JP2007505355A - 導波路形成方法及びそれで形成された導波路 - Google Patents

導波路形成方法及びそれで形成された導波路 Download PDF

Info

Publication number
JP2007505355A
JP2007505355A JP2006526079A JP2006526079A JP2007505355A JP 2007505355 A JP2007505355 A JP 2007505355A JP 2006526079 A JP2006526079 A JP 2006526079A JP 2006526079 A JP2006526079 A JP 2006526079A JP 2007505355 A JP2007505355 A JP 2007505355A
Authority
JP
Japan
Prior art keywords
optical
optical element
waveguide
copolymer material
blob
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006526079A
Other languages
English (en)
Inventor
デン,クン−リ
ゴルチカ,トーマス・バート
グイダ,レナート
ニールセン,マシュー・クリスチャン
シー,ミン−イ
トリヴァー,トッド・ライアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/659,464 external-priority patent/US20050053346A1/en
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2007505355A publication Critical patent/JP2007505355A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4212Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element being a coupling medium interposed therebetween, e.g. epoxy resin, refractive index matching material, index grease, matching liquid or gel
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12173Masking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

1つの導波路(116)形成方法は、メチルメタクリレート、テトラフルオロプロピルメタクリレート及びエポキシモノマーを含む光画成可能なコポリマー材料(14)を堆積させ、コポリマー材料に対して光学素子(10、12)を固定し、少なくとも一方の光学素子及びコポリマー材料を通して他方の光学素子に向けて光を送り、未硬化モノマーを揮発させることを含んでなる。別の導波路(116)形成方法は、光学表面(11、13)をそれぞれに有する光学素子(110、112)を相互に固定し、十分な表面張力を有するコポリマーブロブ(114)を光学表面上に配置して湾曲面を有するコポリマーブロブを生み出し、各々の光学素子を通して湾曲面及び他方の光学素子に向けて光を送り、未硬化モノマーを揮発させることを含んでなる。光路形成方法は、光学表面(71、77)をそれぞれに有する光学素子(70、76)を相互に固定し、一方の光学素子から他方の光学素子に光を最適に導くように位置合せされるまで鏡(78)を並進及び回転させ、位置合せされた鏡をその位置に確保することを含んでなる。
【選択図】 図1

Description

本発明は、一般的にはオプトエレクトロニック集積用の導波路(光路)の位置合せ及び自己形成に関する。
大抵のオプトエレクトロニックデバイスでは、ある位置から別の位置へ光を導くために光学的位置合せが使用されるが、これには通例1マイクロメートル又は数分の1マイクロメートル程度の厳密な位置決め精度が要求される。通例、かかる位置決めは複雑で多大の費用や労力を要する操作である。
通常のピック・アンド・プレイス機械は、通例、数マイクロメートルまでのかなりの精度でチップ又はファイバーの位置決めを行う。次いで、精密位置制御及び監視技術を用いて積極的な自由空間位置合せが行われる。かかる位置合せ操作では、高精度並進ステージ、マイクロレンズ、並びに精密ファイバー及びチップホルダーのような複数の部材が必要となる。
受動プレーナー導波路を製造するためには、基本的に3種の通常法が存在している。リッジ導波路法では、基板上にクラッド層及びコア層を堆積させた後、エッチング又はホトパターニングでコア層をパターン化してコア材料のリッジを生み出す。次いで、上部クラッディング層を設置することで導波路が完成する。トレンチ導波路では、最初に基板上にクラッド層を堆積させ、次いでエッチング、現像又はエンボシングでパターン化してトレンチを得る。トレンチをコア材料で満たすが、表面全体にわたって同種の薄い層が残っていてもよい。この場合にも、上部クラッド層を設置することで構造が完成する。「拡散」プレーナー導波路は、基板上に下部クラッド層及びコア材料を塗布し、UV露光で導波路を画成し、その上に上部クラッド層を堆積させることで形成される。非露光コア及び周囲のクラッド層から露光コア領域中に反応体の拡散が起こり、その屈折率を変化させて導波路を形成する。リッジ及びトレンチ法の欠点には、エッチングを使用すると粗雑な導波路エッジが生じて大きな光透過率低下をもたらす可能性があること、及びコア材料とクラッド材料との間に屈折率勾配を生み出すのが困難であることがある。拡散導波路に関する潜在的な欠点には、コアとクラッド層との間における低い屈折率コントラスト、及びこの種の構造を形成するための材料選択の幅が小さいことがある。
平面内位置合せの考慮に加え、若干の電気光学用途では、幾何学的制約及び他の固有要件を満たすために光路の急激な変化(例えば、直角方向の変化)が必要となる。通例、底部から到達する光路は上向きに方向が転換される。この作業はマルチモード導波路については比較的簡単であって、導波路の直線部分の終端に45度の表面を機械加工すればよい。しかし、シングルモード導波路については、かかる直角方向の結合は幾何学的及び機械的制約のために困難となる。例えば、導波路は通例、マルチモードについての約15〜約50マイクロメートルの太さ範囲から、シングルモードについての約2〜約6マイクロメートルまで変化する。好適な解決策を見出すために多くのアプローチが検討中であるが、そのいずれもが、45度の斜面を形成するために太さ数マイクロメートルにすぎないシングルモード導波路の表面をいかに修正すべきかのような共通の問題を抱えている。さらに、受光側の光ファイバー又は何らかの他の入出力構造に対してこのような非常に厳しい許容差の範囲内でいかに位置合せするかという問題も残っている。
したがって、光学的位置合せのための一層簡単な技術が得られれば望ましいであろう。
米国特許第3809732号明細書 米国特許第4191446号明細書 米国特許第6081632号明細書 米国特許第6191224号明細書 英国特許出願公開第2272306号明細書 ドイツ特許出願公開第3543558号明細書 欧州特許出願公開第0689067号明細書 F. Gillot, et al., "Chromatophore Doped Photopolymers for Integrated Optics", Proceeding of SPIE, Vol. 4798 (2002), pp.53−59 C. Carre, et atl., "New Materials for Integrated Optics Based on Photopolymers", Proceeding of SPIE, Vol. 4924 (2002), pp.106−113 Naohiro Hirose et al., "Optical Solder Effects of Self−Written Waveguides in Optical Circuit Devices Coupling", Electronic Components and Technology Conference, pp.268−275, 2002
簡潔に言えば、本発明の一実施形態に従えば、導波路を形成する方法は、メチルメタクリレート、テトラフルオロプロピルメタクリレート及びエポキシモノマーを含む光画成可能なコポリマー材料を基板上に堆積させ、光学素子を光画成可能なコポリマー材料に対して固定し、少なくとも一方の光学素子及び光画成可能なコポリマー材料を通して他方の光学素子に向けて光を送り、光画成可能なコポリマー材料から未硬化モノマーを揮発させて導波路を形成することを含んでなる。
本発明の別の実施形態に従えば、導波路を形成して使用する方法は、光画成可能なコポリマー材料を基板上に堆積させ、少なくとも一方の光学素子がスプリッターを含む光学素子を光画成可能なコポリマー材料に対して固定し、少なくとも一方の光学素子及び光画成可能なコポリマー材料を通して他方の光学素子に向けて光を送ると共に、光を送ることが少なくとも一方の光学素子からスプリッターの第一の光路を通して光を供給することを含み、光画成可能なコポリマー材料から未硬化モノマーを揮発させて導波路を形成し、スプリッターの第二の光路を通して光信号を送信することで導波路を使用することを含んでなる。
本発明の別の実施形態に従えば、導波路を形成する方法は、光学表面をそれぞれに有する光学素子を相互に固定し、光学表面に対して十分な表面張力を示す光画成可能なコポリマー材料からなるブロブを光学素子の光学表面の少なくとも一部分上に配置して湾曲面を有するブロブを生み出し、湾曲面に対する一方の光学素子からの入射角がブロブとそれを取り巻く空気との間の屈折率差で決定される全反射条件より大きくなるようにしながら、各々の光学素子及びブロブを通して湾曲面及び他方の光学素子に向けて光を送り、ブロブから未硬化モノマーを揮発させて導波路を形成することを含んでなる。
本発明の別の実施形態に従えば、導波路を形成する方法は、光学表面をそれぞれに有する光学素子を相互に固定し、一方の光学素子から他方の光学素子に光を導くように鏡を位置合せし、光学表面と鏡との間に光画成可能なコポリマー材料を配置し、少なくとも一方の光学素子を通して他方の光学素子に向けて光を送り、光画成可能なコポリマー材料から未硬化モノマーを揮発させて導波路を形成することを含んでなる。
本発明の別の実施形態に従えば、光路を形成する方法は、光学表面をそれぞれに有する光学素子を相互に固定し、一方の光学素子から他方の光学素子に光を最適に導くように位置合せされるまで鏡を並進及び回転させ、位置合せされた鏡をその位置に確保することを含んでなる。
本発明の別の実施形態に従えば、導波路は相互に固定された光学素子の光学表面上に配置されたブロブを含んでいて、ブロブは光学表面に対して十分な表面張力を有することで湾曲面を形成する予備硬化コポリマー材料からなり、ブロブのコア部分はブロブの他の部分より高い屈折率を有する材料からなっていて光学表面間に反射光路を形成する。
本発明の別の実施形態に従えば、導波路は、相互に固定された光学素子であって、光学表面をそれぞれに有する光学素子、一方の光学素子から他方の光学素子に光を導くように位置合せされた鏡、及び光学表面と鏡との間に配置された光画成可能なコポリマー材料であって、光画成可能なコポリマー材料のコア部分が光画成可能なコポリマー材料の他の部分より高い屈折率を有する材料からなっていて光学表面間に反射光路を形成する光画成可能なコポリマー材料を含んでなる。
本発明の別の実施形態に従えば、光路は、相互に固定された光学素子であって、光学表面をそれぞれに有する光学素子、及びファイバー上に配置され、一方の光学素子から他方の光学素子に光を最適に導くように位置合せされた鏡を含んでなる。
本発明の上記その他の特徴、態様及び利点は、添付の図面を参照しながら以下の詳しい説明を読んだ場合に一層よく理解されよう。図面全体を通じ、類似の部分は同じ符号で表されている。
図面の簡単な説明
図1は、本発明の一実施形態に係る導波路の上面図である。
図2は、図1の導波路の側面図である。
図3は、本発明の別の実施形態に係る導波路の上面図である。
図4は、図3の導波路の側面図である。
図5は、本発明の別の実施形態に係る形成途中の導波路の斜視図である。
図6は、図5の形成済み導波路の斜視図である。
図7は、本発明の他の実施形態に係る形成途中の導波路の斜視図である。
図8は、図7の形成済み導波路の斜視図である。
図9は、本発明の別の実施形態に係る導波路結合装置の斜視図である。
図10は、図9の導波路結合装置の上面図である。
図11は、本発明の別の実施形態に係る導波路の上面図である。
図12は、本発明の別の実施形態に係る導波路の上面図である。
図13は、本発明の別の実施形態に係る導波路の側面図である。
図14は、本発明の別の実施形態に係る光路形成装置の斜視図である。
図15は、図14の光路形成装置の別の斜視図である。
図1は本発明の一実施形態に係る導波路16の上面図であり、図2は図1の導波路の側面図である。図1〜2の実施形態では、導波路16の形成方法は、メチルメタクリレート、テトラフルオロプロピルメタクリレート及びエポキシモノマーを含む光画成可能なコポリマー材料14を基板18上に堆積させ、光画成可能なコポリマー材料に対して光学素子10及び12を固定し、少なくとも一方の光学素子及び光画成可能なコポリマー材料を通して他方の光学素子に向けて光を送り、光画成可能なコポリマー材料から未硬化モノマーを揮発させて導波路を形成することを含んでなる。さらに特定の実施形態では、光は各々の光学素子及び光画成可能なコポリマー材料を通して他方の光学素子に向けて送られる。
本明細書中で使用する「固定」とは、導波路の形成及び以後の導波路使用のために使用するのと同じ位置に光学素子を互いに機械的に配置することを意味する。また、本明細書中で使用する「他方の光学素子に向けて」は、直接に相手に向かうこと、又は図12及び13の若干の実施例に示されるように反射方向が相手に向かうことを意味する。本明細書中で使用する「上に」は例示目的のためのものであり、導波路を特定の方位で使用することを要求せず、光画成可能なコポリマー材料が基板に直接接触している実施形態と共に、光画成可能なコポリマー層と基板との間に中間層が存在する実施形態も包含する。「揮発」は、通例、モノマーの拡散を包含する。
光学素子の固定は、堆積後又は堆積前に行うことができる。堆積前に固定を行う場合には、堆積は通例、光学素子の間に光画成可能なコポリマー材料を堆積させることからなる。
図3は本発明の別の実施形態に係る導波路16の上面図であり、図4は図3の導波路の側面図である。この実施形態は、光学素子が異なる点を除けば図1〜2の実施形態と同様である。光学素子は、通例、(充填コア又は中空コアを含み得る)導波路10(図1〜2)、ファイバー12、発光素子20(図3〜4)、光検出素子(図1〜4に示さず)及びこれらの組合せからなる群から選択される。
図2に示すように、ファイバー及び導波路を使用する場合には、ファイバー12は導波路10の厚さより大きい直径を有するのが通例である。このような状況では、斜面19を有する基板18を用意するのが有用である。かかる斜面は、発光素子20がファイバー12より細いものとして示されている図4の実施形態でも有用である。図4にはまた、例示目的のため、例えば通常の高密度相互接続技術で作製できる、電気導体24を含む相互接続アセンブリ22も示されている。
一実施形態では、本方法はさらに、テトラフルオロプロピルメタクリレート、メチルメタクリレート、シクロヘキサノン、連鎖移動剤及び過酸化ベンゾイルを混合し、得られた混合物のガス抜き、加熱及び冷却を行い、アニソール及びエポキシモノマーを添加混合することで光画成可能なコポリマー材料を用意することも含む。
図1〜4の実施形態の材料の自己形成特性により、積極的な位置合せを行わなくても2つのポートを相互接続する導波路を形成できる。光学素子からの光路が出会う場所付近における屈折率の増大は、導波路を通しての光の集中をさらに容易にする。この実施形態は、結合を確実にするための機械部品が不要なために通常の機械的破損の可能性が少ないので丈夫である。自己形成された導波路は、平滑で低損失で整合した光学的相互接続用の移行をもたらし、パッケージング中に起こるオプトエレクロニックデバイス間のマルチマイクロメートルの位置ずれ(横方向、軸方向及び角方向の位置ずれを含む)を補償し得る。これらの実施形態は、揮発がシングルモードの導波路の形成を可能にするので有利である。
さらに具体的な実施形態では、光学素子から送られる光は、例えば(融解石英ファイバー中での紫外線損失のため)約300ナノメートルから(室内光中での劣化のため)約500ナノメートルまでの範囲内の波長を有する。さらに、光学素子から送られる光は、通例は光画成可能なコポリマー材料に損害を与えないように選択される。例えば、光の強さは光画成可能なコポリマー材料の揮発のための限界条件をわずかに超えるように調節するのが有益である。さらに、光を送る行為及び未硬化モノマーを揮発させる行為を順次に2回以上実施し、引き続いて実施するたびに導波路の延長が生じるのが有益である。さらに具体的な実施形態では、光を送る時間は約20〜約50秒の範囲内にあり、光を送らない介在時間は約2〜約5分の範囲内にある。介在時間は、揮発過程を最適化すると共に完了させるように選択できる。
一実施例の実験構成は次の通りである。即ち、約345〜約365ナノメートルの範囲内の多重線紫外光源、4組の5秒間露光及びそれに続く65℃で5分間の拡散、50マイクロメートルのコアを有するマルチモードの紫外線グレードファイバー、並びに166マイクロメートルの導波路長さ及び50マイクロメートルの幅が使用される。別の実施例の実験構成では、約345〜約365ナノメートルの範囲内の多重線紫外光源、4組の20秒間露光及びそれに続く65℃で5分間の拡散、50マイクロメートルのコアを有するマルチモードの紫外線グレードファイバー、並びに161マイクロメートルの導波路長さ及び50マイクロメートルの幅が使用される。
「自己形成型」導波路にとってはアクリル樹脂/エポキシ樹脂ブレンドが特に有利であることが判明した。これは、露光領域(即ち、ファイバーから光が出てくる部位)に導波路を形成でき、それによって導波路を延長できるからである。導波路構造の光パターニング用としてポリマー/モノマーブレンドを評価したが、これはエポキシ樹脂と共にアクリルコポリマーを含んでいた。ポリマーとの相溶性を有することが判明し、減圧蒸留で精製でき、高い蒸気圧を有し、商業的に入手できる光触媒を用いて紫外線硬化させ得るという理由で、(Vantico Inc.(ブルースター、米国ニューヨーク州)から入手できる)CY179脂環式ジエポキシ樹脂を使用した。アクリルポリマーとブレンドする場合、CY179はポリ(メチルメタクリレート)(PMMA)との相溶性を有することが判明したが、2種の材料についての屈折率差はあまり大きくない。そこで、この評価のためにメチルメタクリレートとテトラフルオロプロピルメタクリレートとのコポリマーを合成した。このコポリマーの屈折率は、エポキシ樹脂の屈折率より実質的に低い。したがって、エポキシ樹脂を硬化させる放射で露光した領域は、露光しない領域(そこではエポキシ樹脂が蒸発する)より高い屈折率を有する。
アクリルポリマーに関しては、実質的な数の光硬化可能な相溶性アクリルモノマー(及びポリアクリレート)も利用できる。しかし、アクリレートの光硬化は不活性環境中で実施するのが通例であり、それを行うためのパターニング装置は容易に入手できない。容易に入手できる標準的な光パターニング装置を別にすれば、エポキシ樹脂の光硬化のためには特殊な条件は不要である。
実施例1
以下の実施例は、元来は(「固定した」光学素子とは異なり)外部光源からのパターニングを用いて実施したものであるが、確認された材料に対して光が及ぼす効果を例示している。
約75wt%のポリ(メチルメタクリレート)及び25wt%のポリ(テトラフルオロプロピルメタクリレート)を含むアクリルコポリマー組成物を製造した。真空下で密封できるガラス容器内に、19グラムのテトラフルオロプロピルメタクリレート、56グラムのメチルメタクリレート及び93グラムのシクロヘキサノンを蒸留した。この容器内に、0.15グラムのN−ドデカンチオール(ポリマー系の安定化にも役立つ連鎖移動剤)及び0.19グラムの過酸化ベンゾイルも添加した。この混合物をガス抜きし、真空下で密封し、混合しながら75℃で約24時間加熱し、さらに80℃で24時間加熱した。冷却後、55グラムのアニソールを添加することで、シクロヘキサノン−アニソール混合溶媒中に33.5%の固形分として存在する、約75%のポリ(メチルメタクリレート)及び25%のポリ(テトラフルオロプロピルメタクリレート)からなる粘稠で無色透明のアクリレートコポリマーを得た。このブレンド35グラム中に、さらに10.7グラムのアニソール、5グラムのCY179エポキシモノマー、0.15グラムの(Ciba Specialty Chemicals社(ターリータウン、米国ニューヨーク州)から入手できる)Irganox 1010酸化防止剤、及び0.13グラムの(Dow Chemical Co.(ミッドランド、米国ミシガン州)から入手できる)Cyracure UVI−6976UV触媒を添加した。得られた重合性複合物は、約70重量%のアクリレートポリマー及び30重量%のエポキシモノマーを含んでいた。スピンコート法により、ガラス基板上に重合性複合物の厚さ5マイクロメートルのフィルムを形成し、UV線でパターン化した。得られた複合ポリマー材料のフィルムの地形のDektak測定によれば、UV露光領域でのフィルム厚さは3.7マイクロメートルであり、非露光領域でのフィルム厚さは2.6マイクロメートルであることがわかった。露光領域に関する屈折率は、非露光領域で測定した屈折率より約1.4%高かった。
アクリル樹脂/エポキシ樹脂複合物に関する導波路では、通例、比較的低い屈折率を有する架橋クラッディングが要求される。この材料は、光パターン化層で使用するアクリルコポリマーを相溶性の低屈折率ジアクリレートであるブチレングリコールジアクリレートとブレンドしたものからなる約50/50wt%固形分溶液を、(Ciba Specialty Chemicals社(ターリータウン、米国ニューヨーク州)から入手できる)Ciba Irgacure 907及び184アクリル光硬化触媒並びにIrganox 1010と調合することで得た。スピンキャストフィルムを、溶媒を確実に除去するために70℃で短時間ベークし、次いでフィルムをUVで露光するための合成シリカ窓を有するNチャンバー内に封入した。Karl Sussコンタクトプリンターを用いる1分間の露光が、フィルムを硬化させると共に以後に設置する層からの侵入を防止するのに十分であった。硬化フィルムの屈折率は1.44未満であり、クラッディング層として好適であった。
図5は本発明の別の実施形態に係る形成途中のリッジ導波路の斜視図であり、図6は図5の形成済みリッジ導波路316の斜視図である。一実施形態では、リッジ導波路316を形成する方法は、(一実施形態では反対側の表面上に配置された下部クラッディング層38を有する)基板36上に第一のコア層40を堆積させて硬化させることを含み、基板上に光画成可能なコポリマー材料を堆積させる行為は、第一のコア層上に第二のコア層42を堆積させることを含む。さらに具体的な態様では、第一のコア層40は下部クラッディング層38より高い屈折率を有し、完全に硬化している(即ち、存在するモノマーの約90%以上が重合済み又は揮発済みであることを意味する)。第二のコア層42は(書込み後までは完全に硬化しない)自己形成可能な材料からなると共に、(必ずしも必要ではないが)第一のコア層40と同じ材料からなり得る。通例、自己形成(自己書込み)は、第二のコア層42に対して(要素44及び46として示される)2つの光学素子を固定し、各素子に向けて光を送ることで起こる。自己形成後、余分の材料を除去すればリッジ導波路316を形成できる。
図7は本発明の他の実施形態に係る形成途中のストリップ装荷導波路の斜視図であり、図8は図7の形成済み装荷導波路416及び516の斜視図である。装荷導波路を形成するための一方法は、(一実施形態では反対側の表面上に配置された下部クラッディング層138を有する)基板136上にコア層41を堆積させて硬化させることを含み、基板上に光画成可能なコポリマー材料を堆積させることは、コア層41上にクラッディング層50を堆積させることを含む。この実施形態では、クラッディング層50は、導波路516については光学素子144及び244からの光による自己形成のために使用され、導波路416については光学素子244及び246からの光による自己形成のために使用される。導波路416の例では、余分の材料を除去してストリップ装荷導波路用のクラッディング52を残した一方、導波路516の例では、クラッディング54の周囲に余分の材料56を残してある。いすれにせよ、得られる装荷導波路では、光エネルギーは主として下方のコア層で閉じ込められて導かれる。
リッジ導波路及び装荷導波路に関しては、光エネルギーの大部分は下部コア層中を導かれる。したがって、かかる導波路の性能は、側壁の粗さ又は自己形成中に生じることのある何らかの欠陥に対する感受性が低い。
自己形成技術は、マルチオプトエレクトロニックチップのパッケージ及び集積のために有用であり得る。図9は本発明の別の実施形態に係る導波路結合装置の斜視図であり、図10は図9の導波路結合装置の上面図である。一実施形態では、光学素子は光子モジュール64からなり、基板218上に固定されている。この実施形態では、光画成可能なコポリマー材料を堆積させることは、光子モジュールの光学活性セグメント65及び67の間に光画成可能なコポリマー材料を堆積させることを含む。一実施形態では、例えば、各光子モジュールはクラッディング58、クラッディング58上に位置する基板60、及び基板60上に位置する導波路62を含んでいる。
個々の光子モジュール64は、プレーナー又は多層(三次元)導波路構造に基づく固有の機能に適応させ得る。図10に示した例は、マッハ・ツェンダー干渉計66及びYスプリッター68である。光子モジュール64は、ソルダーバンプ自動組立又は接着剤で(熱管理下で集積できる)共通の支持基板上に配置されている。硬化前に各チップを十分に試験できるので、良好な総合歩留りを達成できる。
図11は導波路616の上面図である。一実施形態では、導波路616を形成して使用する方法は、光画成可能なコポリマー材料14を基板18(図2)上に堆積させ、少なくとも一方の光学素子220がスプリッター26を含む光学素子220及び10を光画成可能なコポリマー材料に対して固定し、少なくとも一方の光学素子及び光画成可能なコポリマー材料を通して他方の光学素子に向けて光を送ると共に、光を送ることが少なくとも一方の光学素子からスプリッターの第一の光路28を通して光を供給することを含み、光画成可能なコポリマー材料から未硬化モノマーを揮発させて導波路を形成し、スプリッターの第二の光路21を通して光信号を送信することで導波路を使用することを含んでなる。さらに具体的な実施形態では、各々の光学素子及び光画成可能なコポリマー材料を通して他方の光学素子に向けて光が送られる。
図11の実施形態は、信号損失を最小限に抑えながら複数の波長の組合せを可能にする。導波路616の形成後、所望ならば第一の光路を切り離すことができる。スプリッター216は特定比率のスプリッターである必要はない。レーザー出力は容易に調整して補償できるので、書込みレーザーの結合効率は重要でない。図11の実施形態は単独でも使用できるし、或いは上述した特定の材料と組み合わせても使用できる。
さらに具体的な態様では、実施例2に関してさらに詳しく記載される通り、少なくとも一方の光学素子を通して光を送ることは、着込み光源88を用いてスプリッターの第一の光路を通して光を供給して導波路を露光すること、及び信号光源188を用いてスプリッターの第二の光路を通して光を供給することを含む。この態様では、得られる導波路を監視することで信号光の光路が評価される。スプリッター26はリソグラフィーで画成して信号光源と位置合せできるから、スプリッターの出口に導波路が自己形成された後には、信号光は自己形成された導波路中に効率よく結合される。
実施例2
マルチモード光ファイバーで実証された成果をシングルモード光ファイバーに拡張するための実験構成を開発した。シングルモードの1対2ビームスプリッターの使用により、図1〜4に関して上述した種類のポリマー材料中に一端を埋め込んだシングルモードファイバーに、HeNeレーザー(632nm)から信号レーザー光を結合し、アルゴンレーザー(407nm)から書込みレーザー光を結合した。実験中には、視覚補助手段として632nmの光を使用した。407nmの光を用いることで、ポリマー材料を露光して導波路を生み出した。実験中には、ファイバーのポリマー埋込み端部をカメラで監視した。407nmの光の短いパルスを加えることで、ポリマー中に屈折率コントラストが徐々に生じ、それによって光ファイバーのコア領域がポリマー中に延長した。試行錯誤を繰り返すことで、HeNeレーザー光を数百マイクロメートルの距離にわたってポリマー中に導いた。
図12は導波路116の上面図である。一実施形態では、導波路116を形成する方法は、光学表面11又は13をそれぞれに有する光学素子110及び112を相互に固定し、光学表面に対して十分な表面張力を示す光画成可能なコポリマー材料からなるブロブ114を光学素子の光学表面の少なくとも一部分上に(上述の通り、「上に」は直接の接触を要求しない)配置して湾曲面15を有するブロブを生み出し、湾曲面に対する一方(本明細書中では少なくとも一方を意味する)の光学素子からの入射角がブロブとそれを取り巻く空気との間の屈折率差で決定される全反射条件より大きくなるようにしながら、各々の光学素子及びブロブを通して湾曲面及び他方の光学素子に向けて光を送り、ブロブから未硬化モノマーを揮発させて導波路を形成することを含んでなる。湾曲面15は、反射を可能にする任意所望の形状を有し得る。該表面は通例はアーチ形であるが、別法として三角形の表面も使用できる。
得られる構造の実施形態では、導波路116は、相互に固定された光学素子110及び112の光学表面11及び13上に配置されたブロブ114を含んでなる。ブロブは、光学表面に対して十分な表面張力を有することで湾曲面15を形成する予備硬化コポリマー材料からなる。ブロブのコア部分は、ブロブの他の部分より高い屈折率を有する材料からなっていて光学表面間に反射光路を形成する。さらに具体的な実施形態では、光画成可能なコポリマー材料はメチルメタクリレート、テトラフルオロプロピルメタクリレート及びエポキシモノマーを含む。
光学素子に対するブロブ材料の屈折率の選択及び適当な鏡様形状の選択は、両方の光学素子から到来する光に対するレンズ効果をもたらす。連続した露光により、自己形成導波路が生じて光学素子を相互接続する。例示的な一実施形態では、光学素子に対するブロブの屈折率差は約1.67〜1になるように選択される。
図12の実施形態は単独でも使用できるし、或いは上述した特定の材料と組み合わせても使用できる。さらに具体的な実施形態では、ブロブはポリマー結合剤と、揮発中にブロブの非照射領域に拡散するのに十分な量の未硬化モノマーとを含む。さらに一段と具体的な実施形態では、本方法はさらに、十分な揮発及び拡散が起こった後、ブロブをブランケット露光することを含む。ブロブ中の導波路は、通例、(追加の)モノマーが露光された(触媒活性化)領域中に拡散して硬化すると共に、未硬化モノマーがコポリマーブレンドから拡散及び揮発する過程で形成される。任意には、ブロブをブランケット露光し、それにより未硬化モノマーのすべてを重合させてさらなる拡散及び揮発を停止させることで、この過程をいずれかの時点で「凍結」させることができる。ブランケット露光は、収縮を抑制すると共に、導波路と周囲の材料との間の屈折率コントラストを調節するために有利であり得る。
別のさらに具体的な実施形態では、光学素子110及び112を相互に固定することが、(例示目的のために導波路110として示される)一方の光学素子を基板118の水平面上に配置すること、及び(例示目的のためにクラッディング32及びコア30を有する光ファイバー112として示される)他方の光学素子を基板の垂直開口33内に挿入することを含む。本明細書中で使用する「上に」とは、物理的に接触していること、又は間に中間層を有することを意味する。さらに、(形成後の)使用時における層の方位は重要でない。
別のさらに具体的な実施形態では、揮発後の追加段階として、ブロブの湾曲面の少なくとも一部分上に反射増強層23を堆積させることが含まれる。この実施形態の一態様では、反射増強層は金属からなる。
別のさらに具体的な実施形態では、ブロブを配置する前の追加段階として、光学表面11及び13を処理して表面粗さを調整することが含まれる。「表面粗さを調整する」とは、ブロブ材料の性質に応じて加減することを意味し得る。この実施形態の一態様では、処理することが研磨することを含む。この実施形態の別の態様では、処理することが、ブロブを配置する前にコーティング層17を設置することを含む。
図13は導波路216の側面図である。一実施形態では、導波路216を形成する方法は、光学表面71又は77をそれぞれに有する光学素子70及び76を相互に固定し、一方の光学素子から他方の光学素子に光を導くように鏡78を位置合せし、光学表面と鏡との間に光画成可能なコポリマー材料80を供給し、少なくとも一方の光学素子を通して他方の光学素子に向けて光を送り、光画成可能なコポリマー材料から未硬化モノマーを揮発させて導波路を形成することを含んでなる。
さらに具体的な実施形態では、光を送ることが、各々の光学素子を通して他方の光学素子に向けて光を送ることを含む。このさらに具体的な実施形態の利益は、光学素子の位置合せの精度を低下させ得ることにある。
構造の実施形態では、得られる導波路216は、相互に固定された光学素子70及び76であって、光学表面71又は77をそれぞれに有する光学素子70及び76、一方の光学素子から他方の光学素子に光を導くように位置合せされた鏡78、並びに光学表面と鏡との間に配置された光画成可能なコポリマー材料80を含んでなる。光画成可能なコポリマー材料のコア部分は、コポリマー材料の他の部分より高い屈折率を有する材料からなっていて光学表面間に反射光路を形成する。さらに具体的な実施形態では、光画成可能なコポリマー材料はメチルメタクリレート、テトラフルオロプロピルメタクリレート及びエポキシモノマーを含む。
図13の実施形態は単独でも使用できるし、或いは上述した特定の材料と組み合わせても使用できる。さらに、図13の実施形態は、本発明の別の実施形態に係る光路形成装置の斜視図である図14及び15に関してさらに詳しく説明されるように、自己形成導波路の域を超える利益も有する。
一実施形態では、光路を形成する方法は、光学表面71又は77(図13)をそれぞれに有する光学素子70及び76(図14)を相互に固定し、一方の光学素子から他方の光学素子に光を最適に導くように位置合せされるまで鏡78(図15)を並進及び回転させ、位置合せされた鏡をその位置に確保することを含んでなる。本明細書中では、「確保する」は固定すると異なる意味で使用される。これは、光路形成後にも鏡が残存する若干の実施形態と、鏡が一時的に配置されるが最終的には除去される他の実施形態とを包括するためである。
得られる構造の実施形態では、光路は、相互に固定された光学素子70及び76であって、光学表面71又は77(図13)をそれぞれに有する光学素子70及び76、並びにファイバー上に配置され、一方の光学素子から他方の光学素子に光を最適に導くように位置合せされた鏡78を含んでなる。さらに具体的な実施形態では、コポリマー材料はメチルメタクリレート、テトラフルオロプロピルメタクリレート及びエポキシモノマーを含む。
一実施形態では、一方の光学素子から光を送り、他方の光学素子で検出される光が最大になるように鏡を並進及び回転させる。この場合、入射光の反対側に検出器(図示せず)を配置すれば、位置合せ中に案内用として役立つ。切欠き内での回転、切欠きに沿っての並進、及びこれらの組合せによって光ファイバー用鏡を調整しながら検出器の出力を最大にすることで、最適化を容易に達成できる。
さらに具体的な実施形態では、光学素子を固定することが、光学表面が実質的に直交するように光学素子を固定することを含む。しかし、本発明は直交する実施形態に限定されない。さらに、光は下向きに伝送されるように示されているが、この方位は例示を目的とするものにすぎず、限定的なものではない。
別のさらに具体的な実施形態では、固定することが、(例示目的のために導波路70として示される)一方の光学素子を(例示目的のため、鏡78に対する導波路の位置を調整する導波路支持体84を有するものとして示される)基板72の水平面上に配置すると共に、(例示目的のために穴又はコア材料76として示される)他方の光学素子を基板の垂直開口74(図13)内に配置することを含む。関連する態様では、本方法はさらに、一実施形態では導波路支持体として機能する誘電体層84を表面上に含む基板を設けることを含む。誘電体層は少なくとも一端を垂直開口の上方に配置した切欠き86を有していて、鏡はファイバーのような鏡支持体82上に配置され、並進させることが切欠きに沿ってファイバーを移動させることを含むと共に回転させることが切欠き内でファイバーを回転させることを含む。さらに具体的な実施形態では、誘電体層は(Dupont Companyから入手できる)KAPTON(商標)ポリイミドからなる。
図13の実施形態の変形例であるさらに一段と具体的な態様では、確保することが、光学表面と鏡との間に光画成可能なコポリマー材料80を配置することを含む。さらに一段と具体的な態様では、光路は導波路からなり、本方法はさらに、少なくとも一方の光学素子を通して他方の光学素子に向けて光を送り、光画成可能なコポリマー材料から未硬化モノマーを揮発させて導波路を形成することを含む。
別の態様では、確保することが、光学表面と鏡との間に(必ずしも光画成可能でない)光学材料80を配置し、材料を硬化させ、次いで鏡を除去することを含む。鏡を除去する実施形態では、硬化した光学材料80上に位置する保護層(図示せず)を設けることが有用である。これは、光路の露出部分を保護すると共に、クラッディング層として作用することで損失を低減させるためである。一実施形態では、光学材料は例えば紫外線硬化性の屈折率整合材料からなる。
以上、本発明の若干の特徴のみを本明細書中に例示して説明してきたが、当業者には数多くの修正及び変更が想起されるであろう。したがって、特許請求の範囲は本発明の真の技術思想に含まれるかかる修正及び変更のすべてを包含するものであることを理解すべきである。
本発明の一実施形態に係る導波路の上面図である。 図1の導波路の側面図である。 本発明の別の実施形態に係る導波路の上面図である。 図3の導波路の側面図である。 本発明の別の実施形態に係る形成途中の導波路の斜視図である。 図5の形成済み導波路の斜視図である。 本発明の他の実施形態に係る形成途中の導波路の斜視図である。 図7の形成済み導波路の斜視図である。 本発明の別の実施形態に係る導波路結合装置の斜視図である。 図9の導波路結合装置の上面図である。 本発明の別の実施形態に係る導波路の上面図である。 本発明の別の実施形態に係る導波路の上面図である。 本発明の別の実施形態に係る導波路の側面図である。 本発明の別の実施形態に係る光路形成装置の斜視図である。 図14の光路形成装置の別の斜視図である。
符号の説明
10 光学素子
11 光学表面
12 光学素子
13 光学表面
14 光画成可能なコポリマー材料
15 湾曲面
16 導波路
17 コーティング層
18 基板
21 第二の光路
23 反射増強層
26 スプリッター
28 第一の光路
70 光学素子
71 光学表面
76 光学素子
77 光学表面
78 鏡
80 光画成可能なコポリマー材料
110 光学素子
112 光学素子
114 ブロブ
116 導波路
216 導波路
220 光学素子
616 導波路

Claims (18)

  1. 導波路(16)を形成する方法であって、
    メチルメタクリレート、テトラフルオロプロピルメタクリレート及びエポキシモノマーを含む光画成可能なコポリマー材料(14)を基板(18)上に堆積させ、
    光学素子(10、12)を光画成可能なコポリマー材料に対して固定し、
    少なくとも一方の光学素子及び光画成可能なコポリマー材料を通して他方の光学素子に向けて光を送り、
    光画成可能なコポリマー材料から未硬化モノマーを揮発させて導波路を形成する
    ことを含んでなる方法。
  2. 光を送ることが、光画成可能なコポリマー材料の揮発のための限界条件をわずかに超えるように光の強さを調節することを含む、請求項1記載の方法。
  3. 光を送る行為及び未硬化モノマーを揮発させる行為を順次に2回以上実施し、引き続いて実施するたびに導波路の延長が生じる、請求項2記載の方法。
  4. 少なくとも一方の光学素子及び光画成可能なコポリマー材料を通して他方の光学素子に向けて光を送ることが、各々の光学素子及び光画成可能なコポリマー材料を通して他方の光学素子に向けて光を送ることを含む、請求項1記載の方法。
  5. 導波路(616)を形成して使用する方法であって、
    光画成可能なコポリマー材料(14)を基板(18)上に堆積させ、
    少なくとも一方の光学素子(220)がスプリッター(26)を含む光学素子(220、10)を光画成可能なコポリマー材料に対して固定し、
    少なくとも一方の光学素子及び光画成可能なコポリマー材料を通して他方の光学素子に向けて光を送ると共に、光を送ることが少なくとも一方の光学素子からスプリッターの第一の光路(28)を通して光を供給することを含み、
    光画成可能なコポリマー材料から未硬化モノマーを揮発させて導波路を形成し、
    スプリッターの第二の光路(21)を通して光信号を送信することで導波路を使用する
    ことを含んでなる方法。
  6. 導波路(116)を形成する方法であって、
    光学表面(11、13)をそれぞれに有する光学素子(110、112)を相互に固定し、
    光学表面に対して十分な表面張力を示す光画成可能なコポリマー材料からなるブロブ(114)を光学素子の光学表面の少なくとも一部分上に配置して湾曲面(15)を有するブロブを生み出し、
    湾曲面に対する一方の光学素子からの入射角がブロブとそれを取り巻く空気との間の屈折率差で決定される全反射条件より大きくなるようにしながら、各々の光学素子及びブロブを通して湾曲面及び他方の光学素子に向けて光を送り、
    ブロブから未硬化モノマーを揮発させて導波路を形成する
    ことを含んでなる方法。
  7. さらに、揮発させた後に、ブロブの湾曲面の少なくとも一部分上に反射増強層(23)を堆積させることを含む、請求項6記載の方法。
  8. さらに、ブロブを配置する前に、光学表面を処理して表面粗さを調整することを含む、請求項6記載の方法。
  9. 処理することが研磨することを含む、請求項6記載の方法。
  10. 処理することが、ブロブを配置する前にコーティング層(17)を設置することを含む、請求項6記載の方法。
  11. ブロブがメチルメタクリレート、テトラフルオロプロピルメタクリレート及びエポキシモノマーを含む、請求項6記載の方法。
  12. 導波路(216)を形成する方法であって、
    光学表面(71、77)をそれぞれに有する光学素子(70、76)を相互に固定し、
    一方の光学素子から他方の光学素子に光を導くように鏡(78)を位置合せし、
    光学表面と鏡との間に光画成可能なコポリマー材料(80)を配置し、
    少なくとも一方の光学素子を通して他方の光学素子に向けて光を送り、
    光画成可能なコポリマー材料から未硬化モノマーを揮発させて導波路を形成する
    ことを含んでなる方法。
  13. 光路を形成する方法であって、
    光学表面(71、77)をそれぞれに有する光学素子(70、76)を相互に固定し、
    一方の光学素子から他方の光学素子に光を最適に導くように位置合せされるまで鏡(78)を並進及び回転させ、
    位置合せされた鏡をその位置に確保する
    ことを含んでなる方法。
  14. 光学素子を固定することが、光学表面が実質的に直交するように光学素子を固定することを含み、固定することが、一方の光学素子を基板の水平面上に配置すると共に他方の光学素子を基板の垂直開口内に配置することを含み、表面上に誘電体層を含む基板を設けることをさらに含み、誘電体層が少なくとも一端を垂直開口の上方に配置した切欠きを有しており、鏡がファイバー上に配置され、並進させることが切欠きに沿ってファイバーを移動させることを含むと共に回転させることが切欠き内でファイバーを回転させることを含む、請求項13記載の方法。
  15. 確保することが、光学表面と鏡との間に光学材料(80)を配置し、材料を硬化させ、次いで光学鏡を除去することを含む、請求項14記載の方法。
  16. 相互に固定された光学素子(110、112)の光学表面(11、13)上に配置されたブロブ(114)を含んでなる導波路(116)であって、ブロブは光学表面に対して十分な表面張力を有することで湾曲面(15)を形成する予備硬化コポリマー材料からなり、ブロブのコア部分はブロブの他の部分より高い屈折率を有する材料からなっていて光学表面間に反射光路を形成する、導波路(116)。
  17. 相互に固定された光学素子(70、76)であって、光学表面(71、77)をそれぞれに有する光学素子(70、76)、
    一方の光学素子から他方の光学素子に光を導くように位置合せされた鏡(78)、及び
    光学表面と鏡との間に配置された光画成可能なコポリマー材料(80)であって、光画成可能なコポリマー材料のコア部分が光画成可能なコポリマー材料の他の部分より高い屈折率を有する材料からなっていて光学表面間に反射光路を形成する、光画成可能なコポリマー材料(80)
    を含んでなる導波路(216)。
  18. 相互に固定された光学素子(70、76)であって、光学表面(71、77)をそれぞれに有する光学素子(70、76)、及び
    ファイバー上に配置され、一方の光学素子から他方の光学素子に光を最適に導くように位置合せされた鏡(78)
    を含んでなる光路。
JP2006526079A 2003-09-09 2004-08-05 導波路形成方法及びそれで形成された導波路 Withdrawn JP2007505355A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/659,464 US20050053346A1 (en) 2003-09-09 2003-09-09 Index contrast enhanced optical waveguides and fabrication methods
PCT/US2004/025261 WO2005040052A2 (en) 2003-09-09 2004-08-05 Waveguide forming methods and waveguides fabricated therefrom

Publications (1)

Publication Number Publication Date
JP2007505355A true JP2007505355A (ja) 2007-03-08

Family

ID=38325504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006526079A Withdrawn JP2007505355A (ja) 2003-09-09 2004-08-05 導波路形成方法及びそれで形成された導波路

Country Status (10)

Country Link
EP (3) EP1835318A1 (ja)
JP (1) JP2007505355A (ja)
KR (1) KR20060123723A (ja)
CN (1) CN1875304A (ja)
AU (1) AU2004283172A1 (ja)
BR (1) BRPI0413952A (ja)
CA (1) CA2538699A1 (ja)
MX (1) MXPA06002745A (ja)
RU (1) RU2006111487A (ja)
WO (1) WO2005040052A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275999A (ja) * 2007-05-01 2008-11-13 Nitto Denko Corp 光導波路の製造方法
JP2017504839A (ja) * 2014-01-29 2017-02-09 ホアウェイ・テクノロジーズ・カンパニー・リミテッド レーザと光ファイバとを結合するための装置及び光信号伝送システム並びに伝送方法
WO2022264329A1 (ja) * 2021-06-16 2022-12-22 日本電信電話株式会社 光接続構造およびその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541391B2 (en) 2005-09-02 2009-06-02 General Electric Company Self-forming polymer waveguide and waveguide material with reduced shrinkage
GB0612142D0 (en) 2006-06-20 2006-08-02 Secr Defence Spreading modulation spectrum control
CN105264415A (zh) * 2013-04-02 2016-01-20 泰科电子瑞侃有限公司 用于光纤连接器的自写入波导及相关方法
US9939578B2 (en) * 2013-05-10 2018-04-10 Intel Corporation Low cost integration of optical components in planar lightwave circuits
US10788632B2 (en) 2019-01-29 2020-09-29 Google Llc Device and method for coupling laser to a photonic integrated circuit
JP7279797B2 (ja) * 2019-08-16 2023-05-23 日本電信電話株式会社 光接続構造
WO2022248037A1 (en) * 2021-05-26 2022-12-01 Stichting Vu Waveguide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3809732A (en) * 1972-12-18 1974-05-07 Bell Telephone Labor Inc Photo-locking technique for producing integrated optical circuits
FR2295436A1 (fr) * 1974-12-16 1976-07-16 Radiotechnique Compelec Dispositif coupleur directif pour fibres optiques multimodes
DE3543558C2 (de) * 1985-12-10 1996-09-19 Licentia Gmbh Opto-elektrische Koppelanordnung
EP0689067A3 (en) * 1994-06-22 1997-04-09 Fujitsu Ltd Manufacturing process for an optical waveguide system, optical component and optical coupler with its use, optical network and optical circuit board
US6191224B1 (en) * 1998-08-25 2001-02-20 Molecular Optoelectronics Corporation Dispersion-controlled polymers for broadband fiber optic devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275999A (ja) * 2007-05-01 2008-11-13 Nitto Denko Corp 光導波路の製造方法
JP2017504839A (ja) * 2014-01-29 2017-02-09 ホアウェイ・テクノロジーズ・カンパニー・リミテッド レーザと光ファイバとを結合するための装置及び光信号伝送システム並びに伝送方法
US9851514B2 (en) 2014-01-29 2017-12-26 Huawei Technologies Co., Ltd. Apparatus for coupling laser and optical fiber, and optical signal transmission system and transmission method
WO2022264329A1 (ja) * 2021-06-16 2022-12-22 日本電信電話株式会社 光接続構造およびその製造方法

Also Published As

Publication number Publication date
AU2004283172A1 (en) 2005-05-06
KR20060123723A (ko) 2006-12-04
CA2538699A1 (en) 2005-05-06
WO2005040052A2 (en) 2005-05-06
CN1875304A (zh) 2006-12-06
EP1664872A2 (en) 2006-06-07
MXPA06002745A (es) 2006-06-05
EP1835318A1 (en) 2007-09-19
WO2005040052A3 (en) 2005-11-24
RU2006111487A (ru) 2006-08-27
EP1835315A1 (en) 2007-09-19
BRPI0413952A (pt) 2006-10-31

Similar Documents

Publication Publication Date Title
EP0782714B1 (en) A method of making an optical waveguide device
JP3836127B2 (ja) 光ファイバーの、導波路への連結を容易にする高分子ミクロ構造体
US7421858B2 (en) Optical transmission substrate, method for manufacturing optical transmission substrate and optoelectronic integrated circuit
Soganci et al. Flip-chip optical couplers with scalable I/O count for silicon photonics
US7215862B2 (en) Process for producing optical waveguide
Glebov et al. Integration technologies for pluggable backplane optical interconnect systems
JP2007505355A (ja) 導波路形成方法及びそれで形成された導波路
KR20050084025A (ko) 제어된 토포그래피 및 굴절률 프로필을 갖는 중합체성광학장치 구조물
Cook et al. Stable, low-loss optical waveguides and micromirrors fabricated in acrylate polymers
Schroder et al. Polymer optical interconnects for PCB
US6445837B1 (en) Hybrid opto-electronic circuits and method of making
Nawata et al. Organic-inorganic hybrid material for optical interconnects and application to optical coupling method
Eldada et al. Robust photopolymers for MCM, board, and backplane optical interconnects
Deng et al. Self-aligned single-mode polymer waveguide interconnections for efficient chip-to-chip optical coupling
JP5036444B2 (ja) 光導波路構造体とその製造方法および光モジュール
Keyworth et al. Computer-controlled pressure-dispensed multimode polymer waveguides
JP2007041122A (ja) ポリマ光導波路の製造方法及びポリマ光導波路、並びにそれを用いた光モジュール
Ishizawa et al. Novel optical interconnect devices applying mask-transfer self-written method
JP2001004858A (ja) 光導波路及びその製造方法
ZA200602451B (en) Waveguide forming methods and waveguides fabricated therefrom
US20070104439A1 (en) Polymer optical waveguide and optical device
JP4458328B2 (ja) 光導波路の製法
Liu et al. Capped optical polymeric waveguide
Singh et al. 1Sumitomo Bakelite, Tokyo, Japan, 2Dow Corning, Auburn, MI, United States
JP2010145938A (ja) 光モジュールの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20070713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071127

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080311

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20080902