JP2007521625A - Non-aqueous electrolyte for batteries - Google Patents

Non-aqueous electrolyte for batteries Download PDF

Info

Publication number
JP2007521625A
JP2007521625A JP2006546808A JP2006546808A JP2007521625A JP 2007521625 A JP2007521625 A JP 2007521625A JP 2006546808 A JP2006546808 A JP 2006546808A JP 2006546808 A JP2006546808 A JP 2006546808A JP 2007521625 A JP2007521625 A JP 2007521625A
Authority
JP
Japan
Prior art keywords
battery
carbonate
aqueous electrolyte
electrolytic solution
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006546808A
Other languages
Japanese (ja)
Inventor
ジョン ホ チョン
ハク ソ キム
ジョン ソプ キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cheil Industries Inc
Original Assignee
Cheil Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheil Industries Inc filed Critical Cheil Industries Inc
Publication of JP2007521625A publication Critical patent/JP2007521625A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

A nonaqueous electrolyte for a battery having explosion inhibiting properties includes an organic solvent and a lithium salt. A benzene-substituted phosphate derivative is provided at a level in a range from about 0.1% to about 10% by weight. The benzene-substituted phosphate derivative can be expressed by the following formula: wherein R represents a halogen-substituted C1-C8 alkyl or allyl compound or an unsubstituted C1-C8 alkyl or allyl compound, and n is an integer between 1 and 3.

Description

本発明は、電池用非水電解液に関し、さらに詳しくは、有機溶媒及びリチウム塩からなるリチウム電池用非水電解液において、ベンゼン置換されたフォスフェイト(Phosp
hate)誘導体を含むことを特徴とする、過充電時の安定性に優れた電池用非水電解液
に関する。
The present invention relates to a non-aqueous electrolyte for a battery, and more particularly, in a non-aqueous electrolyte for a lithium battery comprising an organic solvent and a lithium salt, a benzene-substituted phosphate (Phosp).
The present invention relates to a non-aqueous electrolyte for batteries excellent in stability during overcharge, characterized by containing a hate) derivative.

リチウム2次電池は、エネルギー密度が高く、自己放電率が低く、軽量であるため、ノートパソコン、ビデオカメラ、携帯電話などの薄型及び軽量化が求められる携帯電子器機の高性能エネルギー源として脚光を浴びている。このようなリチウム2次電池には、一般に、正極活物質として、リチウム金属混合酸化物を、負極材料として、炭素材料または金属リチウムなどが使用される。リチウム電池は、通常、高い圧力に設計されるため、電解液としては、高い電圧でも耐えられる有機溶媒、即ち、非水電解液を使用するが、主として有機溶媒にリチウム塩を溶解させたものが使用される。   Lithium rechargeable batteries have high energy density, low self-discharge rate, and are light weight, so they have attracted attention as a high-performance energy source for portable electronic devices such as laptop computers, video cameras, and mobile phones that are required to be thin and light. I'm bathing. In such a lithium secondary battery, a lithium metal mixed oxide is generally used as a positive electrode active material, and a carbon material or metallic lithium is used as a negative electrode material. Since a lithium battery is usually designed at a high pressure, an organic solvent that can withstand a high voltage, that is, a non-aqueous electrolyte is used as an electrolytic solution, but a lithium salt is mainly dissolved in an organic solvent. used.

リチウム電池用の電解液は、リチウム負極に対して安定したものが必要であるが、熱力学的に、リチウムに対して安定した溶媒は存在しないと言われている。実際、初期充電の際、負極に対して電解液が分解し、この反応生成物がリチウムの表面にイオン伝導性保護膜、即ち、SEI(Solid Electrolyte interface)を形成し
、電極と電解液との反応を抑制させるため、安定化されると考えられてきた。
The electrolyte solution for lithium batteries needs to be stable with respect to the lithium negative electrode, but it is said that there is no thermodynamically stable solvent for lithium. In fact, during the initial charging, the electrolytic solution decomposes with respect to the negative electrode, and this reaction product forms an ion conductive protective film, that is, SEI (Solid Electrolyte interface) on the surface of lithium, and the electrode and the electrolytic solution It has been thought to be stabilized in order to suppress the reaction.

ところが、このような非水電解質二次電池において、電子機器の電源回路や充電装置が壊れ、過充電状態になった場合、電池内へ異常発熱が生じ、極端の場合は、電池の破損や発火が発生することがある。このように、電池の過充電などの異常作動の際、電池の熱暴走が起こらないよう效果的に発熱を抑制し、電池の安定性を確保することが重要な課題となってきた。   However, in such a non-aqueous electrolyte secondary battery, if the power supply circuit or charging device of an electronic device is broken and overcharged, abnormal heat is generated in the battery. In extreme cases, the battery is damaged or ignited. May occur. As described above, during abnormal operation such as overcharging of the battery, it has become an important issue to effectively suppress heat generation and ensure the stability of the battery so that the battery does not run out of heat.

過充電時の電池の破裂、発火防止の方法として、充電器による充電電圧の制御を行う方法が主流となってきた。ところが、現状における保護回路、保護素子の利用は、電池パックの小型化及び低コスト化に大きく影響するため、保護回路、保護素子なしで安定性を確保する方法が求められている。その他、過電流の発生時、気体の生成により電流の流れを遮断し、または隔離膜の融合により過充電電流を遮断する方法などが提案されているが、未だに満足できる過充電保護メカニズムは実現していない。   As a method for preventing battery explosion and ignition during overcharge, a method of controlling the charging voltage with a charger has become mainstream. However, since the use of the protection circuit and the protection element in the current state greatly affects the miniaturization and cost reduction of the battery pack, a method for ensuring stability without the protection circuit and the protection element is required. Other methods have been proposed, such as shutting off the current flow by generating gas when the overcurrent occurs, or shutting off the overcharge current by fusing the separators, but still a satisfactory overcharge protection mechanism has been realized. Not.

このような問題を解決するために、日本国特開平7−302614号公報(特許文献1)、日本国特開平9−50822号公報(特許文献2)、日本国特開平9−106835号公報(特許文献3)、日本国特許第2939469号(特許文献4)などには、リチウム二次電池の電解液中に、添加剤として少量の芳香族化合物を入れ、電池の過充電に対して安定性を確保する方法が提案されている。   In order to solve such a problem, Japanese Patent Laid-Open No. 7-302614 (Patent Document 1), Japanese Patent Laid-Open No. 9-50822 (Patent Document 2), Japanese Patent Laid-Open No. 9-106835 ( Patent Document 3), Japanese Patent No. 2939469 (Patent Document 4), and the like contain a small amount of an aromatic compound as an additive in the electrolyte of a lithium secondary battery, and are stable against battery overcharge. A method for ensuring the above has been proposed.

具体的に、特許文献1及び2には、電解液中に、添加剤として、分子量が500以下であり、二次電池の満充電時の正極電位以上で可塑性酸化還元電位を有し、π電子軌道を有するアニソール(Anisole)などの有機低分子化合物を使用することが提案されている。このような有機低分子化合物は、酸化還元試薬(Redox shuttle)として作用し、正極と負極との間で過充電電流を消費することによって保護器具が成立すると提案されている。   Specifically, Patent Documents 1 and 2 disclose that in the electrolyte solution, the molecular weight is 500 or less as an additive, and has a plastic redox potential at or above the positive electrode potential when the secondary battery is fully charged, and π electrons It has been proposed to use organic low molecular weight compounds such as anisole having an orbit. Such an organic low molecular weight compound has been proposed that acts as a redox reagent and consumes an overcharge current between the positive electrode and the negative electrode to form a protective device.

一方、特許文献3には、ビフェニル、3−クルロチオフェン及びフランのような芳香族化合物が、過充電状態の電圧で重合反応を開始し、電池の内部抵抗を増加させることによって、過充電時の電池を保護する方法が提案されている。
日本国特開平7−302614号公報 日本国特開平9−50822号公報 日本国特開平9−106835号公報 日本国特許第2939469号
On the other hand, in Patent Document 3, an aromatic compound such as biphenyl, 3-curulothiophene and furan starts a polymerization reaction at a voltage in an overcharged state, and increases the internal resistance of the battery. A method for protecting the battery has been proposed.
Japanese Unexamined Patent Publication No. 7-302614 Japanese Laid-Open Patent Publication No. 9-50822 Japanese Unexamined Patent Publication No. 9-106835 Japanese Patent No. 2939469

ところが、特許文献1及び2に提案されたアニソール(Anisole)は、過充電の際には確かに酸化還元試薬として機能するが、一般の電池使用電圧の範囲内で反応してしまい、これにより放電容量のサイクル特性に悪影響を与える問題点がある。   However, the anisole proposed in Patent Documents 1 and 2 certainly functions as a redox reagent during overcharge, but reacts within the range of general battery operating voltage, which causes discharge. There is a problem that adversely affects the cycle characteristics of the capacity.

本発明は、上述した従来技術の問題点を克服するためのものであって、本発明は、電池過充電時の爆発/発火現象の発生を抑制できる電池用非水電解液を提供することにその目的がある。   The present invention is to overcome the above-described problems of the prior art, and the present invention provides a non-aqueous electrolyte for a battery that can suppress the occurrence of an explosion / ignition phenomenon during battery overcharge. There is that purpose.

本発明の他の目的は、電池特性に影響することなく熱暴走を起こさないよう效果的に発熱を抑制し、電池の信頼性及び安定性を確保できる電池用非水電解液を提供することにある。   Another object of the present invention is to provide a non-aqueous electrolyte for a battery that can effectively suppress heat generation without causing thermal runaway without affecting the battery characteristics and ensure the reliability and stability of the battery. is there.

本発明のまた他の目的は、別途の保護回路または保護素子なしで電池の過充電による熱暴走を防止し、電池パックの小型化及び低コスト化を達成できる電池用非水電解液を提供することにある。   Another object of the present invention is to provide a nonaqueous electrolyte for a battery that can prevent thermal runaway due to overcharging of the battery without a separate protection circuit or protection element, and can achieve downsizing and cost reduction of the battery pack. There is.

即ち、本発明は、有機溶媒及びリチウム塩からなるリチウム電池用非水電解液において、ベンゼン置換されたフォスフェイト誘導体を0.1乃至10重量%含むことを特徴とす
る電池用非水電解液を提供するものである。
That is, the present invention provides a nonaqueous electrolytic solution for a battery comprising an organic solvent and a lithium salt, comprising 0.1 to 10% by weight of a benzene-substituted phosphate derivative. It is to provide.

本発明の電池用非水電解液を使用して通常の方法によってリチウム電池を製造することができ、このように製造されたリチウム電池は、従来の非水電解液を使用した電池より電気化学的安定性が高いため、過充電時の安定性に優れている。   A lithium battery can be produced by a conventional method using the non-aqueous electrolyte for a battery of the present invention. The lithium battery thus produced is more electrochemical than a battery using a conventional non-aqueous electrolyte. Due to its high stability, it has excellent stability during overcharging.

以下、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明の非水電解液は、有機溶媒及びリチウム塩からなるリチウム電池用非水電解液であって、下式1のベンゼン置換されたフォスフェイト誘導体を0.1乃至10重量%含む
ことを特徴とする。
The non-aqueous electrolyte of the present invention is a non-aqueous electrolyte for a lithium battery comprising an organic solvent and a lithium salt, and contains 0.1 to 10% by weight of a benzene-substituted phosphate derivative of the following formula 1. And

Figure 2007521625
Figure 2007521625

前式において、Rは、ハロゲン置換された炭素数C1〜C8のアルキルまたはアリル化合物または非置換された炭素数C1〜C8のアルキルまたはアリル化合物であり、nは、1〜3の整数である。   In the above formula, R is a halogen-substituted C1-C8 alkyl or allyl compound or an unsubstituted C1-C8 alkyl or allyl compound, and n is an integer of 1-3.

本発明において、ベンゼン置換されたフォスフェイト(Phosphate)誘導体の添加量は、非水電解液に0.1乃至10重量%、望ましくは1〜5重量%である。本発明に
おいて、ベンゼン置換されたフォスフェイト誘導体の添加量が0.1重量%未満であれば
、本発明で意図する過充電時の安定性の效果を十分得られず、これと反対に、ベンゼン置換されたフォスフェイト誘導体の添加量が10重量%を超えても、過充電時の安定性が使用量に比例して増加するものではないため、本発明におけるベンゼン置換されたフォスフェイト誘導体の添加量は、前記範囲内であることが望ましい。
In the present invention, the addition amount of the benzene-substituted phosphate derivative is 0.1 to 10% by weight, preferably 1 to 5% by weight in the non-aqueous electrolyte. In the present invention, if the addition amount of the benzene-substituted phosphate derivative is less than 0.1% by weight, the effect of stability upon overcharge intended in the present invention cannot be obtained sufficiently. Even if the added amount of the substituted phosphate derivative exceeds 10% by weight, the stability at the time of overcharge does not increase in proportion to the amount used, so the addition of the benzene-substituted phosphate derivative in the present invention The amount is preferably within the above range.

従来のリチウム二次電池の正極活物質としては、重量当たりの容量が大きいもので、層状リチウムコバルト酸化物(LiCoO2)、リチウムニッケル酸化物 (LiNiO2)ある
いはリチウムマンガン酸化物(LiMn24)などが主として使用されているが、これらは、過充電の状態において、リチウムイオンの殆どが脱離状態で非常に不安定となり、電解液と急激な分解発熱反応を起こし、または負極上にリチウム金属を析出させ、最悪の場合、電池の破裂、発火を起こすことがある。本発明は、ベンゼン置換されたフォスフェイト誘導体を非水電解液に添加することによって、過充電時における安定性の問題を解決するものである。
As a positive electrode active material of a conventional lithium secondary battery, one having a large capacity per weight, layered lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ) or lithium manganese oxide (LiMn 2 O 4) However, in the overcharged state, most of the lithium ions become very unstable in the desorbed state, causing a rapid decomposition exothermic reaction with the electrolyte, or lithium on the negative electrode. Metals may be deposited, and in the worst case, the battery may burst or ignite. The present invention solves the problem of stability during overcharge by adding a benzene-substituted phosphate derivative to a non-aqueous electrolyte.

本発明で使用可能な非水電解液の有機溶媒としては、例えば、エチレンカーボネイト、プロピレンカーボネイト、γ-ブチロラクトンなどの環状カーボネイト化合物(Cyclic carbonate)、ジメチルカーボネイト、ジエチルカーボネイト、ジプロピル
カーボネイト、メチルプロピルカーボネイト、エチルメチルカーボネイト、エチルプロピルカーボネイトなどの線形カーボネイト化合物(LiNear carbonate)、プロピルアセテート、メチルアセテート、エチルアセテート、ブチルアセテート、メチルプロピオン酸、エチルプロピオン酸などを挙げることができる。本発明において、有機溶媒は、環状炭酸塩系有機溶媒(例えば、炭酸エチレン及び炭酸プロピレン)と線形炭酸塩系有機溶媒(例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル)を2種以上混合し使用することがさらに望ましい。望ましい有機溶媒としては、例えば、炭酸エチレンと炭酸ジメチルを混合したものである。
Examples of the organic solvent of the non-aqueous electrolyte that can be used in the present invention include cyclic carbonate compounds such as ethylene carbonate, propylene carbonate, and γ-butyrolactone, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, and methylpropyl carbonate. And linear carbonate compounds (LiNear carbonate) such as ethyl methyl carbonate and ethyl propyl carbonate, propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionic acid, and ethyl propionic acid. In the present invention, the organic solvent includes two types of cyclic carbonate organic solvents (for example, ethylene carbonate and propylene carbonate) and linear carbonate organic solvents (for example, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate). It is further desirable to mix and use. A desirable organic solvent is, for example, a mixture of ethylene carbonate and dimethyl carbonate.

上述した有機溶媒の外にも、必要に応じて、酢酸プロピル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル及びプロピオン酸エチルなどから構成される群から選択される一つまたはそれ以上を追加に混合して使用することもできる。各群から選択された有機溶媒の混合比は、本発明の目的を阻害しない限り特に制限されるものではなく、通常のリチウム電池用非水電解液の製造時の混合比による。   In addition to the organic solvent described above, one or more selected from the group consisting of propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, and ethyl propionate are added as necessary. It can also be used as a mixture. The mixing ratio of the organic solvent selected from each group is not particularly limited as long as the object of the present invention is not impaired, and depends on the mixing ratio at the time of producing a normal non-aqueous electrolyte for a lithium battery.

一方、本発明の非水電解液に含まれるリチウム塩としては、LiPF6、LiClO4、LiAsF6、LiBF4、LiN(C25SO3)2などから構成される群から選択される一つまたはそれ以上を使用することが望ましく、より望ましくは、LiPF6を使用する。
本発明において、リチウム塩の濃度は、0.8〜2Mの範囲が望ましいが、リチウム塩の濃度が0.8M未満であれば、電解液の伝導度が低くなることによって電解液の性能が低
下し、2Mを超える場合、低温における粘度の増加によって低温性能が低下する。
[実施例]
以下、実施例により本発明をさらに具体的に説明する。このような実施例は、説明の目的のためのものであって、本発明を制限するものではない。
On the other hand, the lithium salt contained in the non-aqueous electrolyte of the present invention is one selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiN (C 2 F 5 SO 3 ) 2 and the like. It is desirable to use one or more, more preferably LiPF 6 is used.
In the present invention, the lithium salt concentration is preferably in the range of 0.8 to 2M. However, if the lithium salt concentration is less than 0.8M, the electrolyte performance decreases due to the lower conductivity of the electrolyte solution. And when it exceeds 2M, the low-temperature performance decreases due to the increase in viscosity at low temperature.
[Example]
Hereinafter, the present invention will be described more specifically with reference to examples. Such examples are for illustrative purposes and do not limit the invention.

実施例1
エチレンカーボネイト(EC)、エチルメチルカーボネイト(EMC)、ジエチルカーボネイト(DEC)を1:1:1の割合で混合した溶媒に、溶質としてLiPF6を1M溶解さ
せたものを基本電解液とし、このような基本電解液にベンゼン置換されたフォスフェイト誘導体(n=1、R=CH3)を1重量%添加して最終の非水電解液を得た。このようにし
て製造された電池用非水電解液を利用して角形423048電池を製造するが、負極活物質として、グラファイトを使用し、結着剤として、フッ化ビニリデン樹脂(PVDF)を使用した。正極活物質として、LiCoO2を使用し、結着剤として、PVDFを使用し、
導電剤として、アセチレンブラックを使用した。このようにして製造された電池の1.0
C−rate10Vの過充電実験を行い、その結果を下記の表1に表した。
Example 1
A basic electrolyte is obtained by dissolving 1M LiPF 6 as a solute in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) are mixed at a ratio of 1: 1: 1. 1 wt% of a benzene-substituted phosphate derivative (n = 1, R = CH 3 ) was added to a basic electrolyte solution to obtain a final non-aqueous electrolyte solution. A square 423048 battery is manufactured using the non-aqueous electrolyte for a battery manufactured as described above, and graphite is used as a negative electrode active material, and vinylidene fluoride resin (PVDF) is used as a binder. . LiCoO 2 is used as the positive electrode active material, PVDF is used as the binder,
Acetylene black was used as a conductive agent. 1.0 of the battery manufactured in this way
C-rate 10V overcharge experiment was conducted and the results are shown in Table 1 below.

実施例2
エチレンカーボネイト(EC)、エチルメチルカーボネイト(EMC)、ジエチルカーボネイト(DEC)を1:1:1の割合で混合した溶媒に、溶質として、LiPF6を1M溶解
させた基本電解液にベンゼン置換されたフォスフェイト誘導体(n=1、R=CH3)を3
重量%添加したことを除いては、実施例1と同様に実施して電池を得て、そのようにして得られた電池の過充電実験を行い、その結果を下記の表1に表した。
Example 2
Benzene substitution was carried out with a basic electrolyte in which 1M LiPF 6 was dissolved as a solute in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) were mixed at a ratio of 1: 1: 1. Phosphate derivative (n = 1, R = CH 3 ) 3
A battery was obtained in the same manner as in Example 1 except that wt% was added, and an overcharge experiment of the battery thus obtained was performed. The results are shown in Table 1 below.

実施例3
エチレンカーボネイト(EC)、エチルメチルカーボネイト(EMC)、ジエチルカーボネイト(DEC)を1:1:1の割合で混合した溶媒に、溶質として、LiPF6を1M溶解
させた基本電解液にベンゼン置換されたフォスフェイト誘導体(n=1、R=CH3)を5
重量%添加したことを除いては、実施例1と同様に実施して電池を得て、そのようにして得られた電池の過充電実験を行い、その結果を下記の表1に表した。
Example 3
Benzene substitution was carried out with a basic electrolyte in which 1M LiPF 6 was dissolved as a solute in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) were mixed at a ratio of 1: 1: 1. 5 Phosphate derivatives (n = 1, R = CH 3 )
A battery was obtained in the same manner as in Example 1 except that wt% was added, and an overcharge experiment of the battery thus obtained was performed. The results are shown in Table 1 below.

実施例4
エチレンカーボネイト(EC)、エチルメチルカーボネイト(EMC)、ジエチルカーボネイト(DEC)を1:1:1の割合で混合した溶媒に、溶質として、LiPF6を1M溶解
させた基本電解液にベンゼン置換されたフォスフェイト誘導体(n=2、R=CH3)を1
重量%添加したことを除いては、実施例1と同様に実施して電池を得て、そのようにして得られた電池の過充電実験を行い、その結果を下記の表1に表した。
Example 4
Benzene substitution was performed with a basic electrolyte solution in which 1M of LiPF 6 was dissolved as a solute in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) were mixed at a ratio of 1: 1: 1. Phosphate derivative (n = 2, R = CH 3 ) is 1
A battery was obtained in the same manner as in Example 1 except that wt% was added, and an overcharge experiment of the battery thus obtained was performed. The results are shown in Table 1 below.

実施例5
エチレンカーボネイト(EC)、エチルメチルカーボネイト(EMC)、ジエチルカーボネイト(DEC)を1:1:1の割合で混合した溶媒に、溶質として、LiPF6を1M溶解
させた基本電解液にベンゼン置換されたフォスフェイト誘導体(n=2、R=CH3)を3
重量%添加したことを除いては、実施例1と同様に実施して電池を得て、そのようにして得られた電池の過充電実験を行い、その結果を下記の表1に表した。
Example 5
Benzene substitution was carried out with a basic electrolyte in which 1M LiPF 6 was dissolved as a solute in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) were mixed at a ratio of 1: 1: 1. Phosphate derivative (n = 2, R = CH 3 ) 3
A battery was obtained in the same manner as in Example 1 except that wt% was added, and an overcharge experiment of the battery thus obtained was performed. The results are shown in Table 1 below.

実施例6
エチレンカーボネイト(EC)、エチルメチルカーボネイト(EMC)、ジエチルカーボネイト(DEC)を1:1:1の割合で混合した溶媒に、溶質として、LiPF6を1M溶解
させた基本電解液にベンゼン置換されたフォスフェイト誘導体(n=2、R=CH3)を5
重量%添加したことを除いては、実施例1と同様に実施して電池を得て、そのようにして得られた電池の過充電実験を行い、その結果を下記の表1に表した。
Example 6
Benzene substitution was carried out with a basic electrolyte in which 1M LiPF 6 was dissolved as a solute in a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) were mixed at a ratio of 1: 1: 1. 5 Phosphate derivatives (n = 2, R = CH 3 )
A battery was obtained in the same manner as in Example 1 except that wt% was added, and an overcharge experiment of the battery thus obtained was performed. The results are shown in Table 1 below.

比較例
ベンゼン置換されたフォスフェイト誘導体を添加せず、エチレンカーボネイト(EC)、エチルメチルカーボネイト(EMC)、ジエチルカーボネイト(DEC)を1:1:1の割合で混合した溶媒に、溶質として、LiPF6を1M溶解させた基本電解液を利用して電池
を製造し、そのようにして得られた電池の特性を評価し、その結果を下記の表1に表した。
Comparative Example LiPF as a solute was added to a solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) were mixed at a ratio of 1: 1: 1 without adding a benzene-substituted phosphate derivative. A battery was produced using a basic electrolyte in which 1M of 6 was dissolved, and the characteristics of the battery thus obtained were evaluated. The results are shown in Table 1 below.

Figure 2007521625
Figure 2007521625

電池性能の評価方法
*化成充放電:初期電池の充放電の実験において、0.2C−rateの正電流/正電圧で4.2Vまで充電した時の容量を化成充電容量にし、0.2C−rateの正電流で3Vまで放電した時の容量を化成放電容量にした。
*1c−rate10Vの過充電:満充電(Fully−charged state)の
電池を1C−rateの正電流(Constant current)で10Vまで充電し、10Vへ到達後、正電圧(Constant Voltate)で2時間半充電した。過充電実験の間、電池の爆発または発火の現象が発生しなければ、過充電の防止に效果があるものと見られる。
Battery performance evaluation method
* Chemical charge / discharge: In the experiment of charge / discharge of the initial battery, the capacity when charged to 4.2V with a positive current / positive voltage of 0.2C-rate is the chemical charge capacity, and the positive current of 0.2C-rate The capacity when discharged to 3 V was defined as the chemical discharge capacity.
* 1c-rate10V overcharge: Charge a fully-charged state battery to 10V with a 1C-rate positive current, reach 10V, and then reach a positive voltage (Constant Voltage) for 2.5 hours. Charged. If the battery does not explode or ignite during the overcharge experiment, it is considered effective in preventing overcharge.

図1-aは、比較例の電池用非水電解液を適用した電池の過充電特性をグラフに示すも
のであり、図1-b及び図1-cは、それぞれ、実施例1及び実施例4の非水電解液を適用した電池の過充電特性をグラフにより比較するものである。本発明の非水電解液を適用した電池(図1-b及び図1-c)は、過充電の実験において、比較例(図1-a)の非水電解液
を適用した電池に比べ、過充電時の安定性に優れている。図2は、本発明による非水電解液を適用した電池と、比較例の非水電解液を適用した電池との充放電サイクル性能をグラフにより比較するものである。
FIG. 1A is a graph showing the overcharge characteristics of a battery to which a nonaqueous electrolyte for a battery of a comparative example is applied, and FIGS. 1B and 1C are respectively Example 1 and Example. The overcharge characteristic of the battery to which the non-aqueous electrolyte of 4 is applied is compared with a graph. Batteries to which the nonaqueous electrolyte solution of the present invention is applied (FIGS. 1B and 1C) are compared with the batteries to which the nonaqueous electrolyte solution of the comparative example (FIG. 1A) is applied in an overcharge experiment. Excellent stability during overcharge. FIG. 2 is a graph comparing charge / discharge cycle performance of a battery to which the nonaqueous electrolyte according to the present invention is applied and a battery to which the nonaqueous electrolyte of the comparative example is applied.

図2に示されているように、本発明の非水電解液を適用した電池が、比較例の電池に比べ、電池の寿命特性に優れている。   As shown in FIG. 2, the battery to which the nonaqueous electrolyte of the present invention is applied is superior in battery life characteristics as compared with the battery of the comparative example.

本発明の非水電解液を適用した電池は、過充電時の熱暴走による発火または爆発現象が発生せず、電池の信頼性及び安定性に優れており、過充電及び過放電を防止する別途の保護回路または保護素子に頼ることなく非常に優れた過充電安定性を示すので、電池パックの小型化及び低コスト化に非常に有利である。従って、本発明の非水電解液を利用することによって、小型で且つ軽量であり、寿命が長く、製造コストが安く、エネルギー密度の高い電池を製造することができる。   The battery to which the non-aqueous electrolyte of the present invention is applied does not cause ignition or explosion phenomenon due to thermal runaway during overcharge, has excellent battery reliability and stability, and separately prevents overcharge and overdischarge. Therefore, it is very advantageous for downsizing and cost reduction of the battery pack. Therefore, by using the non-aqueous electrolyte of the present invention, a battery that is small and lightweight, has a long life, is inexpensive to manufacture, and has a high energy density can be manufactured.

本発明の好ましい態様は、例示した目的にあるが、当業者が到達する請求項に開示されたように発明の範囲・本質から逸脱しない限り、種々の変更、追加、置換が可能である。   While the preferred embodiments of the invention are for illustrative purposes, various modifications, additions and substitutions may be made without departing from the scope and essence of the invention as disclosed in the claims reached by those skilled in the art.

比較例の非水電解液を適用した電池の過充電の結果を示すグラフである。It is a graph which shows the result of the overcharge of the battery to which the nonaqueous electrolyte of the comparative example is applied. 実施例1の非水電解液を利用した電池の過充電の結果を示すグラフである。4 is a graph showing the result of battery overcharge using the nonaqueous electrolyte solution of Example 1. FIG. 実施例4の非水電解液を利用した電池の過充電の結果を示すグラフである。It is a graph which shows the result of the overcharge of the battery using the non-aqueous electrolyte of Example 4. 実施例の非水電解液を利用した電池と、比較例の非水電解液を適用した電池との充放電寿命性能を比較するグラフである。It is a graph which compares the charge / discharge lifetime performance of the battery using the non-aqueous electrolyte of an Example, and the battery to which the non-aqueous electrolyte of a comparative example is applied.

Claims (4)

有機溶媒及びリチウム塩からなるリチウム電池用非水電解液において、下式1のベンゼン置換されたフォスフェイト誘導体を0.1乃至10重量%含むことを特徴とする電池用
非水電解液。
Figure 2007521625
(前式において、Rは、ハロゲン置換された炭素数C1〜C8のアルキルまたはアリル化合物、または非置換された炭素数C1〜C8のアルキルまたはアリル化合物であり、nは、1〜3の整数である。)
A nonaqueous electrolytic solution for a lithium battery comprising an organic solvent and a lithium salt, comprising 0.1 to 10% by weight of a benzene-substituted phosphate derivative represented by the following formula 1:
Figure 2007521625
(In the above formula, R is a halogen-substituted C1-C8 alkyl or allyl compound, or an unsubstituted C1-C8 alkyl or allyl compound, and n is an integer of 1-3. is there.)
前記非水電解液の溶媒は、エチレンカーボネイト(EC)、プロピレンカーボネイト(P
C)、ジメチルカーボネイト(DMC)、ジエチルカーボネイト(DEC)、エチルメチルカ
ーボネイト(EMC)、フルオロベンゼン(FB)から構成される群から選択される1種または2種以上の混合有機溶媒であることを特徴とする請求項1に記載の電池用非水電解液。
The solvent of the non-aqueous electrolyte is ethylene carbonate (EC) or propylene carbonate (P
C), one or more mixed organic solvents selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and fluorobenzene (FB). The nonaqueous electrolytic solution for a battery according to claim 1, wherein the battery is nonaqueous electrolytic solution.
前記リチウム塩は、LiPF6、LiBF4、LiClO4、LiN(C25SO3)2、L
iN(C25SO2)2、LiN(CF3SO2)2から構成される群から選択される1種または
2種以上であり、電解液中のリチウム塩の濃度は、0.8〜2Mであることを特徴とする
請求項1に記載の電池用非水電解液。
The lithium salt includes LiPF 6 , LiBF 4 , LiClO 4 , LiN (C 2 F 5 SO 3 ) 2 , L
One or more selected from the group consisting of iN (C 2 F 5 SO 2 ) 2 and LiN (CF 3 SO 2 ) 2 , and the lithium salt concentration in the electrolyte is 0.8. The non-aqueous electrolyte for a battery according to claim 1, which is ˜2M.
正極、負極及び電解液を含む電池であって、前記電解液として請求項1の非水電解液を含むことを特徴とする電池。   A battery comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein the nonaqueous electrolytic solution according to claim 1 is contained as the electrolytic solution.
JP2006546808A 2003-12-30 2004-10-27 Non-aqueous electrolyte for batteries Pending JP2007521625A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030100351A KR100574328B1 (en) 2003-12-30 2003-12-30 Nonqueous Electrolyte for Battery
PCT/KR2004/002726 WO2005064736A1 (en) 2003-12-30 2004-10-27 Nonaqueous electrolyte for battery

Publications (1)

Publication Number Publication Date
JP2007521625A true JP2007521625A (en) 2007-08-02

Family

ID=34737929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006546808A Pending JP2007521625A (en) 2003-12-30 2004-10-27 Non-aqueous electrolyte for batteries

Country Status (6)

Country Link
US (1) US7459240B2 (en)
EP (1) EP1716616B1 (en)
JP (1) JP2007521625A (en)
KR (1) KR100574328B1 (en)
AT (1) ATE522946T1 (en)
WO (1) WO2005064736A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014119249A1 (en) * 2013-01-31 2017-01-26 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2019003799A (en) * 2017-06-14 2019-01-10 三菱ケミカル株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
WO2021020121A1 (en) * 2019-07-26 2021-02-04 株式会社Adeka Thermal runaway inhibitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083058B2 (en) * 2008-02-29 2015-07-14 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery
EP2356712A4 (en) * 2008-11-04 2016-12-14 California Inst Of Techn Hybrid electrochemical generator with a soluble anode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056889A (en) * 2000-08-09 2002-02-22 Toyo Tire & Rubber Co Ltd Electrolyte for battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2122092C (en) 1993-04-28 2006-06-06 Atsuo Omaru Secondary battery having non-aqueous electrolyte
EP0825664B1 (en) * 1994-07-07 2003-10-08 Mitsui Chemicals, Inc. Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same
JP3669024B2 (en) 1995-05-26 2005-07-06 ソニー株式会社 Non-aqueous electrolyte secondary battery
US6919141B2 (en) * 1998-10-22 2005-07-19 Wilson Greatbatch Technologies, Inc. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
US6203942B1 (en) * 1998-10-22 2001-03-20 Wilson Greatbatch Ltd. Phosphate additives for nonaqueous electrolyte rechargeable electrochemical cells
KR100444410B1 (en) * 2001-01-29 2004-08-16 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
US6921612B2 (en) * 2001-10-20 2005-07-26 Samsung Sdi Co., Ltd. Nonaqueous electrolyte composition for improving overcharge safety and lithium battery using the same
US7026074B2 (en) * 2002-02-15 2006-04-11 The University Of Chicago Lithium ion battery with improved safety
KR100509604B1 (en) * 2003-01-14 2005-08-22 삼성에스디아이 주식회사 Organic electrolytic solution and lithium battery employing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002056889A (en) * 2000-08-09 2002-02-22 Toyo Tire & Rubber Co Ltd Electrolyte for battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014119249A1 (en) * 2013-01-31 2017-01-26 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2019003799A (en) * 2017-06-14 2019-01-10 三菱ケミカル株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
WO2021020121A1 (en) * 2019-07-26 2021-02-04 株式会社Adeka Thermal runaway inhibitor

Also Published As

Publication number Publication date
EP1716616B1 (en) 2011-08-31
WO2005064736A1 (en) 2005-07-14
EP1716616A4 (en) 2009-11-11
EP1716616A1 (en) 2006-11-02
KR100574328B1 (en) 2006-04-26
US7459240B2 (en) 2008-12-02
US20080032201A1 (en) 2008-02-07
ATE522946T1 (en) 2011-09-15
KR20050070610A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4536724B2 (en) Electrolyte solvent for improving battery safety and lithium secondary battery including the same
JP4352622B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4543085B2 (en) Additive for lithium secondary battery
EP2237360B1 (en) Overcharge protection by coupling redox shuttle chemicals with radical polymerization additives
JP4395026B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
CN113678298A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2008088167A1 (en) Electrolyte comprising eutectic mixture and secondary battery using the same
CN113711415A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2006108100A (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery containing this
US7422827B2 (en) Nonaqueous electrolyte
JP4727387B2 (en) Lithium battery electrolyte and lithium battery including the same
JP4754323B2 (en) Lithium battery electrolyte and lithium battery
KR100574328B1 (en) Nonqueous Electrolyte for Battery
KR20040061562A (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100585947B1 (en) Nonaqueous Electrolyte for Batteries
KR100789718B1 (en) Nonaqueous electrolyte for secondary battery
KR20050063915A (en) Nonaqueous electrolyte for secondary battery and secondary battery comprising the electrolyte
KR100628629B1 (en) Nonaqueous Electrolyte for Secondary Battery and Secondary Battery comprising the Electrolyte
KR100616205B1 (en) Non-aqueous electrolyte for Lithium battery
KR100572283B1 (en) Non-aqueous electrolyte for lithium battery
KR100510868B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100524550B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100511519B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
KR100572284B1 (en) Non-aqueous electrolyte for lithium battery
JP2008518392A (en) Non-aqueous electrolyte for batteries

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100217

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518