JP2007333487A - Gas analysis unit, gas analyzer and gas analysis method - Google Patents

Gas analysis unit, gas analyzer and gas analysis method Download PDF

Info

Publication number
JP2007333487A
JP2007333487A JP2006164040A JP2006164040A JP2007333487A JP 2007333487 A JP2007333487 A JP 2007333487A JP 2006164040 A JP2006164040 A JP 2006164040A JP 2006164040 A JP2006164040 A JP 2006164040A JP 2007333487 A JP2007333487 A JP 2007333487A
Authority
JP
Japan
Prior art keywords
gas
detection electrode
reaction
reaction liquid
sample gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006164040A
Other languages
Japanese (ja)
Other versions
JP4846459B2 (en
Inventor
Hiromitsu Yatani
宏光 八谷
Takehiko Kitamori
武彦 北森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
DKK TOA Corp
Original Assignee
Kanagawa Academy of Science and Technology
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, DKK TOA Corp filed Critical Kanagawa Academy of Science and Technology
Priority to JP2006164040A priority Critical patent/JP4846459B2/en
Publication of JP2007333487A publication Critical patent/JP2007333487A/en
Application granted granted Critical
Publication of JP4846459B2 publication Critical patent/JP4846459B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a potentiometric sensor type gas analysis unit having a practical life while utilizing a miniaturizing technology; a gas analyzer; and a gas analysis method. <P>SOLUTION: The gas analysis unit includes a reaction liquid passage 10 having a concentration part 12, and a sample gas passage 20 having a concentration part 22. In the concentration parts 12 and 22, a reaction liquid is made to contact to and react with a sample gas. A detection electrode 31 and a detection electrode 41 generating potential according to the nature of the reaction liquid are arranged to contact the reaction liquid on the upstream side and the downstream side of the concentration part 12, respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガス分析ユニット、ガス分析計、及びガス分析方法に関する。さらに詳しくは、マイクロ化技術を利用しながら実用的な寿命も備えたポテンショメトリックセンサ方式のガス分析ユニット、ガス分析計、及びガス分析方法に関する。   The present invention relates to a gas analysis unit, a gas analyzer, and a gas analysis method. More specifically, the present invention relates to a potentiometric sensor type gas analysis unit, a gas analyzer, and a gas analysis method that have a practical life while utilizing a micro technology.

試料ガスを反応液に吸収させ、反応液の変化を観ることによるガス分析は、古くから行われている。この場合、反応液の変化を、反応液の性状に応じた電位を測定するポテンショメトリックセンサを用いて観察することが広く行われている。
ポテンショメトリックセンサは、反応液の性状に応じた電位を発生する検知電極と電位基準となる参照電極とから構成され、反応液流の試料ガス吸収箇所の下流側に配置されるのが通常である。参照電極としては、銀/塩化銀電極が用いられるのが一般的である。
Gas analysis by absorbing a sample gas into a reaction solution and observing changes in the reaction solution has been performed for a long time. In this case, the change of the reaction solution is widely observed using a potentiometric sensor that measures the potential according to the properties of the reaction solution.
The potentiometric sensor is generally composed of a detection electrode that generates a potential corresponding to the properties of the reaction liquid and a reference electrode that serves as a potential reference, and is usually disposed downstream of the sample gas absorption portion of the reaction liquid flow. . As the reference electrode, a silver / silver chloride electrode is generally used.

ただし、測定対象ガスの種類によっては、銀/塩化銀電極の使用を回避する必要が有り、参照電極を用いない方法が工夫されている。例えば、特許文献1では、塩化水素濃度計において、反応液流の試料ガス吸収箇所の上流側と下流側の双方に検知電極を配置し、両検知極の間に液絡部を介して基準電極を内蔵したセル室を設けることにより、参照電極を用いずに両検知極間の電位差を求めることが行われている(特許文献1)。   However, depending on the type of gas to be measured, it is necessary to avoid using a silver / silver chloride electrode, and a method that does not use a reference electrode has been devised. For example, in Patent Document 1, in a hydrogen chloride concentration meter, detection electrodes are arranged on both the upstream side and the downstream side of a sample gas absorption portion of a reaction liquid flow, and a reference electrode is interposed between both detection electrodes via a liquid junction. By providing a cell chamber with a built-in, a potential difference between both detection electrodes is obtained without using a reference electrode (Patent Document 1).

一方、マイクロ化された分析計(μ−TAS;Micro Total Analytical System,あるいはLab on a chipなどと呼ばれている。)が、近年種々の分析分野に波及している。
ガス分析をμ−TASで行う場合、試料ガスを吸収した後の反応液を、熱レンズ顕微鏡を検出器として観察することが行われている(非特許文献1)。
On the other hand, microanalyzed analyzers (μ-TAS; called Micro Total Analytical System, Lab on a chip, etc.) have spread to various analysis fields in recent years.
When gas analysis is performed with μ-TAS, the reaction liquid after absorbing the sample gas is observed using a thermal lens microscope as a detector (Non-Patent Document 1).

しかし、熱レンズ顕微鏡を検出器として用いると、分析装置全体が大型化し、コストも大きい。そのため、小型で安価な製品を得るために、μ−TASに利用可能な微小なポテンショメトリックセンサが求められている。ポテンショメトリックセンサの微小化にあたり特に難しいのは、参照電極の微小化である。
μ−TASに適用可能な参照電極としては、筑波大学の鈴木博章らが、ガラス基板上に、金骨格パターン、銀薄膜パターン、塩化銀を形成するためのスリットを有するポリイミド層、ENT層、電解質層、シリコーンゴムを順次積層した銀/塩化銀電極を試作している(非特許文献2)。
特開平3−148059号公報 「1.気液反応を利用したマイクロ化学分析チップの基礎検討」、ケミカルセンサーズ(Chemical Sensors)、2003年、第19巻付録(Supplement)B、p1-3 筑波大学 数理物質科学研究科 鈴木博章研究室、”液絡付き銀/塩化銀参照電極の微小化とその長寿命化”、[平成18年5月16日検索]、インターネット<URL:http://www.ims.tsukuba.ac.jp/~hsuzuki_lab/research/agcl/agcl.html>
However, when a thermal lens microscope is used as a detector, the entire analyzer is increased in size and cost. Therefore, in order to obtain a small and inexpensive product, there is a demand for a minute potentiometric sensor that can be used for μ-TAS. Particularly difficult in miniaturizing a potentiometric sensor is miniaturization of a reference electrode.
As reference electrodes applicable to μ-TAS, Hiroaki Suzuki et al. of the University of Tsukuba, on a glass substrate, a gold skeleton pattern, a silver thin film pattern, a polyimide layer having a slit for forming silver chloride, an ENT layer, an electrolyte A silver / silver chloride electrode in which layers and silicone rubber are sequentially laminated has been experimentally produced (Non-patent Document 2).
JP-A-3-148059 “1. Basic study of micro chemical analysis chip using gas-liquid reaction”, Chemical Sensors, 2003, Volume 19 Supplement B, p1-3 University of Tsukuba, Graduate School of Mathematical Sciences, Hiroaki Suzuki Laboratory, “Miniaturization of Liquid / Silver Chlorine Reference Electrode with Liquid Junction and Longer Life”, [Search May 16, 2006], Internet <URL: http: / /www.ims.tsukuba.ac.jp/~hsuzuki_lab/research/agcl/agcl.html>

しかし、非特許文献2の参照電極は、微小化した結果、塩化銀層が非常に薄く、反応液中への塩化銀の溶出によって、塩化銀膜が短時間で失われてしまい、実用化に耐える寿命が得られない。すなわち、溶解度積の大きい塩化銀を使用する限り、参照電極の微小化と長寿命化との両立は困難であった。
なお、銀/塩化銀電極の使用を回避するだけであれば、特許文献1のような測定系を組むことも考えられる。しかし、この場合、液絡部で隔てられたセル室を設けなければならず、微小化することは困難であった。
本発明は、上記事情に鑑みてなされたものであって、マイクロ化技術を利用しながら実用的な寿命も備えたポテンショメトリックセンサ方式のガス分析ユニット、ガス分析計、及びガス分析方法を提供することを課題とする。
However, the reference electrode of Non-Patent Document 2 has a very thin silver chloride layer as a result of miniaturization, and the silver chloride film is lost in a short time due to the elution of silver chloride into the reaction solution. The endurance life cannot be obtained. That is, as long as silver chloride having a large solubility product is used, it has been difficult to achieve both miniaturization of the reference electrode and longer life.
If only the use of the silver / silver chloride electrode is avoided, it is conceivable to construct a measurement system as in Patent Document 1. However, in this case, a cell chamber separated by a liquid junction has to be provided, and it is difficult to miniaturize.
The present invention has been made in view of the above circumstances, and provides a potentiometric sensor type gas analysis unit, a gas analyzer, and a gas analysis method that have a practical life while utilizing a micro technology. This is the issue.

上記の課題を達成するために、本発明者らが鋭意検討した結果、分析ユニットをマイクロ化すれば、その間の電位差を、間に基準電極を内蔵したセル室等を介在させることなく、直接に検知できることを見いだして、以下の本発明に想到した。   As a result of intensive studies by the present inventors in order to achieve the above-mentioned problems, if the analysis unit is micronized, the potential difference therebetween can be directly measured without interposing a cell chamber or the like containing a reference electrode therebetween. The inventors have found that they can be detected and have arrived at the present invention below.

すなわち、本発明は以下の構成を採用した。
[1]反応液が流れる反応液流路と、
該反応液流路の反応液と接触するように、上流側から順次設けられた第1検知電極及び第2検知電極を備え
前記反応液流路は、前記第1検知電極と第2検知電極との間に、反応液が試料ガスと反応する反応部を有し、
前記第1検知電極は、前記反応部の上流側における反応液の性状に応じた電位を発生し、
前記第2検知電極は、前記反応部の下流側における反応液の性状に応じた電位を発生することを特徴とするガス分析ユニット。
That is, the present invention employs the following configuration.
[1] a reaction liquid channel through which the reaction liquid flows;
The reaction liquid channel includes a first detection electrode and a second detection electrode sequentially provided from the upstream side so as to come into contact with the reaction liquid in the reaction liquid channel, and the reaction liquid channel includes the first detection electrode and the second detection electrode. In between, the reaction solution has a reaction part that reacts with the sample gas,
The first detection electrode generates a potential according to the properties of the reaction solution on the upstream side of the reaction unit,
The gas detection unit, wherein the second detection electrode generates a potential corresponding to the property of the reaction solution on the downstream side of the reaction section.

[2]さらに、試料ガスが流れる試料ガス流路を備え、
前記反応液流路の反応部が、該試料ガス流路と互いに内部の流体が接触可能な状態で隣接している[1]に記載のガス分析ユニット。
[3]さらに、気液分離体を備え、
前記反応液流路の反応部が、該気液分離体を介して、試料ガスと接触する[1]に記載のガス分析ユニット。
[4]前記反応液流路の前記第1検知電極と第2検知電極が設けられた部分の最大深さが1〜500μmである[1]から[3]の何れかに記載のガス分析ユニット。
[5][1]から[4]の何れかに記載のガス分析ユニットと、前記第1検知電極と第2検知電極との間の電位差を検知する分析計本体を備えるガス分析計。
[6][1]から[4]の何れかに記載のガス分析ユニットの前記第1検知電極と第2検知電極との間の電位差を測定して前記試料ガスの分析を行うガス分析方法であって、前記反応液流路の反応液流量が0.01〜1000μL/分であることを特徴とするガス分析方法。
[7]前記反応液のイオン強度が10−7〜10である[6]に記載のガス分析方法。
[2] Furthermore, a sample gas flow path through which the sample gas flows is provided,
The gas analysis unit according to [1], wherein the reaction portion of the reaction liquid channel is adjacent to the sample gas channel in a state in which the fluid inside can contact each other.
[3] Furthermore, a gas-liquid separator is provided,
The gas analysis unit according to [1], wherein a reaction part of the reaction liquid channel is in contact with a sample gas through the gas-liquid separator.
[4] The gas analysis unit according to any one of [1] to [3], wherein a maximum depth of a portion of the reaction liquid channel where the first detection electrode and the second detection electrode are provided is 1 to 500 μm. .
[5] A gas analyzer comprising the gas analysis unit according to any one of [1] to [4] and an analyzer main body that detects a potential difference between the first detection electrode and the second detection electrode.
[6] A gas analysis method for analyzing the sample gas by measuring a potential difference between the first detection electrode and the second detection electrode of the gas analysis unit according to any one of [1] to [4]. The gas analysis method is characterized in that the reaction solution flow rate in the reaction solution channel is 0.01 to 1000 μL / min.
Gas analyzing method according to [7] The ionic strength of the reaction solution is 10 -7 to 10 0 [6].

本発明によれば、マイクロ化技術を利用しながら実用的な寿命も備えたポテンショメトリックセンサ方式のガス分析ユニット、ガス分析計、及びガス分析方法を提供することができる。   According to the present invention, it is possible to provide a potentiometric sensor type gas analysis unit, a gas analyzer, and a gas analysis method that have a practical life while utilizing micro technology.

[第1実施形態]
図1は、本発明の第1実施形態を示す平面図で、図1(a)が全体図、図1(b)〜(d)が要部拡大図である。
本実施形態のガス分析ユニットは、図1に示すように、基板1に設けられた反応液流路10と試料ガス流路20、及び反応液流路10に接して設けられた検出器30、40とを備えている。
[First Embodiment]
FIG. 1 is a plan view showing a first embodiment of the present invention, FIG. 1 (a) is an overall view, and FIGS. 1 (b) to 1 (d) are main part enlarged views.
As shown in FIG. 1, the gas analysis unit of this embodiment includes a reaction liquid channel 10 and a sample gas flow path 20 provided on the substrate 1, and a detector 30 provided in contact with the reaction liquid flow path 10. 40.

基板1の材質としては、例えば、シリコン、樹脂、硝子、石英等が使用できる。これらの材質中、硝子は透明性が高く、このガス分析ユニットを利用して光分析を行う場合に好適である。特に、パイレックス(登録商標)ガラスは、耐熱性、耐薬品性が高く好ましい。
基板1は、単一の材質から構成されていてもよく、複数の材質を組み合わせてもよい。たとえば、エッチング等により反応液流路10と試料ガス流路20を形成したシリコン板に、硝子板を貼り合わせて基板とすることもできる。基板1は平板状とされているが、形状に特に限定はない。
As a material of the substrate 1, for example, silicon, resin, glass, quartz or the like can be used. Of these materials, glass has high transparency, and is suitable for optical analysis using this gas analysis unit. In particular, Pyrex (registered trademark) glass is preferable because of its high heat resistance and chemical resistance.
The substrate 1 may be composed of a single material or a combination of a plurality of materials. For example, a glass plate can be bonded to a silicon plate on which the reaction liquid channel 10 and the sample gas channel 20 are formed by etching or the like to form a substrate. Although the board | substrate 1 is made into flat form, there is no limitation in particular in a shape.

反応液流路10は、上流側(図示左側)から、導入部11、集合部12、流出部13とからなり、試料ガス流路20は、上流側(図示左側)から、導入部21、集合部22、流出部23とからなっている。
反応液流路10の集合部12は、試料ガス流路20の集合部22と、互いに内部の流体が接触可能な状態で隣接しており、試料ガスを反応液中に吸収できるようになっている。すなわち、本実施形態では、集合部12が、反応液が試料ガスと反応する反応部となっている。
The reaction liquid channel 10 is composed of an introduction part 11, a collecting part 12 and an outflow part 13 from the upstream side (left side in the figure), and the sample gas flow path 20 is introduced from the upstream side (left side in the figure). It consists of a part 22 and an outflow part 23.
The collecting portion 12 of the reaction liquid channel 10 is adjacent to the collecting portion 22 of the sample gas flow channel 20 so that the fluid inside can be in contact with each other, so that the sample gas can be absorbed into the reaction solution. Yes. That is, in the present embodiment, the collecting portion 12 is a reaction portion where the reaction solution reacts with the sample gas.

反応液流路10の導入部11の上流端には、基板1の外部と連通しており反応液が導入される反応液導入口10aが設けられている。また、反応液流路10の流出部13の下流端には、基板1の外部と連通しており反応液が流出する反応液流出口10bが設けられている
同様に、試料ガス流路20の導入部21の上流端には、基板1の外部と連通しており試料ガスが導入される試料ガス導入口20aが設けられている。また、試料ガス流路20の流出部23の下流端には、基板1の外部と連通しており試料ガスが流出する試料ガス流出口20bが設けられている。
At the upstream end of the introduction part 11 of the reaction liquid channel 10, a reaction liquid introduction port 10 a that communicates with the outside of the substrate 1 and into which the reaction liquid is introduced is provided. Further, a reaction liquid outlet 10b that communicates with the outside of the substrate 1 and through which the reaction liquid flows out is provided at the downstream end of the outflow portion 13 of the reaction liquid flow path 10. A sample gas introduction port 20 a that communicates with the outside of the substrate 1 and into which the sample gas is introduced is provided at the upstream end of the introduction portion 21. A sample gas outlet 20b that communicates with the outside of the substrate 1 and through which the sample gas flows out is provided at the downstream end of the outflow portion 23 of the sample gas flow path 20.

反応液流路10の集合部12と試料ガス流路20の集合部22について、図1(b)〜(d)、図2を用いて、さらに詳細に説明する。
図1(b)は反応液流路10の導入部11と集合部12との境界(試料ガス流路20の導入部21と集合部22との境界)近傍の部分拡大平面図である。また、図1(c)は反応液流路10と試料ガス流路20の各々の集合部12、集合部22の部分拡大平面図である。また、図1(d)は反応液流路10の集合部12と流出部13との境界(試料ガス流路20の集合部22と流出部23との境界)近傍の部分拡大平面図である。
また、図2は、図1(c)のII-II断面図(反応液流路10と試料ガス流路20の各々の集合部12、集合部22における拡大断面図)である。
The collecting portion 12 of the reaction liquid flow channel 10 and the collecting portion 22 of the sample gas flow channel 20 will be described in more detail with reference to FIGS. 1B to 1D and FIG.
FIG. 1B is a partially enlarged plan view in the vicinity of the boundary between the introduction part 11 and the collection part 12 of the reaction liquid flow path 10 (the boundary between the introduction part 21 and the collection part 22 of the sample gas flow path 20). FIG. 1C is a partially enlarged plan view of the collecting portion 12 and the collecting portion 22 of each of the reaction liquid channel 10 and the sample gas channel 20. FIG. 1D is a partially enlarged plan view in the vicinity of the boundary between the collecting portion 12 and the outflow portion 13 of the reaction liquid channel 10 (the boundary between the collecting portion 22 and the outflow portion 23 of the sample gas flow channel 20). .
2 is a cross-sectional view taken along the line II-II of FIG. 1C (enlarged cross-sectional views of the collecting portion 12 and the collecting portion 22 of the reaction liquid channel 10 and the sample gas channel 20).

反応液流路10の集合部12の深さd2は試料ガス流路20の集合部22の深さd1よりも浅く(小さく)なっている。また、集合部12の幅w2は集合部22の幅w1よりも狭く(小さく)なっている。その結果、反応液流路10の集合部12の断面積は試料ガス流路20の集合部22の断面積よりも狭く(小さく)なっている。
深さd1は50μm超であることが好ましく、幅w1は(d1×2+10)μm前後であることが好ましい。深さd2は50μm以下であることが好ましく、幅w2は(d2×2+10)μm前後であることが好ましい。また、深さd1と深さd2との比は、3:1前後であることが好ましい。
なお、ここでいう深さとは図示のように断面における最大深さ、幅とは断面における最大幅のことであり、以下も同様である。
The depth d2 of the collecting portion 12 of the reaction liquid channel 10 is shallower (smaller) than the depth d1 of the collecting portion 22 of the sample gas channel 20. Further, the width w2 of the collective portion 12 is narrower (smaller) than the width w1 of the collective portion 22. As a result, the cross-sectional area of the collecting portion 12 of the reaction liquid channel 10 is narrower (smaller) than the cross-sectional area of the collecting portion 22 of the sample gas flow channel 20.
The depth d1 is preferably more than 50 μm, and the width w1 is preferably around (d1 × 2 + 10) μm. The depth d2 is preferably 50 μm or less, and the width w2 is preferably around (d2 × 2 + 10) μm. The ratio between the depth d1 and the depth d2 is preferably around 3: 1.
In addition, the depth here is the maximum depth in the cross section and the width is the maximum width in the cross section as shown in the figure, and the same applies to the following.

本実施形態では、集合部12と集合部22の間で、液体である反応液と気体である試料ガスとが層流状態で直接接触し、この気液界面において試料ガス中の成分が反応液中に移行する。そのため、隔膜を用いずに試料ガス中の成分と反応液中の成分との反応が可能とされている。   In the present embodiment, the liquid reaction liquid and the gas sample gas are in direct contact with each other between the collecting portion 12 and the collecting portion 22 in a laminar flow state, and the components in the sample gas are reacted at the gas-liquid interface. Migrate in. Therefore, it is possible to react the components in the sample gas and the components in the reaction solution without using a diaphragm.

基板1の反応液流路10の内面の一部又は全部は、親液性とされていることが好ましい。特に、集合部12の部分が親液性とされていることが好ましい。ここで親液性とは、反応液流路10の導入部11から導入される反応液に対して親液性であることを意味し、当該反応液が水性である場合には親水性であることを、当該反応液が油性である場合は親油性であることを意味する。
これに対して、基板1の試料ガス流路20の内面の一部又は全部は、親液性が低い方が好ましい。特に、集合部22の部分が低い親液性とされていることが好ましい。
親水性、親油性とする手段としては、薬液処理、プラズマ処理、粗面化処理等、公知の手段を適宜使用することができる。
It is preferable that part or all of the inner surface of the reaction liquid channel 10 of the substrate 1 is lyophilic. In particular, it is preferable that the gathering portion 12 is lyophilic. Here, the lyophilic means that it is lyophilic with respect to the reaction liquid introduced from the introduction part 11 of the reaction liquid flow path 10, and is hydrophilic when the reaction liquid is aqueous. This means that when the reaction solution is oily, it is lipophilic.
On the other hand, it is preferable that part or all of the inner surface of the sample gas flow path 20 of the substrate 1 has low lyophilicity. In particular, it is preferable that the portion of the collecting portion 22 is low lyophilic.
As means for making hydrophilic and lipophilic, known means such as chemical treatment, plasma treatment, and surface roughening treatment can be appropriately used.

本実施形態では、集合部12と集合部22において反応液と試料ガスが接触した後、反応液は反応液流路10の流出部13に、試料ガスは試料ガス流路20の流出部23に各々分離するようになっている。このように、2つの流体が再度分離するためには、集合部12と集合部22の間で気液の界面がある程度保たれた状態、すなわち、層流状態を維持する必要がある。
この層流状態を達成するためには、反応液導入口10aから導入する反応液および試料ガス導入口20aから導入する試料ガスの双方がある程度以上の圧力を有する必要がある。そして、この圧力を確保するためには、双方の流量を一定以上とする必要がある。
層流状態を達成するために必要な流量は、流路の断面積にもよるが、例えば、深さd1が90μm、幅w1が190μm、深さd2が60μm、幅w2が60μmの場合について、フェノールフタレイン溶液と空気を用いて実験したところ、以下の条件で良好な界面状態が得られることが確認できた。
すなわち、反応液(フェノールフタレイン溶液)の流量を1μL/分とし、試料ガス(空気)の流量を0.5〜2.5mL/分とした場合、および試料ガスの流量を1mL/分とし、反応液の流量を0.1〜5μL/分とした場合、各々良好な界面状態が得られた。
In the present embodiment, after the reaction solution and the sample gas come into contact with each other in the collecting portion 12 and the collecting portion 22, the reaction solution flows into the outflow portion 13 of the reaction solution flow channel 10, and the sample gas flows into the outflow portion 23 of the sample gas flow channel 20. Each is separated. Thus, in order for the two fluids to be separated again, it is necessary to maintain a state in which the gas-liquid interface is maintained between the collecting portion 12 and the collecting portion 22 to some extent, that is, a laminar flow state.
In order to achieve this laminar flow state, both the reaction liquid introduced from the reaction liquid introduction port 10a and the sample gas introduced from the sample gas introduction port 20a need to have a pressure of a certain level or more. And in order to ensure this pressure, it is necessary to make both flow volume more than fixed.
The flow rate necessary to achieve the laminar flow state depends on the cross-sectional area of the flow path. For example, when the depth d1 is 90 μm, the width w1 is 190 μm, the depth d2 is 60 μm, and the width w2 is 60 μm, When an experiment was conducted using a phenolphthalein solution and air, it was confirmed that a good interface state was obtained under the following conditions.
That is, when the flow rate of the reaction solution (phenolphthalein solution) is 1 μL / min, the flow rate of the sample gas (air) is 0.5 to 2.5 mL / min, and the flow rate of the sample gas is 1 mL / min, When the flow rate of the reaction solution was 0.1 to 5 μL / min, good interface states were obtained.

検出器30は、反応液の性状に応じた電位を発生する検知電極31と、検知電極31と接続された端子32とを有している。また、検出器40は、反応液の性状に応じた電位を発生する検知電極41と、検知電極41と接続された端子42とを有している。
検知電極31、検知電極41としては、例えば、酸化イリジウム膜、ISFET(イオン感応性電解効果型トランジスター)等のpHセンサや、その他のイオン選択性電極等を用いることができる。
The detector 30 has a detection electrode 31 that generates a potential according to the properties of the reaction solution, and a terminal 32 connected to the detection electrode 31. The detector 40 includes a detection electrode 41 that generates a potential according to the properties of the reaction solution, and a terminal 42 connected to the detection electrode 41.
As the detection electrode 31 and the detection electrode 41, for example, an iridium oxide film, a pH sensor such as an ISFET (ion-sensitive electrolytic effect transistor), other ion-selective electrodes, or the like can be used.

検知電極31は導入部11を流れる反応液と接触するように、検知電極41は流出部13を流れる反応液と接触するように、各々配置されている。
図3は、図1のIII−III線に沿った検知電極41付近の断面図である。図3に示すように、検知電極41は流出部13上面を覆うように配置され、これにより、流出部13を流れる反応液と接触できるようになっている。検知電極31も、同様に導入部11上面を覆うように配置され、これにより、導入部11を流れる反応液と接触できるようになっている。
The detection electrode 31 is arranged so as to be in contact with the reaction liquid flowing in the introduction part 11, and the detection electrode 41 is arranged in contact with the reaction liquid flowing in the outflow part 13.
FIG. 3 is a cross-sectional view of the vicinity of the detection electrode 41 along the line III-III in FIG. As shown in FIG. 3, the detection electrode 41 is arranged so as to cover the upper surface of the outflow portion 13, and can thereby come into contact with the reaction liquid flowing through the outflow portion 13. Similarly, the detection electrode 31 is also arranged so as to cover the upper surface of the introduction part 11, so that it can come into contact with the reaction liquid flowing through the introduction part 11.

反応液流路10の検知電極31、41が設けられた部分の深さd3は1〜500μmが好ましい。深さd3の上限値は、200μm以下がより好ましく、50μm以下であることがさらに好ましく、30μm以下であることが特に好ましい。深さd3が大きすぎると、検知電極から発生する電位が不安定となりやすい。また、検知電極31、41が設けられた部分の幅w3は(d3×2+10)〜(d3×2+20)μmであることが好ましい。
なお、反応液流路10の検知電極31、41が設けられた部分以外の深さと幅は、検知電極から発生する電位の安定性には直接影響しないが、反応液流路10全体の深さと幅は略均一であることが好ましい。これにより、反応液の流れが均一となり、流路の途中での液溜まりの問題を回避できる。
The depth d3 of the portion where the detection electrodes 31 and 41 of the reaction liquid channel 10 are provided is preferably 1 to 500 μm. The upper limit value of the depth d3 is more preferably 200 μm or less, further preferably 50 μm or less, and particularly preferably 30 μm or less. If the depth d3 is too large, the potential generated from the detection electrode tends to become unstable. The width w3 of the portion where the detection electrodes 31 and 41 are provided is preferably (d3 × 2 + 10) to (d3 × 2 + 20) μm.
The depth and width of the reaction liquid channel 10 other than the portion where the detection electrodes 31 and 41 are provided do not directly affect the stability of the potential generated from the detection electrode. The width is preferably substantially uniform. Thereby, the flow of the reaction liquid becomes uniform, and the problem of liquid accumulation in the middle of the flow path can be avoided.

検知電極31と検知電極41との間の反応液流路長は、0.1〜100cmであることが好ましい。反応液流路長とは、流路の流れ方向に沿った距離のことで、流路が曲線の場合には、当該曲線に沿った距離である。
反応液流路長が1cm未満の場合、集合部12(反応部)の長さを充分にとれず、反応液と試料ガスとの反応が不充分となる場合がある。反応液流路長が10cmを越える場合は、検知電極31と検知電極41との間の電気的導通が不充分となり、電位差を安定して検出することが困難となる場合がある。
検知電極間の反応液流路長は、1〜10cmであることがより好ましい。
The reaction liquid channel length between the detection electrode 31 and the detection electrode 41 is preferably 0.1 to 100 cm. The reaction liquid channel length is a distance along the flow direction of the channel, and when the channel is a curve, it is a distance along the curve.
When the reaction liquid channel length is less than 1 cm, the length of the collecting part 12 (reaction part) cannot be taken sufficiently, and the reaction between the reaction liquid and the sample gas may be insufficient. When the reaction liquid channel length exceeds 10 cm, the electrical continuity between the detection electrode 31 and the detection electrode 41 becomes insufficient, and it may be difficult to detect the potential difference stably.
The reaction liquid channel length between the detection electrodes is more preferably 1 to 10 cm.

反応液の流量は、0.01〜1000μL/分であることが好ましく、0.1〜100μL/分であることがより好ましく、0.1〜10μL/分であることがさらに好ましい。反応液の流量が小さすぎると、反応時間が長くなるなどの問題がある。反応液の流量が大きすぎると、反応液消費量が多くなる、低濃度ガスを分析しにくいなどの問題がある。
本実施形態では、反応液流量を集合部12における層流状態を達成するための反応液流量の制限があり、層流状態を達成できていれば、通常反応液の流量は0.01〜1000μL/分の範囲となる。
The flow rate of the reaction solution is preferably 0.01 to 1000 μL / min, more preferably 0.1 to 100 μL / min, and further preferably 0.1 to 10 μL / min. When the flow rate of the reaction solution is too small, there are problems such as a long reaction time. If the flow rate of the reaction solution is too large, there are problems such as an increase in the consumption of the reaction solution and difficulty in analyzing low concentration gas.
In this embodiment, there is a restriction on the flow rate of the reaction solution for achieving the laminar flow state in the collecting portion 12, and if the laminar flow state is achieved, the flow rate of the reaction solution is usually 0.01 to 1000 μL. / Min.

反応液のイオン強度は10−7〜10であることが好ましく、10−5〜10−1がより好ましく、10−3〜10−1がさらに好ましい。反応液のイオン強度が小さすぎると、S/N比が大きくなり、ノイズの影響が重大となる問題がある。反応液のイオン強度が大きすぎると、活量と濃度が大きく乖離し、しかるべき分析結果が得られないなどの問題がある。 Ionic strength of the reaction solution is preferably from 10 -7 to 10 0, more preferably 10 -5 to 10 -1, more preferably 10 -3 to 10 -1. If the ionic strength of the reaction solution is too small, the S / N ratio increases and there is a problem that the influence of noise becomes significant. If the ionic strength of the reaction solution is too high, there is a problem that the activity and the concentration are greatly deviated and an appropriate analysis result cannot be obtained.

本実施形態に係るガス分析ユニットは、図示を省略する分析計本体に、検出器30の端子32と、検出器40の端子42とをつなぎ、検知電極31と検知電極41との間の電位差を測定する。これによって、試料ガスとの反応による集合部12前後の反応液の性状の変化を測定し、その結果、試料ガス中の反応液と反応する成分の濃度等を求めることができる。   The gas analysis unit according to the present embodiment connects the terminal 32 of the detector 30 and the terminal 42 of the detector 40 to an analyzer main body (not shown), and generates a potential difference between the detection electrode 31 and the detection electrode 41. taking measurement. Thereby, the change in the properties of the reaction liquid before and after the gathering portion 12 due to the reaction with the sample gas can be measured, and as a result, the concentration of the component reacting with the reaction liquid in the sample gas can be obtained.

なお、本実施形態では、反応液と試料ガスが同一の方向に流れ、集合部12、22において層流状態で反応する構成としたが、試料ガス導入口20aと試料ガス流出口20bとを逆にして、反応ガス反応液と試料ガスが反対の方向に流れ、集合部12、22において向流状態で反応する構成としてもよい。また、特開平2005−329364号のように、反応ガスと試料ガスの流れが交叉するようにして交叉部において反応するようにしてもよい。   In the present embodiment, the reaction liquid and the sample gas flow in the same direction and react in a laminar flow state at the collecting portions 12 and 22, but the sample gas inlet 20a and the sample gas outlet 20b are reversed. Thus, the reaction gas reaction liquid and the sample gas may flow in opposite directions, and may react in the countercurrent state at the collecting portions 12 and 22. Further, as disclosed in JP-A-2005-329364, the reaction gas and the sample gas may cross each other so that they react at the crossing portion.

[第2実施形態]
図4は本発明の第2実施形態のガス分析ユニットとガス分析計を示す斜視図、図5は図4のV−V断面図、図6は図5のVI−VI部分断面図、図7は図5のVII−VII部分断面図である。本実施形態のガス分析ユニットは、図4に示すように、基板50に設けられた反応液流路51と、反応液流路51と基板50の外部とを隔てる気液分離体60、及び反応液流路51に接して設けられた検出器70、80とを備えている。また、このガス分析ユニットに分析計本体90が接続されて、本実施形態のガス分析計が構成されている。
[Second Embodiment]
4 is a perspective view showing a gas analyzing unit and a gas analyzer according to a second embodiment of the present invention, FIG. 5 is a VV sectional view of FIG. 4, FIG. 6 is a VI-VI partial sectional view of FIG. These are the VII-VII partial sectional views of FIG. As shown in FIG. 4, the gas analysis unit of the present embodiment includes a reaction liquid channel 51 provided in the substrate 50, a gas-liquid separator 60 that separates the reaction liquid channel 51 and the outside of the substrate 50, and a reaction. Detectors 70 and 80 provided in contact with the liquid flow path 51 are provided. In addition, an analyzer main body 90 is connected to the gas analysis unit to constitute the gas analyzer of the present embodiment.

基板50の材質としては、第1実施形態の基板1と同等の材質を用いることができる。また、基板50は平板状とされているが、形状に特に限定はない。
気液分離体60は、図5、図6に示すように、反応液流路51の略中央部に接して設けられており、この気液分離体60を介して、基板50外部に存在する試料ガスを反応液中に吸収できるようになっている。
すなわち、本実施形態では、反応液流路51の気液分離体60と接している部分が、反応液が試料ガスと反応する反応部となっている。
反応液流路51の気液分離体60と接している部分の深さd4は1〜500μmが好ましい。深さd4の上限値は、100μm以下がより好ましく、50μm以下であることがさらに好ましく、30μm以下であることが特に好ましい。深さd4が大きすぎると、試料ガスを反応液中に均一に吸収することが困難となりやすい。また、反応液流路51の気液分離体60と接している部分の幅w4は(d4×2+10)〜(d4×2+20)μmであることが好ましい。
As a material of the substrate 50, a material equivalent to the substrate 1 of the first embodiment can be used. Moreover, although the board | substrate 50 is made into flat form, there is no limitation in particular in a shape.
As shown in FIGS. 5 and 6, the gas-liquid separator 60 is provided in contact with the substantially central portion of the reaction liquid channel 51 and exists outside the substrate 50 via the gas-liquid separator 60. The sample gas can be absorbed into the reaction solution.
That is, in this embodiment, the part of the reaction liquid channel 51 that is in contact with the gas-liquid separator 60 is a reaction part where the reaction liquid reacts with the sample gas.
The depth d4 of the part in contact with the gas-liquid separator 60 of the reaction liquid channel 51 is preferably 1 to 500 μm. The upper limit value of the depth d4 is more preferably 100 μm or less, further preferably 50 μm or less, and particularly preferably 30 μm or less. If the depth d4 is too large, it is difficult to uniformly absorb the sample gas into the reaction solution. In addition, the width w4 of the portion of the reaction liquid channel 51 that is in contact with the gas-liquid separator 60 is preferably (d4 × 2 + 10) to (d4 × 2 + 20) μm.

図4、5に示すように、反応液流路51の上流端には、基板50の外部と連通しており反応液が導入される反応液導入口51aが設けられている。また、反応液流路51の下流端には、基板50の外部と連通しており反応液が流出する反応液流出口51bが設けられている。   As shown in FIGS. 4 and 5, a reaction solution introduction port 51 a that communicates with the outside of the substrate 50 and into which the reaction solution is introduced is provided at the upstream end of the reaction solution channel 51. A reaction liquid outlet 51 b that communicates with the outside of the substrate 50 and flows out of the reaction liquid is provided at the downstream end of the reaction liquid flow path 51.

検出器70は、反応液の性状に応じた電位を発生する検知電極71と、検知電極71と接続された端子72とを有している。また、検出器80は、反応液の性状に応じた電位を発生する検知電極81と、検知電極81と接続された端子82とを有している。
検知電極71、検知電極81としては、第1実施形態の検知電極31、検知電極41と同様のものを用いることができる。
The detector 70 includes a detection electrode 71 that generates a potential according to the properties of the reaction solution, and a terminal 72 connected to the detection electrode 71. The detector 80 includes a detection electrode 81 that generates a potential according to the properties of the reaction solution, and a terminal 82 connected to the detection electrode 81.
As the detection electrode 71 and the detection electrode 81, the thing similar to the detection electrode 31 and the detection electrode 41 of 1st Embodiment can be used.

気液分離体60としては、フッ素系多孔性ポリマーシート、ポーラスシリコン、ポリジメチルシロキサンポリマーの薄板、多孔質ガラス等の多孔性構造体、非多孔性の基材に微細スリットや微細孔等が設けられた気液分離可能な構造体、等を用いることができる。   As the gas-liquid separator 60, a porous structure such as a fluorine-based porous polymer sheet, porous silicon, a polydimethylsiloxane polymer thin plate, porous glass, etc., a non-porous substrate is provided with fine slits, fine pores, etc. The gas-liquid-separable structure obtained can be used.

検知電極71は、気液分離体60の上流側において反応液流路51を流れる反応液と接触するように、検知電極81は気液分離体60の下流側において反応液流路51を流れる反応液と接触するように、各々配置されている。
図7に示すように、検知電極81は反応液流路51上面を覆うように配置され、これにより、反応液流路51を流れる反応液と接触できるようになっている。検知電極71も、同様に反応液流路51上面を覆うように配置され、これにより、反応液流路51を流れる反応液と接触できるようになっている。
The detection electrode 81 is a reaction that flows through the reaction liquid channel 51 on the downstream side of the gas-liquid separator 60 so that the detection electrode 71 is in contact with the reaction liquid that flows through the reaction liquid channel 51 on the upstream side of the gas-liquid separator 60. Each is arranged so as to come into contact with the liquid.
As shown in FIG. 7, the detection electrode 81 is disposed so as to cover the upper surface of the reaction liquid flow path 51, and can thereby come into contact with the reaction liquid flowing through the reaction liquid flow path 51. Similarly, the detection electrode 71 is also arranged so as to cover the upper surface of the reaction liquid channel 51, so that it can come into contact with the reaction liquid flowing in the reaction liquid channel 51.

反応液流路51の検知電極71、81が設けられた部分の深さd5は1〜500μmが好ましい。深さd5の上限値は、200μm以下がより好ましく、50μm以下であることがさらに好ましく、30μm以下であることが特に好ましい。深さd5が大きすぎると、検知電極から発生する電位が不安定となりやすい。また、反応液流路51の検知電極71、81が設けられた部分の幅w5は(d5×2+10)〜(d5×2+20)μmであることが好ましい。
なお、反応液流路51の検知電極71、81が設けられた部分の以外の深さと幅は、検知電極から発生する電位の安定性には直接影響しないが、反応液流路51全体の深さと幅は略均一であることが好ましい。これにより、反応液の流れが均一となり、流路の途中での液溜まりの問題を回避できる。
The depth d5 of the portion where the detection electrodes 71 and 81 of the reaction liquid channel 51 are provided is preferably 1 to 500 μm. The upper limit of the depth d5 is more preferably 200 μm or less, further preferably 50 μm or less, and particularly preferably 30 μm or less. If the depth d5 is too large, the potential generated from the detection electrode tends to become unstable. Moreover, it is preferable that the width w5 of the part in which the detection electrodes 71 and 81 of the reaction liquid channel 51 are provided is (d5 × 2 + 10) to (d5 × 2 + 20) μm.
The depth and width of the reaction liquid channel 51 other than the portion where the detection electrodes 71 and 81 are provided do not directly affect the stability of the potential generated from the detection electrode. The width and width are preferably substantially uniform. Thereby, the flow of the reaction liquid becomes uniform, and the problem of liquid accumulation in the middle of the flow path can be avoided.

検知電極71と検知電極81との間の反応液流路長は、0.1〜100cmであることが好ましい。反応液流路長が1cm未満の場合、気液分離体60と接する反応液流路51(反応部)の長さを充分にとれず、反応液と試料ガスとの反応が不充分となる場合がある。反応液流路長が10cmを越える場合は、検知電極71と検知電極81との間の電気的導通が不充分となり、電位差を安定して検出することが困難となる場合がある。
検知電極間の反応液流路長は、1〜10cmであることがより好ましい。
The reaction liquid channel length between the detection electrode 71 and the detection electrode 81 is preferably 0.1 to 100 cm. When the reaction liquid channel length is less than 1 cm, the reaction liquid channel 51 (reaction part) in contact with the gas-liquid separator 60 cannot be sufficiently long, and the reaction between the reaction liquid and the sample gas becomes insufficient. There is. When the reaction liquid channel length exceeds 10 cm, the electrical continuity between the detection electrode 71 and the detection electrode 81 becomes insufficient, and it may be difficult to stably detect the potential difference.
The reaction liquid channel length between the detection electrodes is more preferably 1 to 10 cm.

第1実施形態と同様に、反応液の流量は、0.01〜1000μL/分であることが好ましく、0.1〜100μL/分であることがより好ましく、0.1〜10μL/分であることがさらに好ましい。
また、反応液のイオン強度は10−7〜10であることが好ましく、10−5〜10−1がより好ましく、10−3〜10−1がさらに好ましい。
Similar to the first embodiment, the flow rate of the reaction solution is preferably 0.01 to 1000 μL / min, more preferably 0.1 to 100 μL / min, and 0.1 to 10 μL / min. More preferably.
Also, the ionic strength of the reaction solution is preferably from 10 -7 to 10 0, more preferably 10 -5 to 10 -1, more preferably 10 -3 to 10 -1.

本実施形態に係るガス分析ユニットは、分析計本体90に、検出器70の端子72と、検出器80の端子82とをつなぎ、検知電極71と検知電極81との間の電位差を測定する。これによって、基板50外部の試料ガスとの反応による反応液の性状の変化を測定し、その結果、試料ガス中の反応液と反応する成分の濃度等を求めることができる。   The gas analysis unit according to the present embodiment connects the terminal 72 of the detector 70 and the terminal 82 of the detector 80 to the analyzer body 90 and measures the potential difference between the detection electrode 71 and the detection electrode 81. As a result, the change in the properties of the reaction liquid due to the reaction with the sample gas outside the substrate 50 can be measured, and as a result, the concentration of the component reacting with the reaction liquid in the sample gas can be obtained.

[実施例1]
図1の実施形態のガス分析ユニットを用いて、以下の条件でアンモニアガスの測定を行った。
(ガス分析ユニットの仕様)
反応液流路10の導入部11及び流出部13:幅80μm、深さ30μm、
反応液流路10の集合部12:幅70μm、深さ30μm、
試料ガス流路20の導入部21及び流出部23:幅180μm、深さ80μm、
試料ガス流路20の集合部22:幅178μm、深さ80μm、
集合部12、22の長さ:10mm、
検知電極31と検知電極41との間の反応液流路長:15mm、
検知電極31と検知電極41の幅(流れ方向):0.5mm、
検知電極31と検知電極41の厚み:250nm、
検知電極31と検知電極41の材質(表面):酸化イリジウム
[Example 1]
The ammonia gas was measured under the following conditions using the gas analysis unit of the embodiment of FIG.
(Specifications of gas analysis unit)
Introduction part 11 and outflow part 13 of reaction liquid channel 10: width 80 μm, depth 30 μm,
Collecting portion 12 of reaction liquid flow path 10: width 70 μm, depth 30 μm,
Introduction part 21 and outflow part 23 of sample gas channel 20: width 180 μm, depth 80 μm,
Collecting portion 22 of sample gas flow path 20: width 178 μm, depth 80 μm,
The length of the gathering parts 12 and 22: 10 mm,
Reaction liquid channel length between the detection electrode 31 and the detection electrode 41: 15 mm,
Width of detection electrode 31 and detection electrode 41 (flow direction): 0.5 mm,
The thickness of the detection electrode 31 and the detection electrode 41: 250 nm,
Material (surface) of detection electrode 31 and detection electrode 41: iridium oxide

(測定条件等)
反応液:塩化アンモニウム溶液(濃度:6×10−3mol/L)
反応液流量:1μL/分
試料ガス:0〜194ppmのアンモニアガス(窒素ガスベース)
試料ガス流量:2μL/分
測定温度:室温(22℃)
(Measurement conditions, etc.)
Reaction solution: ammonium chloride solution (concentration: 6 × 10 −3 mol / L)
Reaction liquid flow rate: 1 μL / min Sample gas: 0 to 194 ppm of ammonia gas (nitrogen gas base)
Sample gas flow rate: 2 μL / min Measurement temperature: Room temperature (22 ° C.)

表1、図8に、アンモニアガス濃度に応じた検知電極31と検知電極41の電位差を示す。なお、図8の横軸は対数目盛である。また、表2、図9に、アンモニアガス濃度を、0ppmから、194ppmに切り換えてからの検知電極31と検知電極41の電位差変化を示す。   Table 1 and FIG. 8 show the potential difference between the detection electrode 31 and the detection electrode 41 according to the ammonia gas concentration. The horizontal axis in FIG. 8 is a logarithmic scale. Table 2 and FIG. 9 show changes in potential difference between the detection electrode 31 and the detection electrode 41 after the ammonia gas concentration is switched from 0 ppm to 194 ppm.

Figure 2007333487
Figure 2007333487

Figure 2007333487
Figure 2007333487

表1、図8に示すように、アンモニアガス濃度に応じた電位差が得られた。また、表2、図9に示すように、約2〜3分で、試料ガス濃度に追随した電位差が得られた。なお、試料ガス濃度に追随した電位差が得られるまでの時間は、主として反応液の移動に係る時間、すなわち、反応液流量に依存しているものと考えられる。   As shown in Table 1 and FIG. 8, a potential difference corresponding to the ammonia gas concentration was obtained. Further, as shown in Table 2 and FIG. 9, a potential difference following the sample gas concentration was obtained in about 2 to 3 minutes. In addition, it is considered that the time until the potential difference following the sample gas concentration is obtained mainly depends on the time related to the movement of the reaction solution, that is, the reaction solution flow rate.

[実施例2]
図1の実施形態のガス分析ユニットを用いて、以下の条件で二酸化炭素ガスの測定を行った。
(ガス分析ユニットの仕様)
実施例1と同じ
[Example 2]
Carbon dioxide gas was measured under the following conditions using the gas analysis unit of the embodiment of FIG.
(Specifications of gas analysis unit)
Same as Example 1

(測定条件等)
反応液:炭酸水素イオン溶液(濃度:0.02mol/L)
反応液流量:1μL/分
試料ガス:0〜9997ppmの二酸化炭素ガス(窒素ガスベース)
試料ガス流量:2μL/分
測定温度:室温(22℃)
(Measurement conditions, etc.)
Reaction solution: bicarbonate ion solution (concentration: 0.02 mol / L)
Reaction liquid flow rate: 1 μL / min Sample gas: 0-9997 ppm of carbon dioxide gas (based on nitrogen gas)
Sample gas flow rate: 2 μL / min Measurement temperature: Room temperature (22 ° C.)

表3、図10に、二酸化炭素ガス濃度に応じた検知電極31と検知電極41の電位差を示す。なお、図10の横軸は対数目盛である。また、表4、図11に、二酸化炭素ガス濃度を、0mg/Lから、9997mg/Lに切り換えてからの検知電極31と検知電極41の電位差変化を示す。   Table 3 and FIG. 10 show the potential difference between the detection electrode 31 and the detection electrode 41 according to the carbon dioxide gas concentration. The horizontal axis in FIG. 10 is a logarithmic scale. Table 4 and FIG. 11 show changes in the potential difference between the detection electrode 31 and the detection electrode 41 after the carbon dioxide gas concentration is switched from 0 mg / L to 9997 mg / L.

Figure 2007333487
Figure 2007333487

Figure 2007333487
Figure 2007333487

表3、図10に示すように、二酸化炭素ガス濃度に応じた電位差が得られた。また、表4、図11に示すように、約120分で、試料ガス濃度に追随した電位差が得られた。なお、試料ガス濃度に追随した電位差が得られるまでの時間は、主として反応液の移動にかかる時間、すなわち、反応液流量に依存しているものと考えられる。   As shown in Table 3 and FIG. 10, a potential difference corresponding to the carbon dioxide gas concentration was obtained. Further, as shown in Table 4 and FIG. 11, a potential difference following the sample gas concentration was obtained in about 120 minutes. In addition, it is considered that the time until the potential difference following the sample gas concentration is obtained mainly depends on the time required for the movement of the reaction solution, that is, the reaction solution flow rate.

第1実施形態を示す平面図で、図1(a)が全体図、図1(b)〜(d)が要部拡大図である。It is a top view which shows 1st Embodiment, FIG. 1 (a) is a general view, FIG.1 (b)-(d) is a principal part enlarged view. 図1(c)のII-II断面図である。It is II-II sectional drawing of FIG.1 (c). 図1(a)のIII-III部分断面図である。It is a III-III partial sectional view of Drawing 1 (a). 第2実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment. 図4のV-V断面図である。It is VV sectional drawing of FIG. 図5のVI-VI断面図である。It is VI-VI sectional drawing of FIG. 図5のVII-VII断面図である。It is VII-VII sectional drawing of FIG. アンモニアガス濃度に応じた電位差を示すグラフである。It is a graph which shows the electric potential difference according to ammonia gas concentration. アンモニアガス濃度を切り換えてからの電位差変化を示すグラフである。It is a graph which shows the electrical potential difference change after switching ammonia gas concentration. 二酸化炭素ガス濃度に応じた電位差を示すグラフである。It is a graph which shows the electric potential difference according to a carbon dioxide gas concentration. 二酸化炭素ガス濃度を切り換えてからの電位差変化を示すグラフである。It is a graph which shows the electrical potential difference change after switching a carbon dioxide gas density | concentration.

符号の説明Explanation of symbols

1、50…基板、10、51…反応液流路、20…試料ガス流路、
30、40、70、80…検出器、60…気液分離体、90…分析計本体

DESCRIPTION OF SYMBOLS 1,50 ... Board | substrate, 10,51 ... Reaction liquid flow path, 20 ... Sample gas flow path,
30, 40, 70, 80 ... detector, 60 ... gas-liquid separator, 90 ... analyzer body

Claims (7)

反応液が流れる反応液流路と、
該反応液流路の反応液と接触するように、上流側から順次設けられた第1検知電極及び第2検知電極を備え
前記反応液流路は、前記第1検知電極と第2検知電極との間に、反応液が試料ガスと反応する反応部を有し、
前記第1検知電極は、前記反応部の上流側における反応液の性状に応じた電位を発生し、
前記第2検知電極は、前記反応部の下流側における反応液の性状に応じた電位を発生することを特徴とするガス分析ユニット。
A reaction liquid flow path through which the reaction liquid flows;
The reaction liquid channel includes a first detection electrode and a second detection electrode sequentially provided from the upstream side so as to come into contact with the reaction liquid in the reaction liquid channel, and the reaction liquid channel includes the first detection electrode and the second detection electrode. In between, the reaction solution has a reaction part that reacts with the sample gas,
The first detection electrode generates a potential according to the properties of the reaction solution on the upstream side of the reaction unit,
The gas detection unit, wherein the second detection electrode generates a potential corresponding to the property of the reaction solution on the downstream side of the reaction section.
さらに、試料ガスが流れる試料ガス流路を備え、
前記反応液流路の反応部が、該試料ガス流路と互いに内部の流体が接触可能な状態で隣接している請求項1に記載のガス分析ユニット。
Furthermore, a sample gas flow path through which the sample gas flows is provided,
The gas analysis unit according to claim 1, wherein the reaction part of the reaction liquid channel is adjacent to the sample gas channel in a state in which an internal fluid can contact each other.
さらに、気液分離体を備え、
前記反応液流路の反応部が、該気液分離体を介して、試料ガスと接触する請求項1に記載のガス分析ユニット。
Furthermore, a gas-liquid separator is provided,
The gas analysis unit according to claim 1, wherein a reaction part of the reaction liquid channel is in contact with a sample gas through the gas-liquid separator.
前記反応液流路の前記第1検知電極と第2検知電極が設けられた部分の最大深さが1〜500μmである請求項1から3の何れかに記載のガス分析ユニット。   The gas analysis unit according to any one of claims 1 to 3, wherein a maximum depth of a portion of the reaction liquid channel where the first detection electrode and the second detection electrode are provided is 1 to 500 µm. 請求項1から4の何れかに記載のガス分析ユニットと、前記第1検知電極と第2検知電極との間の電位差を検知する分析計本体を備えるガス分析計。   A gas analyzer comprising: the gas analysis unit according to any one of claims 1 to 4; and an analyzer main body that detects a potential difference between the first detection electrode and the second detection electrode. 請求項1から4の何れかに記載のガス分析ユニットの前記第1検知電極と第2検知電極との間の電位差を測定して前記試料ガスの分析を行うガス分析方法であって、前記反応液流路の反応液流量が0.01〜1000μL/分であることを特徴とするガス分析方法。   A gas analysis method for analyzing the sample gas by measuring a potential difference between the first detection electrode and the second detection electrode of the gas analysis unit according to any one of claims 1 to 4, wherein the reaction A gas analysis method, wherein a flow rate of a reaction solution in a liquid channel is 0.01 to 1000 μL / min. 前記反応液のイオン強度が10−7〜10である請求項6に記載のガス分析方法。

Gas analyzing method according to claim 6 ionic strength of the reaction solution is 10 -7 to 10 0.

JP2006164040A 2006-06-13 2006-06-13 Gas analysis unit, gas analyzer, and gas analysis method. Expired - Fee Related JP4846459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164040A JP4846459B2 (en) 2006-06-13 2006-06-13 Gas analysis unit, gas analyzer, and gas analysis method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164040A JP4846459B2 (en) 2006-06-13 2006-06-13 Gas analysis unit, gas analyzer, and gas analysis method.

Publications (2)

Publication Number Publication Date
JP2007333487A true JP2007333487A (en) 2007-12-27
JP4846459B2 JP4846459B2 (en) 2011-12-28

Family

ID=38933104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164040A Expired - Fee Related JP4846459B2 (en) 2006-06-13 2006-06-13 Gas analysis unit, gas analyzer, and gas analysis method.

Country Status (1)

Country Link
JP (1) JP4846459B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440726A (en) * 1983-01-17 1984-04-03 Coulson Dale M Apparatus for electrochemical detection and coulometric titration
JPS6055255A (en) * 1983-09-05 1985-03-30 Denki Kagaku Keiki Co Ltd Method for measuring continuously gas concentration
JPH03148059A (en) * 1989-11-06 1991-06-24 Kyoto Denshi Kogyo Kk Hydrogen chloride concentration meter
JP2002541441A (en) * 1999-04-07 2002-12-03 スペクトルクス,インコーポレイティド Analytical device for continuous measurement of fluid properties
JP2005329365A (en) * 2004-05-21 2005-12-02 Dkk Toa Corp Gas-liquid reaction unit and analyzer
JP2006527069A (en) * 2003-03-26 2006-11-30 パーキンエルマー・エルエーエス・インコーポレーテッド Method and apparatus for improving gas detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440726A (en) * 1983-01-17 1984-04-03 Coulson Dale M Apparatus for electrochemical detection and coulometric titration
JPS6055255A (en) * 1983-09-05 1985-03-30 Denki Kagaku Keiki Co Ltd Method for measuring continuously gas concentration
JPH03148059A (en) * 1989-11-06 1991-06-24 Kyoto Denshi Kogyo Kk Hydrogen chloride concentration meter
JP2002541441A (en) * 1999-04-07 2002-12-03 スペクトルクス,インコーポレイティド Analytical device for continuous measurement of fluid properties
JP2006527069A (en) * 2003-03-26 2006-11-30 パーキンエルマー・エルエーエス・インコーポレーテッド Method and apparatus for improving gas detection
JP2005329365A (en) * 2004-05-21 2005-12-02 Dkk Toa Corp Gas-liquid reaction unit and analyzer

Also Published As

Publication number Publication date
JP4846459B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
US10690608B2 (en) Sensor array
Stetter et al. Amperometric gas sensors a review
CN107249708B (en) Micro point-of-care gas chromatography test strip and method for measuring analyte
US20100200400A1 (en) Embedded bodily fluid analysis device
EP2745103B1 (en) Sensor for fluid-soluble gas
EP3148415B1 (en) Vertical-flow electronic bio-chemical sensing devices
WO2014149611A1 (en) Paper-based reference electrode and potentiometric ion sensing
Timmer et al. Miniaturized measurement system for ammonia in air
CN103837586A (en) Bio-sensor
KR20150048702A (en) Electrochemical-based analytical test strip with intersecting sample-receiving chambers
Paknahad et al. Highly selective multi-target 3D-printed microfluidic-based breath analyzer
JP2008039615A (en) Separation device and method, and analysis method
JP4846459B2 (en) Gas analysis unit, gas analyzer, and gas analysis method.
ES2728805T3 (en) Equipment and procedure for the detection of liquids or liquid substances
JP5490492B2 (en) Plasma separator and blood analyzer
Yeganegi et al. Microfluidic integrated gas sensors for smart analyte detection: A comprehensive review
JP2007170850A (en) Sensor and detecting method
Isoda et al. Development of a source–drain electrode coated with an insulation layer for detecting concentration changes in a nitrate ion solution
WO2022239301A1 (en) Electrochemical sensor
Leidinger Methods for increasing the sensing performance of metal oxide semiconductor gas sensors at ppb concentration levels
Ekwińska et al. Transcutaneous Blood Capnometry Sensor Head Based on a Back-Side Contacted ISFET
Khumpuang et al. Development of bio-chemical sensor system integrated with blood extraction device
EP4096829A1 (en) Fluidic stack and reference electrode for sample collection and analysis and related methods
Khumpuang et al. Portable blood extraction device integrated with biomedical monitoring system
JP2004053371A (en) Chemical analysis method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees