JP2007501625A - Avian spermatogonial stem cell culture method and avian spermatogonial stem cell obtained thereby - Google Patents

Avian spermatogonial stem cell culture method and avian spermatogonial stem cell obtained thereby Download PDF

Info

Publication number
JP2007501625A
JP2007501625A JP2006523124A JP2006523124A JP2007501625A JP 2007501625 A JP2007501625 A JP 2007501625A JP 2006523124 A JP2006523124 A JP 2006523124A JP 2006523124 A JP2006523124 A JP 2006523124A JP 2007501625 A JP2007501625 A JP 2007501625A
Authority
JP
Japan
Prior art keywords
spermatogonial stem
stem cells
cells
cell
avian
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006523124A
Other languages
Japanese (ja)
Inventor
ジャ ヨン ハン
ヨン ホ ホン
ジョン ムク リン
ヨン モク リ
マク スン リ
ジン ギュン ジャン
Original Assignee
アビコアー バイオテクノロジー インスティチュート インク
ソウル ナショナル ユニバーシティー インダストリー ファンデーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アビコアー バイオテクノロジー インスティチュート インク, ソウル ナショナル ユニバーシティー インダストリー ファンデーション filed Critical アビコアー バイオテクノロジー インスティチュート インク
Publication of JP2007501625A publication Critical patent/JP2007501625A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/061Sperm cells, spermatogonia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0608Germ cells
    • C12N5/0611Primordial germ cells, e.g. embryonic germ cells [EG]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/30Bird
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/13Nerve growth factor [NGF]; Brain-derived neurotrophic factor [BDNF]; Cilliary neurotrophic factor [CNTF]; Glial-derived neurotrophic factor [GDNF]; Neurotrophins [NT]; Neuregulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/235Leukemia inhibitory factor [LIF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/24Genital tract cells, non-germinal cells from gonads
    • C12N2502/246Cells of the male genital tract, non-germinal testis cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Reproductive Health (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、(a)鳥類の精巣を収得する段階;(b)前記精巣から精巣細胞ポピュレーションを分離する段階;及び(c)前記精巣ポピュレーションに含まれた精原幹細胞を、基底細胞上で、細胞成長因子の含まれた培地で培養する段階を含む鳥類精原幹細胞の長期培養方法、鳥類精原幹細胞のポピュレーション、及び形質転換鳥類の生産方法に関するものである。
【選択図】図11a
The present invention comprises (a) obtaining a testis of a bird; (b) separating a testis cell population from the testis; and (c) a spermatogonial stem cell contained in the testis population on a basal cell. Thus, the present invention relates to a method for long-term culture of avian spermatogonial stem cells including a step of culturing in a medium containing a cell growth factor, a population of avian spermatogonial stem cells, and a method of producing transformed birds.
[Selection] Figure 11a

Description

本発明は、鳥類精原幹細胞の長期培養方法、鳥類精原幹細胞のポピュレーション(population)及び形質転換鳥類の生産方法に関するものである。 The present invention relates to a method for long-term culture of avian spermatogonial stem cells, a population of avian spermatogonial stem cells, and a method for producing transformed birds.

精子形成過程は、雄の精巣の精原細胞が分裂と分化、細胞死滅化(apoptosis)過程を経ながら精子を形成する過程である。従って、精子形成過程は、非常に複雑であり、組織的且つ効率的な生産体系を有する。鶏の精子形成過程は、哺乳動物と非常に類似しており、哺乳動物と同様に、精細管(seminiferous tubule)と間質細胞(interstitial cell)の二つの器官が複雑な方式で相互作用してなる。 The spermatogenesis process is a process in which the spermatogonia of the male testis form sperm through the process of division, differentiation, and cell apoptosis. Therefore, the spermatogenesis process is very complex and has a systematic and efficient production system. The spermatogenesis process in chickens is very similar to that of mammals, and, like mammals, two organs, semiminiferous tubules and interstitial cells, interact in a complex manner. Become.

鳥類の精原細胞は、始原生殖細胞(Primordial Germ Cells, PGCs)由来であって、 外胚葉(epiblast)から発生し、原始線(primitive streak)の形成初期段階の間、下部層から徐々に移動し始め、内胚葉(hypoblast)を経由し、胚子外部の生殖半月部位(germinal crescent)に集まるようになる。その後、血管系が発達しながら、始原生殖細胞(PGC)は、血管を通じて循環して生殖腺に移動し、精巣内で精原細胞(spermatogonia)に発達する。 Avian spermatogonia are derived from primordial germ cells (PGCs), develop from epiblasts, and gradually migrate from the lower layers during the early stages of primitive streak formation It begins to gather at the germinal crescent site outside the embryo via the hypoblast. Thereafter, while the vascular system develops, primordial germ cells (PGC) circulate through the blood vessels and move to the gonads and develop into spermatogonia within the testis.

一方、精原幹細胞は、自己再生((self-renewal)と、精子を生産できる能力を有する(Morrisonら、1997)、マウスの場合、一つの精原幹細胞が精母細胞(spermatocyte)となるために、約10回の分裂をする。即ち、一つの幹細胞(stem cell)が1024個の精母細胞(spermatocytes)となり、一連の減数分裂を経ると、4096個の精子(spermatozoa)が形成される。勿論、この中の75〜90%は、細胞死滅化(apoptosis)過程を通じてなくなる(Russellら、1990)。 On the other hand, spermatogonial stem cells have self-renewal and the ability to produce sperm (Morrison et al., 1997), and in the case of mice, one spermatogonial stem cell becomes a spermatocyte. In other words, the cell divides about 10 times, that is, one stem cell becomes 1024 spermatocytes, and after a series of meiosis, 4096 spermatozoa are formed. Of course, 75-90% of this is lost through the cell apoptosis process (Russell et al., 1990).

精巣内に存在する精原幹細胞は、極めて少ない数が存在するが、マウスの場合、精巣内に約108個の細胞があり、この中でほぼ2×104個が幹細胞(stem cell)であると推論される(Meistrich & Beek, 1993; Tegelenbosch & de Rooij, 1993)。精原細胞の中でも関心の対象となる細胞は、自己再生能力(self-renewing)と、成体の全期間に亘って精子形成能力を有する精原幹細胞(spermatogonial stem cell)である。 There are very few spermatogonial stem cells in the testis, but in the case of mice, there are about 10 8 cells in the testis, of which approximately 2 × 10 4 are stem cells. It is inferred (Meistrich & Beek, 1993; Tegelenbosch & de Rooij, 1993). Among the spermatogonia, cells of interest are spermatogonial stem cells that have self-renewing ability and spermatogenic ability throughout the adult period.

分離した生殖細胞を利用して、体外で精子形成過程を再現しようとする数多い試みがあったが、成功に至らず、マウスの未成熟生殖細胞をセルトリ細胞(Sertoli cell)と共培養して、半数体の精子細胞(spermatid)に分化させるに成功したが(Rassoulzadeganら、1993)、体外での精子形成は、まだ技術的な限界を有している。現在まで、体外培養(in vitro culture)システムは、数週以上を超えることが難しいと報告されており(Ogawa, 2001; Dirmaiら、1999; Naganoら、1998)、マウスの場合、約4ヶ月間維持して受容体に移植し、 正常的な精子形成過程が起こることを報告した(Naganoら、1998)。従って、精原細胞の分離は制限的であり、培養時、多い数の精原細胞が死んでしまうため、精原細胞の培養が難しく、特に、精原幹細胞と分化された精原細胞との区別が可能な形態学的、生化学的なマーカーがないということが最も大きい問題である(Naganoら、1998; van Peltら、2002)。 There were many attempts to reproduce the spermatogenesis process in vitro using the isolated germ cells, but it did not succeed, co-cultured mouse immature germ cells with Sertoli cells, Although successfully differentiated into haploid spermatids (Rassoulzadegan et al., 1993), in vitro spermatogenesis still has technical limitations. To date, in vitro culture systems have been reported to be difficult to exceed several weeks (Ogawa, 2001; Dirmai et al., 1999; Nagano et al., 1998), and in the case of mice, about 4 months It was reported that a normal spermatogenesis process occurs after maintenance and transplantation into the receptor (Nagano et al., 1998). Therefore, the separation of spermatogonia is limited, and a large number of spermatogonia cells die during culturing, making it difficult to cultivate spermatogonia. The biggest problem is the lack of distinguishable morphological and biochemical markers (Nagano et al., 1998; van Pelt et al., 2002).

一方、Shinoharaら(1999)は、α6−インテグリン及びβ1−インテグリン抗体がマウス精原幹細胞に、他の組織とは区別されるように反応し、標識マーカーとして利用可能であることを報告し、牛では、レクチン類のDBA(Dolichos biflorus agglutinin)が精巣の生殖細胞(gonocyte)と精原細胞とに対して生後30週齢まで特異的な反応を示し、特異マーカーとして使用可能であることを立証した(ErtlとWrobel、1992)。 On the other hand, Shinohara et al. (1999) reported that α6-integrin and β1-integrin antibodies react with mouse spermatogonial stem cells to distinguish them from other tissues and can be used as marker markers. Then, the lectin DBA (Dolichos biflorus agglutinin) showed a specific reaction to testicular gonocytes and spermatogonia up to 30 weeks of age, and was proved to be usable as a specific marker. (Ertl and Wrobel, 1992).

マウスを始めとした哺乳動物の培養を通じての精原細胞株に対する報告はないが、mTERT(mouse telomerase catalytic component)(Fengら、 2002)、SV40 large T抗原(van Peltら、2002)などを利用したマウス及びラットの精原細胞株の確立が報告されている。 Although there are no reports on spermatogonia through culturing of mammals including mice, mTERT (mouse telomerase catalytic component) (Feng et al., 2002), SV40 large T antigen (van Pelt et al., 2002), etc. were used. Establishment of mouse and rat spermatogonia cell lines has been reported.

牛、豚及び馬のような家畜の精巣細胞(testicular cell)を培養してマウス精巣に移植するか(Dobrinskiら、2000)、牛のtype A精原細胞を長期間(約150日)培養しながら、精原細胞株の分裂及び分化様相を報告した例があり(Izadyarら、2003)、人間の場合は、精原細胞に対する培養は、主に、無精子症のような疾患に対する治療の目的で試みられているが、精子細胞(spermatid)まで分化させた後、受精した時、桑実胚(morula)まで発達できず、性染色体異常のような問題を有している(Sousaら、2002)。 Either testicular cells of livestock such as cattle, pigs and horses can be cultured and transplanted into mouse testis (Dobrinski et al., 2000), or cow type A spermatogonia can be cultured for a long time (about 150 days). However, there have been reports of division and differentiation aspects of spermatogonia (Izadyar et al., 2003), and in the case of humans, culturing spermatogonia is primarily intended for the treatment of diseases such as azoospermia. However, when differentiated into spermatids and fertilized, they cannot develop into morulas and have problems such as sex chromosome abnormalities (Sousa et al., 2002). ).

しかしながら、鶏を始めとした鳥類の精原細胞の培養及び利用に対する研究は、哺乳動物に比べ、ほとんどなされていない状態であり、最近、形質転換鳥類生産のための道具として関心が集中されている。このような精原細胞株は、精子形成過程の分子機作を明かせる重要な道具であり、遺伝子操作及び変更を通じて、形質転換個体の生産及び生殖細胞の遺伝子治療にも活用することができる。 However, research on the culture and utilization of avian spermatogonia, including chickens, is rarely done compared to mammals, and has recently attracted attention as a tool for producing transformed birds. . Such a spermatogonia cell line is an important tool that reveals the molecular mechanism of the spermatogenesis process, and can be used for production of transformed individuals and gene therapy of germ cells through genetic manipulation and modification.

本明細書全体にかけて多数の論文が参照されて、その引用が表示されている。引用された論文の開示内容は、その全体が本明細書に参照として取り込まれ、本発明の属する技術分野の水準及び本発明の内容がより明確に説明される。 Numerous papers are referenced throughout this specification and their citations are displayed. The disclosure content of the cited paper is incorporated herein by reference in its entirety, and the level of the technical field to which the present invention belongs and the content of the present invention are explained more clearly.

本発明者らは、上述のような当業界の要求を解決するために鋭意研究した結果、鳥類精原幹細胞の培養方法を構築し、これを通じて収得した鳥類精原幹細胞の特性を糾明することにより、本発明を完成した。 As a result of diligent research to solve the above-mentioned demands in the industry, the present inventors have established a method for culturing avian spermatogonial stem cells and elucidated the characteristics of avian spermatogonial stem cells obtained through this method. The present invention has been completed.

したがって、本発明の目的は、鳥類精原幹細胞の長期培養方法を提供することにある。 Therefore, an object of the present invention is to provide a method for long-term culture of avian spermatogonial stem cells.

本発明の他の目的は、精原幹細胞の特性を示す鳥類細胞を含む鳥類精原幹細胞のポピュレーション(population)を提供することにある。   Another object of the present invention is to provide a population of avian spermatogonial stem cells comprising avian cells exhibiting the characteristics of spermatogonial stem cells.

本発明のまた他の目的は、精原幹細胞を利用して形質転換鳥類の生産方法を提供することにある。 Still another object of the present invention is to provide a method for producing transformed birds using spermatogonial stem cells.

本発明の他の目的及び利点は、発明の詳細な説明、請求の範囲、及び図面により、さらに明確にされる。   Other objects and advantages of the present invention will become more apparent from the detailed description of the invention, the claims and the drawings.

本発明の一様態によると、本発明は、(a)鳥類の精巣を収得する段階;(b)前記精巣から精巣細胞ポピュレーションを分離する段階;及び(c)前記精巣細胞ポピュレーションに含まれた精原幹細胞を、基底細胞上で、細胞成長因子の含まれた培地で培養する段階を含む鳥類精原幹細胞の長期培養方法を提供する。 According to one aspect of the present invention, the present invention includes (a) obtaining avian testis; (b) separating a testis cell population from the testis; and (c) comprising the testis cell population. A method of culturing avian spermatogonial stem cells on a basal cell in a medium containing a cell growth factor is provided.

本発明は、鳥類において、精原幹細胞の培養条件の確立及び特性糾明を最初に成功した発明である。 The present invention is the first successful invention of establishing spermatogonial stem cell culture conditions and characterization in birds.

以下、本発明の方法をそれぞれの段階に沿って詳細に説明する。 Hereinafter, the method of the present invention will be described in detail along each stage.

段階1:鳥類の精巣を収得する段階
本発明が鶏に適用される場合、精原幹細胞の培養のための鶏は、発生後70週齢、好ましくは、発生後20週齢、より好ましくは、2〜10週齢の雄を利用する。鶏の精巣は、頚椎骨を分離した後、切開して得られる。
Step 1: Acquiring avian testis When the present invention is applied to a chicken, the chicken for spermatogonial stem cell culture is 70 weeks old after development, preferably 20 weeks old after development, more preferably, 2-10 weeks old males are used. Chicken testes are obtained by dissecting the cervical vertebrae and then dissecting them.

段階2:精巣から精巣細胞ポピュレーションを分離する段階
前記過程により分離した精巣の周りの結締組織及び膜などを除去し、精巣組織を覆っている白膜を除去する。次いで、精巣を、解剖用メスを利用して細かく切断した後、様々な分解方法により分解した後、精巣細胞を分離する。
Step 2: Separating the testicular cell population from the testis The constricted tissue and membrane around the testis separated by the above process are removed, and the white membrane covering the testis tissue is removed. Next, the testis is finely cut using a scalpel and then decomposed by various decomposition methods, and then testis cells are separated.

本明細書において、用語‘精巣細胞(testicular cell)’は、精原幹細胞、精原幹細胞由来の全ての生殖細胞を含む精原細胞、セルトリ細胞、間質細胞、そしてその他の結締組織に係る筋肉細胞などを含む精巣組織内の細胞群を意味し、用語‘精巣細胞ポピュレーション’と混用される。 As used herein, the term 'testicular cell' refers to spermatogonial stem cells, spermatogonia including all germ cells derived from spermatogonial stem cells, sertoli cells, stromal cells, and other muscle tissue It means a group of cells in testis tissue including cells and the like, and is mixed with the term 'testicular cell population'.

精巣組織の分解は、当業界に公知された多様な方法により行うことができ、好ましくは、精巣から精巣細胞を分離する段階は、コラゲナーゼ、トリプシン、またはこれらの混合物を前記収得した精巣の組織に処理することにより行われる。さらに好ましくは、後述する2段階酵素処理方法、van Pelt(1996)方法、またはコラゲナーゼ−トリプシン処理方法により行われて、最も好ましくは、コラゲナーゼ−トリプシン処理方法により行われる。 Testicular tissue degradation can be performed by various methods known in the art, and preferably, the step of separating testicular cells from the testis is performed using collagenase, trypsin, or a mixture thereof in the obtained testicular tissue. It is done by processing. More preferably, it is carried out by the two-stage enzyme treatment method, van Pelt (1996) method, or collagenase-trypsin treatment method described later, and most preferably, the collagenase-trypsin treatment method.

イ.2段階酵素処理方法
この方法は、Ogawaら(1997)の方法及びその変形された方法により行われる。コラゲナーゼタイプIの溶解されたHBSS(Hank's Balanced Salt's solution)に前記精巣組織を添加して、一定時間反応した後、トリプシンで処理する。
I. Two-stage enzyme treatment method This method is performed by the method of Ogawa et al. (1997) and its modified methods. The testicular tissue is added to HBSS (Hank's Balanced Salt's solution) in which collagenase type I is dissolved, and after a predetermined time of reaction, it is treated with trypsin.

ロ.van Pelt(1996)方法
コラゲナーゼタイプI、トリプシン、ヒアルロニダーゼII、及びDNase Iが溶解されたDMEM培地で前記精巣組織を分解する。
B. van Pelt (1996) Method Testis tissue is degraded in DMEM medium in which collagenase type I, trypsin, hyaluronidase II, and DNase I are dissolved.

ハ.コラゲナーゼ−トリプシン処理方法
コラゲナーゼタイプI及びトリプシンの溶解されたHBSSで精巣組織を分解し、ピペッティングにより精巣組織の分解をさらに促進させる。
C. Collagenase-trypsin treatment method The testicular tissue is decomposed with HBSS in which collagenase type I and trypsin are dissolved, and the testicular tissue is further decomposed by pipetting.

このように分解された精巣組織分解物を適した細胞濾過器(孔径約70μm)で濾過し、精巣細胞を回収する。 The testicular tissue degradation product thus decomposed is filtered with a suitable cell strainer (pore diameter: about 70 μm), and testicular cells are recovered.

段階3:精巣細胞のポピュレーションに含まれた鳥類精原幹細胞を培養する段階
前記過程により収得した精巣細胞を、基底細胞上で、細胞成長因子の含まれた培地で培養し、精巣細胞のポピュレーションに含まれている鳥類精原幹細胞を培養する。
Step 3: Step of culturing avian spermatogonial stem cells contained in the population of testis cells The testis cells obtained by the above-described process are cultured on a basal cell in a medium containing cell growth factor, and the population of testis cells is increased. Avian spermatogonial stem cells included in the culture.

精原幹細胞の培養においては、基底細胞が必須的に利用されて、精原幹細胞は、基底細胞層に付着されて増殖し、コロニーを形成する。本発明の好ましい具現例によると、前記基底細胞は、繊維芽細胞、生殖器基質細胞、精巣基質細胞、またはマウスSTO細胞株(SIM mouse embryo-derived, Thioguanine- and Quabain-resistant fibroblast cell line)であって、より好ましくは、生殖器基質細胞または精巣基質細胞であり、最も好ましくは、生殖器基質細胞である。本発明の方法が鶏に適用される場合、前記繊維芽細胞、生殖器基質細胞、及び精巣基質細胞は、鶏由来のものを利用することが好ましい。 In the culture of spermatogonial stem cells, basal cells are essentially used, and spermatogonial stem cells are attached to the basal cell layer and proliferate to form colonies. According to a preferred embodiment of the present invention, the basal cell is a fibroblast, a genital matrix cell, a testicular matrix cell, or a mouse STO cell line (SIM mouse embryo-derived, Thioguanine- and Quabain-resistant fibroblast cell line). More preferred are genital matrix cells or testicular matrix cells, and most preferred are genital matrix cells. When the method of the present invention is applied to chickens, the fibroblasts, genital matrix cells, and testicular matrix cells are preferably derived from chickens.

前記基底細胞は、培地の含有されたディッシュまたはプレートの底部に位置し、培地に移された精原幹細胞は、基底細胞層に付着されて増殖する。 The basal cells are located at the bottom of the dish or plate containing the medium, and the spermatogonial stem cells transferred to the medium are attached to the basal cell layer and proliferate.

一方、精原幹細胞の培養に利用される培地は、必須成分として細胞成長因子を含むが、好ましくは、繊維芽細胞成長因子(fibroblast growth factor;例えば、塩基性繊維芽細胞成長因子)、インシュリン様成長因子−1(insulin-like growth factor-1)、幹細胞因子(stem cell factor)、神経膠由来の神経栄養因子(glial derived neurotrophic factor)、またはこれらの組み合せを含み、より好ましくは、繊維芽細胞成長因子、インシュリン様成長因子−1、幹細胞因子、またはこれらの組み合せを含み、最も好ましくは、繊維芽細胞成長因子及びインシュリン様成長因子−1の混合物を含む。好ましくは、本発明に利用される培地は、分化抑制因子をさらに含み、最も好ましくは、白血病抑制因子(leukemia inhibitory factor)を含む。したがって、本発明の培地に含有される最も好ましい成長因子及び分化抑制因子は、繊維芽細胞成長因子、インシュリン様成長因子−1、及び白血病抑制因子の混合物である。 On the other hand, a medium used for culturing spermatogonial stem cells contains a cell growth factor as an essential component, but preferably a fibroblast growth factor (for example, basic fibroblast growth factor), insulin-like Including insulin-like growth factor-1, stem cell factor, glial derived neurotrophic factor, or a combination thereof, more preferably fibroblasts Including growth factor, insulin-like growth factor-1, stem cell factor, or combinations thereof, most preferably a mixture of fibroblast growth factor and insulin-like growth factor-1. Preferably, the medium used in the present invention further comprises a differentiation inhibitory factor, most preferably a leukemia inhibitory factor. Therefore, the most preferred growth factor and differentiation inhibitory factor contained in the medium of the present invention is a mixture of fibroblast growth factor, insulin-like growth factor-1, and leukemia inhibitory factor.

また、本発明の培養に利用される培地は、鳥類血清(例えば、鶏血清)、哺乳類血清(例えば、牛胎児血清)、またはそれらの混合物を含むことが好ましい。その他にも、抗酸化剤(例えば、β−メルカプトエタノール)、抗生剤−抗ミコバクテリア剤(antibiotics-antimycotics)、非必須アミノ酸(例えば、アルギニン、アスパラギン、アスパラギン酸、グルタミン酸、グリシン、プロリン、及びセリン)、緩衝剤(例えば、Hepes緩衝液)、またはそれらの混合物を含むことが好ましい。 The medium used for the culture of the present invention preferably contains avian serum (eg, chicken serum), mammalian serum (eg, fetal bovine serum), or a mixture thereof. In addition, antioxidants (e.g., β-mercaptoethanol), antibiotics-antimycotics, non-essential amino acids (e.g., arginine, asparagine, aspartic acid, glutamic acid, glycine, proline, and serine) ), Buffer (eg, Hepes buffer), or mixtures thereof.

本発明の培養段階において、培養温度は、約37℃が最も好ましい。鳥類の体温が41℃であることを考慮すると、前記最適の培養温度は、特異であると言える。 In the culture step of the present invention, the culture temperature is most preferably about 37 ° C. Considering that the body temperature of birds is 41 ° C., the optimum culture temperature can be said to be unique.

一方、上述の培養段階に先立って、精原幹細胞の初期培養(primary culture)を追加的に行うことができる。 On the other hand, prior to the above-described culturing step, primary culture of spermatogonial stem cells can be additionally performed.

段階4:鳥類精原幹細胞の同定段階
前記過程により培養された鳥類精原幹細胞が真正なものであるか否かを確認するために、同定段階を行う。
Step 4: Identification of avian spermatogonial stem cells An identification step is performed in order to confirm whether or not the avian spermatogonial stem cells cultured by the above process are authentic.

前記同定は、(i)PAS(Periodic Acid Shiff's)染色、(ii) STA(Sojanum tuberosum agglutinin)染色、(iii) α6−インテグリン抗体染色、(iv)β1−インテグリン抗体染色、(v)SSEA−1抗体染色、(vi)SSEA−3抗体染色、(vii)SSEA−4抗体染色、(viii)DBA(Doliclos bifflrus agglutinin)染色、または(ix)前記染色方法の組み合せにより行うことができる。好ましくは、同定の信頼性を高めるために、以下の染色方法の組み合せを実施する。 The identification includes (i) PAS (Periodic Acid Shiff's) staining, (ii) STA (Sojanum tuberosum agglutinin) staining, (iii) α6-integrin antibody staining, (iv) β1-integrin antibody staining, (v) SSEA-1 Antibody staining, (vi) SSEA-3 antibody staining, (vii) SSEA-4 antibody staining, (viii) DBA (Doliclos bifflrus agglutinin) staining, or (ix) a combination of the above staining methods. Preferably, a combination of the following staining methods is performed in order to increase the reliability of identification.

(i)PAS染色
培養した精原幹細胞を固定液(例えば、リン酸塩緩衝液、グルタルアルデヒド、ホルムアルデヒド、及びMgCl2を含む)に固定した後、過ヨード酸溶液に反応させ、次いでシフ試薬(Schiff's reagent)に反応させて染色する。細胞質が濃い紫色に染色された場合、即ち陽性反応を示した場合、鳥類精原幹細胞として判定できる。
(i) PAS-stained cultured spermatogonial stem cells were fixed in a fixing solution (for example, containing phosphate buffer, glutaraldehyde, formaldehyde, and MgCl 2 ), reacted with a periodate solution, and then subjected to Schiff reagent ( Stain by reacting with Schiff's reagent. When the cytoplasm is stained deep purple, that is, when it shows a positive reaction, it can be determined as an avian spermatogonial stem cell.

(ii)STAまたはDBA染色
精原幹細胞に固定液を処理して固定した後、レクチン類の一つであるSTA(Solanum tubersum agglutinin)またはDBA(Doliclos bifflrus agglutinin)に蛍光物質(例えば、FITC(fluorescein isothiocyanate))を接合してなるFITC−STAまたはFITC−DBAと反応させる。次いで、蛍光顕微鏡で観察する。細胞表面で蛍光が観察される場合、即ち、陽性反応を示す場合、鳥類精原幹細胞として判定できる。
(ii) STA or DBA-stained spermatogonial stem cells are treated with a fixing solution and fixed, and then one of the lectins STA (Solanum tubersum agglutinin) or DBA (Doliclos bifflrus agglutinin) is used with a fluorescent substance (for example, FITC (fluorescein isothiocyanate)) is reacted with FITC-STA or FITC-DBA. Then, it observes with a fluorescence microscope. When fluorescence is observed on the cell surface, that is, when a positive reaction is shown, it can be determined as an avian spermatogonial stem cell.

(iii)α6−インテグリン抗体染色
精原幹細胞に一次抗体であるα6−インテグリン抗体を処理し、標識物質例えば、蛍光物質(TRITC(tetramethyl rhodamine isothiocyanate))が接合されている二次抗体(抗体のFcドメインに結合する抗体であって、例えば、ヤギ抗−マウスIgG)と反応させた後、蛍光顕微鏡で観察する。細胞表面で蛍光が観察される場合、即ち、陽性反応を示す場合、鳥類精原幹細胞として判定できる。
(iii) α6-integrin antibody-stained secondary antibody (antibody Fc) obtained by treating α6-integrin antibody, which is a primary antibody, with spermatogonial stem cells and conjugated with a labeling substance such as a fluorescent substance (TRITC (tetramethyl rhodamine isothiocyanate)) An antibody that binds to a domain, such as goat anti-mouse IgG), and then observed with a fluorescence microscope. When fluorescence is observed on the cell surface, that is, when a positive reaction is shown, it can be determined as an avian spermatogonial stem cell.

(iv)β1−インテグリン抗体染色
前記α6−インテグリン抗体方法と同様に行うが、一次抗体として、β1−インテグリン抗体を使用する。
(iv) β1-integrin antibody staining The same procedure as in the α6-integrin antibody method described above, except that a β1-integrin antibody is used as the primary antibody.

(v)SSEA−1、SSEA−3、またはSSEA−4抗体染色
精原幹細胞に、一次抗体であるSSEA−1、SSEA−3、またはSSEA−4抗体を処理し、発色反応触媒(例えば、alkaline phosphatase)の結合された二次抗体を処理する。次いで、前記触媒の基質を添加し反応させて、発色様相を観察する。発色反応が観察される場合、即ち、陽性反応を示す場合、鳥類精原幹細胞として判定できる。
(v) SSEA-1, SSEA-3, or SSEA-4 antibody-stained spermatogonial stem cells are treated with a primary antibody, SSEA-1, SSEA-3, or SSEA-4 antibody, and a chromogenic reaction catalyst (for example, alkaline phosphatase) conjugated secondary antibody is processed. Next, the substrate of the catalyst is added and reacted to observe the color development aspect. When a color reaction is observed, that is, when a positive reaction is shown, it can be determined as an avian spermatogonial stem cell.

本発明の方法は、多様な鳥類、好ましくは、鶏、鶉、七面鳥、鴨、鵞鳥、雉、または鳩、最も好ましくは、鶏に適用できる。 The method of the invention can be applied to a variety of birds, preferably chickens, sharks, turkeys, duck, eagle birds, moths or pigeons, most preferably chickens.

本発明の方法によると、鳥類精原幹細胞を、少なくとも2ヶ月、好ましくは少なくとも3ヶ月、より好ましくは少なくとも4ヶ月、最も好ましくは少なくとも5ヶ月まで培養することができる。 According to the method of the present invention, avian spermatogonial stem cells can be cultured for at least 2 months, preferably at least 3 months, more preferably at least 4 months, and most preferably at least 5 months.

本発明の培養方法に従う場合は、信頼性高く鳥類精原幹細胞を得ることができる。従って、本発明の他の様態によると、本発明は、精原幹細胞の特性を示す鳥類細胞を含む鳥類精原幹細胞のポピュレーション(population)を提供する。 When following the culture method of the present invention, avian spermatogonial stem cells can be obtained with high reliability. Thus, according to another aspect of the present invention, the present invention provides a population of avian spermatogonial stem cells comprising avian cells exhibiting the characteristics of spermatogonial stem cells.

本明細書において、用語‘鳥類精原幹細胞のポピュレーション’は、鳥類精原幹細胞を必須として構成されている細胞のポピュレーションを意味する。即ち、本発明の鳥類精原幹細胞のポピュレーションは、完全に鳥類精原幹細胞のみから構成された細胞ポピュレーションだけではなく、他の細胞、例えば精原細胞などが微量含有されている細胞ポピュレーションも含む。 As used herein, the term 'avian spermatogonial stem cell population' means a population of cells that are composed essentially of avian spermatogonial stem cells. That is, the population of avian spermatogonial stem cells of the present invention is not only a cell population composed entirely of avian spermatogonial stem cells, but also a cell population containing trace amounts of other cells such as spermatogonia. Including.

前記精原幹細胞の特性は、(i)PAS(Periodic Acid Shiff's)染色、(ii) STA(Sojanum tuberosum agglutinin)染色、(iii) α6−インテグリン抗体染色、(iv)β1−インテグリン抗体染色、(v)SSEA−1抗体染色、(vi)SSEA−3抗体染色、(vii)SSEA−4抗体染色、(viii)DBA(Doliclos bifflrus agglutinin)染色、または(ix)前記染色方法の組み合せにおいて陽性反応を示すことを意味する。 The characteristics of the spermatogonial stem cells are (i) PAS (Periodic Acid Shiff's) staining, (ii) STA (Sojanum tuberosum agglutinin) staining, (iii) α6-integrin antibody staining, (iv) β1-integrin antibody staining, (v ) SSEA-1 antibody staining, (vi) SSEA-3 antibody staining, (vii) SSEA-4 antibody staining, (viii) DBA (Doliclos bifflrus agglutinin) staining, or (ix) a positive reaction in combination of the staining methods Means that.

本発明のまた他の様態によると、本発明は、(a)前記本発明の鳥類精原幹細胞のポピュレーションに外来遺伝子を転移させる段階;(b)前記鳥類精原幹細胞のポピュレーションを受容体の精巣に移植する段階;及び(c)前記受容体の子孫を得て、形質転換鳥類を生産する段階を含む形質転換鳥類の生産方法を提供する。 According to still another aspect of the present invention, the present invention provides: (a) transferring a foreign gene to the avian spermatogonial stem cell population of the present invention; (b) accepting the avian spermatogonial stem cell population as a receptor. And (c) obtaining a progeny of the receptor to produce a transformed bird, and a method for producing a transformed bird.

本発明の方法において、鳥類精原幹細胞に外来遺伝子を転移させることは、当業界で通常的に公知された遺伝子転移方法により行うことができる。例えば、電気穿孔法(electroporation)、リポソーム媒介転移方法(Wongら、1980)、及びレトロウイルス媒介転移方法(Chenら、1990; Kopchickら、1991; Lee & Shuman、1990)がある。前記電気穿孔法は、本発明者らが開発した方法により行うことが最も好ましい(参照:大韓民国特許第305715号)。 In the method of the present invention, transferring a foreign gene to an avian spermatogonial stem cell can be performed by a gene transfer method commonly known in the art. For example, electroporation, liposome-mediated transfer methods (Wong et al., 1980), and retrovirus-mediated transfer methods (Chen et al., 1990; Kopchick et al., 1991; Lee & Shuman, 1990). The electroporation is most preferably performed by a method developed by the present inventors (see: Korean Patent No. 305715).

本発明の好ましい具現例によると、前記外来遺伝子は、選択マーカーとして抗生剤耐性遺伝子を含み、前記(a)段階の後に、抗生剤耐性を示す精原幹細胞を選択する段階がさらに含まれて、前記(b)段階は、抗生剤耐性を示す精原幹細胞により行われる。本発明で利用できる選択マーカーは、真核細胞に抗生剤を付与する遺伝子であれば何でもよく、例えば、ネオマイシン、プロマイシン及びゼオマイシン耐性遺伝子を含む。 According to a preferred embodiment of the present invention, the foreign gene includes an antibiotic resistance gene as a selection marker, and after the step (a), further includes a step of selecting a spermatogonial stem cell exhibiting antibiotic resistance, The step (b) is performed with spermatogonial stem cells exhibiting antibiotic resistance. The selection marker that can be used in the present invention may be any gene that confers antibiotics to eukaryotic cells, and includes, for example, neomycin, puromycin, and zeomycin resistance genes.

鳥類精原幹細胞を受容体の精巣に移植する段階は、精巣細管に精原幹細胞を微細注入することが好ましい。 In the step of transplanting the avian spermatogonial stem cells into the testis of the receptor, it is preferable to finely inject the spermatogonial stem cells into the testicular tubule.

次いで、受容体を他の個体と交配することにより子孫を得て、外来遺伝子を含有した子孫が形質転換鳥類となる。 Subsequently, the progeny is obtained by crossing the receptor with another individual, and the offspring containing the foreign gene becomes a transformed bird.

本発明は、鳥類精原幹細胞の長期培養方法、鳥類精原幹細胞のポピュレーション及び形質転換鳥類の生産方法を提供する。本発明の方法に従う場合は、信頼性をもって鳥類精原幹細胞を得ることができる。また、得られた鳥類精原幹細胞は、精子形成過程の分子遺伝学的理解、そして遺伝子操作による形質転換鳥類の生産に利用できる。 The present invention provides a method for long-term culture of avian spermatogonial stem cells, population of avian spermatogonial stem cells, and a method of producing transformed birds. When following the method of the present invention, avian spermatogonial stem cells can be obtained with reliability. The obtained avian spermatogonial stem cells can be used for molecular genetic understanding of the spermatogenesis process and production of transformed birds by genetic manipulation.

以下、実施例を通じて本発明をさらに詳細に説明する。これら実施例は、本発明をより具体的に説明するためのものであって、本発明の範囲がこれら実施例に限定されないことは、本発明の属する技術分野で通常の知識を有する者にとって自明なことであろう。 Hereinafter, the present invention will be described in more detail through examples. These examples are for explaining the present invention more specifically, and it is obvious to those skilled in the art to which the present invention belongs that the scope of the present invention is not limited to these examples. That would be true.

[実験材料及び方法]
1)供与鶏及び精巣分離
精原幹細胞の培養のための鶏は、(株)アビコアー生命工学研究所で飼育された雄の白色レグホーン種を利用した。鶏の精巣は、供与鶏の頚椎骨を分離した後、切開して得て、鶏の週齢別体重及び精巣の重量を測定した。
[Experimental materials and methods]
1) As a chicken for culturing donor chickens and testicular isolated spermatogonial stem cells, male white leghorn breeds bred at Abicore Biotechnology Laboratory Co., Ltd. were used. The chicken testis was obtained by dissecting the donor cervical vertebrae and then incising them, and measuring the body weight of each chicken by age and the weight of the testis.

2)精巣組織の分解方法の比較
分離した精巣は、精巣の周りの結締組織及び膜などを除去し、微細ピンセットを利用して、精巣組織を覆っている白膜(tunica albuginea)を除去した。精巣は、解剖用メスを利用して、実体顕微鏡下で細かく切断した後、多様な分解方法を利用して比較分析した。
2) Comparison of testicular tissue decomposition methods The isolated testis removed the tightening tissue and membranes around the testis, and the white membrane (tunica albuginea) covering the testis tissue was removed using fine tweezers. The testis was cut into pieces using a dissecting knife under a stereomicroscope, and then subjected to comparative analysis using various decomposition methods.

イ.2段階酵素処理方法(Two- step enzymatic digestion)による分離方法
この方法は、Ogawaら(1997)の方法を少し変形して行った。即ち、上記のように用意した精巣組織を、HBSS(Hank's Balanced Salt's solution, Invitrogen)にコラゲナーゼタイプI(1mg/ml、Sigma)を溶解した後、37℃振とう培養機(shaking incubator)で15分間処理した。HBSSで洗浄した後、0.25%トリプシン−1mM EDTA(Invitrogen)で15分間処理した。分解した精巣細胞は、70μm細胞濾過機(cell strainer, Falcon 2350)で濾過した後、トリパンブルーを利用して生存率及び細胞数を測定した。
I. Separation method by two-step enzymatic digestion This method was performed by slightly modifying the method of Ogawa et al. (1997). That is, the testicular tissue prepared as described above was dissolved in collagenase type I (1 mg / ml, Sigma) in HBSS (Hank's Balanced Salt's solution, Invitrogen) and then shaken in a 37 ° C. shaking incubator for 15 minutes. Processed. After washing with HBSS, it was treated with 0.25% trypsin-1 mM EDTA (Invitrogen) for 15 minutes. The degraded testis cells were filtered with a 70 μm cell strainer (cell strainer, Falcon 2350), and then viability and cell number were measured using trypan blue.

ロ.van Pelt(1996)方法による分離
DMEM(Invitrogen)培地にコラゲナーゼタイプI(1mg/ml、Sigma)、トリプシン(1 mg/ml、Sigma)、ヒアルロニダーゼII(1mg/ml、Sigma)及びDNase I(5μg/ml、BMS)を溶解した後、前記培地で、細かく切られた精巣組織を15分間150サイクル/分で分解した。次いで、DMEM培地で3回洗浄した後、2回目の分解を、コラゲナーゼタイプI(1 mg/ml)、ヒアルロニダーゼII(1mg/ml、Sigma)及びDNase I(5μg/ml、BMS)の溶解されたDMEM培地で約30分間行って、精巣組織を完全に分解した。その後、70μm細胞濾過機で濾過した後、生存率及び細胞数を測定した。
B. Isolation by van Pelt (1996) method DMEM (Invitrogen) medium with collagenase type I (1 mg / ml, Sigma), trypsin (1 mg / ml, Sigma), hyaluronidase II (1 mg / ml, Sigma) and DNase I (5 μg / ml, BMS), and then the minced testis tissue was degraded in the medium at 150 cycles / min for 15 minutes. Then, after washing 3 times with DMEM medium, the second degradation was dissolved in collagenase type I (1 mg / ml), hyaluronidase II (1 mg / ml, Sigma) and DNase I (5 μg / ml, BMS). The testicular tissue was completely decomposed in DMEM medium for about 30 minutes. Then, after filtering with a 70 μm cell filter, the survival rate and the number of cells were measured.

ハ.コラゲナーゼ−トリプシン処理方法
HBSS(Invitrogen)にコラゲナーゼタイプI(1mg/ml、Sigma)と0.25%トリプシン(Sigma)を溶かした組織分解培地で、次のような方法により細胞を分離した。37℃振とう培養機(shaking incubator)で30分間、150rpmで組織を分解しながら、5分間隔でピペッティングして、精巣組織を分解した。酵素の活性を停止するために、FCS(fetal calf serum)10%を添加した後、細胞濾過機(cell strainer、70μm、Falcon 2350)を利用し、分解した細胞を回収した。300×gで5分間遠心分離し、精巣細胞(testicular cell)を確保した後、トリパンブルーを利用して、生存率及び細胞数を測定した。
C. Collagenase-trypsin treatment method Cells were separated in a tissue degradation medium in which collagenase type I (1 mg / ml, Sigma) and 0.25% trypsin (Sigma) were dissolved in HBSS (Invitrogen). The testis tissue was decomposed by pipetting at 5 minute intervals while decomposing the tissue at 150 rpm for 30 minutes in a 37 ° C. shaking incubator. In order to stop the activity of the enzyme, 10% FCS (fetal calf serum) was added, and then the degraded cells were collected using a cell strainer (cell strainer, 70 μm, Falcon 2350). After centrifuging at 300 × g for 5 minutes to secure testicular cells, the survival rate and the number of cells were measured using trypan blue.

3)精巣組織内精原幹細胞の分布
鶏の週齢別精巣組織の形態及び精原幹細胞の分布様相を観察するために、組織分析を実施して、精巣組織の特性を分析し、STA(Solanum tuberosum agglutinin)を利用して、精原幹細胞の数を測定した。
3) Distribution of spermatogonial stem cells in testis tissue In order to observe the morphology of testis tissue and the distribution of spermatogonial stem cells by age of chicken, tissue analysis was performed to analyze the characteristics of testicular tissue, and STA (Solanum tuberosum agglutinin) was used to measure the number of spermatogonial stem cells.

鶏を始めとした鳥類の精巣組織内の精原幹細胞の数は、まだ報告されていない。精原幹細胞の数を測定するために、約3週齢の白色レグホーン(White Leghorn)種の精巣をコラゲナーゼ−トリプシンにより分解した後、0.5%パラホルムアルデヒドを利用して精巣細胞を約5分間固定した。精原幹細胞に特異的なレクチン類の一つであるFITC−接合STA(Solanum tuberosum agglutinin, Sigma)を利用して、精巣細胞に反応させた。2時間反応した後、STAと反応して蛍光を発する細胞を測定し、全体の精巣細胞の中で占める精原幹細胞の分布を計算した。 The number of spermatogonial stem cells in testicular tissue of birds such as chickens has not yet been reported. In order to determine the number of spermatogonial stem cells, the testis of a white Leghorn species of about 3 weeks of age was degraded with collagenase-trypsin, and then the testicular cells were digested with 0.5% paraformaldehyde for about 5 minutes. Fixed. By using FITC-conjugated STA (Solanum tuberosum agglutinin, Sigma), which is one of lectins specific to spermatogonial stem cells, the cells were reacted with testis cells. After reacting for 2 hours, cells that react with STA to emit fluorescence were measured, and the distribution of spermatogonial stem cells occupying in the whole testis cells was calculated.

4)基底細胞の比較
初期培養した精巣細胞は、約7〜10日間培養した後、適宜な基底細胞(feeder layer)に移して培養しなければならないため、鶏の精原細胞培養のための最適な基底細胞の比較試験を行った。まず、精巣細胞の初期培養のために、2〜4週齢の雄のヒヨコから精巣組織を分離した後、上記例のコラゲナーゼ−トリプシンの処理方法により精巣組織を分解した。分解した精巣組織は、細胞数及び生存率を測定した後、培養ディッシュ(100mm)当たり2×106の精巣細胞を接種して、8〜10日間培養した。この際、培地の組成は、基底細胞が含まれていないことを除いては、下記の精原幹細胞の培地の中で最も好ましいものと等しい。
4) Comparison of basal cells Testicular cells initially cultured must be cultured for about 7-10 days and then transferred to an appropriate basal cell (feeder layer) for culturing. Comparative study of various basal cells. First, for the initial culture of testicular cells, testicular tissue was separated from 2-4 week-old male chicks, and then testicular tissue was decomposed by the collagenase-trypsin treatment method described above. After measuring the number of cells and the survival rate, the degraded testis tissue was inoculated with 2 × 10 6 testis cells per culture dish (100 mm) and cultured for 8 to 10 days. At this time, the composition of the medium is the same as the most preferable medium of the following spermatogonial stem cells, except that basal cells are not included.

6−ウェルプレート(TPP、EU)に、基底細胞として試験する鶏繊維芽細胞(CEF, chicken embryonic fibroblast)、鶏生殖器基質細胞(GSC, gonadal stroma cell)、または鶏精巣基質細胞(TSC, testicular stroma cell)を培養(6〜8×104/well)した。マウスSTO細胞株(ATCC CRL-1503)は、ミトマイシンC(10μg/ml)を処理して細胞分裂を抑えた後、使用した。前記過程により初期培養された精原幹細胞は、ウェル当たり1×105の細胞を用意した基底細胞上で、8〜10日間5%CO2培養器で37℃に培養した後、細胞数を測定して統計処理した。 In 6-well plates (TPP, EU), chicken fibroblasts (CEF, chicken embryonic fibroblast), chicken genital matrix cells (GSC, gonadal stroma cells), or chicken testicular matrix cells (TSC, testicular stroma) to be tested as basal cells cell) was cultured (6-8 × 10 4 / well). A mouse STO cell line (ATCC CRL-1503) was used after treating with mitomycin C (10 μg / ml) to suppress cell division. The spermatogonial stem cells initially cultured by the above process were cultured on basal cells prepared at 1 × 10 5 cells per well for 8-10 days at 37 ° C. in a 5% CO 2 incubator, and the number of cells was measured. And statistical processing.

5)培養液組成による培養条件の確立
鶏精原幹細胞の培養液組成による培養条件の確立のために、次のような培養液組成で精原幹細胞の培養様相を比較した。
5) Establishment of culture conditions based on culture solution composition To establish culture conditions based on the culture solution composition of chicken spermatogonial stem cells, the culture aspects of spermatogonial stem cells were compared using the following culture solution composition.

(i)DMEM−B(基本培養液)
基本培養液の組成のために、DMEM(Invitrogen)培地に10%(v/v)ES細胞用牛胎児血清(FBS, Hyclone, Logan UT)及び1x抗生剤−抗ミコバクテリア剤(Invitrogen)を添加して、培地を組成した。
(i) DMEM-B (basic culture solution)
Add 10% (v / v) fetal bovine serum for ES cells (FBS, Hyclone, Logan UT) and 1x antibiotic-antimycobacterial agent (Invitrogen) to DMEM (Invitrogen) medium for basic culture composition The medium was then composed.

(ii)DMEM−C(添加剤)
上記の基本培養液DMEM−B培地に2%鶏血清(Invitrogen)、10mM非必須アミノ酸(Invitrogen)、10mM Hepes緩衝液(Invitrogen)、及び0.55mMβ−メルカプトエタノール(Invitrogen)を添加して、培養液を組成した。
(ii) DMEM-C (additive)
2% chicken serum (Invitrogen), 10 mM non-essential amino acid (Invitrogen), 10 mM Hepes buffer (Invitrogen), and 0.55 mM β-mercaptoethanol (Invitrogen) are added to the above basic culture medium DMEM-B medium and cultured. The liquid was composed.

(iii) 精原幹細胞は、24−ウェルプレートにパッセージ1の細胞(1×104/well)とGSC基底細胞(8×103/well)を使用して、5%CO2培養器で9日間37℃で5回繰り返して共培養した後、コロニー数を測定した。 (iii) The spermatogonial stem cells were prepared by using passage 1 cells (1 × 10 4 / well) and GSC basal cells (8 × 10 3 / well) in a 24-well plate in a 5% CO 2 incubator. After co-cultured 5 times at 37 ° C. per day, the number of colonies was measured.

6)添加物に対する最適培養条件の確立
それぞれの成長因子に対する鶏精原幹細胞の培養様相を比較することにより、精原幹細胞の最適培養条件を確立するために、添加剤の含まれた培養液を対照区として、各成長因子に対する培養パターンを比較した。
6) Establishing optimal culture conditions for additives To establish optimal culture conditions for spermatogonial stem cells by comparing the culture aspects of spermatogonial stem cells for each growth factor, As a control, the culture patterns for each growth factor were compared.

(i)DMEM−C(対照区)培養液は、上記で使用した培養液組成と同じであり、これに、それぞれの成長因子、即ち10ng/mlの人間白血病抑制因子(Sigma)、10ng/mlの人間塩基性繊維芽細胞成長因子(Sigma)、100ng/mlの人間インシュリン様成長因子−1(sigma)、20ng/mlの人間幹細胞因子(Sigma)、及び100ng/mlの人間神経膠由来の神経栄養因子(R&D system, USA)を添加して、5%CO2培養器で37℃に培養した。 (i) DMEM-C (control group) culture solution has the same culture solution composition as used above, and each growth factor, ie, 10 ng / ml human leukemia inhibitory factor (Sigma), 10 ng / ml Human basic fibroblast growth factor (Sigma), 100 ng / ml human insulin-like growth factor-1 (sigma), 20 ng / ml human stem cell factor (Sigma), and 100 ng / ml human glial-derived nerve Nutritional factors (R & D system, USA) were added and cultured at 37 ° C. in a 5% CO 2 incubator.

(ii)精原幹細胞は、24ウェルプレートにパッセージ1の細胞を利用し(1×104/well)、GSC基底細胞(8×103/well)を使用して、9日間3回繰り返して培養した後、コロニー数を測定した。 (ii) For spermatogonial stem cells, use Passage 1 cells in a 24-well plate (1 × 10 4 / well) and GSC basal cells (8 × 10 3 / well) and repeat three times for 9 days. After culturing, the number of colonies was measured.

7)精原幹細胞培養に対する培養温度の効果
鶏精原幹細胞培養のための最適の培養温度条件を確立するために、鳥類の体温温度である41℃と、一般的な培養温度である37℃で温度効果を比較した。培養培地は、SSC培地、即ちDMEM−C(対照区)培養液にそれぞれの成長因子、即ち2ng/mlの人間白血病抑制因子(Sigma)、5ng/mlの人間塩基性繊維芽細胞成長因子(Sigma)、及び10ng/mlの人間インシュリン様成長因子−1(Sigma)を添加し、5%CO2培養器で培養した。3週齢の白色レグホーンの精巣細胞を初期培養して、10日間培養した後、精原幹細胞を回収して、細胞数を測定した。
7) Effect of culture temperature on spermatogonial stem cell culture In order to establish optimal culture temperature conditions for chicken spermatogonial stem cell culture, the body temperature of birds is 41 ° C and the general culture temperature is 37 ° C. The temperature effect was compared. The culture medium was SSC medium, ie, DMEM-C (control group) culture medium with each growth factor, ie, 2 ng / ml human leukemia inhibitory factor (Sigma), 5 ng / ml human basic fibroblast growth factor (Sigma). ) And 10 ng / ml human insulin-like growth factor-1 (Sigma), and cultured in a 5% CO 2 incubator. Testicular cells of 3-week-old white leghorn were initially cultured and cultured for 10 days, and then spermatogonial stem cells were collected and the number of cells was measured.

8)鶏精原幹細胞の成長曲線
鶏精原幹細胞の体外培養のために、確立された培養温度、培養液、そして基底細胞を利用して、初期精巣分解の後から培養しながら、培養日数による精原幹細胞の数の変化を測定した。即ち、初期分解の後、約2.0×106/dish(100mm)の精巣幹細胞を精原細胞培養液とGSC基底細胞とで培養しながら、約10日間隔で継代(subculture)して、精原幹細胞の数を測定した。
8) Growth curve of chicken spermatogonial stem cells For in vitro culture of chicken spermatogonial stem cells, using established culture temperature, culture medium, and basal cells, culturing after initial testicular degradation, depending on the number of culture days Changes in the number of spermatogonial stem cells were measured. That is, after initial degradation, about 2.0 × 10 6 / dish (100 mm) testicular stem cells are subcultured at intervals of about 10 days while being cultured in spermatogonia culture medium and GSC basal cells. The number of spermatogonial stem cells was measured.

9)免疫細胞化学的方法を利用した精原幹細胞の特性の糾明
精巣組織から培養した鶏精原幹細胞の特性を糾明するために、PAS(Periodic Acid Schiff's)染色キット(Sigma)、STA(Sigma)、鶏抗−インテグリンβ1抗体(Sigma)、及び鶏抗−インテグリンα6抗体(Chemicon International. Inc, USA)を利用して培養した精原幹細胞における様相を観察した。
9) Characterization of spermatogonial stem cells using immunocytochemical methods To clarify the characteristics of chicken spermatogonial stem cells cultured from testicular tissue, PAS (Periodic Acid Schiff's) staining kit (Sigma), STA (Sigma) The appearance of spermatogonial stem cells cultured using chicken anti-integrin β1 antibody (Sigma) and chicken anti-integrin α6 antibody (Chemicon International. Inc, USA) was observed.

(i)PAS(Periodic Acid Shiff's)染色
培養した精原幹細胞を固定液(50mMリン酸塩緩衝液、2%グルタルアルデヒド、2%ホルムアルデヒド、及び2mM MgCl2)に10分間固定した後、PBSで3回洗浄した。過ヨード酸溶液に5分間反応させた後、PBSで再び3回洗浄した。シフ試薬(Schiff's reagent、Sigma)を10分〜15分間入れておいて、PBSで洗浄した後、顕微鏡で観察した。
(i) The spermatogonial stem cells cultured by staining with PAS (Periodic Acid Shiff's) were fixed in a fixative solution (50 mM phosphate buffer, 2% glutaraldehyde, 2% formaldehyde, and 2 mM MgCl 2 ) for 10 minutes, and then 3 times with PBS. Washed twice. After reacting with the periodic acid solution for 5 minutes, it was washed again with PBS three times. A Schiff's reagent (Sigma) was placed for 10 to 15 minutes, washed with PBS, and then observed with a microscope.

(ii)STA(Sojanum tuberosum agglutinin)染色
精原幹細胞に固定液を処理して固定した後、レクチン類の一つであるFITC−STA(Sigma)を10〜2に希釈して、50μg/mlとなるようにした後、約1時間常温で反応した。次いで、PBSで3回洗浄し、蛍光顕微鏡(Nikon TE2000-U, Japan)で観察した。
(ii) STA (Sojanum tuberosum agglutinin) -stained spermatogonial stem cells were treated with a fixative and fixed, and then FITC-STA (Sigma), one of the lectins, was diluted to 10 to 2 to 50 μg / ml. Then, the reaction was performed at room temperature for about 1 hour. Subsequently, it was washed with PBS three times and observed with a fluorescence microscope (Nikon TE2000-U, Japan).

(iii)α6−インテグリン及びβ1−インテグリン染色
精原幹細胞に固定液を処理した後、PBSで洗浄し、2%ノルマルヤギ血清でブロッキングするために、常温で約1時間培養した。一次抗体であるα6−インテグリン(Chemicon Int.)及びβ1−インテグリンの抗体(Sigma)をそれぞれ20μg/mlの濃度に希釈し、室温で1時間ずつ反応した。二次抗体としては、TRITC(tetramethyl rhodamine isothiocyanate)付きヤギ抗−マウスIgG(Jackson Lab)を使用し、室温で1時間培養した後、蛍光顕微鏡で観察した。
(iii) α6-integrin and β1-integrin stained spermatogonial stem cells were treated with a fixative, washed with PBS, and cultured at room temperature for about 1 hour in order to block with 2% normal goat serum. The primary antibodies α6-integrin (Chemicon Int.) And β1-integrin antibody (Sigma) were each diluted to a concentration of 20 μg / ml and reacted at room temperature for 1 hour. As a secondary antibody, goat anti-mouse IgG (Jackson Lab) with TRITC (tetramethyl rhodamine isothiocyanate) was used. After culturing at room temperature for 1 hour, it was observed with a fluorescence microscope.

(iv)SSEA−1、SSEA−3、及びSSEA−4染色
精原幹細胞に固定液を処理した後、PBSで洗浄し、レバミゾール(Levamisole)を処理した。二次抗体の非特異的結合を最少化するために、5%ヤギ血清により常温で30分間ブロッキングした。次いで、1:100に希釈された一次抗体の抗−SSEA−1(MC-480)または抗−SSEA−4、1:200 に希釈された抗−SSEA−3(MC-631)(MC-813-70; Developmental Studies Hybridoma Bank, Iowa, IA)を処理して、室温で1時間反応した。その後、二次抗体のヤギ抗−マウスIgM−AP(AK-5010, Vector Laboratories, Inc., Burlingama, CA)を処理した。その後、試料をABC溶液及びBCIP/NBT(Sigma)基質でそれぞれ30分間反応させた後、10mM EDTA(pH 8.0)を添加して反応を停止した。
(iv) SSEA-1, SSEA-3, and SSEA-4 stained spermatogonial stem cells were treated with the fixative solution, washed with PBS, and treated with levamisole (Levamisole). In order to minimize non-specific binding of the secondary antibody, it was blocked with 5% goat serum for 30 minutes at room temperature. Next, anti-SSEA-1 (MC-480) or anti-SSEA-4 diluted 1: 100, anti-SSEA-3 (MC-631) (MC-813 diluted 1: 200) -70; Developmental Studies Hybridoma Bank, Iowa, IA) and treated for 1 hour at room temperature. The secondary antibody goat anti-mouse IgM-AP (AK-5010, Vector Laboratories, Inc., Burlingama, Calif.) Was then treated. Thereafter, the sample was reacted with ABC solution and BCIP / NBT (Sigma) substrate for 30 minutes, respectively, and 10 mM EDTA (pH 8.0) was added to stop the reaction.

(v)二重免疫染色
精原幹細胞に抗−SSEA−1、抗−SSEA−3、または抗−SSEA−4を処理した後、二次抗体としてロダミン(TRITC)−接合ヤギ抗−マウスIgG(115-025-003, Jackson ImmunoResearch Laboratories. Inc, Bar Harbor, ME)を処理した。次いで、PBSで3回洗浄した後、FITC−STAを1時間処理し、蛍光顕微鏡で観察した。
(v) Double immunostained spermatogonial stem cells treated with anti-SSEA-1, anti-SSEA-3, or anti-SSEA-4, followed by rhodamine (TRITC) -conjugated goat anti-mouse IgG ( 115-025-003, Jackson ImmunoResearch Laboratories. Inc, Bar Harbor, ME). Next, after washing with PBS three times, FITC-STA was treated for 1 hour and observed with a fluorescence microscope.

[実験結果]
1)精巣細胞の分離方法の比較
鶏の精巣組織の分解のための酵素処理方法は、コラゲナーゼとトリプシンを主成分として分解したが、2段階酵素処理方法(Ogawaら、1997)とvan Pelt(1996)方法、そしてコラゲナーゼとトリプシンとを混合した方法の三つの方法を利用して分離した。分離した精巣細胞は、生殖細胞(germ cell)及びその他の体細胞から構成されており、トリパンブルーを利用して細胞の生存率を測定した(参照:表1及び図1)。三つの精巣細胞分離方法の比較結果、処理3の方法、即ちコラゲナーゼ(1mg/ml)及びトリプシン(0.25%)を利用した分離方法が最も高い細胞生存率を示し、また、2段階酵素処理方法やvan Pelt方法に比べ、簡単で且つ時間もかからないことから、処理3の方法が鶏の精巣組織分解のための最も効率的な方法であることが分かった。
[Experimental result]
1) Comparison of testicular cell separation method The enzyme treatment method for degrading chicken testis tissue was decomposed mainly with collagenase and trypsin, but the two-stage enzyme treatment method (Ogawa et al., 1997) and van Pelt (1996). ) And 3 methods of mixing collagenase and trypsin. The isolated testis cells are composed of germ cells and other somatic cells, and the cell viability was measured using trypan blue (see: Table 1 and FIG. 1). As a result of comparison of the three testicular cell separation methods, the treatment 3 method, that is, the separation method using collagenase (1 mg / ml) and trypsin (0.25%) showed the highest cell viability. Compared to the van Pelt method, it was simpler and less time consuming, so the method of treatment 3 was found to be the most efficient method for chicken testicular tissue degradation.

[表1]
鶏精巣組織の分解方法による精巣細胞の生存率及び細胞数

Figure 2007501625
[Table 1]
Testicular cell viability and cell count by chicken testicular tissue degradation method
Figure 2007501625

2)精巣組織内の精原幹細胞の分布
未だに、鶏を始めとした鳥類の精巣内の精原幹細胞数に対する報告はなく、ただ、極めて少ない数が存在すると知られている。マウスの場合、精巣内に約108個の細胞があるが、この中で約2×104個が幹細胞であると推論される(Meistrich & Beek, 1993; Tegelenbosch & de Rooij, 1993)。鶏の精巣組織内の精原幹細胞の数を測定するために、約3週齢の白色レグホーン種の精巣を分解した後、レクチン類の一つであるSTA−FITC接合体を利用して、蛍光を発する細胞を測定し、全体精巣細胞の中で占める精原幹細胞の分布を計算した(参照:表2)。
2) Distribution of spermatogonial stem cells in testis tissue There are no reports on the number of spermatogonial stem cells in the testes of birds, including chickens, but it is known that there are very few. In the case of mice, there are about 10 8 cells in the testis, of which about 2 × 10 4 are inferred to be stem cells (Meistrich & Beek, 1993; Tegelenbosch & de Rooij, 1993). In order to measure the number of spermatogonial stem cells in the testicular tissue of chickens, after degrading the testis of a white leghorn species of about 3 weeks of age, the STA-FITC conjugate, which is one of the lectins, is used for fluorescence. And the distribution of spermatogonial stem cells occupying in the whole testis cells was calculated (see Table 2).

哺乳動物と同様に、鶏のような鳥類も、精原幹細胞を区分できる確実な形態学的、分子化学的マーカーがないため、多様な種類(STA, WGA, DBA, ConA)のレクチンを利用して実験した結果、FITC−STA(Sojanum tuberosum agglutinin)が精原幹細胞に特異的に反応することが分かった。従って、STAを利用して測定した結果、鶏の場合、約0.8%が精原幹細胞であると推論される。品種及び週齢により差があるが、2〜3週齢白色レグホーン種の場合、精巣内の総細胞数が約107個であるが、この中で略8×104個が幹細胞であると判断される。これは、マウスの0.02%に比べ、約40倍多い量であって、このような多い数の精原幹細胞は、鶏の精原幹細胞の体外培養、細胞株の確立、そして遺伝子操作などに非常に有用に使用できる。 Similar to mammals, birds such as chickens do not have reliable morphological and molecular chemical markers that can differentiate spermatogonial stem cells, and therefore use various types of lectins (STA, WGA, DBA, ConA). As a result, it was found that FITC-STA (Sojanum tuberosum agglutinin) specifically reacts with spermatogonial stem cells. Therefore, as a result of measurement using STA, it is inferred that about 0.8% are spermatogonial stem cells in the case of chickens. Although there are differences depending on the breed and age, in the case of 2-3 weeks old white leghorn species, the total number of cells in the testis is about 10 7 , of which about 8 × 10 4 are stem cells. To be judged. This is about 40 times higher than 0.02% of mice, and such a large number of spermatogonial stem cells are used for in vitro culture of chicken spermatogonial stem cells, establishment of cell lines, genetic manipulation, etc. Can be used very useful.

[表2]
精巣細胞内の、FITC−STAと特異的に反応する精原幹細胞の数

Figure 2007501625
[Table 2]
Number of spermatogonial stem cells that specifically react with FITC-STA in testis cells
Figure 2007501625

3) 精原細胞の培養のための最適の基底細胞の確立
鶏を始めとした鳥類の精原幹細胞の培養に関する研究は、報告されたものがなく、培養条件もマウスなどの精原細胞の培養と異なる方法を試みた。基本的に、精原幹細胞は、PGC由来の細胞であるため、EG培養液を一部変更して培養液として使用し(Parkら、2000)、PGC、胚芽生殖細胞(Embryonic germ cell)、そして精原細胞も基底細胞依存型(dependent)であるため、最適の基底細胞を探すために、鶏繊維芽細胞(CEF)、鶏生殖器基質細胞(GSC)、鶏精巣基質細胞(TSC)、及びマウスSTO細胞株などを利用して比較した(参照:図2)。
3) Establishment of optimal basal cells for spermatogonia culture There have been no reports on the culture of avian spermatogonial stem cells, including chickens, and the culture conditions for spermatogonia such as mice And tried different ways. Basically, since spermatogonial stem cells are PGC-derived cells, the EG medium is partially modified to be used as a medium (Park et al., 2000), PGC, Embryonic germ cell, and Since spermatogonia are also basal cell-dependent, chicken fibroblasts (CEF), chicken genital matrix cells (GSC), chicken testis matrix cells (TSC), and mice to find the optimal basal cells Comparison was made using an STO cell line or the like (see FIG. 2).

初期培養(primary culture)後、再び1次培養した精原幹細胞を基底細胞と共に培養して、精原幹細胞数を測定して比較した。測定の結果、TSCと統計的な有意差はなかったが、GSC基底細胞と共に培養した精原幹細胞の数が最も高く表れて、CEFとSTO細胞株の場合、最も少ない数値を表した。したがって、GSCを基底細胞として共培養することが、精原幹細胞の培養に最も適合しているという結果を得た。即ち、精巣細胞の多くの部分を占めるセルトリ細胞と共に培養することが、精原幹細胞の増殖及び発達に必要な成長因子を供給する栄養細胞(nurse cell)としての役割をすることができるが(Sousaら、2002; van der Weeら、2001; Rassoulzadeganら、1993)、TM4とSF7のようなセルトリ細胞由来の細胞株と共培養時、セルトリ細胞の特殊な機能、即ち、精原幹細胞の分化を誘導する機能により、却って、他の細胞株と共に培養する場合より精原幹細胞の生存率を落としてしまう結果を招来する虞があるということが分かった(Naganoら、2003)。 After the primary culture, primary cultured spermatogonial stem cells were cultured together with basal cells, and the number of spermatogonial stem cells was measured and compared. As a result of the measurement, there was no statistically significant difference from TSC, but the number of spermatogonial stem cells cultured with GSC basal cells was the highest, and the lowest values were shown for CEF and STO cell lines. Therefore, the result was obtained that co-culture of GSC as basal cells was most suitable for spermatogonial stem cell culture. That is, culturing with Sertoli cells, which occupy a large part of testis cells, can serve as nurse cells that supply growth factors necessary for proliferation and development of spermatogonial stem cells (Sousa) 2002; van der Wee et al., 2001; Rassoulzadegan et al., 1993), induces a special function of Sertoli cells, ie differentiation of spermatogonial stem cells, when co-cultured with cell lines derived from Sertoli cells such as TM4 and SF7 On the contrary, it has been found that there is a risk that the viability of spermatogonial stem cells may be reduced compared with the case of culturing with other cell lines (Nagano et al., 2003).

TSCの場合、3週齢以下のヒヨコの精巣組織から分離した細胞が最も好ましく、CEFは、早く育ちすぎて巻かれる傾向があり、またコロニーを分離する時、CEFが共に分離される短所があった。STOは、マウス及び哺乳動物の幹細胞の立派な基底細胞であるにもかかわらず、ミトマイシン−Cを処理して培養時、コロニー形成が他の基底細胞に比べ劣り、細胞が少しずつ離れ続ける現象を示した。 In the case of TSC, cells isolated from testicular tissue of chicks of 3 weeks of age or less are most preferable, and CEF tends to grow too quickly and winds, and when separating colonies, there is a disadvantage that CEF is separated together. It was. Although STO is an excellent basal cell of mouse and mammalian stem cells, colony formation is inferior to that of other basal cells when treated with mitomycin-C, and the cells continue to separate little by little. Indicated.

4)培養液組成による培養条件の確立
鶏精原幹細胞の培養液組成による培養条件の確立のために、基本培地(DMEM-B)と添加物の入っている培地(DMEM-C)とで9日間培養した後、コロニー数を測定して比較した。測定の結果、鶏精原幹細胞のコロニー形成が、DMEM−Cの方がDMEM−Bに比べ約14倍高く現れた(参照:表3及び図3)。
4) Establishment of culture conditions based on the culture medium composition To establish the culture conditions based on the culture medium composition of chicken spermatogonial stem cells, the basic medium (DMEM-B) and the medium containing additives (DMEM-C) are 9 After culturing for a day, the number of colonies was measured and compared. As a result of the measurement, colonization of chicken spermatogonial stem cells appeared about 14 times higher in DMEM-C than in DMEM-B (see: Table 3 and FIG. 3).

これは、DMEM−C培養液に添加された添加物による結果であると見なされ、鶏血清、代謝関連物質である非必須アミノ酸、緩衝剤であるHepes緩衝液、そして抗酸化剤であるβ−メルカプトエタノールなどが複合的に作用したと判断される。一方、Naganoら(2003)が発表した論文では、基本培地と、代謝基質と緩衝剤などが添加された培地とにおけるマウス精原幹細胞の培養に差がないと報告しているが、本発明では、両培地間の効果の差が大きくあらわれた。 This is considered to be the result of additives added to the DMEM-C culture medium, chicken serum, non-essential amino acids that are metabolic related substances, Hepes buffer that is a buffer, and β- that is an antioxidant. It is judged that mercaptoethanol and the like acted in a complex manner. On the other hand, in a paper published by Nagano et al. (2003), it is reported that there is no difference in the culture of mouse spermatogonial stem cells in a basic medium and a medium to which a metabolic substrate and a buffering agent are added. The difference in the effect between the two media was large.

細胞の状態は、DMEM−Bの場合、大部分の細胞が一つの細胞状態に留まっている細胞が多く、細胞サイズが小さくなるパターンを示した(図4のa及びb)。その反面、DMEM−Cで育った細胞の場合、コロニー形成が旺盛で、細胞の大きさや形態において、P0での精原幹細胞と同様な様相を示した(図4のc及びd)。 In the case of DMEM-B, most of the cells remained in one cell state, and the cell state showed a pattern in which the cell size was reduced (a and b in FIG. 4). On the other hand, in the case of cells grown in DMEM-C, colony formation was vigorous, and the same size and morphology as the spermatogonial stem cells at P0 were shown (c and d in FIG. 4).

[表3]
培養液組成によるコロニー数の比較

Figure 2007501625
[Table 3]
Comparison of number of colonies by culture solution composition
Figure 2007501625

5)添加物に対する最適の培養条件の確立
それぞれの成長因子に対する鶏精原幹細胞の培養様相を比較することにより、精原細胞の最適の培養条件を確立するために、培養添加物の含まれた培養液を対照区として、各成長因子に対する培養様相を比較した。幹細胞因子(SCF)と、白血病抑制因子(LIF)と、塩基性繊維芽細胞成長因子(bFGF)とは、既に、PGCの維持及び増殖を促進させると報告されており(Matsuiら、1992; Resnickら、1992)、GDNFも、in vivoで精原幹細胞の分化を調節する重要な要素であることが立証された(Mengら、2000; Naganoら、2003)。
5) Establishing optimal culture conditions for additives In order to establish optimal culture conditions for spermatogonia by comparing the culture aspects of chicken spermatogonial stem cells for each growth factor, culture additives were included The culture aspects for each growth factor were compared using the culture solution as a control. Stem cell factor (SCF), leukemia inhibitory factor (LIF), and basic fibroblast growth factor (bFGF) have already been reported to promote PGC maintenance and proliferation (Matsui et al., 1992; Resnick 1992), GDNF has also been demonstrated to be an important factor regulating spermatogonial stem cell differentiation in vivo (Meng et al., 2000; Nagano et al., 2003).

それぞれの成長因子に対する効果を観察するために、24ウェルプレートで約9日間培養した後、コロニー数を測定して比較した。
(i) DMEM−C(対照区)
(ii) DMEM−C+LIF(10ng/ml)
(iii) DMEM−C+bFGF(10ng/ml)
(iv) DMEM−C+SCF(20ng/ml)
(v) DMEM−C+IGF−1(100ng/ml)
(vi) DMEM−C+GDNF(100ng/ml)
In order to observe the effect on each growth factor, after culturing in a 24-well plate for about 9 days, the number of colonies was measured and compared.
(i) DMEM-C (control group)
(ii) DMEM-C + LIF (10 ng / ml)
(iii) DMEM-C + bFGF (10 ng / ml)
(iv) DMEM-C + SCF (20 ng / ml)
(v) DMEM-C + IGF-1 (100 ng / ml)
(vi) DMEM-C + GDNF (100 ng / ml)

各ウェルの精原幹細胞コロニーを測定した結果、成長因子の含まれていない対照区の培養液が却って、LIF、bFGF、IGF−1、及びGDNFを添加したものに比べ、多いコロニーを形成し、SCFを添加したものが最も多いコロニーを形成したことが観察された(参照:表4及び図5)。これは、SCFが精原幹細胞の分裂を刺激したというよりは、却って何ら影響を及ぼさなかったと判断される(Ohtaら、2000)。LIF、bFGF、またはIGF−1の添加が、成長因子無しに培養したものと比較してみると、却って精原幹細胞の分裂や成長に影響を及ぼさないことが分かった。このような結果は、マウスの精原幹細胞における結果と、ある程度一致することが分かる(Naganoら、2003)。その反面、GDNFは、精原幹細胞の分化を抑制して、未分化された精原幹細胞の蓄積を起こすと知られており(Mengら、2000)、マウス精原幹細胞において、他の成長因子に比べ有意的に高く現れた反面、本実験では、却って最も低い結果を示した(参照:表4及び図5)。各成長因子に対する培養様相を見ると、大きな差は見つからないが、対照区の場合、コロニーの形成及び数が良子である反面、LIF、IGF−1、GDNFが添加された精原細胞は、コロニーの形成が不良で、その数も対照区に比べ劣る。 As a result of measuring the spermatogonial stem cell colony of each well, the culture medium of the control group not containing the growth factor was rejected, and more colonies were formed than those added with LIF, bFGF, IGF-1, and GDNF, It was observed that the most colonies were formed with the addition of SCF (see Table 4 and FIG. 5). It is judged that SCF had no effect rather than stimulating spermatogonial stem cell division (Ohta et al., 2000). It was found that the addition of LIF, bFGF, or IGF-1 did not affect spermatogonial stem cell division or growth when compared with those cultured without growth factors. It can be seen that such results are somewhat consistent with those in mouse spermatogonial stem cells (Nagano et al., 2003). On the other hand, GDNF is known to cause the accumulation of undifferentiated spermatogonial stem cells by suppressing the differentiation of spermatogonial stem cells (Meng et al., 2000), and other growth factors in mouse spermatogonial stem cells. On the other hand, it appeared significantly higher, but in this experiment, the lowest result was shown (see Table 4 and FIG. 5). Looking at the culture pattern for each growth factor, a large difference is not found, but in the case of the control group, the formation and number of colonies are good, but the spermatogonia added with LIF, IGF-1, and GDNF are colonies. Formation is poor and the number is also inferior to the control.

[表4]
成長因子による精原幹細胞のコロニー数の比較

Figure 2007501625
[Table 4]
Comparison of the number of spermatogonial stem cell colonies by growth factors
Figure 2007501625

それぞれの成長因子は、他の因子と相互作用して相乗効果を誘発するが、LIFの場合、鳥類胚芽幹細胞、始原生殖細胞、及び胚芽生殖細胞の長期間培養に必ず必要な要素であり、bFGF、SCFなどと共に培養時、高い効果が期待できる(Painら、1996; Parkら、2000)。本実験から分かるように、それぞれの成長因子に対する効果は、SCFを除いては、対照区(DMEM-C)に比べ低かったが(図5)、LIF、bFGF、IGF−1、及びSCFを共に添加して培養した時は、却って対照区より高度の有意的な増加傾向を示し(SCF未添加:2.8倍、SCF添加:2.2倍)、全体的に成長因子間の効果が認められたが、鶏精原幹細胞の場合、SCF添加時、添加しなかった処理区に比べ、低い結果を示し、SCFが鶏精原幹細胞の分化または細胞死滅化(apoptosis)を誘導すると判断される(表5、図6)。 Each growth factor interacts with other factors to induce a synergistic effect, but in the case of LIF, it is a necessary element for long-term culture of avian embryonic stem cells, primordial germ cells, and germ germ cells, and bFGF High effects can be expected when cultured with SCF, etc. (Pain et al., 1996; Park et al., 2000). As can be seen from this experiment, the effect on each growth factor was lower than that of the control group (DMEM-C) except for SCF (FIG. 5), but LIF, bFGF, IGF-1 and SCF were all together. When added and cultured, on the contrary, it showed a significant increase tendency higher than the control group (SCF not added: 2.8 times, SCF added: 2.2 times), and the overall effect between growth factors was observed, In the case of chicken spermatogonial stem cells, the results were lower when SCF was added compared to the treatment group that was not added, and it is judged that SCF induces differentiation or cell apoptosis of chicken spermatogonial stem cells (Table 5, (Fig. 6).

[表5]
成長因子の組み合せによる鶏精原幹細胞の培養

Figure 2007501625
[Table 5]
Culture of chicken spermatogonial stem cells by combination of growth factors
Figure 2007501625

6)精原幹細胞培養に対する培養温度の効果
鶏を始めとした鳥類は、哺乳類と違って、体温が高く(41℃)、精巣が体内に存在する。したがって、正常的な細胞培養温度である37℃と、鶏の体温である41℃とで精巣細胞を培養して、精原幹細胞の数の変化を観察した結果、37℃で精原幹細胞が約2.2倍よく培養されることが確認された(参照:表6、図7)。これは、マウスの場合、37℃と体外精巣最適温度の32℃とにおいて有意的な差がなかったこととは対照的である(Naganoら、2003)。
6) Effect of culture temperature on spermatogonial stem cell culture Unlike birds, birds, including chickens, have a high body temperature (41 ° C) and testis in the body. Therefore, the testicular cells were cultured at a normal cell culture temperature of 37 ° C. and the chicken body temperature of 41 ° C., and the change in the number of spermatogonial stem cells was observed. It was confirmed that the cells were cultured 2.2 times better (refer to Table 6, FIG. 7). This is in contrast to the absence of a significant difference between 37 ° C. and the optimal in vitro testis temperature of 32 ° C. for mice (Nagano et al., 2003).

[表6]
培養温度による鶏精原幹細胞の数

Figure 2007501625
[Table 6]
Number of chicken spermatogonial stem cells by culture temperature
Figure 2007501625

7)鶏精原幹細胞の成長曲線
マウスを始めとした哺乳動物の精原細胞は、分離時、制限された数の細胞を分離するしかなく、体外培養時、多い精原細胞が死んでしまうため、精原細胞の培養が難しい。鶏を始めとした鳥類の精原幹細胞も同様な様相を示すが、ただ、マウスよりは多い数の精原幹細胞を分離することができるという長所がある。鶏の精原幹細胞は、基底細胞依存型であるため、生殖器基質細胞(GSC)と共に培養し、マウスの場合よりは相対的に多い数の精原幹細胞が存在する(約0.08%)ため、例え培養中に少なくない数の精原幹細胞が死んでも、細胞の数を測定することができた。
7) Growth curve of chicken spermatogonial stem cells Mammalian spermatogonia, including mice, can only isolate a limited number of cells during isolation, and many spermatogonia die during in vitro culture. It is difficult to culture spermatogonia. Avian spermatogonial stem cells, including chickens, show similar aspects, but have the advantage of being able to isolate more spermatogonial stem cells than mice. Because chicken spermatogonial stem cells are basal cell-dependent, they are cultured with genital matrix cells (GSC) and there are a relatively higher number of spermatogonial stem cells than in mice (approximately 0.08%). Even if a small number of spermatogonial stem cells died during the culture, the number of cells could be measured.

約10日間隔に培養しながら継代した結果、3回の継代までは、細胞の数が漸進的に増加したが、その後は、多い数の精原幹細胞が死ぬことが分かった(参照:図8)。実際に、パッセージ4以後は、多い数の精原幹細胞が細胞死滅化過程を経ることにより、全体細胞数は減少し、一部の精原幹細胞のみが継続的に分裂する現象を示した。 As a result of subculturing while culturing at intervals of about 10 days, it was found that the number of cells gradually increased until the third passage, but after that, a large number of spermatogonial stem cells died (see: Fig. 8). Actually, after Passage 4, a large number of spermatogonial stem cells went through a cell killing process, so that the total cell number decreased and only a part of spermatogonial stem cells showed a phenomenon of continuous division.

8)鳥類精原幹細胞の長期培養条件の確立
鶏を始めとした鳥類の精原幹細胞の培養、特に長期培養に関する研究は、全くない状態であって、ただ、マウス(Naganoら、2001; Kanatsu-Shinoharaら、2003)と牛(Izadyarら、2003)などの精原幹細胞を約5ヶ月間培養したという報告が全てである。一方、大部分の精原幹細胞は、培養初期に多い数が死んでしまうため、培養に困難がある。
8) Establishment of long-term culture conditions for avian spermatogonial stem cells There has been no research on the culture of avian spermatogonial stem cells, especially chickens, especially long-term culture, but only mice (Nagano et al., 2001; Kanatsu- All reports have been that spermatogonial stem cells such as Shinohara et al., 2003) and cattle (Izadyar et al., 2003) have been cultured for about 5 months. On the other hand, most spermatogonial stem cells are difficult to culture because many numbers die at the initial stage of culture.

鶏の精原幹細胞培養のために、初期培養時、全体精巣細胞を培養皿で約10日間培養した後(参照:図9のa及びb)、コロニーの形成された精原幹細胞を分離し、基底細胞の用意された培養皿で培養する方法を取った(図9のc及びd)。培養初期には、主にセルトリ細胞などが先に育ち始めながら、3〜4個の細胞から構成された小さなコロニーを形成したが(図9のb)、精原幹細胞を回収して生殖器基底細胞(GSC)と共に培養した時、精原幹細胞の数が急激に増加した(図9のc)。また、継代後にもコロニーを形成しながら成長して、3ヶ月以上の長期間の体外培養が可能であることを確認した(図9のd)。したがって、基底細胞及び分離する鶏の週齢により培養期間または精原細胞の状態に少し差があるが、本発明により、約5ヶ月間の長期培養が可能になる。即ち、2〜4週齢の鶏から分離した精原幹細胞が、5〜8週齢から分離した精原幹細胞に比べ、細胞の培養様相が異なって長期培養が難しいが、これは、5週齢以後から起こるタイプB精原細胞への分化と関連があると判断される。 For chicken spermatogonial stem cell culture, after initial culture of whole testis cells in a culture dish for about 10 days (see: a and b in FIG. 9), colony-formed spermatogonial stem cells were isolated, A method of culturing in a culture dish prepared with basal cells was adopted (c and d in FIG. 9). In the early stage of culture, Sertoli cells and the like started to grow first, and formed a small colony composed of 3 to 4 cells (Fig. 9b), but the spermatogonial stem cells were recovered and genital basal cells When cultured with (GSC), the number of spermatogonial stem cells increased rapidly (Fig. 9c). Further, it was confirmed that growth was possible while forming colonies after passage, and that in vitro culture for a long period of 3 months or longer was possible (d in FIG. 9). Therefore, although there is a slight difference in the culture period or spermatogonia state depending on the age of the basal cells and the chickens to be separated, the present invention enables long-term culture for about 5 months. That is, spermatogonial stem cells isolated from 2-4 weeks old chickens are different from spermatogonial stem cells isolated from 5-8 weeks old and the culture of the cells is different and long-term culture is difficult. It is judged to be related to the differentiation into type B spermatogonia that occurs thereafter.

9)免疫細胞化学的方法を利用した精原幹細胞特性の糾明
鶏を始めとしたマウス及びラット、そして哺乳動物のタイプA精原幹細胞を区別できる確実な形態学的、分子化学的マーカーがないため、多様な研究が試みられている。マウスにおいて、生殖細胞(gonocyte)と精原細胞(spermatogonia)とに特異的なα6−インテグリン及びβ1−インテグリン表面マーカーに対する報告があり(Shinoharaら、1999)、これに基づき、鶏のα6−インテグリン及びβ1−インテグリンに対する抗体とPAS染色、そしてレクチン類であるSTAを利用し、初期分離した精巣細胞と培養された精原幹細胞とを利用して反応様相を観察した。
9) Because there is no reliable morphological or molecular chemical marker that can distinguish type A spermatogonial stem cells from mice and rats, including mammalian chicks with the characteristics of spermatogonial stem cells using immunocytochemical methods. Various studies have been attempted. In mice, there have been reports on α6-integrin and β1-integrin surface markers specific to gonocytes and spermatogonia (Shinohara et al., 1999), based on which chicken α6-integrin and Using the antibody against β1-integrin, PAS staining, and STA, which is a lectin, the reaction mode was observed using testis cells that were initially separated and cultured spermatogonial stem cells.

(i)PAS染色
鶏の始原生殖細胞(PGC)及び胚芽生殖細胞(EG cell)の場合、細胞質内に存在する多量のグリコーゲンのため濃い紫色に染色されて、他の細胞との区別が可能である(Meyer、1964; Parkら、2000)。特に、胚芽生殖細胞の場合、長期間培養の後もPASに特異的に染色される傾向がある。
(i) PAS-stained chicken primordial germ cells (PGC) and germ germ cells (EG cells) are stained in dark purple due to the large amount of glycogen present in the cytoplasm, and can be distinguished from other cells. (Meyer, 1964; Park et al., 2000). In particular, germ germ cells tend to be specifically stained for PAS after long-term culture.

たとえ同じ発生学的段階ではないものの、鶏の精原幹細胞も始原生殖細胞由来の細胞であるため、PASキットを利用して染色した結果、PGCやEG cellのように濃い紫色に染色された。特に、4週齢と9週齢との異なる精巣から分離して継代し、継代した後も精原幹細胞に特異的に染色される様相を示し、他のセルトリ細胞や基底細胞との区別が可能であることを示した(参照:図10)。 Although not at the same developmental stage, chicken spermatogonial stem cells are also derived from primordial germ cells, and as a result of staining using the PAS kit, they were stained in a deep purple color like PGC and EG cells. In particular, it was isolated and passaged from different testes at 4 weeks and 9 weeks of age, and after passage, it showed a specific staining with spermatogonial stem cells, distinguishing from other Sertoli cells and basal cells (See: FIG. 10).

(ii)STA−FITC及びDBA−FITC染色反応
レクチン類に対する鶏精原幹細胞の特異的な反応様相を糾明するために、DBA(Doliclos bifflrus agglutinin)、STA(Solanum tubersum agglutinin)WGA(Triticum vulgaris agglutinin)、ConA(Canavalia ensiformis agglutinin)などのレクチンを利用した結果、WGAは、精原幹細胞と基底細胞に、そしてConAは、ほとんどが基底細胞に反応した。特に、STAは、基底細胞ではなく、精原幹細胞に特異的に反応したが、長期間の培養後にも(パッセージ8)同一な染色様相を示し、精原幹細胞の特異マーカーとして使用が可能であると判断される(参照:図11a)。このような結果は、STAが認識する(N−アセチルグルコサミン)3が鶏精原幹細胞に特異的に存在するということを意味する。また、DBAも精原幹細胞に特異的に反応したが、長期間の培養後にも(パッセージ3)同一な染色様相を示し、精原幹細胞の特異マーカーとして使用が可能であると判断される(参照:図11b)。
(ii) STA-FITC and DBA-FITC staining reaction In order to clarify the specific reaction mode of chicken spermatogonial stem cells to lectins, DBA (Doliclos bifflrus agglutinin), STA (Solanum tubersum agglutinin) WGA (Triticum vulgaris agglutinin) As a result of using lectins such as ConA (Canavalia ensiformis agglutinin), WGA reacted to spermatogonial stem cells and basal cells, and ConA most reacted to basal cells. In particular, STA reacted specifically to spermatogonial stem cells but not to basal cells, but even after long-term culture (passage 8), it showed the same staining appearance and can be used as a specific marker for spermatogonial stem cells. (Ref: FIG. 11a). Such a result means that (N-acetylglucosamine) 3 recognized by STA is specifically present in chicken spermatogonial stem cells. DBA also reacted specifically with spermatogonial stem cells, but even after long-term culture (passage 3), it shows the same staining appearance and is judged to be usable as a specific marker for spermatogonial stem cells (see : FIG. 11b).

一方、Izadyarら(2002)が、同じレクチン類であるDBAが牛の精原幹細胞に特異的に反応して、精原幹細胞の純水分離及び異種間移植後に種間区別マーカーとして使用できることを立証したように、本実験の結果から、STA及びDBAレクチンは、鶏の精原幹細胞の純水分離及び異種間移植後の種間区別マーカーとして使用できると期待される。 On the other hand, Izadyar et al. (2002) demonstrated that DBA, which is the same lectin, specifically reacts with bovine spermatogonial stem cells and can be used as a species-specific marker after pure water isolation and xenotransplantation of spermatogonial stem cells. Thus, from the results of this experiment, it is expected that STA and DBA lectin can be used as a species discrimination marker after pure water separation and xenotransplantation of chicken spermatogonial stem cells.

(iii)鶏精原幹細胞のα6−インテグリン及びβ1−インテグリン反応
α6−インテグリン及びβ1−インテグリンは、一般細胞においてヘテロダイマーを成して、細胞内外の信号伝達に中枢的な機能を担当する。特に、α6−インテグリン及びβ1−インテグリンは、マウスの精原幹細胞の表面から発現する特異的なマーカーとしての利用が可能である(Shinoharaら、1999)。
(iii) α6-integrin and β1-integrin reaction of chicken spermatogonial stem cells α6-integrin and β1-integrin form heterodimers in general cells and are responsible for central functions in signal transduction inside and outside the cell. In particular, α6-integrin and β1-integrin can be used as specific markers expressed from the surface of mouse spermatogonial stem cells (Shinohara et al., 1999).

一方、鶏のα6−インテグリン及びβ1−インテグリンを精原幹細胞に適用した結果、鶏の精原幹細胞においても特異性を示し、精原幹細胞のマーカーとしての可能性を示した(参照:図12及び13)。特に、α6−インテグリンの場合、β1−インテグリンに比べ、細胞面にさらに特異的に染色される様相を示した。精原幹細胞の細胞膜透過タンパク質であるα6−インテグリン及びβ1−インテグリンにより、基底細胞から分泌される成長因子または抑制子の影響を受けて、精原幹細胞の全般的な信号伝達、即ち、分化または細胞死滅化の信号伝達に影響を及ぼすと考えられる。 On the other hand, as a result of applying chicken α6-integrin and β1-integrin to spermatogonial stem cells, it showed specificity also in chicken spermatogonial stem cells, indicating the possibility as a marker of spermatogonial stem cells (see: FIG. 12 and 13). In particular, α6-integrin showed a more specific staining on the cell surface than β1-integrin. The spermatogonial stem cell's cell membrane permeation proteins α6-integrin and β1-integrin are influenced by growth factors or inhibitors secreted from basal cells, and thus, general signaling of spermatogonial stem cells, ie differentiation or cells It is thought to affect the signal transmission of death.

(iv)SSEA−1、SSEA−3、及びSSEA−4染色
SSEA−1、SSEA−3、及びSSEA−4は、マウスの精原幹細胞に対するマーカーとして既に知られているが、鶏精原幹細胞に対する特異マーカーとしての用途は、知られていない。図14から分かるように、鶏精原幹細胞は、SSEA−1、SSEA−3、及びSSEA−4を発現することが観察されて、TSC(testicular stromal cell)は、抗−SSEA−1、抗−SSEA−3、及び抗−SSEA−4により、全く免疫染色されないことが観察された。したがって、SSEA−1、SSEA−3、及びSSEA−4は、鶏精原幹細胞に対する特異マーカーとして利用できることが分かる。
(iv) SSEA-1, SSEA-3, and SSEA-4 staining SSEA-1, SSEA-3, and SSEA-4 are already known as markers for mouse spermatogonial stem cells, but for chicken spermatogonial stem cells Its use as a specific marker is not known. As can be seen from FIG. 14, chicken spermatogonial stem cells were observed to express SSEA-1, SSEA-3, and SSEA-4, and TSC (testicular stromal cell) was anti-SSEA-1, anti- No immunostaining was observed with SSEA-3 and anti-SSEA-4. Therefore, it can be seen that SSEA-1, SSEA-3, and SSEA-4 can be used as specific markers for chicken spermatogonial stem cells.

(v)二重免疫染色
図15から分かるように、鶏精原幹細胞は、抗−SSEA−1及びFITC−STAにより二重染色された。
(v) Double immunostaining As can be seen from FIG. 15, chicken spermatogonial stem cells were double-stained with anti-SSEA-1 and FITC-STA.

上述した培養過程及び同定過程により鶏精原幹細胞として糾明された細胞をchSSCと命名し、韓国細胞株研究財団に2003年6月14日付にて寄託して、寄託番号KCLRF−BP−00080を付与された。 The cell established as a chicken spermatogonial stem cell by the above-described culture process and identification process is named chSSC, deposited with the Korean Cell Line Research Foundation on June 14, 2003, and assigned the deposit number KCLRF-BP-08080 It was done.

以上、本発明の特定な部分を詳細に記述したが、当業界の通常の知識を有する者にとって、このような具体的な記述はただ望ましい具現例に過ぎなく、これらに本発明の範囲が限定されないことは明らかであって、本発明の実質的な範囲は、添付の請求項とその等価物により定義されると言える。 Although specific portions of the present invention have been described in detail above, such specific descriptions are merely preferred embodiments for those having ordinary skill in the art, and the scope of the present invention is limited thereto. Obviously, the substantial scope of the present invention is defined by the appended claims and their equivalents.

[参考文献]
Chen, H.Y., et al., (1990) Vectors, promoters & expression of genes in chick embryo, J. Reprod. Fert. 41:173-182.
Dirami G., et al., (1999) Effects of stem cell factor and granulocyte macrophage-colony stimulating factor on survival of porcine type A spermatogonia cultured in KSOM. Biol Reprod. 61:225-230.
Dobrinski, I. et al., (2000) Germ Cell Transplantation Fromlarge Domestic Animals Into Mouse Testes. Mol. Reprod. Dev. 57:270-279.
Ertl, C. and Wrobel K.H. (1992) Distribution of sugar residues in the bovine testis during postnatal ontogenesis demonstrated with lectinhorseradish peroxidase conjugates Histochemistry 97:161-171.
Feng, L.-X., et al., (2002) Generation and in Vitro Differentiation of a Spermatogonial Cell Line. Science 297:392-395.
Izadyar F., et al.,(2002) Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124:85-94.
Izadyar, F., et al., (2003) Proliferation and Differentiation of Bovine Type A Spermatogonia During Long-Term Culture. Biol Reprod 68:272-281.
Kanatsu-Shinohara M., et al., (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biology of Reproduction. [Epub ahead of print].
Kopchick, J.J. et al., (1991) Methods for the introduction of recombinant DNA into chicken embryos. In Transgenic Animals, ed. N.L. First & F.P. Haseltine, pp.275-293, Boston; Butterworth-Heinemann.
Lee, M.-R. and Shuman, R. (1990) Transgenic quail produced by retrovirus vector infection transmit and express a foreign gene marker. Proc. 4th World Congr. Genet. Appl. Livestock Prod. 16, 107-110.
Matsui Y., Zsebo K. and Hogan B.L.M. (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841-847.
Meistrich ML., van Beek MEAB. (1993) Spermatogonial stem cells. In: Desjardins C, wing LL (eds.), Cell and Molecular Biology of the Testis. New York: Oxford University Press; 266-295.
Meng X., et al., (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287: 1489-1493.
Meyer D.B. (1964) The migration of primordial germ cells in the chick embryo. Developmental Biology 10:154-190.
Morrison S.J., et al., (1997) Regulatory mechanisms in stem cell biology. Cell 88:287-298.
Nagano M, et al., (2001) Transgenic mice produced by retroviral transduction of male germline stem cells. Proc Natl Acad Sci U S A 98:13090-13095.
Nagano, M., et al., (1998) Culture of mouse spermatogonial stem cells. Tissue Cell 30, 389-397.
Nagano, M., et al., (2003) Maintenance of mouse male germline stem cells in vitro. Biol Reprod. [Epub ahead of print]
Ogawa T., et al., (1997) Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 41:111-122.
Ogawa, T. (2001) Spermatogonial transplantation: the principle and possible application. J. Mol. Med. 79:368-374.
Pain B., et al., (1996) Long-term in vitro culture and characterization of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339-2348.
Park T.S. and Han J.Y. (2000) Derivation and Characterization of Pluripotent Embryonic Germ Cells in Chicken. Molecular Reproduction and Development 56:475-482.
Rassoulzadegan M., et al., (1993) Transmeiotic differentiation of male germ cells in culture. Cell 75:997-1006.
Resnick J.L., et al., (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359: 550-551.
Russell L.D., et al., (1990) Histological and Histopathological Evaluation of the Testis. Clearwater, IL: Cache River Press. pp 158.
Shinohara, T., et al., (1999) 1- and 6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. 96:5504-5509.
Sousa, M., et al., (2002) Developmental potential of human spermatogonial cells co-cultured with Sertoli cells. Human Reprod. 17(1):161-172.
Tegelenbosch R.A. and de Rooij D.G. (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse Mutation Research 290 193-200.
VAN Pelt A.M., et al., (2002) Establishment of Cell Lines with Rat Spermatogonial Stem Cell Characteristics. Endocrinology 143:1845-1850.
van der Wee K.S., et al., (2001) Immunomagnetic isolation and long-term culture of mouse type A spermatogonia. J Androl. 22: 696-704.
van Pelt A.M., et al., (1996). Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biol Reprod 55(2):439-444.
Wong, T.K. et al., (1980) Gene, 10:87.
Yan W.. Suominen J. and Toppari J. (2000) Stem cell factor protects germ cells from apoptosis in vitro. J. Cell Science 113: 161-168.
[References]
Chen, HY, et al., (1990) Vectors, promoters & expression of genes in chick embryo, J. Reprod. Fert. 41: 173-182.
Dirami G., et al., (1999) Effects of stem cell factor and granulocyte macrophage-colony stimulating factor on survival of porcine type A spermatogonia cultured in KSOM. Biol Reprod. 61: 225-230.
Dobrinski, I. et al., (2000) Germ Cell Transplantation Fromlarge Domestic Animals Into Mouse Testes. Mol. Reprod. Dev. 57: 270-279.
Ertl, C. and Wrobel KH (1992) Distribution of sugar residues in the bovine testis during postnatal ontogenesis demonstrated with lectinhorseradish peroxidase conjugates Histochemistry 97: 161-171.
Feng, L.-X., et al., (2002) Generation and in Vitro Differentiation of a Spermatogonial Cell Line.Science 297: 392-395.
Izadyar F., et al., (2002) Isolation and purification of type A spermatogonia from the bovine testis.Reproduction 124: 85-94.
Izadyar, F., et al., (2003) Proliferation and Differentiation of Bovine Type A Spermatogonia During Long-Term Culture. Biol Reprod 68: 272-281.
Kanatsu-Shinohara M., et al., (2003) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biology of Reproduction. [Epub ahead of print].
Kopchick, JJ et al., (1991) Methods for the introduction of recombinant DNA into chicken embryos.In Transgenic Animals, ed.NL First & FP Haseltine, pp.275-293, Boston; Butterworth-Heinemann.
Lee, M.-R. and Shuman, R. (1990) Transgenic quail produced by retrovirus vector infection transmit and express a foreign gene marker.Proc. 4th World Congr. Genet.Appl.Livestock Prod. 16, 107-110.
Matsui Y., Zsebo K. and Hogan BLM (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture.Cell 70: 841-847.
Meistrich ML., Van Beek MEAB. (1993) Spermatogonial stem cells.In: Desjardins C, wing LL (eds.), Cell and Molecular Biology of the Testis.New York: Oxford University Press; 266-295.
Meng X., et al., (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287: 1489-1493.
Meyer DB (1964) The migration of primordial germ cells in the chick embryo.Developmental Biology 10: 154-190.
Morrison SJ, et al., (1997) Regulatory mechanisms in stem cell biology.Cell 88: 287-298.
Nagano M, et al., (2001) Transgenic mice produced by retroviral transduction of male germline stem cells.Proc Natl Acad Sci USA 98: 13090-13095.
Nagano, M., et al., (1998) Culture of mouse spermatogonial stem cells.Tissue Cell 30, 389-397.
Nagano, M., et al., (2003) Maintenance of mouse male germline stem cells in vitro. Biol Reprod. [Epub ahead of print]
Ogawa T., et al., (1997) Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 41: 111-122.
Ogawa, T. (2001) Spermatogonial transplantation: the principle and possible application.J. Mol. Med. 79: 368-374.
Pain B., et al., (1996) Long-term in vitro culture and characterization of avian embryonic stem cells with multiple morphogenetic potentialities.Development 122: 2339-2348.
Park TS and Han JY (2000) Derivation and Characterization of Pluripotent Embryonic Germ Cells in Chicken.Molecular Reproduction and Development 56: 475-482.
Rassoulzadegan M., et al., (1993) Transmeiotic differentiation of male germ cells in culture.Cell 75: 997-1006.
Resnick JL, et al., (1992) Long-term proliferation of mouse primordial germ cells in culture.Nature 359: 550-551.
Russell LD, et al., (1990) Histological and Histopathological Evaluation of the Testis.Clearwater, IL: Cache River Press.pp 158.
Shinohara, T., et al., (1999) 1- and 6-integrin are surface markers on mouse spermatogonial stem cells.Proc. Natl. Acad. Sci. 96: 5504-5509.
Sousa, M., et al., (2002) Developmental potential of human spermatogonial cells co-cultured with Sertoli cells.Human Reprod. 17 (1): 161-172.
Tegelenbosch RA and de Rooij DG (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H / 101 F1 hybrid mouse Mutation Research 290 193-200.
VAN Pelt AM, et al., (2002) Establishment of Cell Lines with Rat Spermatogonial Stem Cell Characteristics. Endocrinology 143: 1845-1850.
van der Wee KS, et al., (2001) Immunomagnetic isolation and long-term culture of mouse type A spermatogonia. J Androl. 22: 696-704.
van Pelt AM, et al., (1996) .Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes.Biol Reprod 55 (2): 439-444.
Wong, TK et al., (1980) Gene, 10:87.
Yan W .. Suominen J. and Toppari J. (2000) Stem cell factor protects germ cells from apoptosis in vitro. J. Cell Science 113: 161-168.

鶏精巣組織の分解方法条件による細胞生存率を示すグラフであって、処理1は、2段階酵素処理方法、処理2は、van Pelt(1996)方法、処理3は、コラゲナーゼ−トリプシン処理方法である。It is a graph which shows the cell survival rate by the decomposition | disassembly method conditions of a chicken testis tissue, Comprising: The process 1 is a two-step enzyme treatment method, The process 2 is the van Pelt (1996) method, The process 3 is a collagenase-trypsin treatment method. . 基底細胞による鶏精原幹細胞の培養様相を示すグラフである。2次培養した精原幹細胞をそれぞれの基底細胞と共に共培養した後、8日目に精原幹細胞の数を観察して比較した。It is a graph which shows the culture | cultivation aspect of the chicken spermatogonial stem cell by a basal cell. After the cultivated spermatogonial stem cells were co-cultured with the respective basal cells, the number of spermatogonial stem cells was observed and compared on the 8th day. 培養液組成による鶏精原幹細胞のコロニー数を比較したグラフである。It is the graph which compared the number of colonies of the chicken spermatogonial stem cell by a culture solution composition. 培養液組成による鶏精原幹細胞の培養形態を示す写真である。a〜bは、DMEM−B培地、c〜dは、DMEM−C培地における精原幹細胞に該当する(a,c:100X、c,d:200X)。It is a photograph which shows the culture | cultivation form of the chicken spermatogonial stem cell by a culture solution composition. a to b correspond to DMEM-B medium, and c to d correspond to spermatogonial stem cells in DMEM-C medium (a, c: 100X, c, d: 200X). それぞれの成長因子による鶏精原幹細胞のコロニー形成数を比較したグラフである(*:P<0.05)。It is the graph which compared the colony formation number of the chicken spermatogonial stem cell by each growth factor (*: P <0.05). 成長因子の組み合せによる鶏精原幹細胞数の変化を示すグラフである(*:P<0.001)。It is a graph which shows the change of the number of chicken spermatogonial stem cells by the combination of a growth factor (*: P <0.001). 培養温度による鶏精原幹細胞数の変化を示すグラフである。It is a graph which shows the change of the chicken spermatogonial stem cell number by culture | cultivation temperature. 体外培養時、鶏精原幹細胞の成長曲線に該当するグラフである。It is a graph applicable to the growth curve of a chicken spermatogonial stem cell at the time of in vitro culture. 鶏精原幹細胞の培養様相を示す写真である(200X)。(a)初期培養3日目、(b)初期培養7日目、(c)2次培養(パッセージ1)5日目、(d)約3ヶ月培養した精原幹細胞(パッセージ6の後、20日間培養)It is a photograph which shows the culture | cultivation aspect of a chicken spermatogonial stem cell (200X). (a) 3 days of initial culture, (b) 7 days of initial culture, (c) secondary culture (passage 1), 5 days, (d) spermatogonial stem cells cultured for about 3 months (after passage 6, 20 (Day culture) 体外培養した鶏精原幹細胞のPAS(Periodic Acid Shiff's)染色様相を示す写真である(200X)。(a)4週齢鶏の精原幹細胞(パッセージ2)、(b)9週齢鶏の精原幹細胞(パッセージ2)。It is a photograph which shows the PAS (Periodic Acid Shiff's) dyeing | staining aspect of the chicken spermatogonial stem cell cultured in vitro (200X). (a) Spermatogonial stem cells (passage 2) of 4-week-old chickens, (b) Spermatogonial stem cells (passage 2) of 9-week-old chickens. 体外培養した鶏精原幹細胞のFITC−STA染色様相を示す写真である(400X)。3週齢鶏の精原幹細胞(パッセージ2)を利用して、FITC−STA反応した結果、細胞表面にSTAが強く反応し、蛍光を発している。(a):蛍光写真、(b):位相差顕微鏡写真。It is a photograph which shows the FITC-STA dyeing | staining aspect of the chicken spermatogonial stem cell cultured in vitro (400X). As a result of FITC-STA reaction using spermatogonial stem cells (passage 2) of a 3-week-old chicken, STA strongly reacts on the cell surface and emits fluorescence. (a): Fluorescent photograph, (b): Phase contrast micrograph. 体外培養した鶏精原幹細胞のFITC−DBA染色様相を示す写真である。(a)及び(b)は、パッセージ0の鶏精原幹細胞に対するものであり、(c)及び(d)は、パッセージ3の鶏精原幹細胞に対するものである。(a)及び(c)は、蛍光写真であり、(b)及び(d)は、位相差顕微鏡写真である。It is a photograph which shows the FITC-DBA dyeing | staining aspect of the chicken spermatogonial stem cell cultured in vitro. (a) and (b) are for passage 0 chicken spermatogonial stem cells, and (c) and (d) are for passage 3 chicken spermatogonial stem cells. (a) and (c) are fluorescence photographs, and (b) and (d) are phase contrast micrographs. 体外培養した鶏精原幹細胞のα6−インテグリン抗体に対する反応様相を示す写真である(200X)。3週齢鶏の精原幹細胞(パッセージ1)。It is a photograph which shows the reaction mode with respect to the alpha6-integrin antibody of the chicken spermatogonial stem cell cultured in vitro (200X). 3 weeks old chicken spermatogonial stem cells (passage 1). 体外培養した鶏精原幹細胞のβ1−インテグリン抗体に対する反応様相を示す写真である(200X)。3週齢鶏の精原幹細胞(パッセージ1)。It is a photograph which shows the reaction mode with respect to the β1-integrin antibody of the chicken spermatogonial stem cell cultured in vitro (200X). 3 weeks old chicken spermatogonial stem cells (passage 1). 体外培養した鶏精原幹細胞のSSEA−1、SSEA−3、及びSSEA−4免疫染色結果写真である。Pは、パッセージ数を示し、TSCは、鶏精巣基質細胞を示す。It is a photograph of the SSEA-1, SSEA-3, and SSEA-4 immunostaining results of chicken spermatogonial stem cells cultured in vitro. P indicates the number of passages, and TSC indicates chicken testis matrix cells. 体外培養した鶏精原幹細胞をFITC−STA及び抗−SSEA−1抗体で二重染色した結果の写真である。It is a photograph of the result of double-staining chicken spermatogonial stem cells cultured in vitro with FITC-STA and anti-SSEA-1 antibody.

Claims (19)

次の段階を含む鳥類精原幹細胞の長期培養方法:
(a) 鳥類の精巣を収得する段階;
(b) 前記精巣から精巣細胞ポピュレーション(population)を分離する段階;及び
(c) 前記精巣細胞ポピュレーションに含まれた精原幹細胞を、基底細胞上で、細胞成長因子の含まれた培地で培養する段階。
A method for long-term culture of avian spermatogonial stem cells including the following steps:
(a) obtaining avian testis;
(b) separating testicular cell population from the testis; and
(c) culturing spermatogonial stem cells contained in the testicular cell population on a basal cell in a medium containing a cell growth factor.
前記段階(b)は、コラゲナーゼ、トリプシン、またはこれらの混合物を、前記収得した精巣の組織に処理して行われることを特徴とする、請求項1に記載の方法。
The method according to claim 1, wherein the step (b) is performed by treating collagenase, trypsin, or a mixture thereof with the obtained testicular tissue.
前記段階(b)は、コラゲナーゼ及びトリプシンの混合物を、前記収得した精巣の組織に処理して行われることを特徴とする、請求項2に記載の方法。
3. The method according to claim 2, wherein the step (b) is performed by treating the obtained testicular tissue with a mixture of collagenase and trypsin.
前記段階(c)において、基底細胞は、繊維芽細胞、生殖器基質細胞、精巣基質細胞、またはマウスSTO細胞株であることを特徴とする、請求項1に記載の方法。
The method according to claim 1, wherein in the step (c), the basal cell is a fibroblast, a genital matrix cell, a testicular matrix cell, or a mouse STO cell line.
前記基底細胞は、生殖器基質細胞または精巣基質細胞であることを特徴とする、請求項4に記載の方法。
The method according to claim 4, wherein the basal cell is a genital matrix cell or a testicular matrix cell.
前記基底細胞は、生殖器基質細胞であることを特徴とする、請求項5に記載の方法。
6. The method according to claim 5, wherein the basal cells are genital matrix cells.
前記細胞成長因子は、繊維芽細胞成長因子、インシュリン様成長因子−1、幹細胞因子、神経膠由来の神経栄養因子、及びこれらの組み合せからなる群から選択されることを特徴とする、請求項1に記載の方法。
The cell growth factor is selected from the group consisting of fibroblast growth factor, insulin-like growth factor-1, stem cell factor, glial-derived neurotrophic factor, and combinations thereof. The method described in 1.
前記培地は、分化抑制因子をさらに含むことを特徴とする、請求項1に記載の方法。
The method according to claim 1, wherein the culture medium further contains a differentiation inhibitor.
前記分化抑制因子は、白血病抑制因子であることを特徴とする、請求項8に記載の方法。
The method according to claim 8, wherein the differentiation inhibiting factor is a leukemia inhibiting factor.
前記培地は、繊維芽細胞成長因子、インシュリン様成長因子−1、及び白血病抑制因子の混合物を含む補足物を含有することを特徴とする、請求項1に記載の方法。
The method of claim 1, wherein the medium contains a supplement comprising a mixture of fibroblast growth factor, insulin-like growth factor-1, and leukemia inhibitory factor.
前記培地は、血清及び抗酸化剤をさらに含むことを特徴とする、請求項1に記載の方法。
The method of claim 1, wherein the medium further comprises serum and an antioxidant.
前記段階(c)の培養温度は、約37℃であることを特徴とする、請求項1に記載の方法。
The method according to claim 1, wherein the culture temperature in step (c) is about 37 ° C.
前記鳥類は、鶏、鶉、七面鳥、鴨、鵞鳥、雉、または鳩であることを特徴とする、請求項1に記載の方法。
The method of claim 1, wherein the birds are chickens, eagle, turkey, duck, eagle bird, eagle, or pigeon.
前記段階(c)の後に、鳥類の精原幹細胞を同定する段階をさらに含むことを特徴とする、請求項1に記載の方法。
The method of claim 1, further comprising the step of identifying avian spermatogonial stem cells after the step (c).
前記鳥類精原幹細胞の同定は、(i)PAS(Periodic Acid Shiff's)染色、(ii) STA(Sojanum tuberosum agglutinin)染色、(iii) α6−インテグリン抗体染色、(iv)β1−インテグリン抗体染色、(v)SSEA−1抗体染色、(vi)SSEA−3抗体染色、(vii)SSEA−4抗体染色、(viii)DBA(Doliclos bifflrus agglutinin)染色、または(ix)前記染色方法の組み合せにより行うことを特徴とする、請求項14に記載の方法。
The avian spermatogonial stem cells are identified by (i) PAS (Periodic Acid Shiff's) staining, (ii) STA (Sojanum tuberosum agglutinin) staining, (iii) α6-integrin antibody staining, (iv) β1-integrin antibody staining, v) SSEA-1 antibody staining, (vi) SSEA-3 antibody staining, (vii) SSEA-4 antibody staining, (viii) DBA (Doliclos bifflrus agglutinin) staining, or (ix) a combination of the above staining methods. 15. A method according to claim 14, characterized.
精原幹細胞の特性を示す鳥類細胞を含むことを特徴とする鳥類精原幹細胞のポピュレーション。
A population of avian spermatogonial stem cells characterized by comprising avian cells exhibiting the characteristics of spermatogonial stem cells.
前記精原幹細胞の特性は、(i)PAS(Periodic Acid Shiff's)染色、(ii) STA(Sojanum tuberosum agglutinin)染色、(iii) α6−インテグリン抗体染色、(iv)β1−インテグリン抗体染色、(v)SSEA−1抗体染色、(vi)SSEA−3抗体染色、(vii)SSEA−4抗体染色、(viii)DBA(Doliclos bifflrus agglutinin)染色、または(ix)前記染色方法の組み合せの陽性反応であることを特徴とする、請求項16に記載の鳥類精原幹細胞のポピュレーション。
The characteristics of the spermatogonial stem cells are (i) PAS (Periodic Acid Shiff's) staining, (ii) STA (Sojanum tuberosum agglutinin) staining, (iii) α6-integrin antibody staining, (iv) β1-integrin antibody staining, (v This is a positive reaction of SSEA-1 antibody staining, (vi) SSEA-3 antibody staining, (vii) SSEA-4 antibody staining, (viii) DBA (Doliclos bifflrus agglutinin) staining, or (ix) a combination of the above staining methods. A population of avian spermatogonial stem cells according to claim 16, characterized in that.
前記鳥類精原幹細胞のポピュレーションは、請求項1〜15のいずれかに記載の方法により得られることを特徴とする、請求項16に記載の鳥類精原幹細胞のポピュレーション。
The population of avian spermatogonial stem cells according to claim 16, wherein the population of avian spermatogonial stem cells is obtained by the method according to claim 1.
次の段階を含む形質転換鳥類の生産方法:
(a) 請求項16〜18のいずれかに記載の鳥類精原幹細胞のポピュレーションに外来遺伝子を転移させる段階;
(b) 前記鳥類精原幹細胞のポピュレーションを受容体の精巣に移植する段階;及び
(c) 前記受容体の子孫を得て、形質転換鳥類を生産する段階。
Methods for producing transformed birds including the following steps:
(a) transferring a foreign gene to the population of avian spermatogonial stem cells according to any one of claims 16 to 18;
(b) transplanting the avian spermatogonial stem cell population into the testis of the receptor; and
(c) obtaining progeny of the receptor to produce transformed birds;
JP2006523124A 2003-08-08 2004-08-06 Avian spermatogonial stem cell culture method and avian spermatogonial stem cell obtained thereby Pending JP2007501625A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030055119A KR100569168B1 (en) 2003-08-08 2003-08-08 Method for Culturing Avian Spermatogonial Stem Cells and Avian Spermatogonial Stem Cells Prepared thereby
PCT/KR2004/001992 WO2005014802A1 (en) 2003-08-08 2004-08-06 Method for culturing avian spermatogonial stem cells and avian spermatogonial stem cells prepared thereby

Publications (1)

Publication Number Publication Date
JP2007501625A true JP2007501625A (en) 2007-02-01

Family

ID=36241982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006523124A Pending JP2007501625A (en) 2003-08-08 2004-08-06 Avian spermatogonial stem cell culture method and avian spermatogonial stem cell obtained thereby

Country Status (5)

Country Link
US (1) US7754479B2 (en)
EP (1) EP1664281A4 (en)
JP (1) JP2007501625A (en)
KR (1) KR100569168B1 (en)
WO (1) WO2005014802A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100569163B1 (en) * 2003-08-11 2006-04-07 (주)아비코아생명공학연구소 Method for Producing Avian Chimera Using Spermatogonial Cells and Avian Chimera
CA2702386C (en) 2007-10-12 2018-07-24 Advanced Cell Technology, Inc. Improved methods of producing rpe cells and compositions of rpe cells
KR101006752B1 (en) * 2008-09-01 2011-01-10 재단법인서울대학교산학협력재단 Germ Cell Plasticity and Germline Transmission in Avian
KR101005022B1 (en) * 2009-05-22 2010-12-30 한국화학융합시험연구원 A method of collecting semen from lab animals and artificial insemination method thereof
US20110008764A1 (en) * 2009-06-02 2011-01-13 Davinci Biosciences Llc Human gonadal stem cells
US20110076254A1 (en) * 2009-09-28 2011-03-31 University Of Washington Porous scaffolds for stem cell renewal
IT1396725B1 (en) * 2009-11-17 2012-12-14 Università degli Studi di Perugia METHOD TO EXTEND AND IMPROVE THE FUNCTIONALITY OF VITRO SPERM
JP6184865B2 (en) * 2010-07-23 2017-08-23 アステラス インスティテュート フォー リジェネレイティブ メディシン Methods and highly purified compositions for detecting rare subpopulations of cells
US9157908B2 (en) 2011-04-22 2015-10-13 University Of Washington Through Its Center For Commercialization Chitosan-alginate scaffold cell culture system and related methods
KR101408936B1 (en) * 2012-01-31 2014-06-19 중앙대학교 산학협력단 Specific surface marker of undifferentiated spermatogonia in the pre-pubertal boar testis
US9670458B2 (en) 2013-07-13 2017-06-06 Aggenetics, Inc. Methods for spermatogonial stem cell (SSC) transfer
WO2016004376A1 (en) * 2014-07-03 2016-01-07 The Regents Of The University Of California Methods of expanding human prepubertal spermatogonial stem cells
CN107897118A (en) * 2017-12-05 2018-04-13 霍山野山牧业有限公司 A kind of anti-pestilence cultural method of gosling
US20210386792A1 (en) * 2018-12-19 2021-12-16 Dong Ha Bhang A method for increasing population of spermatogonial stem cells
KR102455288B1 (en) * 2021-12-03 2022-10-17 중앙대학교 산학협력단 Methods of converting neurospheres into germline stem cells and uses thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006533A1 (en) * 1997-08-04 1999-02-11 University Of Massachusetts A Public Institution Of Higher Education Of The Commonwealth Of Massachusetts, As Represented By Its Amherst Campus Avian primordial germ cell (pgc) cell line and a method for long term culturing thereof
WO2000029602A1 (en) * 1998-11-13 2000-05-25 Cedars-Sinai Medical Center Transfection of male germ cells for generation of selectable transgenic stem cells
WO2000029601A1 (en) * 1998-11-13 2000-05-25 Cedars-Sinai Medical Center A method for depopulating of vertebrate testis and for generation of transgenic species
WO2000047717A1 (en) * 1999-02-11 2000-08-17 Hanmi Pharm. Co., Ltd. Avian pluripotent embryonic germ cell line
JP2001523468A (en) * 1997-11-14 2001-11-27 セダーシナイ メディカル センター Transfection and transfer of male germ cells for production of transgenic species
WO2002067669A2 (en) * 2001-02-16 2002-09-06 Tranxenogen, Inc. Primordial germ cell-based germ line production of birds
JP2002543814A (en) * 1999-05-13 2002-12-24 セダーシナイ メディカル センター Genetic modification of male germ cells for transgenic species development and gene therapy
JP2003508068A (en) * 1999-09-08 2003-03-04 ビオファルム,ビズクムニー ウスタフ ビオファルマシー アー ベテリナルニ ツェーハー レツィーフ アー.エス. How to build transgenic poultry

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156569A (en) * 1997-08-04 2000-12-05 University Of Massachusetts Office Of Vice Chancellor For Research At Amherst Prolonged culturing of avian primordial germ cells (PGCs) using specific growth factors, use thereof to produce chimeric avians
US6333192B1 (en) * 1999-08-09 2001-12-25 North Carolina State University Method of producing an undifferentiated avian cell culture using avian primordial germ cells
US20020162134A1 (en) * 2001-02-16 2002-10-31 Alexander Baguisi Primordial germ cell-based germ line production of birds
AU2002341795A1 (en) 2001-09-21 2003-04-01 Avigenics, Inc. Production of transgenic avians using sperm-mediated transfection
WO2003106651A2 (en) 2002-06-18 2003-12-24 Georgetown University Spermatogonial cell line
WO2004092357A1 (en) * 2003-04-15 2004-10-28 Kyoto University Method of growing sperm stem cells in vitro, sperm stem cells grown by the method, and medium additive kit to be used in growing sperm stem cells in vitro

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006533A1 (en) * 1997-08-04 1999-02-11 University Of Massachusetts A Public Institution Of Higher Education Of The Commonwealth Of Massachusetts, As Represented By Its Amherst Campus Avian primordial germ cell (pgc) cell line and a method for long term culturing thereof
JP2001523468A (en) * 1997-11-14 2001-11-27 セダーシナイ メディカル センター Transfection and transfer of male germ cells for production of transgenic species
WO2000029602A1 (en) * 1998-11-13 2000-05-25 Cedars-Sinai Medical Center Transfection of male germ cells for generation of selectable transgenic stem cells
WO2000029601A1 (en) * 1998-11-13 2000-05-25 Cedars-Sinai Medical Center A method for depopulating of vertebrate testis and for generation of transgenic species
WO2000047717A1 (en) * 1999-02-11 2000-08-17 Hanmi Pharm. Co., Ltd. Avian pluripotent embryonic germ cell line
JP2002543814A (en) * 1999-05-13 2002-12-24 セダーシナイ メディカル センター Genetic modification of male germ cells for transgenic species development and gene therapy
JP2003508068A (en) * 1999-09-08 2003-03-04 ビオファルム,ビズクムニー ウスタフ ビオファルマシー アー ベテリナルニ ツェーハー レツィーフ アー.エス. How to build transgenic poultry
WO2002067669A2 (en) * 2001-02-16 2002-09-06 Tranxenogen, Inc. Primordial germ cell-based germ line production of birds

Also Published As

Publication number Publication date
US20070061910A1 (en) 2007-03-15
WO2005014802A1 (en) 2005-02-17
EP1664281A4 (en) 2008-01-02
EP1664281A1 (en) 2006-06-07
KR20050015866A (en) 2005-02-21
US7754479B2 (en) 2010-07-13
KR100569168B1 (en) 2006-04-07

Similar Documents

Publication Publication Date Title
Han et al. Production of germline chimeras by transfer of chicken gonadal primordial germ cells maintained in vitro for an extended period
CA2203148C (en) Active retinoic acid free culture medium for avian totipotential embryonic cells
RU2215029C2 (en) Method for obtaining established embryonic germ cell line in poultry, line of chicken embryonic germ cells, method for obtaining somatic or sexual chimeras, method for transfection of foreign gene in embryonic germ cells
Sofikitis et al. Efforts to create an artificial testis: culture systems of male germ cells under biochemical conditions resembling the seminiferous tubular biochemical environment
Park et al. Birth of germline chimeras by transfer of chicken embryonic germ (EG) cells into recipient embryos
US6156569A (en) Prolonged culturing of avian primordial germ cells (PGCs) using specific growth factors, use thereof to produce chimeric avians
AU2004318461B2 (en) Process for producing multipotential stem cell originating in testoid cell
AU738357B2 (en) Production of avian embryonic germ (EG) cell lines by prolonged culturing of PGCS, use thereof for cloning and chimerization
JP2007501625A (en) Avian spermatogonial stem cell culture method and avian spermatogonial stem cell obtained thereby
AU736087B2 (en) Avian primordial germ cell (PGC) cell line and a method for long term culturing thereof
US6703209B1 (en) Porcine totipotent cells and method for long-term culture
Xie et al. Derivation of chicken primordial germ cells using an indirect Co-culture system
KR100502889B1 (en) Method for Enhancing Germline Transmission Efficiency of Avian Primordial Germ Cells
KR100378747B1 (en) Avian pluripotent embryonic germ cell line and process for preparing same
Petitte et al. Understanding the origin of avian primordial germ cells: Implications for germ cell culture and transgenesis in poultry
WO2000008132A1 (en) Prolonged culturing of avian primordial germ cells using specific growth factors and use thereof
KR101006752B1 (en) Germ Cell Plasticity and Germline Transmission in Avian
홍영호 et al. Long-Term Culture and Improved Transfection Effciency of Gonadal Primordial Germ Cells (gPGCs) for the Production of Transgenic Chicken
KR20140043260A (en) Method for preparing avian somatic chimera by injection of bone marrow cell into fetilized egg

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090826

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101210

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110201

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110301

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220