエンサによって生じる偏光変化を変えないが、(例えば光学的損失を減少させる、及び/またはインフルエンサ反応性を改善するためにチャネル領域の分域を飽和することによって)性能を改善する。
低コストの均一な効率のよい磁気光学システム要素の製造で使用するための本発明の一部としてここに開示されているように成熟した効率的な光ファイバ導波管製造プロセスを活用することは、単位原価を削減し、製造可能性、再現性、均一性及び信頼性を高める一方で、外部影響に対する該導波管の放射線に影響を及ぼす特性の反応性を強化するために従来の技術に優る優位点を提供する代替導波管技術を提供する。
本発明は単位原価を削減し、製造可能性、再現性、均一性、及び信頼性を高める一方で、外部影響に対する導波管の放射線に影響を及ぼす特性の反応性を強化するために従来の技術に優る優位点を提供する代替導波管技術に関する。以下の説明は、当業者が本発明を作り、使用することができるようにするために提示され、特許出願及びその要件との関連で提供される。好適実施形態及びここに説明されている一般的な原則と特徴に対する多様な変型は、容易に当業者に明らかになるであろう。したがって、本発明は示されている実施形態に限られることを目的とするのではなく、ここに説明されている原則と特徴に一貫した最も幅広い範囲を与えられるべきである。
以下の説明では、(1)光学トランスポート、(2)プロパティインフルエンサ、及び(3)消すことという三つの用語が本発明との関連で特定の意味を有する。本発明の目的のために、光学トランスポートは、放射線の所望される属性を保ちつつ、該インフルエンサの該特徴に影響を及ぼす特性を強化するように特に適応された導波管である。好適実施形態では、影響を受ける放射線の特性はその偏光回転状態を含み、該インフルエンサは該光学トランスポートの伝達軸に平行に伝播される制御可能な可変磁場を使用して偏光角を制御するためにファラデー効果を使用する。該光学トランスポートは、非常に短い光学経路上で低い磁場強度を使用して偏光を迅速に制御できるようにするために構築される。いくつかの特定のインプリメンテーションでは、光学トランスポートは、ファイバの導波属性を同時に保ち、それ以外の場合プロパティインフルエンサによる、放射線特性(複数の場合がある)の効率的な構築及び協力的なみせかけに対処しながら、伝達された放射線の導波管のために高いベルデ定数を示す光ファイバを含む。
プロパティインフルエンサは、光学トランスポートにより伝達される放射線の特性制御を実現するための構造である。好適実施形態では、プロパティインフルエンサは、コア及び1つまたは複数のクラッディング層を有する光ファイバによって形成される光学トランスポートのための1つのインプリメンテーションでは、好ましくはインフルエンサが光学トランスポートの導波属性を大きく不利に改変することなくクラッディング層の1つまたは複数の中に、または上に統合される、光学トランスポートに動作可能なように結合される。伝達される放射線の偏光特性を使用する好適実施形態では、プロパティインフルエンサの好ましいインプリメンテーションはコイル、コイルフォーム(coilform)または、(その内の1つまたは複数が制御可能である)1つまたは複数の磁場を使用して、光学トランスポート内のファラデー効果出現(manifesting)場をサポートする/生じさせる(したがって、伝達された放射線に影響を及ぼす)統合が可能な他の構造等の偏光が影響を及ぼす構造である。
本発明の構造化された導波管はいくつかの実施形態では、伝播される放射線の振幅を制御する変調器の中のトランスポートとして働いてよい。該変調器によって発せられる放射線は、光学トランスポート上でのプロパティインフルエンサの相互作用により制御される最大放射線振幅と最小放射線振幅を有する。消すことは単に最小放射線振幅が、「オフ」または「暗い」または放射線の不在を示す他の分類として特徴付けられる(特定の実施形態にとって適切に)十分に低いレベルであることを指す。言い換えると、いくつかの応用例では、十分に低いが、検出可能/認識できる放射線振幅が、そのレベルがインプリメンテーションまたは実施形態のためのパラメータを満たすときに「消された」と適切に識別されてよい。本発明は、導波管製造の間に誘導領域に配置される光学的にアクティブな構成物質を使用することによりインフルエンサに対する導波管の反応を改善する。
図1は、ファラデー構造導波管変調器100のための本発明の好適実施形態の一般的な概略平面図である。 変調器100は光学トランスポート105と、トランスポート105に動作可能なように結合されているプロパティインフルエンサ110と、第1のプロパティエレメント120と、第2のプロパティエレメント125とを含む。
トランスポート105は、技術の多くの周知の光学導波管構造に基づいて実現されてよい。 例えば、トランスポート105は1つの誘導領域と1つまたは複数の境界領域(例えば、コアと、該コアのための1つまたは複数のクラッディング層)を含む誘導チャネルを有する特別に適応された光ファイバ(従来またはPCF)であってよいか、あるいはトランスポート105は1つまたは複数のこのような誘導チャネルを有するバルクデバイスまたは基板の導波管チャネルであってよい。従来の導波管構造は、影響を受ける放射線の特性のタイプ及びインフルエンサ110の性質に基づいて修正される。
インフルエンサ110は、トランスポート105を通して及び/またはトランスポート105上で伝達される放射線に対する(開示されている影響を通して等、直接的にまたは間接的に)特性影響を明らかにするための構造である。多くの異なるタイプの放射線特性が影響を受けることがある。そして、多くのケースでは既定の特性に影響を及ぼすために使用される特定の構造がインプリメンテーションごとに変化してよい。好適実施形態では、放射線の出力振幅を制御するために同様に使用されてよい特性は影響のための望ましい特性である。例えば、放射線偏光角は影響を受けることがある1つの特性であり、放射線の伝達された振幅を制御するために使用されてよい特性である。固定された偏光器等の別の要素を使用すると、該偏光器の伝達軸に比較した放射線の偏光角に基づいて放射線振幅が制御される。この例では、偏光角を制御すると伝達される放射線が変化する。
しかしながら、他のタイプの特性も影響を受ける可能性があり、放射線位相または放射線周波数等の出力振幅を制御するために使用されてよいことが理解される。通常、他の要素は特性の性質、及び特性に対する影響のタイプと程度に基づいて出力振幅を制御するために変調器100とともに使用される。いくつかの実施形態では、望ましくは出力振幅よりむしろ放射線の別の特徴が制御されてよく、それには識別されたもの以外の放射線特性が制御される、あるいは特性が所望される属性に対する所望される制御を達成するために異なるように制御される必要があることが要求される可能性がある。
ファラデー効果はトランスポート105内で偏光制御を達成する一つの方法の一つの例に過ぎない。ファラデー偏光回転影響のためのインフルエンサ110の好適実施形態は、トランスポート105に近接する、あるいはトランスポート105内に/上に統合される可変磁場と固定磁場の組み合わせを使用する。これらの磁場は望ましくは、制御する磁場がトランスポート105を通して伝達される放射線の伝播方向に平行に向けられるように生成される。該トランスポートを基準にして磁場の方向及び大きさを適切に制御することにより、放射線偏光角に対する影響の所望される程度が達成される。
トランスポート105が、インフルエンサ110によって選択された特性の「influencibility」を改善する/最大限にするために構築されることが、この特定の例では好ましい。ファラデー効果を使用する偏光回転特性の場合、トランスポート105はドーピングされ、形成され、処理され、及び/またはベルデ定数を高める/最大限にするために扱われる。ベルデ定数が大きくなるほど、インフルエンサ110もさらに容易に既定の電界の強さとトランスポート長で偏光回転角度に影響を及ぼすことができる。このインプリメンテーションの好適実施形態では、ベルデ定数に対する注意はトランスポート105二次(secondary)の導波管態様の他の特長/属性/特徴を用いる一次タスクである。いくつかのインプリメンテーションはそれ以外に提供してよいが、好適実施形態では、インフルエンサ110は(例えばプリフォーム製造及び/または引き上げプロセス等)導波管製造プロセスを通してトランスポート105と統合される、あるいはそれ以外の場合「強力に関連付けられる」。
エレメント120とエレメント125は、インフルエンサ110によって影響を及ぼされる所望される放射線特性を選択する/フィルタリングする/作用するためのプロパティエレメントである。エレメント120は、適切な特性の所望される状態を有する入力放射線の波動成分を渡すために「ゲート開閉」要素として使用されるフィルタであってよいか、あるいはそれは適切な特性の所望される状態に入力放射線の1つまたは複数の波動成分を適合させるための「処理」要素であってよい。エレメント120からのゲート開閉/処理された波動成分は光学トランスポート105に提供され、プロパティインフルエンサ110は前述されたようにトランスポートされた波動成分に制御自在に影響を及ぼす。
エレメント125は、エレメント120に対する協調的な構造であり、影響を受けた波動成分に作用する。エレメント125はWAVE_OUTを渡し、波動成分の特性の状態に基づいてWAVE_OUTの振幅を制御する構造である。その制御の性質と詳細は、影響を受けたプロパティとエレメント120からの特性の状態、及びその初期状態がインフルエンサ110によってどのように影響を受けたのかの細部に関連する。
例えば、影響を受ける特性が波動成分の偏光特性/偏光回転角度である場合、エレメント120とエレメント125は偏光フィルタであってよい。エレメント120は例えば右回転偏光等の波動成分の偏光の1つの特定のタイプを選択する。インフルエンサ110は、放射線がトランスポート105を通過するときにその偏光回転角度を制御する。エレメント125は、エレメント125の伝達角に比較した最終的な偏光回転角度に基づいて影響を受けた波動成分をフィルタリングする。言い換えると、影響を受けた波動成分の偏光回転角度がエレメント125の伝達軸と一致するとき、WAVE_OUTは高い振幅を有する。影響を受けた波動成分の偏光回転角度がエレメント125の伝達軸と「交差する」とき、WAVE_OUTは低い振幅を有する。この文脈での交差とは、従来の偏光フィルタの伝達軸と約九十度ずれた回転角を指す。
さらに、デフォルト状態の結果WAVE_OUTの最大振幅、WAVE_OUTの最小振幅、あるいは間のなんらかの値が生じるように、エレメント120とエレメント125の相対的な向きを確立することができる。デフォルト状態とはインフルエンサ110から影響を受けない出力振幅の大きさを指す。例えば、エレメント120の伝達軸に対して九十度の関係にエレメント125の伝達軸を設定することにより、デフォルト状態は好適実施形態の最小振幅となるであろう。
エレメント120とエレメント125は別々の構成要素であってよいか、あるいは1つまたは両方の構造がトランスポート105の上にまたは中に統合されてよい。他の実施形態ではこれらのエレメントはトランスポート105の特定の領域内で、あるいはトランスポート105全体で分散されてよいが、場合によっては該エレメントは好適実施形態においてのようにトランスポート105の「入力」と「出力」時に局所化されることもある。
動作中、(WAVE_INとして示されている)放射線はエレメント120に入射し、(例えば、右回転偏光(RCP)回転成分等の)適切な特性がRCP波動成分をトランスポート105に渡すためにゲート開閉/処理される。トランスポート105は、それがエレメント125によって相互作用され、(WAVE_OUTとして示される)波動成分が渡されるまで、RCP波動成分を伝達する。入射WAVE_INは、通常(例えば右回転偏光(RCP)と左回転偏光(LCP)等の)偏光特性に対して複数の直交状態を有する。エレメント120は(例えば該直交状態の内の1つを渡し、1つの状態だけが渡されるように他を遮る/シフトする等)偏光回転特性の特定の状態を生じさせる。インフルエンサ110は、制御信号に応えて該渡された波動成分のその特定の偏光回転に影響を与え、該制御信号により指定されるようにそれを変更してよい。本実施形態のインフルエンサ110は約九十度の範囲で偏光回転特性に影響を及ぼすことができる。次にエレメント125は、それが影響を及ぼされ、該波動成分偏光回転がエレメント125の伝達軸に一致するときに最大値から、及び該波動成分偏光が伝達軸と「交差する」ときに最小値からWAVE_INの放射線振幅を変調できるようにするため、該波動成分と相互作用する。エレメント120を使用することにより、好適実施形態のWAVE_OUTの振幅は最大レベルから消されるレベルまで可変である。
図2は、図1に示される好適実施形態の特定のインプリメンテーションの詳細な概略平面図である。本発明はこの特定の例に制限されていないが、該インプリメンテーションは特に該説明を簡略化するために説明される。図1に示されているファラデー構造化波動変調器100は、図2に示されているファラデー光変調器200である。
変調器200はコア205と、第1のクラッディング層210と、第2のクラッディング層215と、コイルまたはコイルフォーム220(第1の制御ノード225と第2の制御ノード230を有するコイル220)と、入力エレメント235と、出力エレメント240とを含む。図3は、エレメント235とエレメント240の間で取られる図2に示されている好適実施形態の断面図であり、類似する番号が同じまたは対応する構造を示している。
コア205は、真空付着方法での変形等の標準的なファイバ製造技法により追加される以下のドーパントの内の1つまたは複数を含んでよい。つまり、(a)カラー染料ドーパント(変調器200を事実上光源システムから輝く(alight)カラーフィルターにする)、(b)YIG/Bi−YIGまたはTbまたはTGGあるいは活性化磁場が存在する場合に効率的なファラデー回転を達成するためにコア205のベルデ定数を増加するための他のドーパントのような光学的にアクティブなドーパントである。製造中にファイバを加熱する、またはファイバに応力を加えることによりコア205の中に穴または凸凹が追加され、さらにベルデ定数を増加する、及び/または非線形効果を実現する。
多くのシリカ光ファイバが、ドーパントがシリカパーセンテージを基準にして高いレベルで製造される(このレベルは五十パーセントドーパントほど高い場合がある)。他の種類のファイバのシリカ構造における現在のドーパントの濃度は数十ミクロンの距離で約九十度の回転を達成する。従来のファイバ製造メーカはドーパント濃度(例えばJDSユニふフェーズ社(JDS Uniphase)から市販されているファイバ等)を高める上で、及びドーパントプロファイル(例えばコーニング社(Corning incorporated)から市販されているファイバ等)を制御する上で改善を達成し続けている。コア205は、ミクロン規模の距離で低電力の、必要な迅速な回転を与えるほど、光学的にアクティブなドーパントの十分に高く、制御されている濃度を達成し、これらの電力/距離値は、さらに改善が行われるにつれて減少し続ける。
第1のクラッディング層210(好適実施形態ではオプション)は、強い磁場にさらされると恒久的に磁化する強磁性単分子磁石でドーピングされる。第1のクラッディング層210の磁化はコア205またはプリフォームへの追加の前に、あるいは変調器200(コア、クラッディング、コーティング(複数の場合がある)及び/またはエレメントを完備)が引き出された後に起こる可能性がある。このプロセスの間、プリフォームまたは引き出されたファイバはコア205の伝達軸から九十度偏位された強力な永久磁場を通過する。好適実施形態では、この磁化はファイバ引張装置の要素として配置される電磁石(an electro−magnetic)によって達成される。(永久磁気特性のある)第1のクラッディング層210が光学的にアクティブなコア205の磁気領域を飽和するために提供されるが、層210からの磁場の方向は伝播の方向に直角であるため、ファイバ200を通過する放射線の回転の角度を変更しない。組み込まれている仮出願は結晶構造において最適ではない原子核の微粉化によってドーピングされた強磁性クラッディングの向きを最適化するための方法を説明している。
相対的に高温で磁化されてよい単一分子磁石(SMM)が発見されるため、これらのSMMの使用はドーパントとして好ましい。これらのSMMを使用すると、優れたドーピング濃度の生成及びドーパントプロファイルの制御が可能になる。市販されている単一分子磁石の例と方法はコロラド州デンバー(Denver,Colorado)のゼッタコア社(ZettaCore,Inc.)から入手できる。
第2のクラッディング層215は、フェリ磁性体または強磁性体でドーピングされ、適切なヒステリシス曲線により特徴付けられる。好適実施形態は、必要な場を作成するとき「幅広く」「平ら」でもある「短い」曲線を使用する。第2のクラッディング層215が、それ自体切り替えマトリクス駆動回路(不図示)等のコントローラから信号(例えば制御パルス)によって駆動される、隣接する電界発生要素(例えばコイル220)によって生じる磁場によって飽和すると、第2のクラッディング層215はすぐに変調器200に所望される回転の度数に適切な磁化の程度に達する。さらに、第2のクラッディング層215は、以後のパルスが磁化レベルを高める(同じ方向の電流)、リフレッシュする(電流なし、あるいは+/−保守電流)、または削減する(反対方向の電流)までそのレベルで磁化されたままとなる、あるいはそのレベルに十分近いままとなる。ドーピングされた第2のクラッディング層215のこの残留磁束が、インフルエンサ110(例えばコイル220)によって場が絶えず適用されなくても経時的に適切な度数の回転を維持する。
ドーピングされたフェリ磁性体/強磁性体の適切な変型/最適化は適切なプロセスステップでのクラッディングのイオン衝撃によってさらに達成されてよい。「導波管上に強磁性薄膜を配置する方法、及び該方法により配置される強磁性薄膜を備える磁気光学構成要素(METHOD OF DEPOSITING A FERROMAGNETIC FILM ON A WAVEGUIDE AND A MAGNETO−OPTIC COMPONENT COMPRISING A THIN FERROMAGNETIC FILM DEPOSITED BY THE METHOD)」と題され、フランスのパリ(Paris)のアルカテル(Alcatel)に譲渡され、気相方法により導波管上に付着される強磁性薄膜が好ましい結晶構造内で順序付けられていない原子核を粉砕する入射角でイオンビームにより衝撃を与えられる、米国特許番号第6,103,010号が参照される。結晶構造の改変は技術で公知の方法であり、製造されたファイバ内またはドーピング済みのプリフォーム材の上のどちらかでドーピングされたシリカクラッディング上に利用されてよい。該第‘010号特許はすべての目的のために参照することによりこれにより組み込まれている。
第1のクラッディング層210と同様に、作成され、相対的に高温で磁化されてよい適切な単一分子磁石(SMM)は、第2のクラッディング層215が優れたドーピング濃度を可能にできるようにするために好適実施形態内のドーパントとして好ましい。
好適実施形態のコイル220は、初期磁場を生じさせるためにファイバ200上または中で一体化して製造される。コイル220からのこの磁場はコア205を通って伝達される放射線の偏光の角度を回転し、第2のクラッディング層215内のフェリ磁性ドーパント/強磁性ドーパントを磁化する。これらの磁場の組み合わせは(ここに組み込まれている関連特許出願の内の1つに説明されるようなディスプレイをファイバ200のマトリクスが集合的に形成するときの1ビデオフレームの時間等の)所望される期間、所望される回転角を維持する。本説明の目的のために、「コイルフォーム」は、複数の導電性のセグメントが互いに平行に、且つファイバの軸に直角に配置されるコイルに類似する構造と定義される。材料の性能が高まる―つまり、ドーピングされたコアの有効ベルデ定数がさらに高いベルデ定数のドーパントのおかげで上昇する(あるいは非線形効果を生じさせるものを含む補強された構造上の変型として)―につれて、コイルまたはファイバエレメントを囲む「コイルフォーム」に対するニーズは削減されるかあるいは未然に防がれてよく、より簡略な単一バンドまたはガウスシリンダ構造が実際的となるであろう。これらの構造は、ここに説明されているコイルフォームの機能を果たすときに、コイルフォームの定義にも含まれる。
ファラデー効果、つまり電界強さ、場が適用される距離、及び回転する媒体のベルデ定数を指定する方程式の変数を考えるとき、1つの結果は、変調器200を使用する構造、構成要素及び/または装置があまり強力ではない磁場を生じさせる材料から形成されるコイルまたはコイルフォームを補償できるということである。補償は変調器200をさらに長くすることによって、あるいは有効ベルデ定数をさらに増加する/改善することによって達成されてよい。例えば、いくつかのインプリメンテーションでは、コイル220は金属ワイヤより効率的ではない導電性高分子である導電体を使用する。他のインプリメンテーションでは、コイル220は、それ以外の場合より効率的な材料とともに使用されるであろうより幅広いがより少ない巻き線を使用する。コイル220が従来のプロセスにより製造されるが、あまり効率的ではない動作を有するコイル220を作成するとき等さらに他の例では、他のパラメータは適切な全体的な動作を達成するために、必要に応じて補償する。
設計パラメータ−ファイバ長、コアのベルデ定数、及び場発生エレメントのピーク場出力と効率−の間にはトレードオフがある。これらのトレードオフを考慮に入れると、以下を含む一体形成されるコイルフォームの4つの好適実施形態が生じる。つまり(1)コイル/コイルフォームを実現するためのツイストファイバ、(2)巻き線の複数の層を達成するために導電性パターンで印刷される薄膜でエピタキシャルに巻き付けられるファイバ、(3)コイル/コイルフォームを製造するためにファイバ上で浸漬ペンナノリソグラフィーにより印刷される、及び(4)コーティングされた/ドーピングされたガラス繊維をまきつけられるコイル/コイルフォーム、あるいは代わりに金属で(metallically)コーティングされる、またはコーティングされていない導電性高分子、つまり金属性のワイヤである。これらの実施形態の追加の詳細は、前記に参照された関連する、組み込まれている仮特許出願に説明されている。
ノード225とノード230は、コア205、クラッディング層215、及びコイル220内での必要な磁場の生成を含むための信号を受信する。単純な実施形態でのこの信号は、所望される磁場を作成し、変調器200を通って伝播するWAVE_IN放射線の偏光角を回転させるための適切な規模と持続時間のDC(直流)信号である。コントローラ(不図示)は、変調器200が使用されるときにこの制御信号を提供してよい。
入力エレメント235と出力エレメント240は、好適実施形態では、別々の構成要素として設けられる、あるいはコア205の中に/上に統合される偏光フィルタである。入力エレメント235は、偏光器として、多くの異なるやり方で実現されてよい。コア205の中への単一の偏光タイプ(特殊円形または線形)の光の通過を可能にする多様な偏光機構が利用されてよい。つまり、好適実施形態ではコア205の「入力」端でエピタキシャルに付着される薄膜を使用する。代替好適実施形態は(組み込まれている仮特許出願に説明されるようにコア205またはクラッディング層内のシリカに対する修正等の)偏光フィルタリングを達成するために導波管200上で市販されているナノスケールの微細構造化技法を使用する。1つまたは複数の光源(複数の場合がある)からの光の効率的な入力のためのいくつかのインプリメンテーションでは、好ましい照明システムは「間違った」初期偏光の光の繰り返される反射を可能にするための空洞を含んでよい。それにより、すべての光は究極的に受け入れられる、つまり「正しい」偏光の中に分解する。要すれば、特に照明ソースから変調器200までの距離に応じて、偏光維持導波管(ファイバ、半導体)が利用されてよい。
好適実施形態の出力エレメント240は、デフォルトの「オフ」変調器200のために入力エレメント235の向きから九十度偏位される「偏光フィルタ」エレメントである。(いくつかの実施形態では、デフォルトは入力エレメントと出力エレメントの軸を位置合わせすることにより「オン」にされてよい。同様に、五十パーセント振幅等の他のデフォルトは、入力エレメントと出力エレメントの適切な関係性及びインフルエンサからの適切な制御によって実現されてよい。)エレメント240は好ましくはコア205の出力端上でエピタキシャルに付着される薄膜である。入力エレメント235と出力エレメント240は、他の偏光フィルタ/制御システムを使用してここに説明されている構成とは異なるように構成されてよい。影響を受ける放射線特性が放射線偏光角(例えば、位相または周波数)以外の特性を含む場合、他の入力関数と出力関数が、インフルエンサに応えてWAVE_OUTの振幅を変調するために前述されたように所望される特性を適切にゲート開閉する/処理する/フィルタリングするために使用される。
図4は、ディスプレイ組み立て品400のための好適実施形態の概略ブロック図である。組み立て品400は、それぞれが図2に示されるような導波管変調器200i、jによって生成される複数のピクチャエレメント(ピクセル)の集合体を含む。変調器200i、jの各インフルエンサの制御のための制御信号はコントローラ405によって提供される。放射線源410は変調器200i、jによる入力/制御のためにソース放射線を提供し、フロントパネルは変調器200i、jを所望されるパターンに配列するために、及び/またはオプションで1個または複数のピクセルの出力後処理を提供するために使用されてよい。
放射線源410は、単一の均衡の取れた白い、または別々のRGB/CMY調整済の1つまたは複数のソース、あるいは他の適切な放射線周波数であってよい。源(複数の場合がある)410は、変調器200i、jの入力端から遠く離れていてよい、これらに入力端に隣接してよい、あるいは変調器200i、jの上に/中に統合されてよい。他のインプリメンテーションはいくつかのまたは複数を使用してよい(いくつかのケースでは変調器200i、jあたり1つの源)が、いくつかのインプリメンテーションでは、単一の源が使用される。
前述されたように、変調器200i、jの光学トランスポートのための好適実施形態は、特殊な光ファイバの形を取る光チャネルを含む。しかし、材料を通して「深く」形成されるチャネルまたは領域を含む半導体導波管、導波管穴、または他の光学導波管チャネルも本発明の範囲内に包含される。これらの導波管要素はディスプレイの根本的なイメージング構造であり、振幅変調機構及びカラー選択機構を統合して組み込む。FPDインプリメンテーションのための好適実施形態では、(長さはここに説明されるように異なってもよいが)光チャネルのそれぞれの長さは好ましくは約数十ミクロンである。
光学トランスポートの長さが短く(約20mm以下)、有効ベルデ値が上昇する、及び/または磁場強度が強くなるにつれて絶えず短縮できることは好適実施形態の1つの特長である。ディスプレイの実際の奥行きはチャネル長の関数であるが、光学トランスポートは導波管であるため、経路はソースから出力まで線形である必要はない(経路長)。言い換えると、いくつかのインプリメンテーションでは実際の経路はさらに浅い有効奥行きも提供するために曲げられてよい。経路長は、前述されたようにベルデ定数と磁場強度の関数であり、好適実施形態は数ミリメートル以下という非常に短い経路長に対処するが、いくつかのインプリメンテーションではさらに長い長さも使用されてよい。必要な長さは入力放射線上で所望される程度の影響/制御を達成するためにインフルエンサにより決定される。偏光放射線の好適実施形態では、この制御は約九十度の回転を達成できる。いくつかの応用例では、消すレベルがさらに高い(例えばさらに明るい)と、必要な経路長を短縮するさらに少ない回転が使用されてよい。したがって経路長も波動成分に対する所望される影響の程度によって影響を受ける。
コントローラ405は、適切な切り替えシステムの構築及び組み立てのための多くの代替策を含む。好ましいインプリメンテーションはポイントツーポイントコントローラを含むだけではなく、それは変調器200i、jを構造上結合し、保持し、各ピクセルを電子的にアドレス指定する「マトリックス」も含む。光ファイバのケースでは、ファイバ構成要素の性質に固有なのは、全ファイバテキスタイル構造のための可能性及びファイバ要素の適切なアドレス指定である。可撓メッシュまたは固形マトリクスは、付随する組み立て方法のある代替構造である。
一台または複数台の変調器200i、jの出力端がその適用を改善するために処理されてよいことは好適実施形態の一つの特長である。例えば、導波管構造の出力端部は、特に光ファイバとして実現されているとき、熱処理され、引っ張られ、先細の端部を形成する、あるいはそれ以外の場合、すり減らされ、撚られ、あるいは出力端での光散乱の強化のために整形されてよく、それによりディスプレイ面での視角を改善する。変調器出力端のいくつか及び/またはすべては、所望される結果を達成する所望される出力構造を集合的に生じさせるために類似したやり方または異なるやり方で処理されてよい。例えば、一個または複数のピクセルからのWAVE_OUTの多様な焦点、減衰、色、または他の属性(複数の場合がある)は一つまたは複数の出力端部/対応するパネル位置(複数の場合がある)の処理によって制御されるまたは影響を及ぼされてよい。
フロントパネル415は、単に偏光構成要素に向く1枚の光学ガラスまたは他の透明な光学材であってよい、あるいはそれは追加の機能上の特長及び構造上の特長を含んでよい。例えば、パネル415は、変調器200i、jの出力端を、近接する変調器200i、jとの所望される相対的な向きに配列するためにガイドまたは他の構造を含んでよい。図5は、図4に示されているフロントパネル415の出力ポート500x,yのための1つの配列の図である。(例えば、円形、楕円形または他の規則正しいまたは不規則な幾何学形状等)所望されるディスプレイに応じて他の配列も考えられる。応用例がそれを必要とするときには、アクティブ表示領域は、適切なときにリングまたは「ドーナッツ」ディスプレイが可能となるように隣接するピクセルである必要はない。他のインプリメンテーションでは、出力ポートは一個または複数のピクセルでの他の種類の出力後処理に焦点を当ててよい、分散してよい、フィルタリングしてよい、あるいは実行してよい。
導波管端部が、(その内のいくつかはパネル415の一部として含まれてよい)追加の光学素子及びレンズと順に追加の焦点合わせ能力を可能にする(例えば曲面等の)所望される三次元表面に終端する、ディスプレイまたはプロジェクタ表面の光学幾何学形状はそれ自体変化する。いくつかの応用例は、それぞれが本発明により異なる曲率と向きを持ち、適切な出力形状を提供する、凹んだ表面領域、平坦な表面領域及び/または出っ張った表面領域の複数の領域を必要としてよい。いくつかの応用例では、特殊な幾何学形状は固定される必要はないが、所望されるとおりに形状/向き/寸法を変更するために動的に改変可能であってよい。本発明のインプリメンテーションは多様なタイプのハプティックディスプレイシステムも作り出してよい。
投影システムのインプリメンテーションでは、放射源410、変調器200i、jに結合されるコントローラ405付きの「切り替え組み立て品」、及びフロントパネル415は、互いから何らかの距離で、別々のモジュールまたは装置の中に収容されることから恩恵を受けてよい。放射線源410に関して、いくつかの実施形態では、通常は大型劇場スクリーンを照明するために必要とされる高振幅光のタイプにより生じる熱のために、照明ソース(複数の場合がある)を切り替え組み立て品から分離することが有利である。複数の照明源が使用されるとしても、例えば単一のキセノンランプ内でそれ以外の場合集中する熱出力を分散すると、熱出力は依然として、切り替えエレメント及び表示エレメントからの分離が所望されてよいほど十分に大きくてよい。このようにして照明源(複数の場合がある)は、ヒートシンク及び冷却エレメント付きの断熱されたケースに収容されるであろう。次に、ファイバは分離されたまたは単一のソースから切り替え組み立て品に光を伝達し、それから画面上に投影されるであろう。画面はフロントパネル415のいくつかの特長を含んでよい、あるいはパネル415は適切な表面を照明する前に使用されてよい。
切り替え組み立て品の投影/ディスプレイ表面からの分離には独自の優位点がある。照明及び切り替え組み立て品を投影システム基部に設置する(同はFPDについて正しいであろう)と、映写TVキャビネットの奥行きを縮小できる。あるいは、投影表面は薄いランプ状の柱の上部にあるコンパクトなボールの中に収容されてよい、あるいは、反射ファブリックスクリーンを利用する技影システムの前面に天井、ケーブルから吊り下げてよい。
劇場映写の場合、床の上の装置から映写ウィンドウ領域にあるコンパクトな最終的な光学装置までの導波管構造によって、切り替え組み立て品により形成される画像を伝達する可能性が、他の潜在的な優位点及び構成の中で、従来のフィルムプロジェクタと好適実施形態の新型プロジェクタの両方を同じ映写室内に収容するための空間活用戦略を示唆している。
並んで配列されるまたは接着される、それぞれがストリップ上に数千の導波管を備える導波管ストリップのモノリシックな構造は、高精細度のイメージングを達成してよい。しかしながら、「バルク」光ファイバ構成要素の構造は、好適実施形態において必要な小さな投影表面も達成してよい。(特に、外部電気通信ケーブルの耐久性能要件のない)シングルモードファイバは、ファイバの断面積がきわめて小さく、ディスプレイピクセルまたはサブピクセルとして適切であるほど十分に小さい直径を有する。
加えて、統合された光学製造技法は、大量にモノリシックまたは表面的な単一半導体基板またはチップの製造において本発明の減衰器アレイを達成できると期待されている。
溶融ファイバ投影表面においては、溶融ファイバ表面は次に光学アレイに画像の焦点を合わせる目的の曲率を達成するために研磨されてよい。 代わりに、接着剤で接合される、またはそれ以外の場合結び付けられるファイバ端部は整形された先端を有してよく、必要な場合曲面を達成するために整形されたマトリクス内のその終点に配列されてよい。
プロジェクションテレビまたは他の非劇場映写応用例の場合、照明モジュールと切り替えモジュールをプロジェクタ表面から分離するというオプションにより、あまりかさばらないプロジェクションテレビキャビネット構造を達成する新規の方法が可能になる。
図6は、図2に示されている構造化された導波管205の一部600の本発明の好適実施形態の概略表現である。部分600は導波管205の放射線伝播チャネルであり、通常、誘導チャネル(例えばファイバ導波管のためのコア)であるが、1つまたは複数の境界領域(例えばファイバ導波管のためのクラッディング)を含んでよい。他の導波構造は、導波管のチャネル領域の伝達軸に沿って伝播される放射線の導波性を強化するためのさまざまな特定の機構を有する。導波管はフォトニック結晶ファイバ、構造物質の特殊な薄膜積み重ね及び他の材料を含む。導波性の特殊な機構は導波管ごとに異なってよいが、本発明はさまざまな構造とともに使用するために適応されてよい。
本発明の目的のために、用語誘導領域または誘導チャネル及び境界領域はチャネルの伝達軸に沿った放射線の伝播を強化するための協調構造をさす。これらの構造は、さまざまなバッファまたはコーティングあるいは導波管の製造後処理とは異なる。原則の相違点は、導波管の他の構成要素は伝播しないが、境界領域が通常、誘導領域を通って伝播される波動成分を伝播できるという点である。例えばマルチモード光ファイバ導波管では、高次モードのかなりのエネルギーが境界領域を通して伝播される。一つの相違点は、他の支持構造は該して実質的に不透明である一方、誘導領域/境界領域(複数の場合がある)が伝播する放射線にとって実質的に透明であるという点である。
前述されたように、インフルエンサ110は、それが伝達軸に沿って伝達されるにつれて伝播する波動成分の特性に影響を及ぼすために導波管205と協調して作動する。したがって、部分600はインフルエンサ応答属性を有すると言われており、好適実施形態ではこの属性はインフルエンサ110に対する伝播波動特性の反応を強化するように特に構造化されている。部分600は、誘導領域及び/または一つまたは複数の境界領域内に特定のインプリメンテーションのために望ましいとして配置される複数の構成物質(例えば希土ドーパント605、穴610、構造上の凹凸615、超微粒気泡620、及び/または他のエレメント625)を含む。好適実施形態では、部分600は、多くの場合、約25ミリメートル未満という非常に短い長さを有し、前述されたように、ときにはそれよりはるかに短い長さを有する。これらの構成物質によって強化されるインフルエンサ応答属性は、(例えば、減衰及び波長分散を含む約数キロメートル以上の非常に長い長さのために最適化された電気通信ファイバとは対照的に)短い長さの導波管に最適化される。別の応用例に最適化されている部分600の構成物質は、導波管の電気通信の使用を著しく悪化させるであろう。構成物質の存在は電気通信の用途を傷つけることを目的としていないが、本好適実施形態はインフルエンサ反応属性を電気通信属性(複数の場合がある)よりも強化することに対して集中することにより、このような劣化が生じることがあり、好適実施形態の欠点ではない。
本発明は、インフルエンサ110のさまざまな構造によって影響を受ける可能性がある多くのさまざまな波動特性があると考える。好適実施形態は、部分600のファラデー効果関連の特性を目標とする。前述されたように、ファラデー効果は伝播方向に平行な磁場に反応する偏光回転の変化を誘発する。好適実施形態ではインフルエンサ110が伝達軸に平行な磁場を生成すると、部分600では、回転の量が磁場の強度、部分600の長さ、及び部分600のベルデ定数に依存する。構成物質は、例えば部分600の有効ベルデ定数を高めることによって等、この磁場に対する部分600の反応性を高める。
本発明による導波管製造及び特徴のパラダイムシフトの1つの意義は、キロメートル長の光学的に純粋な電気通信グレードの導波管を製造するために使用される製造技法の修正により、潜在的に光学的に不純な(しかし光学的にアクティブな)インフルエンサ−反応導波管の製造が可能になるという点である。前述されたように、好適実施形態のいくつかのインプリメンテーションは、ここに開示されているように修正された無数の非常に短い長さの導波管を使用してよい。コスト削減及び他の効率/長所は、これらの集合体を、ここに説明されているように製造されたより長い導波管から作成される(例えば分裂)短い長さの導波管から形成することにより実現される。これらのコスト節約及び他の効率と長所は、システムエレメントとして従来製造された別々の磁気光学結晶を利用する磁気光学システムの欠点の多くを克服する可能性を有する、成熟した製造技法及び装置を使用する優位点を含む。例えば、これらの欠点は高い製造費、多数の磁気光学結晶全体での均一性の欠如、個々の構成要素の集合体のサイズを制限する個々の構成要素の相対的に大きなサイズを含む。
好適実施形態は、ファイバ導波管及びファイバ導波管製造方法論に対する修正を含む。その最も一般的なもので、光ファイバは透明な(重要な波長での)誘電体(通常はガラスまたはプラスチック)のフィラメントであり、通常は、光を誘導する断面が円形である。早期光ファイバの場合、円筒形のコアは同様の幾何学形状のクラッディングにより取り囲まれ、親密に接触していた。これらの光ファイバは、クラッディング層の屈折率よりわずかに大きな屈折率をコアに与えることによって光を誘導した。他のファイバタイプは異なる誘導の仕組みを提供する――本発明の関連で重要なものは前述されたようなフォトニック結晶ファイバ(PCF)を含む。
シリカ(二酸化ケイ素(SiO))は、最も一般的な通信グレード光ファイバが作られる基本的な材料である。シリカは、結晶性形状または非晶形で発生してよく、自然に石英と砂等の不純な形式で発生する。ベルデ定数は、特定の材料のファラデー効果の強度を説明する光学定数である。シリカを含む大部分の物質のベルデ定数はきわめて小さく、波長に依存している。それは、テルビウム(Tb)等の常磁性イオンを含有する物質で非常に強力である。高ベルデ定数が、テルビウムでドーピングされた密度が高いフリントガラスで、またはテルビウムガリウムガーネット(TGG)の結晶の中で見つけられる。この物質は概して優れた透明性特性を有し、レーザ損失に非常に耐性がある。ファラデー定数は、有色ではない(つまりそれは波長に依存していない)が、ベルデ定数はきわめて強力に波長の関数である。632.8nmでは、TGGのベルデ定数は134radT−1であると報告されるのに対して、1064nmでは、それは−40radT−1まで低下した。 この動作は、1つの波長で特定の回転の度数で製造される装置はより長い波長で、はるかに少ない回転を生じさせることを意味する。
構成物質は、いくつかの手段では、YIG/Bi−YIGまたはTbまたはTGG、あるいは活性化磁場が存在する場合に効率的なファラデー回転を達成するために導波管のベルデ定数を高める他の最善に機能するドーパント等の光学的に活性化したドーパントを含む。後述されるようにファイバ製造プロセスの間に加熱するまたは応力を与えると、部分600に追加の構成物質(穴または凹凸)を加えることによってベルデ定数をさらに高めてよい。 従来の導波管で使用されるような希土類は、伝達属性エレメントの受動的な強化として利用され、光学的にアクティブな応用例では利用されない。
シリカ光ファイバはシリカパーセンテージ自体と比較して、少なくとも50%のドーパントなど高レベルのドーパントで製造されるので、及び必要なドーパント濃度は数十ミクロン以下で90°の回転を達成するために他の種類のシリカ構造で立証され、既定の改善策は増加するドーパント濃度(例えば、JDSユニフェーズ社(JDS Uniphase)から市販されているファイバ)で立証され、改善策は(例えばコーニング社(Corning Incorporated)から市販されているファイバ等)制御するドーパントプロファイルで立証されたので、ミクロン規模の距離で低電力で回転を誘発するために光学的にアクティブなドーパントの十分に高く、制御された濃度を達成することができる。
本発明の好適実施形態では、他のエレメント625は、部分600の中に、最も好ましくは境界領域(例えば、クラッディング)の内の1つまたは複数の中に配置される磁気成分を含む。これらの成分は該伝達軸に対して垂直に磁場を生じさせるように配置される/向けられる。部分600を通って伝播される放射線の振幅を変調するためにファラデー効果を利用するシステムの場合、該成分から生じる該磁場は該放射線のインフルエンサによって引き起こされる偏光回転変化の偏光回転を変えない。これらの成分はシステムの総合的な性能を改善するために役立つ。例えば、いくつかのインプリメンテーションでは、誘導/チャネル領域の十分な量の磁区を飽和させ、該伝達軸に沿って伝播される該放射線の光学的損失をかなり減少させる。他のインプリメンテーションでは、該成分による該誘導/チャネル領域内の該分域の飽和は該所望される偏光変化に悪影響を及ぼすことなく該インフルエンサに対する該導波管の磁気反応を改善する。
好適実施形態は、該導波管がそれから製造される基板/プリフォームの製造中に部分500に追加することにより該磁気成分を配置する。磁気成分は付着プロセスの間または(ファイバ導波管のための)引き出し前製造プロセスの他の段階で配置されてよい。部分600は、強力な磁場にさらされると恒久的に磁化する強磁性単分子磁石を用いる標準的な方法でドーピングされる。好ましくは第1のクラッディングでのこれらの成分の磁化は、クラッディングの該コアまたはプリフォームへの該追加の前、あるいはコア、クラッディング及びコーティング(複数の場合がある)を完備した該ファイバが引き出された後に発生する可能性がある。したがって、プリフォームまたは引き出されたファイバのどちらかは、該ファイバ引張装置の要素として配置される電磁石によって実現される、ファイバコアの該軸から90°偏位された強力な永久磁場を通過する。恒久的な磁気特性を備えるこのクラッディングは光学的にアクティブなコアの磁区を飽和する働きをするが、該磁場の方向は該伝播の方向に対して直角であるために、該ファイバを通過する入射光の回転角を変更しない。最近、溶融酸化物を含む連続流の中で不活性ガスを利用することにより酸化物でドーピングされたシリカから光ファイバの引っ張りに必要とされる粘度のレベルを達成した。
結晶化した構造の中の選択的な要素を粉砕するための公知の方法(例えば、「導波管上に強磁性薄膜を配置する方法、及び該方法により配置される強磁性薄膜を備える磁気光学構成要素(METHOD OF DEPOSITING A FERROMAGNETIC FILM ON A WAVEGUIDE AND A MAGNETO−OPTIC COMPONENT COMPRISING A THIN FERROMAGNETIC FILM DEPOSITED BY THE METHOD)」と題される米国特許番号第6,103,010号)が、結晶構造内での非最適元素の粉砕によってドーピングされた強磁性領域の向きを最適化するために本発明に適応されてよい。ドーピングされたフェリ磁性体/強磁性体の最適化はさらに、適切なプロセスステップでクラッディングのイオン衝撃によって達成されてよい。
単分子磁石(SMM)は継続的に開発され、改善されている。相対的に高温で磁化されてよい単分子磁石(SMM)は、引き出しの前にプリフォームに追加するためのドーパントとして好ましく、優れたドーピング濃度及びドーパントプロファイルの制御を可能にする。市販されている単分子磁石と方法の例は、コロラド州80112、イーグルウッド、スウィート350、インバーネスパークウェイ369(369 Inverness Parkway,Suite 350,Eaglewood,Co,80112)、ゼッタコア社(ZettaCore,Inc.)から入手できる。
動作中、該磁気成分は製造中の該導波管の1つまたは複数の部分(好ましくはクラッディング層の中)に配置される。これらの成分は、導波管の伝達軸に対して垂直に永久磁場を生じさせるために(プリフォーム製造プロセス、引き出しプロセス、または引き出し後プロセスの間に)向けられる。
図7は、本発明の導波管プリフォームの好適実施形態を遂行するための代表的な導波管製造システム700の概略ブロック図である。システム700は、プリフォームと呼ばれているガラスロッドを製造するために改良型化学蒸着(MCVD)プロセスを表す。従来のプロセスからのプリフォームは超高純度ガラスのソリッドロッドであり、所望されるファイバの光学特性を正確に再現するが、線寸法は2桁以上拡大される。しかしながら、システム700は最適純度を強調しないが、インフルエンサ反応の短い距離の最適化を最適化するプリフォームを製造する。プリフォームは通常、以下の化学蒸着(CVD)方法の内の1つを使用して作られる。つまり、1.改善型化学蒸着(MCVD)、2.プラズマ改良型化学蒸着(PMCVD)、3.プラズマ化学蒸着(PCVD)、4.外部蒸着(OVD)、5.気相軸付け(AVD)である。すべてのこれらの方法は、回転するロッドの外部またはガラス管内部で、すすと呼ばれているガラス粒子の層として付着される酸化物を形成する熱化学蒸着反応に基づいている。同じ化学反応がこれらの方法で発生する。
Siとドーパントにソースを提供する(例えば、出発物質がSiCl4、GeCl4、POCl3及びガス状のBCl3の溶液である)多様な液体は、酸素ガス、加熱されたバブラー705内の各液体、及びソース710からのガスが存在する場合に加熱される。これらの液体は大量流量計715によって制御される酸素ストリームのなかで蒸発し、ガスにより、シリカ旋盤720内でのガラスを製造するハロゲン化合物の燃焼からシリカと他の酸化物を形成する。酸化反応と呼ばれている化学反応は以下に一覧されるように気相で発生する。GeCl+O→GeO+2ClSiCl+O→SiO+2Cl4POCl+3O→2P2O+6Cl4BCl+3O→2B+6Clである。
酸化ゲルマニウム及び五酸化リンは、ガラスの屈折率を高め、酸化ホウ素はそれを減少させる。これらの酸化物がドーパントとして公知である。プリフォームのインフルエンサ反応属性を強化するために適切な構成物質を含む他のバブラー705は、示されているものに加えて使用されてよい。
プロセスの間に混合物の組成を変更すると、屈折率プロファイル及びプリフォームの構成要素プロファイルに影響を及ぼす。酸素の流量は混合弁715によって制御され、反応体の気体725は、酸化が発生する加熱管735を含むシリカパイプ730の中に吹き込まれる。塩素ガス740は管735から吹き出されるが、酸化化合物はすす745の形で管の中に付着される。鉄及び銅の不純物の濃度は、加工されていない液体中の約10ppbから、すす745の中の1ppb未満に削減される。
管735は、横断式Hバーナ750を使用して加熱され、ガラス755の中にすす745をガラス状にするために絶えず回転される。多様な蒸気725の相対的な流れを調整することにより、コア対クラッディング、あるいはGIファイバ用の可変コア指数プロファイル等の異なる屈折率の複数の層が得られる。層化が完了された後、管735は加熱され、プリフォームロッドと呼ばれる丸い固形の断面のあるロッドの中に崩れる。このステップでは、ロッドの中心が材料で完全に充填しており、中空ではないことが必須である。プリフォームロッドは、次に、図8と協調して説明されるように、引き抜きの炉の中に入れられる。
MCVDのおもな優位点とは、反応及び付着が閉じられた空間の中で発生するため、望ましくない不純物が入ることはさらに難しくなる。ファイバのインデックスプロファイルは制御するのが容易であり、SMファイバに必要な精度は相対的に容易に達成できる。装置は構築し、制御するのが簡単である。該方法の潜在的に重大な制限は、管の寸法が本質的にロッドサイズを制限するという点である。したがって、この技法は、通常、長さ35km、あるいは最大限でも20kmから40kmのファイバを形成する。さらに、シリカ管内の不純物、おもにHとOH―は、ファイバの中に拡散する傾向がある。また、プリフォームロッドの中空の中心を排除するために付着物を溶かすプロセスは、ときどきコアの屈折率の下降を引き起こし、通常ファイバを電気通信用途に不適切にするが、本発明の文脈では概して重要ではない。コストと費用という点で、方法の主要な不利な点とは、それが、酸化反応を開始し、すすをガラス状にするために、つまり蒸気を直接的にではなく、管735が加熱される間接的な加熱を利用しているため、付着率が相対的にゆっくりしているという点である。付着率は通常1分当たり0.5から2gである。
前述されたプロセスの変形は、希土類でドーピングされたファイバを処理する。希土類でドーピングされたファイバを製造するために、プロセスは希土類でドーピングされたプリフォーム―典型的には、溶液ドーピングプロセスを使用して製造される―で開始する。最初に、おもに溶融シリカからなる光学クラッディングが基板管の内部に付着される。次に、やはりゲルマニウムを含んでよいコア材料が下げられた温度で付着され、「ガラス原料」として公知の拡散した透水層を形成する。該ガラス原料の付着後、この部分的に完成したプリフォームは一端で密封され、旋盤から外され、(例えば、ネオジミウム、エルビウム、イッテルビウム等の)所望される希土類ドーパントの適切な塩の溶液が導入される。固定された期間、この溶液はガラス原料に透水するために放置される。過剰な溶液を廃棄した後、プリフォームは旋盤に返され、乾燥され、強固にされる。硬化中、該フリット内の間隔が崩壊し、希土類をカプセル化する。最終的には、該プリフォームは―該コアの中に希土類が組み込まれている―固体ガラスロッドを形成するために高温で制御された崩壊にさらされる。一般的には、ファイバケーブルの中に希土類を包含することは光学的にアクティブではない。つまりドーピングされた媒体を通して伝播する光の特徴に影響を及ぼすために電気的、または磁気的、または他の摂動または場に反応する。従来のシステムは、(電気通信属性を含む)導波管の「受動的な」伝送特徴を改善するという目標によって動かされる希土類ドーパントのパーセンテージを上昇するための継続中の探求の結果である。しかし、導波管コア/境界のドーパントのパーセンテージの増加は好適実施形態のための複合媒体/構造の光学活動に影響を及ぼすために有利である。前述されたように、好適実施形態では、ドーパント対シリカのパーセンテージは少なくとも五十パーセントである。
図8は、図7に示されているシステム700から製造させるもののように、プリフォーム805から本発明の好適実施形態を作るための代表的なファイバ引き上げシステム800の概略図である。システム800はプリフォーム805を、通常は引き抜きにより事前に成形されている髪の毛のように細いフィラメントに変換する。プリフォーム805はタワー815の上部近くに取り付けられる送り機構810の中に取り付けられる。機構810は、高純度グラファイト炉820の中に先端が入るまでプリフォーム805を低くする。純粋な気体が炉の中に注入され、清潔且つ導電性の大気を提供する。炉820内では、1900℃に近づく厳しく統制された温度がプリフォーム805の先端を軟化させる。プリフォーム先端の軟化点にいったん到達すると、重力が優勢になり、溶融塊が、それが薄いストランドに引き伸ばされるまで「自然落下」する。
オペレータが牽引車840によってスプール上に巻き付けられるトランスポート835を製造するために、このファイバのストランドをレーザマイクロメータ825及び(例えば、コーティング及びバッファ用の)一連の処理ステーション830xに通し、引抜きプロセスが開始する。ファイバは引抜きタワー815の下部に位置する牽引車840により引っ張られてから、巻き付けドラムに巻き付けられる。引抜き中、プリフォーム805は理想的な引抜き張力を達成するために最適温度で加熱される。毎秒10メートルから20メートルの引抜き速度は業界では珍しくない。
引抜きプロセス中、引き抜かれるファイバの直径は1ミクロンにすぎない公差の範囲内で125ミクロンに制御される。レーザベースの直径ゲージ825はファイバの直径を監視する。ゲージ825は毎秒750回を超える速度でファイバの直径をサンプリングする。直径の実際の値は125ミクロンターゲットに比較される。ターゲットからのわずかな偏差は、引抜き速度の変化に変換され、補正のために牽引車840に送られる。
処理ステーション830xは、通常、ファイバに−柔らかい内側コーティングと硬い外側コーティングという−2つの層保護コーティングを塗布するための金型を含む。この2つの部分の保護被覆物は、厳しい環境からファイバの傷つけられていない表面も保護しつつ、処理のための機械的な保護を提供する。これらのコーティングは、同じまたは他の処理ステーション830xの一部として紫外線ランプによって硬化される。他のステーション830xは、トランスポート835のインフルエンサ反応属性を、それがステーション(複数の場合がある)を通過するにつれて、強化するための装置/システムを提供してよい。例えば、多様な機械的なストレッサ、イオン衝撃、またはインフルエンサ反応属性を導入するための他の機構は、引抜き段階で構成物質を強化する。
リールに巻かれた後、引き抜かれたファイバは適切な光学及び幾何学的なパラメータについて試験される。伝送ファイバの場合、通常、引っ張り強さは、ファイバのための最小引っ張り強さが達成されたことを確実にするために最初に試験される。該最初の試験の後に、多くの異なる試験が実行され、伝送ファイバの場合には、減衰(距離で信号強度の減少)、帯域幅(情報伝播容量、マルチモードファイバの重要な測定値)、開口数(ファイバの受光角度の測定値)、遮断波長(シングルモードファイバでは、シングルモードだけが伝播する波長)、モードフィールド直径(シングルモードファイバでは、ファイバ内の光パルスの変形方向の幅、相互接続のために重要)、及び色分散(さまざまな速度コアを通って移動するさまざまな波長の光線のための光のパルスの広がり、シングルモードファイバでは、これは情報伝播量のための制限する要因である)を含む伝送属性についての試験を含む。
本願に説明されているシステム、方法、コンピュータプログラム製品及び伝播される信号は、言うまでもなく、例えば中央演算処理装置(「CPU」)、マイクロプロセッサ、マイクロコントローラ、システムオンチップ(「SOL」)、または任意の他のプログラマブルデバイスの中の、またはそれらに結合されるハードウェアで具現化されてよい。さらに、システム、方法、コンピュータプログラム製品及び伝播された信号は、ソフトウェアを記憶するように構成されている、例えばコンピュータ使用可能(例えば可読)媒体の中に配置されるソフトウェア(例えば、コンピュータ可読コード、プログラムコード、ソース言語、オブジェクト言語または機械言語等の任意の形式で配置される命令及び/またはデータ)で具現化されてよい。このようなソフトウェアにより、ここに説明されている装置及びプロセスの機能、製造、モデル化、シミュレーション、記述及び/または試験が可能になる。例えば、これは(例えば、C、C++等の)汎用プログラミング言語、GDSIIデータベース、Verilog HDL、VHDL、AHDL(Altera HDL)等を含むハードウェア記述言語(HDL)、あるいは他の使用可能なプログラム、データベース、ナノ処理、及び/または回路(つまり概略)キャプチャツールを使用することにより達成できる。このようなソフトウェアは、半導体、磁気ディスク、光ディスク(例えば、CD−ROM、DVD−ROM等)を含む公知のコンピュータ使用可能媒体の中で、及びコンピュータ使用可能(例えば可読)伝送媒体(例えば、搬送波またはデジタルベースの媒体、光ベースの媒体またはアナログベースの媒体を含む他の媒体)で具現化されるコンピュータデータ信号として配置できる。このようにして、ソフトウェアはインターネットとイントラネットを含む通信ネットワーク上で送信できる。システムウエアで具現化されるシステム、方法及びコンピュータプログラム製品及び伝播信号は(例えばHDLで具現化される)知的所有権コアに含まれ、集積回路の製造でハードウェアに変換されてよい。さらに、ここに開示されているようなシステム、方法、コンピュータプログラム製品及び伝播される信号はハードウェアとソフトウェアの組み合わせとして具現化されてよい。
例えば切り替え制御用の本発明の好適インプリメンテーションの1つは、コンピュータ動作中にコンピューティングシステムのメモリに常駐するプログラミングステップまたは命令から構成されるオペレーティングシステムの中のルーチンとしてである。コンピュータシステムによって必要とされるまで、プログラム命令はディスクドライブ内等別の読取可能媒体に、またはCD ROMコンピュータ入力で使用するための光ディスクまたはフロッピー(登録商標)ディスクドライブコンピュータ入力で使用するためのフロッピー(登録商標)ディスク内等リムーバブルメモリ内に記憶されてよい。さらに、プログラム命令は、本発明のシステムで使用する前に別のコンピュータのメモリに記憶され、本発明のユーザにより要求されるとインターネット等のLANまたはWAN上で送信されてよい。当業者は、本発明を制御するプロセスが種々の形式のコンピュータ読取可能媒体の形式で分散することができることを理解する必要がある。
C、C++、Java(登録商標)、アセンブリ言語等を含む任意の適切なプログラミング言語は、本発明のルーチンを実現するために使用できる。手続き型またはオブジェクト指向型等さまざまなプログラミング技法が利用できる。ルーチンは単一の処理装置または複数のプロセッサで実行できる。ステップ、動作または計算は特殊な順序で提示されてよいが、この順序は異なる実施形態で変更されてよい。いくつかの実施形態では、本明細書中でシーケンシャルとして示されている複数のステップを同時に実行できる。ここに説明されている動作のシーケンスは、オペレーティングシステム、カーネル等の別のプロセスによって割り込み、サスペンド、またはそれ以外の場合制御できる。ルーチンはオペレーティングシステム環境の中で、あるいはシステム処理のすべてまたはかなりの部分を占有するスタンドアロンルーチンとして動作できる。
ここでの説明では、本発明の実施形態の完全な理解を提供するために構成要素及び/または方法の例等の多数の特定の詳細が提供される。ただし、関連技術の当業者は、特定の詳細の1つまたは複数を使用せずに、あるいは他の装置、システム、組み立て品、方法、構成要素、材料、パーツ及び/または等を用いて実施できることを認識されるであろう。他の例では、本発明の実施形態の態様を分かりにくくするのを回避するために周知の構造、材料、または動作は具体的に図示されたり、詳細に説明されていない。
本発明の実施形態のための「コンピュータ読取可能媒体」は、命令実行システム、装置、システムまたはデバイスによって、またはそれらと関連して使用されるためのプログラムを格納する、記憶する、通信する、伝播するまたはトランスポートする任意の媒体であってよい。コンピュータ読取可能媒体は、例証としてのみであって制限としてではなく、電子的、磁気的、光学的、電磁的、赤外線、または半導体システム、装置、システム、デバイス、伝播媒体、またはコンピュータメモリである場合がある。
「プロセッサ」または「プロセス」は、データ、信号または他の情報を処理する任意の人間の、ハードウェアの及び/またはソフトウェアのシステム、機構または構成要素を含む。プロセッサは、汎用中央演算処理装置、複数の処理装置、機能性を達成するための専用回路網、または他のシステム付きのシステムを含むことがある。処理は、地理的な場所に制限される必要はない、あるいは時間的な制限を有する必要はない。例えば、プロセッサはその機能を「リアルタイムで」、「オフラインで」、「バッチモードで」等実行できる。処理の部分は異なるときに、異なる場所で、異なる(または同じ)処理システムによって実行できる。
本明細書全体での「一実施形態」、「実施形態」、「好適実施形態」または「特定の実施形態」に対する参照は、実施形態と関連して説明される特定の機能(feature)、構造または特徴が本発明の少なくとも一つの実施形態に含まれ、必ずしもすべての実施形態に含まれていないことを意味する。したがって、句「一実施形態では」、「実施形態では」、または「特定の実施形態では」が本明細書中の多様な箇所にそれぞれ出現することは必ずしも同じ実施形態を参照していない。さらに、本発明の特定の機能(feature)、構造または特徴は1つまたは複数の他の実施形態と適切に結合されてよい。ここに説明され、図解されている本発明の実施形態の他の変形及び変型が、ここの教示を鑑みて可能であり、本発明の精神及び範囲の一部として見なされなければならないことが理解されるべきである。
本発明の実施形態は、プログラミングされた汎用デジタルコンピュータを使用することによって、特定用途向け集積回路、プログラマブルロジックデバイス、フィールドプログラマブルゲートアレイ、光学、化学、生物学、量子またはナノ加工のシステム、構成要素、及び機構を使用することによって実現されてよい。一般的には、本発明の機能は技術で公知であるような任意の手段によって達成できる。分散またはネットワーク化されたシステム、構成要素及び回路が使用できる。データの通信または転送は、有線、無線、または任意の他の手段によってよい。
また、図面/図に描かれている要素の1つまたは複数もさらに分離された方法でまたは統合された方法で実現される、あるいは特定の出願に従って有効であるように特定のケースでは削除されるまたは実施不可能とされることもあることが理解されるであろう。コンピュータが前述された方法のどれかを実行できるようにするために機械可読媒体の中に記憶できるプログラムまたはコードを実現することも本発明の精神及び範囲内である。
さらに、図面/図中の信号矢印は、他に特に注記されない限り例示的としてのみ考えられ、制限的と考えられるべきではない。さらに、ここに使用されるような用語「または」は、他に示されない限り概して「及び/または」を意味することを目的としている。構成要素またはステップの組み合わせも、分離するまたは結合する能力を表すとして予想される技術が明らかでない場合、注記されると見なされる。
ここの説明中、及び続く請求項を通して使用されるように、「1つの(a)」、「1つの(an)」及び「該」は、文脈がそれ以外に明確に決定しない限り複数の参照を含む。また、ここの説明中、及び続く請求項を通して「において」の意味は、文脈がそれ以外の明確に決定しない限り「において」及び「の上で」を含む。
要約書に説明されている内容を含み本発明の図解されている実施形態の前記説明は、網羅的となる、あるいは本発明をここに開示されている正確な形式に制限することを目的としていない。本発明の特定の実施形態及び例は例示的な目的のためだけにここに説明されているが、当業者が認識し、理解するように、多様な同等な変型が本発明の精神及び範囲内で可能である。示されているように、これらの変型は本発明の図解されている実施形態の前記説明を鑑みて本発明に対して行われてよく、本発明の精神及び範囲内に含まれるべきである。
したがって、本発明はここにその特定の実施形態に関して説明されてきたが、変型の範囲、多様な変型及び置換は前記開示の中で目的とされ、いくつかの例では、本発明の実施形態のいくつかの特長が述べられているような本発明の範囲及び精神から逸脱することなく、他の特長の対応する使用なしに利用されることが理解されるであろう。したがって、多くの変型は本発明の本質的な範囲及び精神に特定の状況または材料を適応するために行われてよい。本発明が、以下の請求項で使用される特定の用語に、及び/または本発明を実施するために考えられる最善の態様として開示されている特定の実施形態に制限されるのではなく、本発明が添付請求項に含まれるあらゆる及びすべての実施形態及び同等物を含むことが目的とされる。
したがって、本発明の範囲は添付請求項によってのみ決定されるべきである。
本発明の好適実施形態の一般的な概略平面図である。 図1に示されている好適実施形態の特定のインプリメンテーションの詳細な概略平面図である。 図2に示されている好適実施形態の端面図である。 ディスプレイ組み立て品の好適実施形態の概略ブロック図である。 図4に示されているフロントパネルの出力ポートの1つの配列の図である。 図2に示されている構造化された導波管の一部のための本発明の好適実施形態の概略表現である。 本発明の導波管プリフォームの好適実施形態を製造するための代表的な導波管製造システムの概略ブロック図である。 本発明の好適実施形態を作るための代表的なファイバ引き上げシステムの概略図である。

Claims (38)

  1. 導波管軸を画定する1つのチャネル領域と、1つまたは複数の境界領域とを含む導波管と、
    前記導波管軸に対して実質的に垂直な磁場を生じさせるために前記領域の内の少なくとも1つに配置される複数の磁気成分と、
    を備える導波管。
  2. 前記導波管はファイバであり、前記チャネル領域はコアであり、前記1つまたは複数の境界領域は前記コアのためのクラッディング領域である請求項1に記載の導波管。
  3. インフルエンサが、前記導波管軸に沿って伝播される放射線の偏光を変更するために前記導波管軸に対し概して平行に前記導波管に磁場を適用し、前記磁気成分が前記偏光に大きく影響を及ぼさない請求項1に記載の導波管。
  4. 前記磁気成分が単分子磁石を含む請求項1に記載の導波管。
  5. 前記磁気成分が、十分に強力な磁場が前記磁性体に提示され、前記磁性体から除去されるときに、特定の磁化を保持する請求項1に記載の導波管。
  6. 前記チャネル領域は複数の磁区を含み、前記特定の磁化は前記導波管軸に沿って伝播される放射線の光学的損失をかなり減少させるのに十分なほど前記チャネル領域の前記複数の磁区の多数を飽和させる請求項5に記載の導波管。
  7. 前記チャネル領域は複数の磁区を含み、前記特定の磁化は、前記導波管軸に沿って伝播される放射線の、前記導波管軸に平行な第2の磁場に対する磁気反応をかなり高めるのに十分なほど前記チャネル領域の前記複数の磁区の多数を飽和させる請求項5に記載の導波管。
  8. 前記チャネル領域は複数の磁区を含み、前記特定の磁化は、前記導波管軸に沿って伝播される放射線の、前記導波管軸に平行な第2の磁場に対する磁気反応をかなり高めるのに十分なほど前記チャネル領域の前記複数の磁区の多数を飽和させる請求項6に記載の導波管。
  9. 前記導波管軸に沿って伝播される前記放射線が特定の偏光を含み、前記磁気反応が前記特定の偏光の変化である請求項8に記載の導波管。
  10. 前記磁気成分が光ファイバ製造プロセスの相対的に高温で前記特定の磁化を構成する請求項5に記載の導波管。
  11. 前記領域の内の少なくとも1つが結晶構造を有し、前記結晶構造の中の前記磁気成分が前記所望される磁場を生じさせる請求項1に記載の導波管。
  12. 放射線信号を送信するために導波管を操作するための方法であって、
    a)導波管軸を画定する1つのチャネル領域と、1つまたは複数の境界領域とを含む該導波管を通して前記放射線信号を送信することと、
    b)前記領域の内の少なくとも1つに配置される複数の磁気成分を使用して前記導波管軸に対して実質的なに垂直な磁場を生じさせることと、
    を備える方法。
  13. 前記導波管はファイバであり、前記チャネル領域はコアであり、前記1つまたは複数の境界領域は前記コアのためのクラッディング領域である請求項12に記載の導波管。
  14. c)前記導波管軸に沿って伝播される放射線信号の偏光を変更するために前記導波管軸に対し概して平行に前記導波管に磁場を適用し、前記磁気成分が前記偏光に大きく影響を及ぼさないことと、
    をさらに備える請求項12に記載の導波管。
  15. 前記磁気成分が単分子磁石を含む請求項12に記載の導波管。
  16. 前記磁気成分が、十分な磁性の磁場が前記磁性体に提示され、前記磁性体から除去されるときに特定の磁化を保持する請求項12に記載の導波管。
  17. 前記チャネル領域が複数の磁区を含み、
    c)前記導波管軸に沿って伝播される該放射線信号の光学的損失をかなり減少させるために十分なほど前記チャネル領域の前記複数の磁区の多数を飽和させることと、
    をさらに備える請求項16に記載の導波管。
  18. 前記チャネル領域が複数の磁区を含み、
    c)前記導波管軸に沿って伝播される該放射線信号の、前記導波管軸に平行な第2の磁場に対する磁気反応をかなり高めるために十分なほど前記チャネル領域の前記複数の磁区の多数を飽和させることと、
    をさらに備える請求項16に記載の導波管。
  19. 前記飽和させるステップ(c)が、前記導波管軸に沿って伝播される該放射線信号の、前記導波管軸に平行な第2の磁場に対する磁気反応をかなり高めるために十分なほど前記チャネル領域の前記複数の磁区の多数を飽和させる請求項17に記載の導波管。
  20. 前記導波管軸に沿って伝播される前記放射線は特定の偏光を含み、前記磁気反応は前記特定の偏光の変化である請求項19に記載の導波管。
  21. 前記磁気成分が光ファイバ製造プロセスの相対的に高温で前記特定の磁化を保持する請求項16に記載の導波管。
  22. 前記境界領域の少なくとも1つが結晶構造を有し、前記結晶構造の中の前記磁気成分が前記所望される磁場を生じさせる請求項12に記載の導波管。
  23. 導波管を作る方法であって、
    a)該導波管の1つまたは複数の領域を複数の磁気成分でドーピングし、該導波管のチャネル領域と関連する少なくとも1つのドーピング済み領域を生成し、前記チャネル領域が該導波管のための導波管軸を画定することと、
    b)前記導波管軸に平行に大きな磁界強度がない前記導波管軸に概して垂直な磁場を生じさせる前記複数の磁気成分の部分集合を恒久的に磁化するために十分なほど前記ドーピングされた領域を磁化する場にさらすことと、
    を備える方法。
  24. 前記ドーピングステップ(a)が、該導波管が製造されるプリフォームの製造中に実行される請求項23に記載の方法。
  25. 前記露呈ステップ(b)が、該導波管が製造されるプリフォームの製造中に実行される請求項23に記載の方法。
  26. 前記露呈ステップ(b)が、前記導波管のプリフォームからの引き出し中に実行される請求項23に記載の方法。
  27. 前記露呈ステップ(b)が、該導波管がプリフォームから引き出された後に実行される請求項23に記載の方法。
  28. 前記露呈ステップ(b)が、該導波管が引き出され、コーティングされ、保管構造に巻き付けられた後に実行される請求項27に記載の方法。
  29. 前記露呈ステップ(b)が、前記少なくとも1つのドーピングされた境界領域の前記チャネル領域との関連付けの前に少なくとも1つのドーピングされた領域で実行される請求項23に記載の方法。
  30. 該導波管はファイバであり、前記ファイバはファイバ引張装置を使用してプリフォームから引き出され、前記露呈ステップ(b)は、前記ファイバ引張装置の一部として含まれる電磁石によって実行される請求項23に記載の方法。
  31. 前記少なくとも1つのドーピングされた境界領域が、前記磁場に貢献する前記複数の磁気成分のかなりの数を含む結晶構造を含む請求項23に記載の方法。
  32. 前記少なくとも1つのドーピングされた領域のための結晶構造の中の前記複数の磁気成分のイオン衝撃が、前記複数の磁気成分の前記部分集合で前記少なくとも1つのドーピングされた領域を優先的に占有する(populates)請求項23に記載の方法。
  33. 導波管を作る方法であって、
    a)該導波管の1つまたは複数の領域を複数の磁気成分でドーピングし、該導波管のチャネル領域と関連付けられる少なくとも1つのドーピングされた領域を生じさせ、前記チャネル領域が該導波管の導波管軸を画定することと、
    b)十分な量の前記成分を共通の磁化方向に向け、前記導波管軸に平行に対して大きな磁界強度がない前記導波管軸に対し概して垂直に磁場を恒久的に生じさせることと、
    を備える方法。
  34. 放射線信号を送信するための導波管であって、
    導波管軸を画定する1つのチャネル領域と、1つまたは複数の境界領域を含む該導波管を通して該放射線信号を送信するための手段と、
    前記領域の少なくとも1つに配置される複数の磁気成分を使用して前記導波管軸に対して実質的に垂直な磁場を生じさせるための手段と、
    を備える方法。
  35. 該導波管の1つまたは複数の領域を複数の磁気成分でドーピングし、該導波管のチャネル領域と関連する少なくとも1つのドーピングされた領域を生じさせ、前記チャネル領域が該導波管のための導波管軸を画定するための手段と、
    前記導波管軸に平行な大きな磁界強度がない前記導波管軸に対し概して垂直な磁場を生じさせる前記複数の磁気成分の部分集合を恒久的に磁化させるほど十分な磁化する場に前記ドーピングされた境界領域を露呈するための手段と、
    を備える導波管。
  36. 該導波管の1つまたは複数の領域を複数の磁気成分でドーピングし、該導波管のチャネル領域と関連する少なくとも1つの導波管領域を生じさせ、前記チャネル領域が該導波管のための導波管軸を画定するための手段と、
    十分な量の前記成分を共通磁化方向に向け、前記導波管軸に平行な大きな磁界強度がない前記導波管軸に対し概して垂直に磁場を恒久的に生じさせるための手段と、
    を備える導波管。
  37. コンピューティングシステムを使用して実行されるときにトランスポートを製造するためのプログラム命令を搬送するコンピュータ読取可能媒体を備えるコンピュータプログラム製品であって、該実行されるプログラム命令が方法を実行し、該方法が
    a)該導波管の1つまたは複数の領域を複数の磁気成分でドーピングし、該導波管のチャネル領域と関連する少なくとも1つのドーピング済みの領域を生じさせ、前記チャネル領域が該導波管のための導波管軸を画定することと、
    b)十分な量の前記成分を共通磁化方向に向け、前記導波管軸に対して平行な大きな磁界強度がない前記導波管軸に対し概して垂直に磁場を恒久的に生じさせることと、
    を備えるコンピュータプログラム製品
  38. コンピューティングシステムにより実行されるときに方法を実行するコンピュータ実行可能命令がその上で搬送される伝播信号であって、該方法が
    a)該導波管の1つまたは複数の領域を複数の磁気成分でドーピングし、該導波管のチャネル領域と関連する少なくとも1つのドーピング領域を生じさせ、前記チャネル領域が該導波管のための導波管軸を定義することと、
    b)十分な量の前記成分を共通磁化方向に向け、前記導波管軸に対して平行な大きな磁界強度がない前記導波管軸に対し概して垂直に磁場を恒久的に生じさせることと、
    を備えるコンピュータプログラム製品
    を備える伝播信号。
JP2006552759A 2004-02-12 2005-02-12 性能を高める境界領域を含む構造化された導波管のための装置、方法及びコンピュータプログラム製品 Withdrawn JP2007524869A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US54459104P 2004-02-12 2004-02-12
US10/812,295 US20050180674A1 (en) 2004-02-12 2004-03-29 Faraday structured waveguide display
US11/011,496 US20050180675A1 (en) 2004-02-12 2004-12-14 Apparatus, method, and computer program product for structured waveguide including performance_enhancing bounding region
PCT/IB2005/050540 WO2005076704A2 (en) 2004-02-12 2005-02-12 Apparatus, method, and computer program product for structured waveguide including performance-enhancing bounding region

Publications (2)

Publication Number Publication Date
JP2007524869A true JP2007524869A (ja) 2007-08-30
JP2007524869A5 JP2007524869A5 (ja) 2008-05-08

Family

ID=34864988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006552759A Withdrawn JP2007524869A (ja) 2004-02-12 2005-02-12 性能を高める境界領域を含む構造化された導波管のための装置、方法及びコンピュータプログラム製品

Country Status (6)

Country Link
US (1) US20050180675A1 (ja)
EP (1) EP1719006A4 (ja)
JP (1) JP2007524869A (ja)
KR (1) KR20070028335A (ja)
AU (1) AU2005213212A1 (ja)
WO (1) WO2005076704A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089727A (ja) * 2019-12-05 2021-06-10 マーベル アジア ピーティーイー、リミテッド 命令の機密としての動的な指定

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050201651A1 (en) * 2004-02-12 2005-09-15 Panorama Flat Ltd. Apparatus, method, and computer program product for integrated influencer element

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072419A (en) * 1931-06-26 1937-03-02 Mildred S Reisman Television method and apparatus
US3289001A (en) * 1964-01-23 1966-11-29 Exxon Production Research Co System for actuating remote electrical circuits with a beam of electromagnetic radiation
DE1930907C3 (de) * 1969-06-18 1974-04-11 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Magneto-optisches Speicherelement
US3756690A (en) * 1972-03-30 1973-09-04 Corning Glass Works Optical waveguide light modulator
US3811096A (en) * 1972-09-21 1974-05-14 Bell Telephone Labor Inc Magneto-optic modulators
GB1488792A (en) * 1973-09-06 1977-10-12 Jenkins R Optical dielectric waveguides
US4371838A (en) * 1980-09-24 1983-02-01 The United States Of America As Represented By The Secretary Of The Navy Optical fiber waveguide for measuring magnetic fields
DE3139487A1 (de) * 1981-10-03 1983-04-21 Philips Patentverwaltung Gmbh, 2000 Hamburg "verfahren zum herstellen einer magnetischen speicherschicht"
US4575722A (en) * 1982-05-05 1986-03-11 Litton Systems, Inc. Magneto-optic display
US4500176A (en) * 1982-05-05 1985-02-19 Litton Systems, Inc. Method and device for improving a conductive switching grid for switchable magnetic elements
US4661809A (en) * 1982-05-05 1987-04-28 Litton Systems, Inc. Magneto-optic chip with gray-scale capability
US4476465A (en) * 1982-08-30 1984-10-09 Litton Systems, Inc. Magneto-optic display generator
JPS59178415A (ja) * 1983-03-30 1984-10-09 Hitachi Ltd 薄膜光アイソレ−タとその製造方法
US4584237A (en) * 1983-04-04 1986-04-22 Litton Systems, Inc. Multilayer magneto-optic device
CA1242519A (en) * 1983-04-25 1988-09-27 Masataka Shirasaki Faraday rotator assembly
FR2559275B1 (fr) * 1984-02-02 1988-04-08 Thomson Csf Procede de fabrication d'une fibre optique a structure chiralique et dispositif mettant en oeuvre ce procede
US4606605A (en) * 1984-06-29 1986-08-19 At&T Bell Laboratories Optical fiber having in-line polarization filter
DE3607346A1 (de) * 1986-03-06 1987-09-10 Philips Patentverwaltung Magneto-optisches lichtschaltelement und verfahren zu seiner herstellung
US4952014A (en) * 1987-10-19 1990-08-28 At&T Bell Laboratories Optical systems with thin film polarization rotators and method for fabricating such rotators
EP0383923B1 (en) * 1988-02-26 1997-05-28 Fujitsu Limited Polarizing isolation apparatus and optical isolator using the same
DE3825079A1 (de) * 1988-07-23 1990-02-01 Philips Patentverwaltung Optischer isolator, zirkulator, schalter oder dergleichen mit einem faraday-rotator
JP2739736B2 (ja) * 1988-09-16 1998-04-15 カシオ計算機株式会社 磁性体装置
US4845449A (en) * 1988-11-03 1989-07-04 The United States Of America As Represented By The Secretary Of The Army Millimeter wave microstrip modulator/switch
KR930010691B1 (ko) * 1989-01-31 1993-11-05 히다찌 긴조꾸 가부시끼가이샤 패러데이 회전자 소자 및 이를 구비한 광학 스위치
DE3904660A1 (de) * 1989-02-16 1990-08-23 Philips Patentverwaltung Planarer optischer isolator
US4981341A (en) * 1989-07-14 1991-01-01 At&T Bell Laboratories Apparatus comprising a magneto-optic isolator utilizing a garnet layer
JPH03107918A (ja) * 1989-09-22 1991-05-08 Eastman Kodatsuku Japan Kk 光シャッター
US5053704A (en) * 1990-01-11 1991-10-01 Pri Instrumentation, Inc. Flow imager for conductive materials
US5052786A (en) * 1990-03-05 1991-10-01 Massachusetts Institute Of Technology Broadband faraday isolator
US5031983A (en) * 1990-04-04 1991-07-16 At&T Bell Laboratories Apparatus comprising a waveguide magneto-optic isolator
US5056885A (en) * 1990-05-10 1991-10-15 General Electric Company Fiber optic switch
US5273622A (en) * 1991-01-28 1993-12-28 Sarcos Group System for continuous fabrication of micro-structures and thin film semiconductor devices on elongate substrates
US5106455A (en) * 1991-01-28 1992-04-21 Sarcos Group Method and apparatus for fabrication of micro-structures using non-planar, exposure beam lithography
US5270485A (en) * 1991-01-28 1993-12-14 Sarcos Group High density, three-dimensional, intercoupled circuit structure
US5269882A (en) * 1991-01-28 1993-12-14 Sarcos Group Method and apparatus for fabrication of thin film semiconductor devices using non-planar, exposure beam lithography
US5673131A (en) * 1991-12-31 1997-09-30 Sarcos Group High density, three-dimensional, intercoupled circuit structure
US5451774A (en) * 1991-12-31 1995-09-19 Sarcos Group High density, three-dimensional, intercoupled optical sensor circuit
US5889609A (en) * 1992-07-31 1999-03-30 Fujitsu Limited Optical attenuator
US5408565A (en) * 1993-02-22 1995-04-18 The Trustees Of Columbia University In The City Of New York Thin-film magneto-optic polarization rotator
US5548422A (en) * 1993-06-28 1996-08-20 In Focus Systems, Inc. Notch filters with cholesteric polarizers with birefringent film and linear polarizer
US5619355A (en) * 1993-10-05 1997-04-08 The Regents Of The University Of Colorado Liquid crystal handedness switch and color filter
US5351319A (en) * 1993-11-15 1994-09-27 Ford Motor Company Ferrofluid switch for a light pipe
US5473466A (en) * 1994-06-02 1995-12-05 Tanielian; Aram A. Magneto-optical display and method of forming such display
JP3491644B2 (ja) * 1994-08-26 2004-01-26 住友電気工業株式会社 光ファイバの製造方法
US5544268A (en) * 1994-09-09 1996-08-06 Deacon Research Display panel with electrically-controlled waveguide-routing
US5835458A (en) * 1994-09-09 1998-11-10 Gemfire Corporation Solid state optical data reader using an electric field for routing control
DE19549395A1 (de) * 1995-02-07 1996-10-31 Ldt Gmbh & Co Bilderzeugungssysteme zur Bestimmung von Sehfehlern an Probanden und für deren Therapie
US5822021A (en) * 1996-05-14 1998-10-13 Colorlink, Inc. Color shutter liquid crystal display system
US6417892B1 (en) * 1995-05-23 2002-07-09 Colorlink, Inc. Color filters, sequencers and displays using color selective light modulators
US5739943A (en) * 1995-08-24 1998-04-14 Kabushiki Kaisha Toshiba Polarization control unit
US5640021A (en) * 1995-08-25 1997-06-17 Massachusetts Institute Of Technology Faraday-stark magneto-optoelectronic (MOE) devices
JP3667827B2 (ja) * 1995-08-29 2005-07-06 富士通株式会社 ファラデー回転子
US5598492A (en) * 1995-10-10 1997-01-28 Hammer; Jacob M. Metal-ferromagnetic optical waveguide isolator
US5790299A (en) * 1995-12-15 1998-08-04 Optics For Research Optical isolator employing a cadmium-zinc-tellurium composition
JP3739471B2 (ja) * 1996-03-01 2006-01-25 富士通株式会社 光可変減衰器
JP2812293B2 (ja) * 1996-03-29 1998-10-22 日本電気株式会社 導波路型光アイソレ−タ
US6043515A (en) * 1996-09-17 2000-03-28 Kabushiki Kaisha Toshiba Optical semiconductor device
JP3773601B2 (ja) * 1996-09-18 2006-05-10 富士通株式会社 ファラデー回転子
FR2753567B1 (fr) * 1996-09-19 1998-11-13 Alsthom Cge Alcatel Procede de depot d'un film ferromagnetique sur un guide d'onde, et un composant magneto-optique comprenant un film mince ferromagnetique depose selon le procede
KR100288739B1 (ko) * 1997-01-20 2001-05-02 윤종용 광섬유모재제조방법
WO1998036300A2 (en) * 1997-02-13 1998-08-20 Ionas A/S Polarisation asymmetric active optical waveguide, method of its production, and its uses
US6204525B1 (en) * 1997-09-22 2001-03-20 Murata Manufacturing Co., Ltd. Ferroelectric thin film device and method of producing the same
KR100274810B1 (ko) * 1997-12-09 2000-12-15 윤종용 아이솔레이터를이용한광감쇠기및이를구비한광통신시스템
JP3779054B2 (ja) * 1998-01-23 2006-05-24 富士通株式会社 可変光学フィルタ
US6063200A (en) * 1998-02-10 2000-05-16 Sarcos L.C. Three-dimensional micro fabrication device for filamentary substrates
US6128998A (en) * 1998-06-12 2000-10-10 Foster Miller, Inc. Continuous intersecting braided composite structure and method of making same
KR20010071612A (ko) * 1998-06-24 2001-07-28 지아네시 피에르 지오반니 원석으로부터 광섬유를 제조하기 위한 장치 및 방법
US6192713B1 (en) * 1998-06-30 2001-02-27 Sdl, Inc. Apparatus for the manufacture of glass preforms
US6314215B1 (en) * 1998-09-17 2001-11-06 New Mexico State University Technology Transfer Corporation Fast all-optical switch
JP3054707B1 (ja) * 1999-03-19 2000-06-19 東京大学長 光アイソレ―タ
US6431935B1 (en) * 1999-04-26 2002-08-13 Chad Byron Moore Lost glass process used in making display
US6252665B1 (en) * 1999-05-20 2001-06-26 California Institute Of Technology Lithography using quantum entangled particles
JP3799874B2 (ja) * 1999-06-15 2006-07-19 Kddi株式会社 偏波モード分散補償装置
JP3753920B2 (ja) * 2000-03-22 2006-03-08 Tdk株式会社 磁性ガーネット単結晶膜及びその製造方法、及びそれを用いたファラデー回転子
JP2001281598A (ja) * 2000-03-30 2001-10-10 Tdk Corp 複合光学素子、光アイソレータ、光アッテネータとそれらの製造方法
US6766088B2 (en) * 2000-05-01 2004-07-20 Sumitomo Electric Industries, Ltd. Optical fiber and method for making the same
US6462856B1 (en) * 2000-05-31 2002-10-08 Lucent Technologies Inc. Method and apparatus for modulating an optical signal using polarization
US6467313B1 (en) * 2000-06-09 2002-10-22 Corning Incorporated Method for controlling dopant profiles
US6576406B1 (en) * 2000-06-29 2003-06-10 Sarcos Investments Lc Micro-lithographic method and apparatus using three-dimensional mask
US6594068B2 (en) * 2000-07-05 2003-07-15 Zhifeng Sui High switching speed digital faraday rotator device and optical switches containing the same
JP4521609B2 (ja) * 2000-09-11 2010-08-11 ミネベア株式会社 磁気光学体及びこの磁気光学体を用いた光アイソレータ
US20020044710A1 (en) * 2000-10-16 2002-04-18 Henry Hung Optical fiber non-reciprocal phase shifter
US6542647B2 (en) * 2000-10-27 2003-04-01 Matsushita Electric Industrial Co., Ltd. Optical signal transmission system and magneto-optical modulator designed to establish modulation over wide range for use in the same
US6542665B2 (en) * 2001-02-17 2003-04-01 Lucent Technologies Inc. GRIN fiber lenses
US6476956B1 (en) * 2001-02-28 2002-11-05 Teracomm Research, Inc. Fast optical modulator
JP2002296554A (ja) * 2001-03-30 2002-10-09 Minebea Co Ltd ファラデー回転子
CN1539090A (zh) * 2001-04-12 2004-10-20 �ź㴫 高折射率差纤维波导及其应用
US6577430B1 (en) * 2001-05-14 2003-06-10 Guanghai Jin Bi-directional optical switch
US6496634B1 (en) * 2001-07-17 2002-12-17 Marc David Levenson Holey fibers filled with raman active fluid
US6580546B2 (en) * 2001-08-03 2003-06-17 Primanex Faraday rotator
US6760496B2 (en) * 2002-01-31 2004-07-06 Photodigm, Inc. Inline ferromagnetic-composite isolator and method
US6816637B2 (en) * 2002-02-11 2004-11-09 International Business Machines Corporation Magneto-optical switching backplane for processor interconnection
US6782148B2 (en) * 2002-03-15 2004-08-24 Fitel Usa Corp. Modifying birefringence in optical fibers
AU2003303601A1 (en) * 2003-01-02 2004-07-29 Massachusetts Institute Of Technology Magnetically active semiconductor waveguides for optoelectronic integration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089727A (ja) * 2019-12-05 2021-06-10 マーベル アジア ピーティーイー、リミテッド 命令の機密としての動的な指定
JP7443641B2 (ja) 2019-12-05 2024-03-06 マーベル アジア ピーティーイー、リミテッド 命令の機密としての動的な指定

Also Published As

Publication number Publication date
AU2005213212A1 (en) 2005-08-25
EP1719006A4 (en) 2007-07-04
WO2005076704A3 (en) 2006-04-06
WO2005076704A2 (en) 2005-08-25
EP1719006A2 (en) 2006-11-08
US20050180675A1 (en) 2005-08-18
KR20070028335A (ko) 2007-03-12

Similar Documents

Publication Publication Date Title
US7254287B2 (en) Apparatus, method, and computer program product for transverse waveguided display system
JP2007526505A (ja) 偏光器領域を含む構造化された導波管のためのシステム、方法及びコンピュータプログラム
JP2007524125A (ja) 統合型インフルエンサエレメントのための装置、方法、及びコンピュータプログラム製品
JP2007527031A (ja) 接触領域内/間を含む構造化された導波管のためのシステム、方法及びコンピュータプログラム製品
JP2007523370A (ja) 単一ディスプレイシステムのための装置、方法及びコンピュータプログラム製品
JP2007527032A (ja) 基板付きの/コンポーネント化された導波ゴーグルシステムのための装置、方法及びコンピュータプログラム製品
JP2007522515A (ja) 保有境界領域を含む構造化された導波管
JP2007522514A (ja) 構造化された導波管スイッチングマトリクスのための装置、方法及びコンピュータプログラム製品
JP2007526504A (ja) 構造化された導波管トランスポートのための装置、方法、及びコンピュータプログラム製品
JP2007522516A (ja) マルチカラー構造化導波管
JP2007524869A (ja) 性能を高める境界領域を含む構造化された導波管のための装置、方法及びコンピュータプログラム製品
JP2007522517A (ja) 非線形効果を含む構造化された導波管のためのシステム、方法及びコンピュータプログラム製品
US20050201679A1 (en) System, method, and computer program product for structured waveguide including modified output regions
JP2007522519A (ja) 基板化された(substrated)導波(waveguided)ディスプレイシステム
US7099547B2 (en) Apparatus, method, and computer program product for structured waveguide transport using microbubbles
US20060056792A1 (en) System, method, and computer program product for structured waveguide including intra/inter contacting regions
WO2005076710A2 (en) System, method, and computer program product for faceplate for structured waveguide system
JP2007522520A (ja) 再帰ゾーンを含む構造化された導波管のための装置、方法及びコンピュータプログラム製品

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081030