JP5490492B2 - Plasma separator and blood analyzer - Google Patents

Plasma separator and blood analyzer Download PDF

Info

Publication number
JP5490492B2
JP5490492B2 JP2009250471A JP2009250471A JP5490492B2 JP 5490492 B2 JP5490492 B2 JP 5490492B2 JP 2009250471 A JP2009250471 A JP 2009250471A JP 2009250471 A JP2009250471 A JP 2009250471A JP 5490492 B2 JP5490492 B2 JP 5490492B2
Authority
JP
Japan
Prior art keywords
substrate
blood
plasma
concavo
convex structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009250471A
Other languages
Japanese (ja)
Other versions
JP2011095151A (en
Inventor
進 杉山
蘭子 初田
博昭 坂元
和宏 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Ritsumeikan Trust
Original Assignee
Horiba Ltd
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd, Ritsumeikan Trust filed Critical Horiba Ltd
Priority to JP2009250471A priority Critical patent/JP5490492B2/en
Publication of JP2011095151A publication Critical patent/JP2011095151A/en
Application granted granted Critical
Publication of JP5490492B2 publication Critical patent/JP5490492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、血液から血漿成分を分離するための血漿分離器及び当該血漿分離器を用いて血漿成分中の所定成分を測定することによって血液を分析する血液分析装置に関するものである。   The present invention relates to a plasma separator for separating a plasma component from blood and a blood analyzer for analyzing blood by measuring a predetermined component in the plasma component using the plasma separator.

従来、血液から血漿成分を分離するものとして、例えば特許文献1に示すように、2枚の平板を所定距離の間隙を設けて重ね合わせることにより毛細管流路を形成するとともに、当該毛細管流路内に障害突起を設けることによって血球成分と血漿成分とを分離するものが考えられている。   Conventionally, as a method for separating plasma components from blood, for example, as shown in Patent Document 1, a capillary channel is formed by overlapping two flat plates with a predetermined distance between them, and the capillary channel is formed in the capillary channel. It is considered that a blood cell component and a plasma component are separated from each other by providing an obstruction in the blood vessel.

しかしながら、毛細管流路内に障害突起を設けて血球成分と血漿成分とを分離する発想では、毛細管流路内に血球成分が導入されてしまい、当該毛細管流路内で溶血し易く、血球成分と血漿成分とを十分に分離することができない恐れがある。また、障害突起の配置の仕方によって血球成分と血漿成分との分離性能が左右されてしまうだけでなく、毛細管流路内の障害突起における血球詰まりも考慮する必要がある。   However, the idea of separating the blood cell component and the plasma component by providing an obstruction projection in the capillary channel introduces the blood cell component into the capillary channel, and is easily hemolyzed in the capillary channel. The plasma component may not be sufficiently separated. Further, not only the separation performance of the blood cell component and the plasma component is affected by the arrangement of the obstacle protrusion, but also the blood cell clogging in the obstacle protrusion in the capillary channel needs to be considered.

また、特許文献2に示すように、基板表面上に多数の突起を設けて、当該突起間の側周面で起こる毛細管現象を用いて血液から血漿成分を分離するものも考えられている。   In addition, as shown in Patent Document 2, it is also considered that a plurality of protrusions are provided on the surface of a substrate and a plasma component is separated from blood using a capillary phenomenon that occurs on a side peripheral surface between the protrusions.

しかしながら、血液が多数の突起上を伝って流れてしまう恐れがあり、衛生上問題である。また、毛細管現象により血漿も多数の突起間を流れて、血球成分が溶血する恐れがあり、血球成分と血漿成分とを十分に分離することができないという問題もある。   However, there is a risk of blood flowing along many protrusions, which is a sanitary problem. There is also a problem that plasma flows through a large number of protrusions due to capillary action, and the blood cell component may be hemolyzed, so that the blood cell component and the plasma component cannot be sufficiently separated.

特開2001−183363号公報JP 2001-183363 A 特表2008−547017号公報Special table 2008-547017

そこで本発明は、上記の問題点を一挙に解決すべくなされたものであり、毛細管流路内に血球成分が入ることを抑制して、その毛細管流路内において血球成分が溶血することを防止するとともに、毛細管流路内に血漿成分を導入し易くして血液から血漿成分を好適に分離することができることをその主たる所期課題とするものである。   Therefore, the present invention has been made to solve the above-mentioned problems all at once, and suppresses blood cell components from entering the capillary channel and prevents hemolysis of the blood cell components in the capillary channel. At the same time, it is a main intended problem that the plasma component can be easily separated from the blood by easily introducing the plasma component into the capillary channel.

すなわち本発明に係る血漿分離器は、内部に形成された毛細管流路に血液を導入して、当該血液から血漿成分を分離する血漿分離器であって、表面上に前記毛細管流路における少なくとも入口部分を形成する凹凸構造を有する第1基板と、前記第1基板に密着して設けられ、前記凹凸構造との間で前記毛細管流路における入口部分を形成する第2基板と、を備え、前記第1基板の凹凸構造の少なくとも開口部内面および前記第2基板の前記凹凸構造に対向する面に親水性処理が施されており、前記第1基板および前記第2基板を密着させて前記毛細管流路における入口部分を形成した状態において、前記毛細管流路の入口部分の断面において、親水性処理が施された部分の形状が、血球成分を通過させず血漿成分を毛細管現象により通過させるものであることを特徴とする。なお、毛細管流路における入口部分とは、毛細管流路の開口から所定距離までの部分である。   That is, the plasma separator according to the present invention is a plasma separator that introduces blood into a capillary channel formed therein and separates plasma components from the blood, and has at least an inlet in the capillary channel on the surface. A first substrate having a concavo-convex structure for forming a portion, and a second substrate provided in close contact with the first substrate and forming an inlet portion in the capillary channel between the concavo-convex structure, and Hydrophilic treatment is applied to at least the inner surface of the opening of the concavo-convex structure of the first substrate and the surface of the second substrate facing the concavo-convex structure, and the capillary flow is performed by bringing the first substrate and the second substrate into close contact with each other. In the state where the inlet part in the channel is formed, the shape of the part subjected to the hydrophilic treatment in the cross section of the inlet part of the capillary channel allows the plasma component to pass through capillary action without passing the blood cell component. And characterized in that. The inlet portion in the capillary channel is a portion from the opening of the capillary channel to a predetermined distance.

このようなものであれば、毛細管流路における入口部分の断面において親水性処理が施された部分の形状を血球成分が通過しない形状としているので、毛細管流路における入口部分で血球成分の流路への侵入を防止するとともに、血液から血漿成分を分離して毛細管流路内に導入させることができる。また、第1基板に概略矩形波状の凹凸構造を形成し、その第1基板に第2基板を密着させて毛細管流路における少なくとも入口部分を形成する構造において、第1基板の凹凸構造の少なくとも開口部内面および前記第2基板の前記凹凸構造に対向する面に親水性処理を施すだけで、毛細管流路に親水性を付加することができるので、血漿分離器の構成及び製造が簡単である。   In such a case, since the blood cell component does not pass through the shape of the portion subjected to the hydrophilic treatment in the cross section of the inlet portion in the capillary channel, the blood cell component channel at the inlet portion in the capillary channel. Can be prevented, and plasma components can be separated from blood and introduced into the capillary channel. Further, in the structure in which a substantially rectangular wave-shaped uneven structure is formed on the first substrate and the second substrate is brought into close contact with the first substrate to form at least an entrance portion in the capillary channel, at least an opening of the uneven structure of the first substrate is formed. Since the hydrophilicity can be added to the capillary channel only by applying hydrophilic treatment to the inner surface of the part and the surface of the second substrate facing the concavo-convex structure, the structure and production of the plasma separator is simple.

親水性処理としては、第1基板の凹凸構造の上部から酸素プラズマ又は紫外線を照射することが考えられる。このとき、凹凸構造の構成にも依るが、凹凸構造の開口部内面への親水性処理は比較的簡単であるが、照射条件の問題等から凹凸構造の底部内面への親水性処理は難しいという問題がある。一方で、凹凸構造全体を親水性処理すると、親水性が内面全体に亘り血球成分までも流路内に導入されてしまう恐れがある。これらを勘案して、凹凸構造への親水性処理の簡単化及び血球成分の流路侵入の防止を好適に実現するためには、前記凹凸構造の開口部内面が親水性であり、前記凹凸構造の底部内面が疎水性であることが望ましい。   As the hydrophilic treatment, it is conceivable to irradiate oxygen plasma or ultraviolet rays from the top of the uneven structure of the first substrate. At this time, although depending on the configuration of the concavo-convex structure, the hydrophilic treatment to the inner surface of the opening of the concavo-convex structure is relatively simple, but the hydrophilic treatment to the bottom inner surface of the concavo-convex structure is difficult due to the problem of irradiation conditions, etc. There's a problem. On the other hand, when the entire concavo-convex structure is subjected to a hydrophilic treatment, there is a possibility that the hydrophilicity may be introduced into the flow path even to the blood cell component over the entire inner surface. Considering these, in order to suitably realize the hydrophilic treatment to the uneven structure and prevent the blood cell component from entering the flow path, the inner surface of the opening of the uneven structure is hydrophilic, and the uneven structure It is desirable that the inner surface of the bottom of the substrate is hydrophobic.

複数の毛細管現象に血液を簡単に導入し易くすると共に、各毛細管流路の入口部分で血球が堆積し、血漿成分の流れが妨げられないようにするためには、前記複数の毛細管流路に連通する血液供給部を有し、当該血液供給部の表面に親水性処理が施されていることが望ましい。   In order to facilitate the introduction of blood into a plurality of capillaries, and to prevent blood cells from being accumulated at the inlet of each capillary channel and hindering the flow of plasma components, the plurality of capillaries It is desirable to have a blood supply unit that communicates, and the surface of the blood supply unit is subjected to a hydrophilic treatment.

また、本発明に係る血液分析装置は、内部に形成された複数の毛細管流路に血液を導入して、当該血液から血漿成分を分離する血漿分離器と、前記血漿分離器により分離された血漿成分に接触する測定用電極と、を具備し、前記血漿分離器が、表面上に前記毛細管流路における少なくとも入口部分を形成する断面概略矩形波状の凹凸構造を有する第1基板と、前記第1基板に密着して設けられ、前記凹凸構造との間で前記毛細管流路における入口部分を形成する第2基板と、を備え、前記第1基板の凹凸構造の少なくとも開口部内面および前記第2基板の前記凹凸構造に対向する面に親水性処理が施されており、前記第1基板および前記第2基板を密着させて前記毛細管流路における入口部分を形成した状態において、前記毛細管流路における入口部分の断面において、親水性処理が施された部分の形状が、血球成分を通過させず血漿成分を毛細管現象により通過させるものであり、前記測定用電極が、前記第2基板の前記凹凸構造に対向する面に埋設されて前記毛細管流路により分離された血漿成分に接触することを特徴とする。   Further, the blood analyzer according to the present invention introduces blood into a plurality of capillary channels formed therein, and separates plasma components from the blood, and plasma separated by the plasma separator A first substrate having a concavo-convex structure with a substantially rectangular wave shape in cross section that forms at least an inlet portion of the capillary channel on a surface thereof, and the measurement substrate that contacts a component; A second substrate that is provided in close contact with the substrate and forms an inlet portion in the capillary channel between the concavo-convex structure and at least an inner surface of the concavo-convex structure of the first substrate and the second substrate. The surface facing the concavo-convex structure is subjected to a hydrophilic treatment, and the first and second substrates are brought into close contact with each other to form an inlet portion in the capillary channel. In the cross section of the entrance portion, the shape of the portion subjected to the hydrophilic treatment is such that the blood cell component does not pass and the plasma component passes by capillary action, and the measurement electrode is the concavo-convex structure of the second substrate. The plasma component is embedded in a surface facing the plasma and separated by the capillary flow path.

このように構成した本発明によれば、毛細管流路内に血球成分が入ることを抑制して、その毛細管流路内において血球成分が溶血することを防止するとともに、毛細管流路内に血漿成分を導入し易くして血液から血漿成分を好適に分離することができることができる。   According to the present invention configured as described above, it is possible to prevent blood cell components from entering the capillary channel, thereby preventing hemolysis of the blood cell component in the capillary channel, and plasma components in the capillary channel. The plasma component can be suitably separated from the blood.

本発明の一実施形態に血液分析装置の模式的斜視図である。1 is a schematic perspective view of a blood analyzer according to an embodiment of the present invention. 同実施形態の血漿分離器の平面図である。It is a top view of the plasma separator of the embodiment. 同実施形態の血漿分離器のA−A線断面図である。It is an AA line sectional view of the plasma separator of the embodiment. 同実施形態の血漿分離器のB−B線拡大断面図である。It is a BB line expanded sectional view of the plasma separator of the embodiment. 変形実施形態に係る血液分析装置の模式図である。It is a schematic diagram of the blood analyzer which concerns on deformation | transformation embodiment. 変形実施形態に係る血漿分離器の断面図である。It is sectional drawing of the plasma separator which concerns on deformation | transformation embodiment.

以下に本発明に係る血液分析装置の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of a blood analyzer according to the present invention will be described with reference to the drawings.

<装置構成>
本実施形態に係る血液分析装置100は、血液から血漿成分を分離して、当該血漿成分に含有される尿酸等の所定成分の濃度を測定するためのものであり、図1に示すように、血液から血漿成分を分離する血漿分離器2と、当該血漿分離器2により分離された血漿成分に接触して当該血漿成分を通電するための測定用電極3と、当該測定用電極3に電圧を印加して流れる電流値を測定することにより、血漿成分中に含まれる尿酸等の所定成分の濃度を算出するCPU及びメモリ等から構成される情報処理装置4と、を備えている。
<Device configuration>
The blood analyzer 100 according to the present embodiment is for separating a plasma component from blood and measuring the concentration of a predetermined component such as uric acid contained in the plasma component. As shown in FIG. A plasma separator 2 that separates plasma components from blood, a measurement electrode 3 for contacting the plasma components separated by the plasma separator 2 and energizing the plasma components, and a voltage applied to the measurement electrode 3 And an information processing device 4 including a CPU, a memory, and the like that calculate a concentration of a predetermined component such as uric acid contained in a plasma component by measuring a current value applied and flowing.

なお、血漿成分は、水分および血漿蛋白質等を含む成分であり、所定の大きさ(本実施形態では2μm)よりも小さい分離対象成分である。また、血球成分は、赤血球、白血球および血小板を含む成分であり、前記所定の大きさ(2μm)よりも大きい非分離対象成分である。   The plasma component is a component containing water, plasma protein, and the like, and is a component to be separated that is smaller than a predetermined size (2 μm in this embodiment). The blood cell component is a component containing red blood cells, white blood cells, and platelets, and is a non-separation target component larger than the predetermined size (2 μm).

血漿分離器2は、図2に示すように、内部に形成された毛細管流路2Lに血液を導入して、当該血液から血漿成分を分離するものであり、血液が滴下等により供給される血液供給部2Dと、当該血液供給部2Dに連通して設けられ、当該血液供給部2Dに供給された血液中の血漿成分を毛細管現象により内部に導入して血球成分と血漿成分を分離する毛細管流路2Lと、を有する。なお、本実施形態の毛細管流路2Lは、一端が血液供給部2Dに連通し、略直線状の流路が互いに並設された複数の毛細管小流路2L1と、当該複数の毛細管小流路2L1の他端に連通する毛細管大流路2L2とからなる。毛細管大流路2L2の他端は大気開放されている。図2において斜線部により示している部分は、分離過程における血漿成分を示している。なお、最終的には毛細管流路2L全長に亘り血漿成分が分離され、大量の血漿成分を採取することができる。   As shown in FIG. 2, the plasma separator 2 introduces blood into a capillary channel 2L formed therein to separate plasma components from the blood, and blood is supplied by dropping or the like. A capillary flow that is provided in communication with the blood supply unit 2D and separates the blood cell component and the plasma component by introducing the plasma component in the blood supplied to the blood supply unit 2D into the inside by capillary action. 2L. The capillary channel 2L of the present embodiment has a plurality of capillary channels 2L1 having one end communicating with the blood supply unit 2D and substantially linear channels arranged in parallel to each other, and the plurality of capillary channels It consists of a capillary large flow path 2L2 communicating with the other end of 2L1. The other end of the large capillary channel 2L2 is open to the atmosphere. In FIG. 2, the hatched portion indicates the plasma component in the separation process. In addition, finally, plasma components are separated over the entire length of the capillary channel 2L, and a large amount of plasma components can be collected.

血漿分離器2の具体的な構成としては、図2〜図4に示すように、表面上に毛細管流路2Lにおける少なくとも入口部分(本実施形態では複数の毛細管小流路2L1が毛細管流路2Lにおける入口部分である。)を形成する断面概略矩形波状の凹凸構造212を有する第1基板21と、第1基板21に密着して設けられ、凹凸構造212との間で前記毛細管流路2Lにおける入口部分(複数の毛細管小流路2L1)を形成する第2基板22と、を備えている。   As a specific configuration of the plasma separator 2, as shown in FIGS. 2 to 4, at least the inlet portion of the capillary channel 2L on the surface (in this embodiment, a plurality of capillary small channels 2L1 are capillary channels 2L). The first substrate 21 having a concavo-convex structure 212 having a substantially rectangular wave shape in cross section forming the first substrate 21 and the concavo-convex structure 212 in the capillary channel 2L. And a second substrate 22 that forms an inlet portion (a plurality of capillary small flow paths 2L1).

第1基板21は、成形が容易であり安価な合成樹脂である例えばPMMA等からなり、図2に示すように、概略矩形状をなす平板(例えば1cm角)であり、その表面上に前記血液供給部2Dを形成する凹部211と、複数の毛細管流路2L1を形成する断面概略矩形波状の凹凸構造212と、毛細管大流路2L2を形成するする凹部213と、を備えている。   The first substrate 21 is made of, for example, PMMA, which is easy to mold and inexpensive, and is a flat plate (for example, 1 cm square) having a substantially rectangular shape as shown in FIG. A concave portion 211 that forms the supply portion 2D, a concavo-convex structure 212 having a substantially rectangular wave shape in cross section that forms the plurality of capillary channels 2L1, and a concave portion 213 that forms the large capillary channel 2L2.

凹部211は、第1基板21の一端部において、血液供給部2Dが全ての毛細管小流路2L1に連通するように形成されており、本実施形態では、平面視において概略矩形状をなすものである。また、その凹部211の深さは後述する凹凸構造212の凹溝と同一であり、凹部211の底面と凹凸構造212の底面とは面一である。   The recess 211 is formed at one end of the first substrate 21 so that the blood supply unit 2D communicates with all the capillary small channels 2L1, and in the present embodiment, has a substantially rectangular shape in plan view. is there. Further, the depth of the concave portion 211 is the same as a concave groove of the concave-convex structure 212 described later, and the bottom surface of the concave portion 211 and the bottom surface of the concave-convex structure 212 are flush with each other.

本実施形態の凹凸構造212は、毛細管流路2Lにおける入口部分である複数の毛細管小流路2L1を形成するものである。そして、凹凸構造212は略等断面形状をなし、その断面が概略矩形波形状をなすものである。つまり凹凸構造212は、断面概略コの字形状をなす複数の凹溝が並列されることにより構成されている。具体的な寸法としては、凹溝の幅が例えば2μmであり、例えば高さが9μmである。   The concavo-convex structure 212 of the present embodiment forms a plurality of capillary small channels 2L1 that are inlet portions in the capillary channel 2L. The concavo-convex structure 212 has a substantially equal cross-sectional shape, and the cross-section has a substantially rectangular wave shape. That is, the concavo-convex structure 212 is configured by arranging a plurality of concave grooves having a substantially U-shaped cross section in parallel. As specific dimensions, the width of the groove is, for example, 2 μm, and the height is, for example, 9 μm.

第2基板22は、第1基板と同様、例えばPMMA等からなり、図2に示すように、概略矩形状をなす平板であり、第1基板21の表面に形成された凹凸構造212を覆い、毛細管流路2Lを構成するものである。本実施形態の第2基板22は、第1基板21の表面上において、血液供給部2Dを形成する凹部211を覆わず、凹凸構造212及び凹部213を覆うものである。この第1基板21と第2基板22とは、圧着、超音波接合等により接合される。このとき、第1基板21および第2基板22の接合面には酸素プラズマ処理又は紫外線照射処理を施すことによって接合強度を向上させることができる。   Like the first substrate, the second substrate 22 is made of, for example, PMMA, and is a flat plate having a substantially rectangular shape as shown in FIG. 2, covering the concavo-convex structure 212 formed on the surface of the first substrate 21, The capillary channel 2L is configured. The second substrate 22 of the present embodiment covers the concave-convex structure 212 and the concave portion 213 on the surface of the first substrate 21 without covering the concave portion 211 that forms the blood supply unit 2D. The first substrate 21 and the second substrate 22 are bonded by pressure bonding, ultrasonic bonding, or the like. At this time, the bonding strength of the first substrate 21 and the second substrate 22 can be improved by performing oxygen plasma treatment or ultraviolet irradiation treatment on the bonding surfaces.

そして、第2基板22の凹凸構造212に対向する面22aには、測定センサ部である測定用電極3が埋め込まれている。   The measurement electrode 3 that is a measurement sensor portion is embedded in a surface 22 a of the second substrate 22 that faces the concavo-convex structure 212.

この測定用電極3は、第2基板22の凹凸構造212に対向する面22a内に埋設されて毛細管小流路2L1により分離された血漿成分に接触するものである。本実施形態の測定用電極3は、図2等に示すように、例えばカーボン電極等の作用電極31と、例えば白金電極等の対電極32と、例えば銀/塩化銀電極等の参照電極33とからなる三電極方式のものである。いずれの電極31〜33も概略帯状に形成されており、図3及び図4に示すように、各電極31〜33の血漿接触面(下面)が、第2基板22の裏面(凹凸構造212に対向する面22a)と面一となるように埋め込まれている。また、各電極31〜33の先端は、毛細管小流路2L1の途中まで延びている。そして、他端が血漿分離器2から外部に延出されており、その他端部が外部接続端子(不図示)に接続され、その外部接続端子が情報処理装置4に接続される。   The measurement electrode 3 is embedded in a surface 22a of the second substrate 22 facing the concavo-convex structure 212 and contacts the plasma component separated by the capillary small flow path 2L1. As shown in FIG. 2 and the like, the measurement electrode 3 of this embodiment includes a working electrode 31 such as a carbon electrode, a counter electrode 32 such as a platinum electrode, and a reference electrode 33 such as a silver / silver chloride electrode. Is a three-electrode type. Each of the electrodes 31 to 33 is formed in a substantially band shape, and as shown in FIGS. 3 and 4, the plasma contact surface (lower surface) of each of the electrodes 31 to 33 is formed on the back surface of the second substrate 22 (on the uneven structure 212. It is embedded so as to be flush with the opposing surface 22a). The tips of the electrodes 31 to 33 extend partway through the capillary small flow path 2L1. The other end extends from the plasma separator 2 to the outside, the other end is connected to an external connection terminal (not shown), and the external connection terminal is connected to the information processing device 4.

しかして第1基板21及び第2基板22には、少なくとも毛細管小流路2L1の一部が親水性領域となるように、親水性処理が施されている。なお、親水性処理としては、酸素プラズマ処理または紫外線処理などである。   Therefore, the first substrate 21 and the second substrate 22 are subjected to hydrophilic treatment so that at least a part of the capillary small flow path 2L1 becomes a hydrophilic region. The hydrophilic treatment includes oxygen plasma treatment or ultraviolet treatment.

第1基板21に関して言うと、図3および図4に示すように、その凹凸構造212の少なくとも開口部内面(図3等においては凹凸構造212の上部内面)212mに親水性処理が施されている。凹凸構造212の親水性処理が施される領域は、親水性処理の条件により決まるが、本実施形態では、凹凸構造212の開口部内面212m、具体的には、凹凸構造212の上部開口から所定位置まで(本実施形態では凹凸構造212の略上半分内面に)親水性処理が施されている。一方、凹凸構造212の底部内面(図3等においては凹凸構造212の下部内面)212n(開口部内面212m以外の部分、つまり凹凸構造の略下半分)は親水性処理が施されていないため疎水性である。   Regarding the first substrate 21, as shown in FIGS. 3 and 4, at least the inner surface of the opening of the concavo-convex structure 212 (upper inner surface of the concavo-convex structure 212 in FIG. 3) 212 m is subjected to hydrophilic treatment. . The region where the hydrophilic treatment of the concavo-convex structure 212 is performed is determined by the condition of the hydrophilic treatment, but in this embodiment, a predetermined value is given from the inner surface 212 m of the opening of the concavo-convex structure 212, specifically from the upper opening of the concavo-convex structure 212. The hydrophilic treatment is performed up to the position (in the present embodiment, the substantially upper half inner surface of the concavo-convex structure 212). On the other hand, the bottom inner surface of the concavo-convex structure 212 (the lower inner surface of the concavo-convex structure 212 in FIG. 3) 212n (a part other than the inner surface 212m of the opening, that is, the substantially lower half of the concavo-convex structure) is not hydrophobic. It is sex.

一方、第2基板22に関して言うと、図3等に示すように、第1基板21および第2基板22を密着させる際に凹凸構造212に対向する面22a(第2基板22の裏面)の略全体に親水性処理が施されている。   On the other hand, regarding the second substrate 22, as shown in FIG. 3 and the like, the surface 22a (the back surface of the second substrate 22) that faces the concavo-convex structure 212 when the first substrate 21 and the second substrate 22 are brought into close contact with each other. The whole is subjected to hydrophilic treatment.

そして、第1基板21および第2基板22を密着させて毛細管小流路2L1を形成した状態において、各毛細管小流路2L1の断面における親水性処理が施された部分Xの形状が、血球成分を通過させず血漿成分のみを毛細管現象により通過させる形状となるようにしている。   In the state in which the capillary small channel 2L1 is formed by bringing the first substrate 21 and the second substrate 22 into close contact with each other, the shape of the portion X subjected to the hydrophilic treatment in the cross section of each capillary small channel 2L1 is a blood cell component. The shape is such that only the plasma component is allowed to pass through by capillary action without passing through.

具体的には、毛細管小流路2L1の流路方向に直交する断面において、図4に示すように、凹凸構造212の開口部内面212mおよび第2基板22の裏面22aにより構成される概略下向きコの字状をなす部分が親水性領域Xとなる。なお、図4において、親水性領域Xは、太線で示した部分である。そして、概略下向きコの字状をなす親水性領域Xにより規定される仮想流路(断面概略矩形状をなす流路)の断面積が、血球成分を通過させず血漿成分のみを通過させる大きさとなるようにしている。赤血球に関して言うと、そのサイズは、直径約7μmで厚さ2μmの概略円板形状をなす。そして、仮想流路の断面積は、赤血球が溶血しない程度に変形しても通ることができない断面積としている。上述したとおり、凹凸構造212の開口部内面212mが、例えば上部開口端から3μmであるとすると、前記断面積は、6μmとなる。 Specifically, in a cross section perpendicular to the flow path direction of the capillary small flow path 2L1, as shown in FIG. 4, a substantially downwardly-coordinated structure constituted by the opening inner surface 212m of the concavo-convex structure 212 and the back surface 22a of the second substrate 22 is formed. A portion having a letter shape is a hydrophilic region X. In FIG. 4, the hydrophilic region X is a portion indicated by a thick line. The cross-sectional area of the virtual flow path (flow path having a substantially rectangular cross section) defined by the hydrophilic region X having a generally downward U-shape is such that only the plasma component passes without passing the blood cell component. It is trying to become. In terms of erythrocytes, the size is approximately disk-shaped with a diameter of about 7 μm and a thickness of 2 μm. The cross-sectional area of the virtual channel is a cross-sectional area that cannot pass even if the red blood cells are deformed to such an extent that they do not hemolyze. As described above, if the opening inner surface 212m of the concavo-convex structure 212 is, for example, 3 μm from the upper opening end, the cross-sectional area is 6 μm 2 .

また、第1基板21により形成されている血液供給部2Dの表面にも親水性処理が施されている。つまり凹部211の内面にも、前記凹凸構造212等に施されたのと同様の親水性処理が施されている。これにより血液供給部2Dに血液を滴下させると、血液が血液供給部2Dにおいて幅方向に広がり、一部の毛細管小流路2L1の入口に血液が集中することなく万遍無く複数の毛細管小流路2L1に行き渡らせることができ、毛細管小流路2L1の入口において血液が詰まることを防止することができる。   Further, the surface of the blood supply part 2D formed by the first substrate 21 is also subjected to hydrophilic treatment. That is, the same hydrophilic treatment as that applied to the concavo-convex structure 212 or the like is also applied to the inner surface of the concave portion 211. Thus, when blood is dropped onto the blood supply unit 2D, the blood spreads in the width direction in the blood supply unit 2D, and the plurality of capillary small streams are uniformly distributed without concentrating the blood at the inlets of some capillary small channels 2L1. It can be distributed to the path 2L1, and clogging of blood can be prevented at the inlet of the capillary small flow path 2L1.

<本実施形態の効果>
このように構成した本実施形態に係る血液分析装置100によれば、毛細管流路2Lにおける入口部分(毛細管小流路2L1)の断面において親水性処理が施された部分Xの形状を血球成分が通過しない形状としているので、毛細管流路2Lにおける入口部分で血球成分の流路への侵入を防止するとともに、血液から血漿成分を分離して毛細管流路2L内に導入させることができる。また、第1基板21に概略矩形波状の凹凸構造212を形成し、その第1基板21に第2基板22を密着させて毛細管流路2Lにおける少なくとも入口部分を形成する構造において、第1基板21の凹凸構造212の少なくとも開口部内面212mおよび第2基板22の凹凸構造212に対向する面22aに親水性処理を施すだけで、毛細管流路2Lに親水性を付加することができるので、血漿分離器2の構成及び製造が簡単である。さらに、本実施形態の血漿分離器2によると、血液から血漿成分をほとんど(ほぼ100%)分離できるため、尿酸等の測定成分の測定精度を良くすることができる。
<Effect of this embodiment>
According to the blood analyzer 100 according to the present embodiment configured as described above, the blood cell component has the shape of the portion X subjected to the hydrophilic treatment in the cross section of the inlet portion (capillary small channel 2L1) in the capillary channel 2L. Since the shape does not pass, it is possible to prevent the blood cell component from entering the flow channel at the inlet portion of the capillary flow channel 2L, and to separate the plasma component from the blood and introduce it into the capillary flow channel 2L. In addition, in the structure in which a rough rectangular wave-shaped uneven structure 212 is formed on the first substrate 21 and the second substrate 22 is brought into close contact with the first substrate 21 to form at least an inlet portion in the capillary channel 2L. Since it is possible to add hydrophilicity to the capillary channel 2L simply by subjecting at least the inner surface 212m of the concave-convex structure 212 and the surface 22a of the second substrate 22 facing the concave-convex structure 212, plasma separation can be achieved. The construction and manufacture of the vessel 2 is simple. Furthermore, according to the plasma separator 2 of the present embodiment, most (approximately 100%) of plasma components can be separated from blood, so that the measurement accuracy of measurement components such as uric acid can be improved.

<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
例えば、前記実施形態では、凹凸構造212の溝が深く、底部まで親水性処理を施さない態様について説明しているが、凹凸構造212の溝を浅くし、底部まで親水性処理を施す(つまり凹凸構造212全体に親水性処理を施す)ようにしても良い。このとき、凹凸構造212の凹溝の幅は例えば3μmで、深さは例えば3μmである。
<Other modified embodiments>
The present invention is not limited to the above embodiment.
For example, in the above-described embodiment, a description has been given of a mode in which the groove of the concavo-convex structure 212 is deep and no hydrophilic treatment is performed up to the bottom. The entire structure 212 may be subjected to hydrophilic treatment). At this time, the width of the concave groove of the concavo-convex structure 212 is 3 μm, for example, and the depth is 3 μm, for example.

また、前記実施形態の親水性処理に関して言うと、酸素プラズマ及び紫外線の照射による親水性処理に加えて、例えば分子量3万以上のポリLリジン、アミン等を用いて表面修飾を行い、親水性を向上させるようにしても良い。これにより、血漿の分離速度を大きくすることができ、短時間で多くの血漿成分を得ることができ、分析精度を向上させるだけでなく、測定時間の短縮を可能にすることができる。つまり、血漿成分の分離に必要な時間を5〜10秒程度と短時間にすることができ、血漿成分量として約500ナノリットル(nl)程度得られることから、成分測定に充分な量の血漿成分を得ることができる。   Further, regarding the hydrophilic treatment of the embodiment, in addition to the hydrophilic treatment by irradiation with oxygen plasma and ultraviolet rays, for example, surface modification is performed using poly L lysine having a molecular weight of 30,000 or more, an amine, etc. You may make it improve. As a result, the plasma separation rate can be increased, and a large number of plasma components can be obtained in a short time, which not only improves the analysis accuracy but also enables the measurement time to be shortened. That is, the time required for the separation of plasma components can be as short as 5 to 10 seconds, and about 500 nanoliters (nl) can be obtained as the amount of plasma components. Ingredients can be obtained.

さらに、前記実施形態では、測定用電極3を第2基板22内に埋設させるとともに、その測定用電極3が毛細管小流路2L1の途中に位置するように構成されているが、図5に示すように、毛細管小流路2L1の下流に、第2基板22に埋設させて、或いは第2基板22に埋設させることなく第1基板21及び第2基板22により形成される空間内に配置するようにしても良い。   Furthermore, in the said embodiment, while measuring electrode 3 is embed | buried in the 2nd board | substrate 22, it is comprised so that the measuring electrode 3 may be located in the middle of the capillary small flow path 2L1, but it shows in FIG. As described above, it is embedded in the second substrate 22 or in the space formed by the first substrate 21 and the second substrate 22 downstream of the capillary small flow path 2 </ b> L <b> 1 without being embedded in the second substrate 22. Anyway.

その上、前記実施形態では、第2基板22が第1基板21の血液供給部2Dを覆わない構成にしているが、図6に示すように、第2基板22が第1基板21の血液供給部2Dを覆うように配置されると共に、当該第2基板22に血液供給部2Dに連通する血液通過孔221を形成するようにしても良い。このとき血液通過孔221を血液供給部2Dに行くに従って開口が窄まる形状とすることが考えられる。このように血液通過孔221の内面がテーパ形状となり、血液供給部2Dを可及的に小さくして複数の毛細管小流路2L1に血液を行き渡らせやすくしつつ、当該血液供給部2Dに血液を供給し易くすることができる。   In addition, in the embodiment, the second substrate 22 does not cover the blood supply unit 2D of the first substrate 21, but the second substrate 22 supplies the blood supply of the first substrate 21 as shown in FIG. A blood passage hole 221 communicating with the blood supply unit 2D may be formed in the second substrate 22 while being arranged to cover the unit 2D. At this time, it is conceivable that the blood passage hole 221 has a shape in which the opening is narrowed toward the blood supply unit 2D. In this way, the inner surface of the blood passage hole 221 is tapered, and the blood supply unit 2D is made as small as possible to facilitate the blood to be distributed to the plurality of capillary small channels 2L1, while the blood is supplied to the blood supply unit 2D. It can be made easy to supply.

毛細管流路に関して言うと、前記実施形態では、一端が血液供給部に連通し、略直線状の流路が互いに並設された複数の毛細管小流路と、当該複数の毛細管小流路の他端に連通する毛細管大流路とからなるものであったが、一端が血液供給部に連通し、略直線状の流路が互いに並設された複数の毛細管小流路のみからなるものであっても良い。   Regarding the capillary channel, in the embodiment, a plurality of capillary small channels in which one end communicates with the blood supply unit and substantially linear channels are arranged in parallel to each other; It consists of a large capillary channel that communicates with the end, but consists only of a plurality of capillary channels that have one end communicating with the blood supply section and substantially linear channels arranged in parallel with each other. May be.

加えて、前記実施形態の測定センサ部は、3電極方式の測定用電極を用いているが、その他、作用電極及び対電極からなる2電極方式の測定用電極を用いても良いし、その他種々のセンサを用いても良い。   In addition, the measurement sensor unit of the embodiment uses a three-electrode type measurement electrode, but in addition, a two-electrode type measurement electrode composed of a working electrode and a counter electrode may be used. These sensors may be used.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100 ・・・血液分析装置
2 ・・・血漿分離器
3 ・・・測定用電極
4 ・・・情報処理装置
2L ・・・毛細管流路
2L1 ・・・毛細管流路の入口部分
21 ・・・第1基板
212 ・・・凹凸構造
212m・・・凹凸構造の開口部内面
212n・・・凹凸構造の底部内面
22 ・・・第2基板
22a ・・・凹凸構造212に対向する面
X ・・・毛細管流路における親水性処理が施された部分
DESCRIPTION OF SYMBOLS 100 ... Blood analyzer 2 ... Plasma separator 3 ... Measurement electrode 4 ... Information processing device 2L ... Capillary flow path 2L1 ... Inlet part 21 of capillary flow path ... No. 1 substrate 212 ... uneven structure 212m ... opening inner surface 212n of uneven structure ... bottom inner surface 22 of uneven structure ... second substrate 22a ... surface X facing the uneven structure 212 ... capillary tube Part of the flow path where hydrophilic treatment has been applied

Claims (3)

内部に形成された毛細管流路に血液を導入して、当該血液から血漿成分を分離する血漿分離器であって、
表面上に前記毛細管流路における少なくとも入口部分を形成する凹凸構造を有する第1基板と、
前記第1基板に密着して設けられ、前記凹凸構造との間で前記毛細管流路における入口部分を形成する第2基板と、を備え、
前記第1基板の凹凸構造の開口部内面および前記第2基板の前記凹凸構造に対向する面に親水性処理が施されるとともに、前記凹凸構造の底面内面に疎水性処理が施されており、
前記第1基板及び前記第2基板を密着させて前記毛細管流路における入口部分を形成した状態において、前記毛細管流路における入口部分の断面において、親水性処理が施された部分の形状が、血球成分を通過させず血漿成分を毛細管現象により通過させるものである血漿分離器。
A plasma separator that introduces blood into a capillary channel formed therein and separates plasma components from the blood,
A first substrate having a concavo-convex structure forming at least an inlet portion in the capillary channel on the surface;
A second substrate that is provided in close contact with the first substrate and forms an inlet portion in the capillary channel with the concavo-convex structure;
A hydrophilic treatment is applied to the inner surface of the opening of the concavo-convex structure of the first substrate and a surface of the second substrate facing the concavo-convex structure, and a hydrophobic treatment is applied to the inner surface of the bottom surface of the concavo-convex structure,
In a state where the first substrate and the second substrate are brought into close contact with each other to form the inlet portion in the capillary channel, the shape of the portion subjected to the hydrophilic treatment in the cross section of the inlet portion in the capillary channel is a blood cell A plasma separator that allows plasma components to pass through by capillary action without passing the components.
前記毛細管流路に連通する血液供給部を有し、当該血液供給部の表面に親水性処理が施されている請求項1記載の血漿分離器。   The plasma separator according to claim 1, further comprising a blood supply unit communicating with the capillary channel, wherein a surface of the blood supply unit is subjected to a hydrophilic treatment. 請求項1又は2記載の血漿分離器と、
前記血漿分離器により分離された血漿成分に接触する測定用電極と、を具備し、
前記測定用電極が、前記第2基板の前記凹凸構造に対向する面に埋設されて前記毛細管流路により分離された血漿成分に接触する血液分析装置。

A plasma separator according to claim 1 or 2,
An electrode for measurement in contact with the plasma component separated by the plasma separator,
A blood analyzer in which the measurement electrode is embedded in a surface of the second substrate facing the concavo-convex structure and contacts a plasma component separated by the capillary channel.

JP2009250471A 2009-10-30 2009-10-30 Plasma separator and blood analyzer Active JP5490492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009250471A JP5490492B2 (en) 2009-10-30 2009-10-30 Plasma separator and blood analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009250471A JP5490492B2 (en) 2009-10-30 2009-10-30 Plasma separator and blood analyzer

Publications (2)

Publication Number Publication Date
JP2011095151A JP2011095151A (en) 2011-05-12
JP5490492B2 true JP5490492B2 (en) 2014-05-14

Family

ID=44112222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250471A Active JP5490492B2 (en) 2009-10-30 2009-10-30 Plasma separator and blood analyzer

Country Status (1)

Country Link
JP (1) JP5490492B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405173B1 (en) 2010-05-25 2014-06-10 주식회사 미코 Multi-analytical sensor and method of multi-analysis
JP7243994B2 (en) * 2018-04-25 2023-03-22 ビービービー インコーポレイテッド hematology analyzer
KR101964885B1 (en) * 2018-04-25 2019-04-02 (주) 비비비 Blood analyzer

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427663A (en) * 1993-06-08 1995-06-27 British Technology Group Usa Inc. Microlithographic array for macromolecule and cell fractionation
US6319719B1 (en) * 1999-10-28 2001-11-20 Roche Diagnostics Corporation Capillary hematocrit separation structure and method
JP3603886B2 (en) * 2001-08-03 2004-12-22 日本電気株式会社 Separation device and method of manufacturing the same
SE0201738D0 (en) * 2002-06-07 2002-06-07 Aamic Ab Micro-fluid structures
CN1701229A (en) * 2003-04-28 2005-11-23 松下电器产业株式会社 Filter and biosensor having the same
JP2005265685A (en) * 2004-03-19 2005-09-29 Arkray Inc Plasma component analyzing device
SE0400662D0 (en) * 2004-03-24 2004-03-24 Aamic Ab Assay device and method
SE527036C2 (en) * 2004-06-02 2005-12-13 Aamic Ab Controlled flow analysis device and corresponding procedure
SE0501418L (en) * 2005-06-20 2006-09-26 Aamic Ab Method and means for effecting liquid transport
JP4753672B2 (en) * 2005-09-16 2011-08-24 独立行政法人農業・食品産業技術総合研究機構 Manufacturing method of resin microchannel array and blood measurement method using the same
JP2007267635A (en) * 2006-03-30 2007-10-18 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Cell separation tool and method for separating cell by using the same
CN101454664B (en) * 2006-05-24 2013-08-21 国立大学法人京都大学 Microchannel for separating blood plasma
US8343439B2 (en) * 2006-06-20 2013-01-01 Amic Ab Assay device
JP2008116211A (en) * 2006-10-31 2008-05-22 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Cell separator and method for separating cells using the same
CN101542678A (en) * 2006-11-23 2009-09-23 皇家飞利浦电子股份有限公司 Device for separation and MALDI analysis of an analyte in a sample
JP2008264671A (en) * 2007-04-19 2008-11-06 Horiba Ltd Apparatus for classifying particles in liquid
JP5188767B2 (en) * 2007-09-19 2013-04-24 学校法人立命館 Cell separator

Also Published As

Publication number Publication date
JP2011095151A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5608943B2 (en) Plasma separation apparatus and method
US20200269244A1 (en) Biosensor
RU2002125862A (en) MEDICAL DIAGNOSTIC DEVICE WITH REGULATION OF FLOW THROUGH A CAPILLARY
TW201818073A (en) Glucose measuring device and apparatus
US8845869B2 (en) Electrochemical sensor strip
JP5490492B2 (en) Plasma separator and blood analyzer
JP2010510502A (en) Fluid ion sensor and manufacturing method thereof
KR20150048702A (en) Electrochemical-based analytical test strip with intersecting sample-receiving chambers
JP2004132961A (en) Inspection device for analysis of biological sample liquid
JP2008039615A (en) Separation device and method, and analysis method
US20210114023A1 (en) Detection system and method for producing same
WO2017179064A1 (en) Microdevice for separating plasma from human blood
KR20090064935A (en) Filter chip and method for manufacturing filter chip
US4783251A (en) Ionic activity measuring device
JP4674283B2 (en) Analytical tool and manufacturing method thereof
JP5188767B2 (en) Cell separator
ES2728805T3 (en) Equipment and procedure for the detection of liquids or liquid substances
KR101789043B1 (en) Origami-based biosample concentration device
US20050273032A1 (en) Filter and biosensor having the same
JP2009174891A (en) Microchip
JP3973657B2 (en) Continuous separation detection chip
WO2022239301A1 (en) Electrochemical sensor
JP7066087B2 (en) Drug susceptibility measurement method
JP4846459B2 (en) Gas analysis unit, gas analyzer, and gas analysis method.
KR100952330B1 (en) Multi-type oxygen sensor for measuring cellular respiration level integrated with cell counter and method for fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5490492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250