JP2007510774A - 留出燃料からのヘテロ原子および蝋の多段式除去 - Google Patents

留出燃料からのヘテロ原子および蝋の多段式除去 Download PDF

Info

Publication number
JP2007510774A
JP2007510774A JP2006538040A JP2006538040A JP2007510774A JP 2007510774 A JP2007510774 A JP 2007510774A JP 2006538040 A JP2006538040 A JP 2006538040A JP 2006538040 A JP2006538040 A JP 2006538040A JP 2007510774 A JP2007510774 A JP 2007510774A
Authority
JP
Japan
Prior art keywords
dewaxing
hydrotreating
stage
liquid
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006538040A
Other languages
English (en)
Other versions
JP5392983B2 (ja
Inventor
エリス,エドワード,エス.
ガプタ,ラメッシュ
ノバク,ウィリアム,ジェイ.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Publication of JP2007510774A publication Critical patent/JP2007510774A/ja
Application granted granted Critical
Publication of JP5392983B2 publication Critical patent/JP5392983B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/043Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton

Abstract

留出燃料用原料は、水素化処理してヘテロ原子を除去してから、水素化処理された軽質留分と重質留分とに分離し、該重質留分は、低温特性を改良するために接触脱蝋する。水素化処理と脱蝋は、別々の段で実施されるが、同じ反応槽であってもよい。新鮮な水素を脱蝋段に通し、次いで脱蝋段のガス状流出物を水素化処理段に通して、水素化処理用の水素を提供する。既存の水素化処理反応槽と設備は、1段以上の脱蝋段数を追加するために改造できる。
【選択図】 図1

Description

本発明は、留出燃料から、ヘテロ原子および蝋を除去する多段式方法に関する。一実施形態において、本方法は、留出燃料用原料を水素化処理して、ヘテロ原子を除去する工程と、処理原料を、軽質留分と重質留分とに分離し、重質留分を接触脱蝋する工程とを含む。
ディーゼル、軽油、ジェット燃料および家庭暖房用石油などの中間留出燃料用原料は、硫黄および窒素を含有する芳香族およびヘテロ原子化合物などの望ましくない成分を含有する留出炭化水素原料から製造される。したがって、留出燃料用原料は、HSおよびNHとしてのヘテロ原子を除去するために、また、飽和によりいくつかの芳香族を除去するために、典型的には、水素化処理触媒の存在下で、水素との反応によって水素化処理される。これらの原料はまた、含蝋炭化水素分子を含有する。低流動点、低濁り点、低凍結点、および低燃料フィルタ詰まり温度ならびに低冷温フィルタ目詰まり点(CFPP)などの、より良好な低温特性を有する留出燃料に対する要件は、益々増大している。より厳しい低温要件を満たす燃料用原料を得るために、留出燃料留分は、水素化処理されることに加えて、脱蝋されなければならない。留出燃料用原料を水素化処理するための種々の方法スキームが提案され、用いられてきており、そのうちのいくつかは、接触脱蝋を、工程に組み入れており、時には、水素化処理に用いられるものと同じ反応槽に組み入れている。説明例は、例えば、特許文献1〜9に見ることができる。既存の燃料水素化処理設備は、脱蝋能力も無く、それを提供するための新たな装置を加えるために利用できる土地スペースも無いため、留出燃料用原料からヘテロ原子および蝋の双方を除去する方法が必要とされている。このような方法は、脱蝋装置または設備への投資が最少で、既存の水素化処理設備と共に使用する上で、容易に適合できることが望ましい。
米国特許第4,358,362号明細書 米国特許第4,436,614号明細書 米国特許第4,597,854号明細書 米国特許第4,846,959号明細書 米国特許第4,913,797号明細書 米国特許第5,720,872号明細書 米国特許第5,705,052号明細書 米国特許第6,103,104号明細書 米国特許出願公開第20020074262A1号明細書 米国特許第5,185,136号明細書 米国特許第5,185,137号明細書 米国特許第5,185,138号明細書 米国特許第5,098,604号明細書 米国特許第5,227,353号明細書 米国特許第5,573,657号明細書
本発明は、1つ以上の低温特性を改良するために、(i)1段以上の水素化処理反応段で原料を水素化処理して、ヘテロ原子の減少した水素化処理燃料を製造する工程、(ii)前記処理燃料を、軽質留分と重質留分とに分離する工程、および(iii)1段以上の脱蝋反応段で前記重質留分を脱蝋する工程、を含んでなる留出燃料用原料からヘテロ原子および蝋を除去する方法に関する。該重質留分は、80容量%未満、好ましくは、60容量%未満の原料を含んでなる。水素化処理した原料全体に対して、水素化処理した重質留分のみを分離し、脱蝋することによって、(a)脱蝋用のより少量の触媒、(b)脱蝋触媒床を通るより低い液空間速度と、それに伴うより長い滞留時間による、より強力な脱蝋、および(c)より低い脱蝋温度および圧力、の1つ以上の利用が可能になる。一実施形態において、水素化処理条件により、軽質留分の大部分、好ましくはその全部の蒸発が生じるが、含蝋重質留分の蒸発は生じない。この実施形態において、水素化処理反応生成物は、水素化処理液体重質留分、および水素化処理され蒸発した軽質留分と共に、未反応の水素、HSおよびNHを含むガス状反応生成物を含んでなるガス状流出液を含んでなる。水素化処理された液体重質留分は、前記ガス状流出液から分離される。該ガス状流出液を冷却して、水素化処理軽質留分を液体へと凝縮して、ガス状反応生成物から分離する。所望の場合、水素化処理軽質留分の全部または一部を、水素化処理されて脱蝋した重質留分の全部または一部と、再び組み合わせることができる。
脱蝋触媒は、有機ヘテロ原子含有化合物、NHおよびHSに対して鋭敏であることが知られている。主として異性化によって、原料の最少のクラッキングで、低沸点炭化水素へと脱蝋する触媒は、典型的に特に鋭敏である。したがって、一実施形態において、水素化処理重質留分液は、脱蝋される前に、溶解しているHSおよびNHを除去するためにストリッピングされる。脱蝋後、水素化処理し脱蝋した重質留分および水素化処理した軽質留分は、残留し溶解しているヘテロ原子、ガス、および他の不純種を除去するために、別々に、または組合せ流として、典型的にはストリッピングされる。(a)脱蝋前後の水素化処理重質留分液、(b)水素化処理し凝縮した軽質留分液、および/または(c)水素化処理し脱蝋した重質留分および水素化処理した軽質留分を含んでなる組合せ流をストリッピングするために、別々のストリッピング段階で単一のストリッピング槽を使用できる。他の実施形態において、これら3つの流れのいずれかを、前ストリッピングして、または前ストリッピングせずに水素化精製して燃料用原料を形成できる。好ましい実施形態において、新鮮な水素化処理ガスを、水素化処理に使用した脱蝋からの未反応水素と共に、1段以上の脱蝋段に導入する。
本発明のより詳細な実施形態は、燃料の低温特性の1つ以上を改良するために、(a)水素ならびに、蝋およびヘテロ原子を含有する留出燃料用原料を、触媒的有効量の水素化処理触媒の存在下で、前記原料と水素が反応する上で効果的な反応条件において、1段以上の水素化処理段へ通して、ヘテロ原子の減少した原料を製造する工程、および(b)ヘテロ原子減少原料を、軽質留分と重質留分液に分離する工程、(c)分離された重質留分液と水素を、触媒的有効量の脱蝋触媒の存在下で、水素が前記重質留分と反応する上で効果的な反応条件において、1段以上の脱蝋反応段へ通す工程、を含んでなる。水素化処理反応によって軽質留分が蒸発する好ましい実施形態では、水素化処理反応器外での蒸留または分留の必要性が除かれる。この実施形態においては、前記原料の低温特性の1つ以上を改良するために、該方法は、(a)水素ならびに、蝋およびヘテロ原子を含有する留出燃料用原料を、水素化処理触媒の存在下で、前記原料と水素とが反応する上で効果的な反応条件において、1段以上の水素化処理段へ通して、(i)ヘテロ原子の減少した原料を製造し(ii)軽原料成分の少なくとも一部を蒸発させて軽質留分蒸気と重質留分液を製造する工程、(b)重質留分液を軽質留分蒸気から分離する工程、および(c)重質留分液と水素を、触媒的有効量の脱蝋触媒の存在下で、水素が前記重質留分と反応する上で効果的な反応条件において、1段以上の脱蝋反応段へ通す工程、を含んでなる。
該方法は、既存の留出燃料水素化処理装置を改装でき、これは典型的には、典型的な接触脱蝋装置と同様な、しかし、時には、より低温、低圧で操作される。これは、水素化処理、好ましくは、脱蝋前に、ヘテロ原子不純物を除去するための含蝋重質留分のストリッピングと組み合わせた水素化処理により、より低い脱蝋温度および脱蝋圧力の使用が可能になるからである。脱蝋温度および脱蝋圧力の低下、特に、脱蝋圧力の低下によって、同時に、同じ反応槽において、水素化処理と脱蝋の双方をより容易にすることができる。したがって、他の実施形態は、既存の留出燃料水素化処理設備に接触脱蝋能力を有する改装をするか、または追加することに関する。この実施形態においては、(a)1段以上の水素化処理段数を含んでなる留出燃料水素化処理設備に、1段以上の接触脱蝋段数を追加し、(b)上記の種々の実施形態のいずれか、または全てを含んで、水素化処理、分離、および水素化処理重質留分のみの脱蝋などを含んでなる工程を使用する。1段以上の脱蝋段数は、設備に追加された別個の反応器であってもよいが、少なくとも幾つかの場合、それらは、既存の水素化処理反応器へ、該反応器の内部に、または該反応器の上部に外部溶接され、好ましくは、1段以上の脱蝋段および水素化処理段間で気体連通されるが、液体連通はされずに、反応器内部に、追加できる。一実施形態において、水素化処理反応器内の1段以上の水素化処理段数が1段以上の脱蝋段数へと変換される。水素化処理反応器が段間気体−液体分離トレーを有する場合は、1段以上の水素化処理段数における水素化処理触媒が脱蝋触媒と交換できる。
本発明は、水素化処理と脱蝋によって炭化水素の品質を向上させる方法に関する。一実施形態において、炭化水素原料は、一般に300°F〜700°F(149℃〜371℃)の間、およびより典型的には400°F〜650°F(204℃〜343℃)の広範囲であり得る、一般にディーゼル燃料およびジェット燃料の範囲で沸騰する炭化水素留分を含んでなる留出燃料用原料である。一実施形態において、軽質留分から重質留分を分離する切点は、典型的には、450°F〜580°F(232℃〜304℃)の範囲である。大部分の蝋は、重質留分において濃縮され;その結果、改良された低温特性を得るためには重質グレードのみを、脱蝋する必要がある。この重質留分は、典型的には全液体原料の80容量%未満、好ましくは60容量%未満である。主要な利点は、脱蝋前にヘテロ原子不純物を除去する水素化処理によって、また分離された重質留分のみを脱蝋することによって、達成される。所与の脱蝋反応段での容量に関して、脱蝋される含蝋原料の容量減少は、脱蝋段における含蝋液体に関する滞留時間を増加させ、水素化処理ガス対含蝋炭化水素比を同時に増加させる。あるいは、同じレベルの脱蝋を達成するために、より少ない脱蝋触媒を使用でき、したがって、より小型の脱蝋段階を使用でき、脱蝋反応滞留時間の望ましい減少をもたらす。脱蝋前のヘテロ原子の不純物除去は、脱蝋触媒活性をより大きくし、これはまた、より少量の触媒およびより小型段の使用を可能にする。水素化処理/脱蝋反応器の組合せ改装において、より小型の脱蝋段は、水素化処理触媒に関してより大きな空間を利用できるであろう。さらに、既存の水素化処理反応器に脱蝋段を追加することが不可能な場合、より小型の脱蝋段を使用することにより、既存の水素化処理設備に対してより小型の脱蝋反応器または脱蝋と水素化処理反応器の組合せの追加が可能になる。脱蝋前にヘテロ原子を除去する他の利点は、脱蝋反応が、ヘテロ原子が除去されなかった他の場合に可能と考えられるよりも低圧および低温のより緩和な条件で操作できることである。図1に示されている一実施形態において、より緩和な脱蝋条件、特に低圧脱蝋は、脱蝋と水素化処理との間の気体流を有する同じ反応器中で脱蝋段および水素化処理段の双方を可能にする。クラッキングではなくて大部分が異性化により脱蝋するものなど、硫黄または窒素に鋭敏な脱蝋触媒を使用する必要があるため、少量ながら脱蝋前にストリッピングにより除かれたHSとNHの溶解および混入量は、脱蝋触媒活性の低下を防止するために望ましい。処理ガス対液体のより高い比率が、脱蝋段階で含蝋液体中の残存するHSおよびNHの分圧を減じることによって、ヘテロ原子に鋭敏な脱蝋触媒にとって特に重要である脱蝋触媒活性の低下防止に役立つ。
ヘテロ原子とは、主として硫黄および窒素を意味し、硫黄および窒素含有化合物として原料に存在するが、この用語は、また、酸素含有化合物中の酸素を含む。1段以上の水素化処理反応段において、該原料を、触媒的水素化処理条件下で触媒的有効量の水素化処理触媒存在下で、水素と反応させ、ヘテロ原子のより減少した水素化処理燃料を製造する。原料中の有機へテロ原子化合物の硫黄と窒素は、HOとして除去される酸素と共に、HSおよびNHとして、除去される。また水素化処理によって、存在し得る少なくとも芳香族および他の不飽和化合物が水素化により変換される。原料の硫黄含量は、変わり得るが、典型的には、種々の硫黄含有化合物の形態において、0.5重量%〜2.0重量%の硫黄である。予め水素化処理する場合、原料の硫黄は、0.5重量%未満(例えば、500wppm)であり得る。原料の窒素含量は、20wppm〜2000wppmの範囲であり、好ましくは300wppm以下である。説明に役立つ非限定の例により、これらの原料を水素化処理して、原料中の不純物濃度に依って、それぞれ5wppm〜100wppmおよび10wppm〜100wppmの硫黄および窒素含量を減少させる。改良された低温特性としては、低流動点、低濁り点、低凍結点および低CFPP温度の1つ以上が挙げられる。低温特性の要件は、燃料に依って変わり、幾つかは、燃料が用いられる地理的位置に依存する。例えば、ジェット燃料は、−47℃以下の凍結点を有する必要がある。ディーゼル燃料は、夏と冬の双方の曇り点規格を有し、−15℃〜+5℃および−35℃〜−5℃と地域によって変化する。両燃料とも、燃料フィルタ詰まり要件を有している。加熱油は、典型的には低流動点要件を有する。原料は、直留留出液として軽油と重油の全体および還元粗製油類、減圧タワー残油、サイクル油類、FCCタワー残油、軽油類、減圧軽油類、脱アスファルト化残油、タール砂、シェール油などから誘導できる。より重い供給源は、より多くのヘテロ原子不純物を有する傾向があり、したがってより過酷な処理を必要とする。
上述されたように、本発明は、水素化処理に次いで水素化処理原料の一部の脱蝋を含む燃料品質の向上法に関する。水素化処理について先ず記載し、次いで脱蝋について記載する。本明細書に用いられる水素化処理とは、水素化処理される原料と水素含有処理ガスが、硫黄および窒素などのヘテロ原子除去に、また芳香族および他の不飽和化合物の水素による飽和に主として活性な(選択的な)1種以上の好適な触媒の存在下で反応させる方法を称す。従来の水素化処理用触媒は、アルミナなどの高表面積の支持材料上で、例えば、1種以上の第VIII族金属触媒成分、好ましくはFe、CoおよびNi、より好ましくはCoおよび/またはNi、最も好ましくはCo;および1種以上の第VI族金属触媒成分、好ましくはMoおよびW、より好ましくはMoを含んでなる触媒などが使用できる。本明細書に称される族とは、1968年にSargent−Welch Scientific Companyにより版権のあるSargent−Welchの元素周期律表に見られる族を称す。他の好適な水素化処理触媒としては、ゼオライト触媒、ならびに貴金属触媒が挙げられ、該貴金属は、PdおよびPtから選択される。2種以上の水素化処理触媒が、同じ反応段またはゾーン内で使用できることは本発明の範囲内にある。芳香族の飽和に有用な触媒としては、ニッケル、コバルト−モリブデン、ニッケル−モリブデン、ニッケル−タングステン、および芳香族除去のためには硫黄に鋭敏であるが、より選択性がある貴金属(例えば、白金および/またはパラジウム)触媒が挙げられる。典型的な非貴金属水素化処理触媒としては、例えば、アルミナ上のNi/Mo、アルミナ上のCo/Mo、アルミナ上のCo/Ni/Moなどが挙げられる。水素化処理条件としては、典型的には530°F〜750°F(277℃〜400℃)、好ましくは600°F〜725°F(316℃〜385℃)、最も好ましくは600°F〜700°F(316℃〜371℃)の範囲の温度、400psi〜2000psiの範囲の全圧、300SCF/B〜3000SCF/B(53Sm〜534SmのH/m油)の範囲の水素化処理ガス率、0.1LHSV〜2.0LHSVの原料空間速度が挙げられる。一実施形態において、水素化処理条件は、軽原料留分の少なくとも一部を蒸発させるのに十分である上で蝋含有重質留分は蒸発させないように選択され、それによって2つの留分を分離させる別々の分別蒸留または蒸留ゾーンの必要性が除去される。しかしながら、所望される場合および/または蒸留容積が利用できる場合、軽質留分の分離は、分別蒸留を用いて達成できる。分別蒸留とは異なり、1段以上の水素化処理段における軽質留分を蒸発させるのに有効な反応条件により、幾らかの重質留分が蒸発され、幾らかの軽質留分が重質液体に残ることは当業者により解されるであろう。これは、この実施形態の水素化処理にとって許容できる。水素化処理を記載したので、ここで脱蝋をより十分に記載できる。
本明細書中の脱蝋とは、接触脱蝋を意味し、含蝋重質留分は、その流動点と曇り点を減じ、脱蝋燃料の冷クランキング性能を増すために有効な反応条件で脱蝋触媒の存在下で、水素と反応させる。幾つかの水素化処理触媒組成物(例えば、Co、NiおよびFeの1つ以上を含むもの、および典型的にはまた、MoまたはWの1つ以上、ならびに公知のアルミナなどの酸性支持体上のPtおよびPdの貴金属を含むもの)を、重質留分を脱蝋するために使用できるが、幾つかの場合において、脱蝋燃料の収率を最大にするために、クラッキングではなく異性化により大部分が脱蝋される脱蝋触媒を使用することが好ましいであろう。しかしながら、これは、必ずしも実行可能なオプションではない可能性がある。脱蝋は、300°F〜900°F(149℃〜482℃)、好ましくは550°F〜800°F(289℃〜427℃)の範囲の温度、および400psig〜2000psigの範囲の圧を含む反応条件で実施される。水素含有処理ガス率は、300SCF/B〜5000SCF/B(53Sm/m〜890Sm/m)の間の範囲であり、2000SCF/B〜4000SCF/B(356Sm/m〜712Sm/m)の範囲が好ましいが、容量/容量/時間(V/V/時間)で1時間当たりの液空間速度は、0.1〜10の間、好ましく1〜5の間の範囲である。酸性オキシド支持体または担体としては、シリカ、アルミナ、シリカ−アルミナ、形状選択的モレキュラーシーブスを挙げることができ、これらは、少なくとも1種の触媒金属成分と組み合わされる場合、シリカ−アルミナ−ホスフェート類、チタニア、ジルコニア、バナジア、および他のII族、IV族、V族またはVI族オキシド類、フェリエライト、モルデナイト、ZSM−5、ZSM−11、ZSM−23、ZSM−35、シータ体またはTONとしても公知のZSM−22、ZSM−48およびSAPO−11、36、37および40を含むSAPOとして公知のシリコアルミノホスフェート類ならびに公知の超安定なYシーブスなどのYシーブスなど、脱蝋するのに有用なものとして立証されている。ストリッピングが、脱蝋前に利用できない場合、および/または水素化処理および分離された重質留分の硫黄含量が、脱蝋触媒活性の低下または損失をもたらすほど高い場合、改良された耐硫黄性を有するゼオライト含有フレームワーク遷移金属(特許文献10〜12を参照)を使用できる。
処理ガスが、水素化処理および脱蝋に用いられる。用語の「水素」、「水素化処理ガス」および「処理ガス」は、本明細書において同義語として用いられ、純粋な水素であっても、または意図された反応に少なくとも十分な量の水素を含有する処理ガス流であるか、それに加えて、反応または生成物に不利になるように妨害しないか、または影響を及ぼさない他のガスまたはガス類(例えば、窒素およびメタンなどの軽炭化水素類)である水素含有処理ガスであってもよい。HSおよびNHなどの不純物は、望ましくないので、典型的には、反応器に導く前に処理ガスから除去されるであろう。反応段階に導入された処理ガス流は、好ましくは少なくとも50容量%、より好ましくは少なくとも75容量%を含有する。
この方法により製造された留出燃料基材油は、緩和な条件で水素精製を行って、精製された燃料基油を形成するために着色および安定性を改良する。酸化安定性および着色を改良するための水素精製は、微量のヘテロ原子化合物、芳香族類およびオレフィン類を除去するために触媒、水素および緩和な反応条件を使用する、極めて緩和で比較的冷熱水素化法である。水素精製反応条件としては、典型的に300°F〜660°F(150℃〜350℃)、好ましくは300°F〜480°F(150℃〜250℃)の温度、および400psig〜2000psig(2859kPa〜20786kPa)の全圧、1時間当たりの液空間速度が0.1〜10LHSV(hr−1)、好ましく0.5hr−1〜5hr−1の範囲が挙げられる。水素化処理ガス率は、2550scf/B〜10000scf/B(44.5m/m〜1780m/m)の間の範囲である。触媒は、支持成分および1種またはVIB族(Mo、W、Cr)および/または鉄族(Ni、Co)およびVIII族の貴金属(Pt、Pd)の触媒金属成分を含んでなる。該金属または金属類は、貴金属に関しては0.1重量%の少量から、非貴金属に関しては30重量%の高さまで存在し得る。好ましい支持材料は、酸性が低く、例えば、アルミナ、シリカ、シリカアルミナなどの非晶質または結晶性酸化金属類が挙げられ、メソ細孔結晶性材料として知られている超大型ポア結晶性材料の中でExxonMobil社から入手できるMCM−41が好ましい支持体成分である。MCM−41の調製と使用は、例えば、特許文献13〜15に開示されている。
2つの関連する実施形態を、図を参照として記載する。単純化するため、全ての工程ではなく、反応槽内部、バルブ、ポンプ、熱伝達装置などが示されている。また、両図の実施形態に共通の装置および流れは、同じ数および特徴を有する。このように、図1に関して共通の装置について記載されているものは、必ずしも図2と同じ装置を繰り返していない。ここで図1を参照すると、留出燃料水素化処理と脱蝋組合せ装置10は、同じ槽12内で水素化処理反応段および脱蝋反応段を有するものとして概略的に示されている。したがって、装置10は、中空の円筒形反応器12、ストリッパー14、気体−液体分離ドラム16ならびに18、および熱交換器20を含んでなる。反応器12における2つの反応段は、それぞれ22と24として図示された1つ以上の水素化処理触媒床および脱蝋触媒床により、各々がそれぞれ規定された水素化処理反応段および脱蝋反応段を含んでなる。これら2つの反応段は、煙突型気体−液体分離トレー26により分離されており、各段は、該床の上部近くに配置されている、それぞれ気体と液体の流れ分配装置28と30を有する。この図において、脱蝋段のガス状流出液は、下の水素化処理段へ直接流れる。この実施形態において、1段以上の既存の水素化処理段は、これらの段で先に用いられた水素化処理触媒を脱蝋触媒によって置換されている脱蝋段に容易に変換できるか、または反応器を、その中に脱蝋段と水素化処理段の双方を有して設置できる。ストリッパー14は、水素化処理された重質燃料留分ストリッピング段32の下部に配置されている脱蝋燃料のストリッピング段34を備えた煙突型気体−液体分離トレー36により分離されている2つのストリッピング段32と34を含んでなる。各ストリッピング段は、ストリッピング効率を高めるために、従来の構造化パッキングトレーなど、または双方など、高表面積のパッキング材料のパック床(示していない)を含有していることが好ましい。水素化処理液と脱蝋液とを別々にストリッピングするために、水素化処理液のみをストリッピングするために用いられる単独または複数段のストリッパーは、当業界に周知の手段により2段に変換できる。図1に示された工程において、400°F〜700°F(204℃〜371℃)の範囲で沸騰する含蝋ヘテロ原子含有ディーゼル燃料用留分を含んでなる原料は、原料ライン38を経由して、脱蝋反応段24の下部に配置されている水素化処理反応段22に通す。同時に上記脱蝋反応段24から流出する水素に富んだ気体は、トレー26の煙突を通して段22に通過させる。示していないが、新鮮な処理気体もまた、水素化処理段に通過させて、水素化処理用の水素を増加させることができる。該気体と原料は、気体と液体流分配装置28を通過させ、ヘテロ原子と芳香族を除去するために触媒存在下で、水素と反応させる原料に有効な水素化処理条件で1層以上の水素化処理触媒床22に通し、通過させる。1種以上の触媒床は、同一または異なる触媒を含むことができる。示していないが、連続的な複数の同一または異なる水素化処理触媒床は、水素化処理段の複数の水素化処理ゾーンを規定している、それらの間で気体と液体流分配手段により、互いに垂直に分離でき、前のゾーンからの全留出液を次の連続ゾーンに流入させる。一実施形態において、該へテロ原子を先ず除去してから、含蝋へテロ原子減少原料を、芳香族の除去のためにより有効な、1層以上の触媒床を通過させる。水素化処理反応は、500°F(260℃)未満で沸騰する炭化水素類を蒸発させ、水素化処理液体重質留分を含んでなる水素化処理段留出液と、未反応水素、HSおよびNHを含むガス状反応生成物と共に、水素化処理され、かつ揮発性の軽質留分を含んでなるガス状留出液とを生成する。大部分の蝋は、液体重質留分に濃縮され、ライン40を経由して分離器ドラム16に通過させる。水素化処理液体重質留分は、ライン38を経由して22に入る原料の60容量%未満、好ましくは80容量%未満を含んでなる。所望ならば、間接的熱交換器(示していない)などの任意の冷却手段を、気化原料の幾らかを液体に凝縮するために16の上流のライン40に含むことができる。水素化処理反応条件を、水素化処理中に変えることができ、したがって、水素化処理から生じる原料蒸留程度を変えることができる。また、ドラム中の軽質ならびに重質炭化水素留分の分離は、決して正確な分留ではない。したがって、含蝋重質留分の幾らかはまた、蒸発され、この任意の冷却手段は、多すぎる量の重質液体留分が22において蒸発される場合に有用であり得る。ドラム16において、水素化処理された含蝋液は、ディーゼル用含蝋重質留分を含んでなる。この留分は、好ましくは全原料の80容量%未満、より好ましくは60容量%未満であり、16において反応気体と水素化処理燃料用蒸気とから分離される。この重質留分液を、ライン42を経由してストリッパー14の上部ストリッピング段32に通過させる。ヘテロ原子減少の軽質燃料留分蒸気とガス状反応生成物を、ライン44を経由して16から取り出し、熱交換器20を通過させ、気化軽質留分を冷却し、液体として凝縮する。次に、生じた液体とガス状反応生成物とを、ライン46を経て分離用ドラム18を通過させる。
ストリッパー(14)において、水素化処理された含蝋重質燃料用留分液を、下部の脱蝋燃料ストリッピング段34からの気体−液体分離トレー36に流入させるストリッピング気体流と接触させる。この蒸気は、重質液体からの溶解ならびに混入されたヘテロ原子化合物(HS、NHおよびHO)をストリッピングする。下流の脱蝋触媒活性損失を少なくさせることに加えて、溶解へテロ原子化合物をストリッピングすることは、クラッキングによるのではなく、大部分が異性化によって脱蝋するものなど、ヘテロ原子により鋭敏な脱蝋触媒の使用を可能にする。大部分が異性化によって脱蝋する触媒は、所望の燃料範囲未満で沸騰するメタンなどの炭化水素にクラックされるものが少ないため、より高収率の脱蝋燃料を生成する。ストリッピングされた重質液体をトレー36に採取し、ライン52を経てストリッパーから引き抜かれ、蒸気のストリッピングされた成分を通し、ライン50を経てストリッパーの上部から出る。ライン52は、ストリッピングされた重質液体をライン56に通してから、槽12内の脱蝋反応段24に通す。同時に、水素化処理気体を、ライン54と56を経て脱蝋段に通す。流れ分配装置30は、1層以上の脱蝋触媒床24を越えて、順流水素化処理気体と液体、ストリッピングかつ水素化処理された含蝋ディーゼル用重質留分を分配する。脱蝋触媒は、複数の脱蝋ゾーンとして同一または異なる脱蝋触媒の1層以上の別個で連続した床を含むことができ、その各々に、前のゾーンからの全留出液を通す。脱蝋反応段24において、水素を、水素化処理およびストリッピングされたディーゼル用重質留分の含蝋成分と反応させて、その流動点および曇り点を減少させて、その低温特性を改良する。脱蝋反応は、溶解HSおよびNHが、重質留分から除去されなかった他の場合、および/または重質留分のみではなく全原料が脱蝋された場合に可能であると考えられる条件よりも緩和な条件で操作される。脱蝋される含蝋原料がより少容量であれば、脱蝋段における液体滞留時間が増加し、水素化処理気体対含蝋炭化水素比が増加する結果となる。脱蝋前のストリッピングは、脱蝋段におけるHSおよびNHの分圧を減少させ、さらに処理気体対液体の高比率がそれを低下させる。このことは、脱蝋触媒活性をより高め、脱蝋温度と圧を低下できることを意味する。24に導入された水素化処理気体は、脱蝋反応および水素化処理反応の双方にために十分な水素を含有する。水素化処理および脱蝋液をトレー26に採集し、それからライン58を経て取り出される。
この特定の例示では、凝縮され、水素化処理された軽質燃料留分を、ドラム18において、ヘテロ原子含有ガス状水素化処理反応生成物から分離し、ライン60を経てライン58の中へ通し、ここでそれを、水素化処理し脱蝋した重ディーゼル留分と合わせる。ドラム18からのガス状反応生成物を、ライン62を経て貯蔵、またはさらなる処理、例えば、HSおよびNHクリーンアップのために、該工程から導き出す。清浄化された気体は、燃料として使用できるか、または、未反応の水素を十分に含有する場合、水素源として反応段数の1段に通すことができる。ライン58は、組合せ留分をストリッパーの下部段34に通す。34において、組合せ留分は、ライン48を経てストリッパーの底部に入っている蒸気によりストリッピングされる。ストリッピング段32と34において、ストリッピングにより、溶解HS、NH、HO、水素および通常の軽質ガス状(例えば、C〜C)炭化水素類が除去される。水素化処理、脱蝋およびストリッピングされたディーゼル用原料は、ライン49を経て14から取り出される。必要ならば、ディーゼル用基材油が、重質留分のみを含んでなるか、軽質留分と組み合わされているどうかに係りなく、ディーゼル用基材油は、ストリッピングの前後に緩和に水素精製をすることができる。
この実施形態の説明では、2段のみが示されているが、水素化処理、脱蝋およびストリッピングのいずれか、または全てに関して、3段以上を使用できる。例えば、本明細書に参照により援用された特許文献7の開示は、単一ストリッパーにおける3段のストリッピング段と組み合わせた、単一槽における3つの反応段の使用を示している。当業者は、所望の場合、これらの構成が4段以上にも適用できることを認識されるであろう。また、上記の水素化処理段および接触脱蝋段において、並流の気体および液体が示されているが、1段以上が、向流の気体および液体を有することができよう。
図2は、1段の水素化処理および1段の脱蝋段が用いられているが、2つの別々の反応槽があるかのように、2つの別々の段に遮断されている単一反応槽において双方の段が存在することを概略的に示している。したがって、組み合わされた留出燃料水素化処理および脱蝋装置70は、反応槽72、ストリッパー14、気体−液体分離ドラム18、および熱交換器20を含んでなる。接触脱蝋段は、上部に気体流および液体流の分配装置30を配置した24に示される1つ以上の触媒床によって規定される。気体および液体非浸透性の隔壁86は、下の水素化処理段22から脱蝋段24を分離し隔離する。このタイプの配置では、隔壁86を該槽に設置することにより、単一の反応槽を改装できる。あるいは、水素化処理反応器およびその基礎が追加重量を支持できるならば、脱蝋用の小型反応器を、既存の水素化処理反応器の上部に設置することができる。いずれの方法においても、これは、既存の水素化処理反応器を水素化処理および接触脱蝋留出燃料のための二重機能反応器へと改装または変換できる他の方法となる。図1の図解に用いられた同じ原料に、分配装置28上の原料ライン38によって実施され、そこで、原料は、24の下で86の上にある気体空間81から除去された水素に富んだ脱蝋反応気体流出液と合わされ、ライン79を経由して、86の下、28の上を通る。合わせた処理気体と原料は、気体流および液体流分配装置28を通って、原料が気体中の水素と反応する上で効果的な水素化処理反応条件における1層以上の水素化処理触媒床22の中に入り通過して、ヘテロ原子および芳香族が除去される。図1の実施形態に開示されているように、1層以上の触媒床は、同一の、または異なった触媒を含有できる。450°F〜580°Fの範囲未満で沸騰する原料炭化水素は、この段階で蒸発し、図1の工程で生じるものと同じ水素化処理段階流出液を生じる。しかし、この実施形態においては、水素化処理軽質留分蒸気およびガス状反応生成物は、22の下の気体−液体分離空間内を通り、ここでガス状流出液が、水素化処理重質液体89から分離されて、示されているように反応器の底部で回収される。
水素化処理重質液体は、ライン43を経由して除去し、ストリッパー14の上部ストリッピング段32の中へ通す。水素化処理軽質留分蒸気およびガス状反応生成物を含んでなる分離ガス状流出物を、気体分離空間88からライン47を経て除去し、水素化処理蒸気を冷却して液体に凝縮する熱交換器20に通す。図1のとおり、凝縮液体とガス状反応生成物の混合物を、それらを分離する分離ドラム18の中へ通す。液体は、18から、ライン60を経て除去し、ガス状反応生成物は、ライン62を経て除去する。図1のとおり、凝縮された軽質留分は、ライン60を経てライン58へ通し、そこでそれを、水素化処理し脱蝋した重質留分と合わせる。ストリッピングされた含蝋重質留分を、14からライン52を経て除去し、ライン56を経て、脱蝋段24の中へ通す。新鮮な水素化処理気体をライン54および56を経て、24の中へ通す。水素化処理気体および水素化処理しストリッピングされた重質液体を、気体および液体分配装置30により、脱蝋段触媒上に分配する。ここでは、図1の24におけるものと同じ反応、触媒、構成および脱蝋段流出液が生成するが、水素化処理し脱蝋した液体重質留分は、液体83として、86上で回収され、ライン58を経て除去し、この実施形態におけるストリッパーに通され、水素に富んだガス状流出液は、トレーを通す代わりに、ライン79を経て80へ通す。このことにより、脱蝋段を、水素化処理段よりも高い圧力で操作するオプションが可能となる。さらなるオプションは、水素に富んだ脱蝋反応ガス状流出液を水素化処理段に通す前に、加熱または冷却するために、ライン79を有する熱交換器を使用することである。ストリッパー14に流入、またはそこから流出する流れは、図1に記載したものと同じであり、ここで繰り返す必要はない。水素化処理し、脱蝋し、ストリッピングされた燃料は、ライン49を経てストリッパーから除去され、混合または貯蔵へと送られる。図1に関して記載された水素精製、多段の使用、向流などのオプションは、この実施形態にも適用される。
同じ槽に水素化処理と脱蝋を有する実施形態のフローチャートを図示している。 水素化処理段と脱蝋段がブロック様式で操作される単一槽中にある実施形態の概略的なフローチャートである。

Claims (9)

  1. 1つ以上の低温特性を改良するために、
    (i)1段以上の水素化処理段数で原料を水素化処理して、ヘテロ原子の減少した水素化処理燃料を製造する工程、
    (ii)前記処理燃料を軽質留分と重質留分とに分離する工程、および
    (iii)1段以上の脱蝋反応段数で前記重質留分を脱蝋する工程、
    を含んでなることを特徴とする、留出燃料用原料からヘテロ原子および蝋を除去する方法。
  2. 前記原料および水素化処理重質留分は、液体であることを特徴とする請求項1に記載の方法。
  3. 前記重質留分は、液体を基準にして、80容量%未満の前記原料を含んでなることを特徴とする請求項1または2に記載の方法。
  4. 前記軽質留分は、前記水素化処理燃料から蒸気として分離されることを特徴とする請求項1〜3のいずれか一項に記載の方法。
  5. 前記脱蝋からの未反応水素は、前記水素化処理に使用されることを特徴とする請求項1〜4のいずれか一項に記載の方法。
  6. 溶解したヘテロ原子化合物を除去するために前記水素化処理重質留分の液体は、前記脱蝋前にストリッピングされることを特徴とする請求項1〜5のいずれか一項に記載の方法。
  7. 少なくとも1段階の前記脱蝋段は、1段以上の前記水素化処理段数がある水素化処理反応器内にあることを特徴とする請求項1〜6のいずれか一項に記載の方法。
  8. 前記分離軽質留分の少なくとも一部は、液体に凝縮され、前記脱蝋重質留分液の少なくとも一部と再び組み合わされることを特徴とする請求項1〜7のいずれか一項に記載の方法。
  9. 前記重質留分は、液体を基準にして、60容量%未満の前記原料を含んでなることを特徴とする請求項1〜8のいずれか一項に記載の方法。
JP2006538040A 2003-11-05 2004-10-12 留出燃料からのヘテロ原子および蝋の多段式除去 Expired - Fee Related JP5392983B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US51747103P 2003-11-05 2003-11-05
US60/517,471 2003-11-05
PCT/US2004/033499 WO2005047431A1 (en) 2003-11-05 2004-10-12 Multistage removal of heteroatoms and wax from distillate fuel

Publications (2)

Publication Number Publication Date
JP2007510774A true JP2007510774A (ja) 2007-04-26
JP5392983B2 JP5392983B2 (ja) 2014-01-22

Family

ID=34590161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006538040A Expired - Fee Related JP5392983B2 (ja) 2003-11-05 2004-10-12 留出燃料からのヘテロ原子および蝋の多段式除去

Country Status (7)

Country Link
US (1) US7282138B2 (ja)
EP (1) EP1694800B1 (ja)
JP (1) JP5392983B2 (ja)
AU (1) AU2004289978B2 (ja)
CA (1) CA2543842C (ja)
NO (1) NO340475B1 (ja)
WO (1) WO2005047431A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508051A (ja) * 2007-12-31 2011-03-10 エクソンモービル リサーチ アンド エンジニアリング カンパニー ストリッピング用高温分離器を用いる一体化された2段階脱硫/脱ロウ

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
WO2007050469A1 (en) 2005-10-24 2007-05-03 Shell Internationale Research Maatschappij B.V. Temperature limited heater with a conduit substantially electrically isolated from the formation
EP2010754A4 (en) 2006-04-21 2016-02-24 Shell Int Research ADJUSTING ALLOY COMPOSITIONS FOR SELECTED CHARACTERISTICS IN TEMPERATURE-LIMITED HEATERS
US7731838B2 (en) * 2007-09-11 2010-06-08 Exxonmobil Research And Engineering Company Solid acid assisted deep desulfurization of diesel boiling range feeds
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
WO2009116988A1 (en) * 2008-03-17 2009-09-24 Shell Oil Company Process for the preparation of middle distillates from kerogen
US8303804B2 (en) * 2008-10-06 2012-11-06 Exxonmobil Research And Engineering Company Process to improve jet fuels
US8366908B2 (en) * 2008-12-31 2013-02-05 Exxonmobil Research And Engineering Company Sour service hydroprocessing for lubricant base oil production
US8377286B2 (en) * 2008-12-31 2013-02-19 Exxonmobil Research And Engineering Company Sour service hydroprocessing for diesel fuel production
BR112012024722B8 (pt) * 2010-03-31 2018-09-11 Exxonmobil Res & Eng Co hidroprocessamento de alimentações na faixa de ebulição do gasóleo.
US9290703B2 (en) 2010-04-23 2016-03-22 Exxonmobil Research And Engineering Company Low pressure production of low cloud point diesel
CA2800932A1 (en) * 2010-06-30 2012-01-05 Exxonmobil Research And Engineering Company Liquid phase distillate dewaxing
JP6117203B2 (ja) 2011-07-29 2017-04-19 サウジ アラビアン オイル カンパニー 中間留分の選択的水素化処理方法
US8936716B2 (en) 2011-08-19 2015-01-20 Uop Llc Process for recovering hydroprocessed hydrocarbons with two strippers in series
US9670424B2 (en) 2011-08-19 2017-06-06 Uop Llc Process for recovering hydroprocessed hydrocarbons with two strippers in one vessel
US8721994B2 (en) * 2011-08-19 2014-05-13 Uop Llc Apparatus for recovering hydroprocessed hydrocarbons with two strippers and common overhead recovery
US8715596B2 (en) * 2011-08-19 2014-05-06 Uop Llc Apparatus for recovering hydroprocessed hydrocarbons with two strippers in one vessel
US9518230B2 (en) 2011-08-19 2016-12-13 Uop Llc Process for recovering hydroprocessed hydrocarbons with two strippers
US8940254B2 (en) 2011-08-19 2015-01-27 Uop Llc Apparatus for recovering hydroprocessed hydrocarbons with two strippers
US8715595B2 (en) 2011-08-19 2014-05-06 Uop Llc Apparatus for recovering hydroprocessed hydrocarbons with two strippers in series
US8999150B2 (en) 2011-08-19 2015-04-07 Uop Llc Process for recovering hydroprocessed hydrocarbons with two strippers and common overhead recovery
RU2630219C2 (ru) * 2011-12-29 2017-09-06 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ гидроочистки улеводородного масла
US20190161692A1 (en) * 2017-11-28 2019-05-30 Uop Llc Integrated processes and apparatuses for upgrading a hydrocarbon feedstock

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507738A (ja) 1996-12-31 2001-06-12 エクソン リサーチ アンド エンジニアリング カンパニー 単一反応槽における多段水素処理方法
JP2001240846A (ja) 2000-02-29 2001-09-04 Citizen Watch Co Ltd ゴムパッキンおよび外装部材ならびに腕時計

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358362A (en) 1981-01-15 1982-11-09 Mobil Oil Corporation Method for enhancing catalytic activity
US4394249A (en) 1981-08-03 1983-07-19 Mobil Oil Corporation Catalytic dewaxing process
US4436614A (en) 1982-10-08 1984-03-13 Chevron Research Company Process for dewaxing and desulfurizing oils
US4648957A (en) 1984-12-24 1987-03-10 Mobil Oil Corporation Lube hydrodewaxing method and apparatus with light product removal and enhanced lube yields
US4597854A (en) 1985-07-17 1986-07-01 Mobil Oil Corporation Multi-bed hydrodewaxing process
US4913797A (en) 1985-11-21 1990-04-03 Mobil Oil Corporation Catalyst hydrotreating and dewaxing process
US5015359A (en) 1986-06-30 1991-05-14 Mobil Oil Corporation Hydrodewaxing method with interstate recovery of olefin
US4917789A (en) * 1987-02-03 1990-04-17 Fina Technology, Inc. Catalytic dewaxing process
US4846959A (en) 1987-08-18 1989-07-11 Mobil Oil Corporation Manufacture of premium fuels
AU715730B2 (en) 1995-11-14 2000-02-10 Mobil Oil Corporation Integrated lubricant upgrading process
US5670116A (en) 1995-12-05 1997-09-23 Exxon Research & Engineering Company Hydroprocessing reactor with enhanced product selectivity
CA2240688A1 (en) 1995-12-26 1997-07-03 Timothy Lee Hilbert Integrated hydroprocessing scheme with segregated recycle
US5720872A (en) 1996-12-31 1998-02-24 Exxon Research And Engineering Company Multi-stage hydroprocessing with multi-stage stripping in a single stripper vessel
US6103104A (en) 1998-05-07 2000-08-15 Exxon Research And Engineering Company Multi-stage hydroprocessing of middle distillates to avoid color bodies
US6632350B2 (en) 2000-10-10 2003-10-14 Exxonmobile Research And Engineering Company Two stage hydroprocessing and stripping in a single reaction vessel
US6623622B2 (en) 2000-10-10 2003-09-23 Exxonmobil Research And Engineering Company Two stage diesel fuel hydrotreating and stripping in a single reaction vessel
KR100571731B1 (ko) 2000-11-11 2006-04-17 할도르 토프쉐 에이/에스 개선된 수소화공정 방법 및 기존의 수소화공정 반응기를개장하는 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001507738A (ja) 1996-12-31 2001-06-12 エクソン リサーチ アンド エンジニアリング カンパニー 単一反応槽における多段水素処理方法
JP2001240846A (ja) 2000-02-29 2001-09-04 Citizen Watch Co Ltd ゴムパッキンおよび外装部材ならびに腕時計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012067434; 石油便覧2000 , 20000301, p294

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508051A (ja) * 2007-12-31 2011-03-10 エクソンモービル リサーチ アンド エンジニアリング カンパニー ストリッピング用高温分離器を用いる一体化された2段階脱硫/脱ロウ

Also Published As

Publication number Publication date
NO340475B1 (no) 2017-05-02
AU2004289978A1 (en) 2005-05-26
US7282138B2 (en) 2007-10-16
AU2004289978B2 (en) 2009-12-10
JP5392983B2 (ja) 2014-01-22
EP1694800B1 (en) 2015-08-19
CA2543842A1 (en) 2005-05-26
EP1694800A1 (en) 2006-08-30
WO2005047431A1 (en) 2005-05-26
NO20062345L (no) 2006-05-23
US20050092654A1 (en) 2005-05-05
CA2543842C (en) 2010-07-06

Similar Documents

Publication Publication Date Title
JP5392983B2 (ja) 留出燃料からのヘテロ原子および蝋の多段式除去
US20210395620A1 (en) Method for production of aviation fuel
US4213847A (en) Catalytic dewaxing of lubes in reactor fractionator
KR100432610B1 (ko) 왁스-함유 탄화수소 공급원료를 고급 중간 증류 생성물로 변환시키는 공정
RU2612531C2 (ru) Способ и устройство для получения дизельного топлива из углеводородного потока
RU2576320C1 (ru) Способ и устройство для получения дизельного топлива из углеводородного потока
RU2703724C1 (ru) Способ получения дизельного топлива из потока углеводородов
US20050269245A1 (en) Process for desulphurising and dewaxing a hydrocarbon feedstock boiling in the gasoil boiling range
JP2004518011A (ja) 統合潤滑油品質向上方法
KR102330117B1 (ko) 방향족 포화를 사용하여 2 단계로 잔사 스트림을 수소화분해하기 위한 방법 및 장치
US10982157B2 (en) Two-step hydrocracking process for the production of naphtha comprising a hydrogenation step carried out upstream of the second hydrocracking step
KR20080048539A (ko) 관류 수소 함유 처리 기체를 사용한 통합된 윤활제 개량방법
JP4206268B2 (ja) 単一反応槽における二段水素処理およびストリッピング
WO2019109110A1 (en) Integrated processes and apparatuses for upgrading a hydrocarbon feedstock
US11767479B2 (en) Two-stage hydrocracking process for producing naphtha, comprising a hydrogenation stage implemented downstream of the second hydrocracking stage
AU2002211876A1 (en) Two stage hydroprocessing and stripping in a single reaction vessel
US11597884B2 (en) Two-stage hydrocracking process comprising a hydrogenation stage upstream of the second hydrocracking stage, for the production of middle distillates
US20220081628A1 (en) Two-stage hydrocracking process comprising a hydrogenation stage downstream of the second hydrocracking stage, for the production of middle distillates
US20020112990A1 (en) Multi-stage hydroprocessing
US9267083B2 (en) Mercaptan removal using microreactors
US6569314B1 (en) Countercurrent hydroprocessing with trickle bed processing of vapor product stream
US20210115340A1 (en) Processes and apparatuses for upgrading light hydrocarbons
US11898108B2 (en) Hydrocracking process
RU2796569C2 (ru) Способ крекинга в водородной среде для получения среднего дистиллята из легких углеводородных исходных материалов

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100818

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130329

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5392983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees