JP2007331012A - 抵抗溶接方法および抵抗溶接構造体 - Google Patents

抵抗溶接方法および抵抗溶接構造体 Download PDF

Info

Publication number
JP2007331012A
JP2007331012A JP2006167272A JP2006167272A JP2007331012A JP 2007331012 A JP2007331012 A JP 2007331012A JP 2006167272 A JP2006167272 A JP 2006167272A JP 2006167272 A JP2006167272 A JP 2006167272A JP 2007331012 A JP2007331012 A JP 2007331012A
Authority
JP
Japan
Prior art keywords
metal plate
electrode
recess
welding
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006167272A
Other languages
English (en)
Inventor
Hisayasu Ooka
久康 大岡
Takaaki Masubuchi
孝昭 増渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006167272A priority Critical patent/JP2007331012A/ja
Publication of JP2007331012A publication Critical patent/JP2007331012A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 均一かつ十分な溶接強度の確保、被溶接部への加圧力の低下防止、スパッタリングの発生防止、および、狭い箇所への適用が可能な抵抗溶接方法および抵抗溶接構造体を提供する。
【解決手段】 上側金属板のフランジ部13の表面に、その裏面に突出する凹部16がプレス成形されている。 凹部16の剛性は、プレス成形による加工硬化とリブを有する形状によって高められている。凹部16の断面径は、加圧電極4の先端径の1〜3倍の範囲内にある。下側金属板11とフランジ部13との間に隙間のばらつきがある場合、加圧電極4により凹部16を加圧すると、凹部16が下側金属板11に接近する。このとき、フランジ部13における凹部16以外の部分が変形し、凹部16は変形しない。これにより、形状が一定の凹部16が下側金属板12に接触するので、下側金属板11と上側金属板とが常に同じ接触状態で溶接される。
【選択図】 図3

Description

本発明は、重ね合わせられた複数の金属板の被溶接部を加圧する電極と、金属板における被溶接部以外の部分に接触する電極との間の通電によって金属板どうしを溶接する抵抗溶接方法およびそれにより得られる抵抗溶接構造体に係り、特に電極により加圧される金属板の被溶接部の形状の改良に関する。
抵抗溶接では、重ね合わせられた複数の金属板の被溶接部を電極で加圧することにより電流経路を生成し、電極間に流れる溶接電流による抵抗発熱によって複数の金属板における被溶接部を溶融させることにより、抵抗溶接構造体が得られる。このような抵抗溶接の手法には、一方の電極を加圧電極として用いて金属板の被溶接部を加圧し、他方の電極をアース電極として用いて金属板の被溶接部以外の部分に配置するインダイレクト抵抗溶接がある。
しかしながら、インダイレクト抵抗溶接では、加圧電極である一方の電極で金属板の片側を加圧するとき、金属板の変形が生じやすい。このため、加圧時には圧力を低くする必要がある。一方、金属板がプレス成形品である場合、金属板の面内に寸法精度のばらつきがあるため、金属板を重ね合わせたときに金属板間に隙間が生じやすい。
上記のように加圧時には圧力を低くする必要があるため、金属板間に隙間がある場合、隙間の大きさによって、加圧時に金属板どうしの接触面積が広くなったり狭くなったりする。また、溶接時に金属板の軟化による撓みが生じた場合、加圧電極と金属板および金属板どうしの接触面積が広くなる。このように溶接時に加圧電極と金属板および金属板どうしを常に同じ接触状態にすることができないから、金属板の溶接強度にばらつきが発生しやすい。また、上記のように加圧電極と金属板および金属板どうしの接触面積が広くなった場合には、電流経路が拡大するため、無効電流が発生し、十分な溶接強度を得ることができない。
さらに、インダイレクト抵抗溶接では、金属板における加圧電極から離間した位置にアース電極を設けているため、電極間に流れる溶接電流が様々な電流経路に分散しやすい。このため、無効電流が発生し、十分な溶接強度を確保することができない。
そこで、十分な溶接強度を確保するために、金属板の被溶接部と加圧電極との接触面積を絞ることにより電流密度を大きくすることが提案されている。たとえば特許文献1に開示されているように、金属の被溶接部に加圧電極よりも大きな径を有する中空状の凸部を形成し、そこを加圧電極で加圧して溶接を行う技術がある。この技術では、溶接時に加圧電極によって、中空状の凸部を加圧電極の底部と同じ形状をなすように押しつぶし、凸部の中央部をその下側の金属板に圧接する。
しかしながら、この場合、加圧電極により凸部を押しつぶすと、凸部に反力が生じるため、被溶接部への加圧力が低下する。また、加圧電極に押しつぶされない開口部が、凸部における加圧電極により押しつぶされた中央部の周囲に生じる。このため、開口部においてスパッタリングが発生しやすい。また、凸部の中央部を下側の金属板に圧接させるために凸部の中央部を変形させる必要があるから、凸部の径を加圧電極の径よりもかなり大きくしなければならない。このため、狭い箇所に凸部を適用することができない。
特開2002−239742号公報
したがって、本発明は、均一かつ十分な溶接強度の確保、被溶接部への加圧力の低下防止、スパッタリングの発生防止、および、狭い箇所への適用が可能な抵抗溶接方法および抵抗溶接構造体を提供することを目的としている。
本発明の抵抗溶接方法は、複数の金属板を重ね合わせ、金属板の被溶接部を第1電極により加圧し、金属板における被溶接部以外の部分に第2電極を接触させ、第1電極と第2電極との間で通電することにより金属板どうしを溶接する抵抗溶接方法であって、金属板の被溶接部の表面に、その金属板の裏面に突出する凹部をプレス成形し、溶接時に第1電極により凹部を圧接し、凹部の断面径は、第1電極の先端径の1〜3倍としていることを特徴としている。
本発明の抵抗溶接方法は、第1電極により圧接される金属板の被溶接部の表面に、その金属板の裏面に突出する凹部をプレス成形したものであり、凹部はプレス成形による加工硬化とリブを有する形状によって剛性を高めている。これにより、金属板の寸法精度のばらつきに起因して金属板どうしの被溶接部に隙間のばらつきが生じた場合、金属板における凹部以外の部分が上記隙間のばらつきの発生を解消するように変形し、凹部は変形しない。また、溶接時の第1電極の片側加圧による金属板の撓みや金属板の軟化による撓みは、金属板における凹部以外の部分で発生し、凹部は変形しない。したがって、形状が一定の凹部が相手側の金属板に接触するので、金属板どうしの被溶接部を常に同じ接触状態にすることができ、均一な溶接強度を確保することができる。また、溶接電流の電流経路の拡大や分散を防止することができるので、無効電流の発生を防止することができる。したがって、十分な溶接強度を確保することができる。
さらに、第1電極により凹部のみを圧接することにより、第1電極と金属板との接触面積を絞っているので、溶接電流の電流経路の分散をさらに効果的に防止することができる。したがって、より十分な溶接強度を確保することができる。また、第1電極による凹部への加圧時に凹部を押しつぶす必要がないことから、凹部での反力の発生を防止することができるので、被溶接部への加圧力が低下しない。また、凹部における第1電極の周囲で開口部の発生を防止することができるので、スパッタリングの発生を防止することができる。また、凹部の端部を開口部形成のために使用する必要がないから、凹部の断面径を大きくする必要がない。したがって、狭い箇所に適用することができる。
以上のような効果は、凹部の断面径が第1電極の先端径の3倍を超えた場合に消失してしまう。したがって、本発明の抵抗溶接方法では、凹部の断面径を第1電極の先端径の1〜3倍の範囲内に設定している。
ここで、本発明では種々の構成を用いることができる。たとえば、凹部の断面を、円形状、矩形状、あるいは略放物線形状とすることができる。円形状の場合、加圧電極による凹部への面圧を均一にすることができるので、円形状が好適である。
本発明の抵抗溶接方法によって、次のような抵抗溶接構造体が得られる。すなわち、本発明の抵抗溶接構造体は、複数の金属板を重ね合わせ、金属板の被溶接部を第1電極により圧接し、金属板における被溶接部以外の部分に第2電極を接触させ、第1電極と第2電極との間で通電することにより溶接された抵抗溶接構造体であって、第1電極により圧接される金属板の被溶接部の表面に、その金属板の裏面に突出する凹部が形成され、凹部の断面径は、第1電極の先端径の1〜3倍であることを特徴としている。このような抵抗溶接構造体では、均一かつ十分な溶接強度を有することができる。このような効果は、凹部の断面径が第1電極の先端径の3倍を超えた場合に消失してしまう。したがって、本発明の抵抗溶接構造体では、凹部の断面径を第1電極の先端径の1〜3倍の範囲内に設定している。
(1)実施形態の構成
以下、本発明の一実施形態に係る抵抗溶接方法であるインダイレクト抵抗溶接方法について、図面を参照して説明する。図1は、本発明の一実施形態に係るインダイレクト抵抗溶接方法で使用する抵抗溶接装置1の概略構成を表す斜視図である。
抵抗溶接装置1は、下側金属板11の一端部を固定するための治具2と、下側金属板(金属板)11の他端部が接触する板状のアース電極(第2電極)3と、上側金属板(金属板)12のフランジ部13を加圧するための加圧電極(第1電極)4とを備えている。加圧電極4は、断面円形のロッド状をなす本体部4Aと、本体部4Aの下端部に一体的に形成された電極部4Bとを有する。電極部4Bは下端に向かうに従って縮径する円錐台形状をなしている。アース電極3と加圧電極4とは、配線(図示略)によって電気的に接続されている。
抵抗溶接装置1には、下側金属板11および上側金属板12が配置されている。上側金属板12は、プレス成形された金属板であり、被溶接部であるフランジ部13と、フランジ部13の後端部から鉛直方向に延在する段差部14と、段差部14の上端部から後方に延在する本体部15とを有している。フランジ部13には、図2に示すように、その表面から裏面へ突出する断面円形の凹部16が形成されている。凹部16の断面径は、加圧電極4の先端径の1〜3倍の範囲内に設定している。凹部16の剛性は、プレス成形による加工硬化とリブを有する形状によって高められている。
(2)実施形態の動作
次に、抵抗溶接装置1を用いたインダイレクト抵抗溶接方法について、おもに図1,3を参照して説明する。まず、図1に示すように、治具2の上面に下側金属板11の一端部を固定し、アース電極3の上面に下側金属板11の他端部を接触させる。続いて、下側金属板11の上面に、上側金属板12のフランジ部13が接触するように上側金属板12を配置する。
ここで、上記のように下側金属板11に上側金属板12を配置したときに、下側金属板11および上側金属板12の面内における寸法精度のばらつきが有る場合、図3(A)に示すように、下側金属板11と上側金属板12のフランジ部13との間に隙間のばらつきが発生する。
次いで、図3(B)に示すように、加圧電極4で凹部16を所定の圧力で加圧すると、凹部16の剛性がフランジ部13における凹部16以外の部分よりも高いので、凹部16が下側金属板11に接近するときに、フランジ部13における凹部16以外の部分が変形し、凹部16は変形しない。そして、図3(C)に示すように、形状が一定の凹部16が下側金属板12に接触するので、下側金属板11と上側金属板12とが常に同じ接触状態になる。
すると、加圧電極4とアース電極3との間の電圧により、それらの間に溶接電流が流れ、被溶接部における下側金属板11および凹部16に抵抗発熱が生じ、そこが溶融する。このとき、図3(D)に示すように、加圧電極4で凹部16を加圧していることから、フランジ部13の軟化による撓みが生じることがあるが、その撓みは、フランジ部13における凹部16以外の部分に生じ、凹部16は変形しない。これにより、図3(C)と同じ接触状態で下側金属板11と上側金属板12とが溶接された抵抗溶接構造体が得られる。
本実施形態では、下側金属板11と上側金属板12とを常に同じ接触状態にすることができるので、均一な溶接強度を確保することができる。また、溶接時に溶接電流の電流経路の拡大や分散を防止することができるので、無効電流の発生を防止することができる。したがって、十分な溶接強度を確保することができる。さらに、加圧電極4により凹部16のみを圧接することにより、加圧電極4と上側金属板12との接触面積を絞っているので、溶接時に溶接電流の電流経路の分散をさらに効果的に防止することができる。したがって、より十分な溶接強度を確保することができる。また、加圧電極4による凹部16への加圧時に凹部16を押しつぶす必要がないことから、凹部16での反力の発生を防止することができるので、被溶接部への加圧力が低下しない。また、凹部16における加圧電極4の周囲で開口部の発生を防止することができるので、スパッタリングの発生を防止することができる。また、凹部16の端部を開口部形成のために使用する必要がないから、凹部16の断面径を大きくする必要がない。したがって、狭い箇所に適用することができる。以上のような効果は、凹部16の断面径が加圧電極4の先端径の3倍を超えた場合に消失してしまう。したがって、本実施形態では、凹部16の断面径を加圧電極4の先端径の1〜3倍の範囲内に設定している。
(3)変形例
上記実施形態を挙げて本発明を説明したが、本発明は上記実施形態に限定されるものではなく、種々の変形が可能である。たとえば、上記実施形態では、上側金属板12の凹部16の断面を円形状としたが、図4(A)の凹部21に示すように略放物線形状としてもよく、あるいは図4(B)の凹部22に示すように矩形状としてもよい。また、上記実施形態では、溶接する金属板の枚数を2としたが、これに限定されるものではなく、3以上でもよい。
以下、具体的な実施例を参照して本発明の一実施形態をさらに詳細に説明する。
<実施例1、比較例1>
実施例1では、厚さ1.0mmのSP材にプレス成形を行い、フランジ部に断面円形の凹部を形成することにより図1に示すような上側金属板を作製し、上側金属板と同じ厚さ1.0mmのSP材を図1に示すような下側金属板とした。実施例1の上側金属板では、図2に示す凹部の断面径D1を12mm、深さD2を1mmとした。また、図2に示す加圧電極の電極径R1を16mm、先端径R2を6mmとした。
次に、図1に示すように、抵抗溶接装置に上側金属板および下側金属板を配置した。この場合、図2に示す上側金属板の凹部と下側金属板との隙間の間隔Lを0mmと1.0mmに設定した。続いて、上側金属板の凹部を加圧電極により所定の圧力で加圧し、加圧電極とアース電極との間に溶接電流を流すことにより、上側金属板と下側金属板との溶接を行った。このような溶接は、溶接電流を変えて複数の上側金属板および下側金属板に行うことにより、複数の抵抗溶接構造体を得た。次いで、JIS Z3136に準拠した溶接強度試験方法を用いて、抵抗溶接構造体の溶接強度を測定し、隙間の間隔Lが0mmと1.0mmの場合の溶接電流値と溶接強度との関係を得た。測定結果を図5に示す。図5では、実施例1の隙間の間隔Lが0mmの場合の測定データを▲で示し、隙間の間隔Lが1.0mmの場合の測定データを△で示している。
比較例1では、上側金属板のフランジ部に凹部を形成しない以外は、実施例1と同様にして、溶接によって複数の抵抗溶接構造体を得て、それらの溶接強度を測定した。なお、比較例1の上側金属板の面内における加圧電極による加圧箇所は、実施例1の上側金属板における凹部の位置に対応している。測定結果を図5に示す。図5では、比較例1の隙間の間隔Lが0mmの場合の測定データを■で示し、比較例1の隙間の間隔Lが1.0mmの場合の測定データを□で示している。
図5から判るように、各溶接電流において、実施例1での隙間の間隔Lが0mmの場合(▲のデータ)と1.0mmの場合(△のデータ)との溶接強度の違いは、比較例1での隙間の間隔Lが0mmの場合(■のデータ)と1.0mmの場合(□のデータ)との溶接強度の違いよりも小さい。これにより、実施例1のように上側金属板のフランジ部に断面円形の凹部をプレス成形すると、溶接強度のばらつきを抑制できることが判った。
<実施例2,3、比較例2,3>
実施例2,3では、実施例1の下側金属板および上側金属板の板厚や、凹部の断面径D1、隙間の間隔Lを変えて抵抗溶接構造体を得て、その溶接強度を調べた。
実施例2では、上側金属板および下側金属板の厚さを1.8mm、隙間のある場合の間隔Lを1.5mmとした以外は実施例1と同様にして、溶接によって複数の抵抗溶接構造体を得て、それらの溶接強度を測定した。測定結果を図6に示す。図6では、実施例2の隙間の間隔Lが0mmの場合の測定データを▲で示し、隙間の間隔Lが1.5mmの場合の測定データを△で示している。
比較例2では、上側金属板のフランジ部に凹部を形成しない以外は、実施例2と同様にして、溶接によって複数の抵抗溶接構造体を得て、それらの溶接強度を測定した。なお、比較例2の上側金属板の面内における加圧電極による加圧箇所は、実施例2の上側金属板における凹部の位置に対応している。測定結果を図6に示す。図6では、比較例2の隙間の間隔Lが0mmの場合の測定データを■で示し、隙間の間隔Lが1.5mmの場合の測定データを□で示している。
実施例3では、上側金属板の厚さを0.6mm、凹部の断面径D1を8mm、隙間のある場合の間隔Lを2.0mmとした以外は実施例1と同様にして、溶接によって複数の抵抗溶接構造体を得て、それらの溶接強度を測定した。測定結果を図7に示す。図7では、実施例3の隙間の間隔Lが0mmの場合の測定データを▲で示し、隙間の間隔Lが2.0mmの場合の測定データを△で示している。
比較例3では、上側金属板のフランジ部に凹部を形成しない以外は、実施例3と同様にして、溶接によって複数の抵抗溶接構造体を得て、それらの溶接強度を測定した。なお、比較例3の上側金属板の面内における加圧電極による加圧箇所は、実施例3の上側金属板における凹部の位置に対応している。測定結果を図7に示す。図7では、比較例3の隙間の間隔Lが0mmの場合の測定データを■で示し、隙間の間隔Lが2.0mmの場合の測定データを□で示している。
図6から判るように、各溶接電流において、実施例2での隙間の間隔Lが0mmの場合(▲のデータ)と1.5mmの場合(△のデータ)との溶接強度の違いは、比較例2での隙間の間隔Lが0mmの場合(■のデータ)と1.5mmの場合(□のデータ)との溶接強度の違いよりも小さい。また、図7から判るように、各溶接電流において、実施例3での隙間の間隔Lが0mmの場合(▲のデータ)と2.0mmの場合(△のデータ)との溶接強度の違いは、比較例3での隙間の間隔Lが0mmの場合(■のデータ)と2.0mmの場合(□のデータ)との溶接強度の違いよりも小さい。
以上のように、上側金属板のフランジ部に円形の凹部が形成された抵抗溶接構造体では、下側金属板および上側金属板の板厚や、凹部の断面径D1、隙間の間隔Lを変えた場合も、溶接強度のばらつきを抑制できることが判った。
<実施例4,5、比較例4,5>
実施例4,5では、実施例1の下側金属板の板厚や、凹部の断面形状を変えた抵抗溶接構造体を得て、その溶接強度を調べた。
実施例4では、下側金属板の厚さを1.6mm、凹部の断面を図4(A)に示すような略放物線形状とした以外は実施例1と同様にして、溶接によって複数の抵抗溶接構造体を得て、それらの溶接強度を測定した。実施例4の凹部では、図4(A)に示す長さa1を12mm、長さb1を12mm、曲率半径c1を6mmとしている。測定結果を図8に示す。図8では、実施例4の隙間の間隔Lが0mmの場合の測定データを▲で示し、隙間の間隔Lが1.0mmの場合の測定データを△で示している。
比較例4では、比較例1と同様な下側金属板および上側金属板を用いて、溶接によって複数の抵抗溶接構造体を得て、それらの溶接強度を測定した。なお、比較例4の上側金属板の面内における加圧電極による加圧箇所は、実施例4の上側金属板における凹部の位置に対応している。測定結果を図8に示す。図8では、比較例4の隙間の間隔Lが0mmの場合の測定データを■で示し、隙間の間隔Lが1.0mmの場合の測定データを□で示している。
実施例5では、下側金属板の厚さを1.6mm、凹部の断面を図4(B)に示すような矩形状とした以外は実施例1と同様にして、溶接によって複数の抵抗溶接構造体を得て、それらの溶接強度を測定した。実施例5の凹部では、図4(B)に示す長さa1を12mm、長さb1を12mmとしている。測定結果を図9に示す。図9では、実施例5の隙間の間隔Lが0mmの場合の測定データを▲で示し、隙間の間隔Lが1.0mmの場合の測定データを△で示している。
比較例5では、比較例1と同様な下側金属板および上側金属板を用いて、溶接によって複数の抵抗溶接構造体を得て、それらの溶接強度を測定した。なお、比較例5の上側金属板の面内における加圧電極による加圧箇所は、実施例5の上側金属板における凹部の位置に対応している。測定結果を図9に示す。図9では、比較例5の隙間の間隔Lが0mmの場合の測定データを■で示し、隙間の間隔Lが1.0mmの場合の測定データを□で示している。
図8から判るように、各溶接電流において、実施例4での隙間の間隔Lが0mmの場合(▲のデータ)と1.0mmの場合(△のデータ)との溶接強度の違いは、比較例4での隙間の間隔Lが0mmの場合(■のデータ)と1.0mmの場合(□のデータ)との溶接強度の違いよりも小さい。また、図9から判るように、各溶接電流において、実施例5での隙間の間隔Lが0mmの場合(▲のデータ)と1.0mmの場合(△のデータ)との溶接強度の違いは、比較例5での隙間の間隔Lが0mmの場合(■のデータ)と1.0mmの場合(□のデータ)との溶接強度の違いよりも小さい。
以上のように、上側金属板のフランジ部に凹部が形成された抵抗溶接構造体では、凹部の断面が円形状以外の場合にも、溶接強度のばらつきを抑制できることが判った。
本発明の一実施形態に係るインダイレクト抵抗溶接方法で使用される抵抗溶接装置の概略構成を表し、抵抗溶接装置に下側金属板および上側金属板を配置した状態を表す概略斜視図である。 図1に示す下側金属板の凹部に加圧電極が当接している状態を表す部分拡大図である。 本発明の一実施形態に係るインダイレクト抵抗溶接方法を説明するための側断面図であり、(A)は抵抗溶接装置に下側金属板および上側金属板を配置した状態を表す被溶接部の部分図、(B)は加圧電極を上側金属板に当接した状態を表す被溶接部の部分図、(C)は、加圧電極を上側金属板に圧接して溶接を行っている状態を表す被溶接部の部分図、(D)は、溶接時の上側金属板の軟化により上側金属板に撓みが生じている状態を表す被溶接部の部分図である。 (A),(B)は、本発明の一実施形態に係る上側金属板の凹部の変形例を表している。 本発明の実施例1と比較例1の抵抗溶接構造体の溶接強度と溶接電流値との関係を表す図である。 本発明の実施例2と比較例2の抵抗溶接構造体の溶接強度と溶接電流値との関係を表す図である。 本発明の実施例3と比較例3の抵抗溶接構造体の溶接強度と溶接電流値との関係を表す図である。 本発明の実施例4と比較例4の抵抗溶接構造体の溶接強度と溶接電流値との関係を表す図である。 本発明の実施例5と比較例5の抵抗溶接構造体の溶接強度と溶接電流値との関係を表す図である。
符号の説明
1…抵抗溶接装置、2…治具、3…アース電極(第2電極)、4…加圧電極(第1電極)、11…下側金属板(金属板)、12…上側金属板(金属板)、16,21,22…凹部

Claims (2)

  1. 複数の金属板を重ね合わせ、前記金属板の被溶接部を第1電極により加圧し、前記金属板における被溶接部以外の部分に第2電極を接触させ、前記第1電極と前記第2電極との間で通電することにより前記金属板どうしを溶接する抵抗溶接方法において、
    前記金属板の被溶接部の表面に、その金属板の裏面に突出する凹部をプレス成形し、前記溶接時に前記第1電極により前記凹部を圧接し、
    前記凹部の断面径は、前記第1電極の先端径の1〜3倍としていることを特徴とする抵抗溶接方法。
  2. 複数の金属板を重ね合わせ、前記金属板の被溶接部を第1電極により加圧し、前記金属板における被溶接部以外の部分に第2電極を接触させ、前記第1電極と前記第2電極との間で通電することにより溶接された抵抗溶接構造体において、
    前記溶接時に前記第1電極により圧接される前記金属板の被溶接部の表面に、その金属板の裏面に突出する凹部がプレス成形され、
    前記凹部の断面径は、前記第1電極の先端径の1〜3倍であることを特徴とする抵抗溶接構造体。
JP2006167272A 2006-06-16 2006-06-16 抵抗溶接方法および抵抗溶接構造体 Pending JP2007331012A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167272A JP2007331012A (ja) 2006-06-16 2006-06-16 抵抗溶接方法および抵抗溶接構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167272A JP2007331012A (ja) 2006-06-16 2006-06-16 抵抗溶接方法および抵抗溶接構造体

Publications (1)

Publication Number Publication Date
JP2007331012A true JP2007331012A (ja) 2007-12-27

Family

ID=38930987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167272A Pending JP2007331012A (ja) 2006-06-16 2006-06-16 抵抗溶接方法および抵抗溶接構造体

Country Status (1)

Country Link
JP (1) JP2007331012A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010140A (ja) * 2010-06-17 2013-01-17 Nippon Steel & Sumitomo Metal Corp 構造用継手部材及びその製造方法
JP2015058467A (ja) * 2013-09-20 2015-03-30 日本電気株式会社 接合構造及び接合方法、金属リード
US9815136B2 (en) 2013-03-13 2017-11-14 Honda Motor Co., Ltd. Method for single-sided resistance welding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010140A (ja) * 2010-06-17 2013-01-17 Nippon Steel & Sumitomo Metal Corp 構造用継手部材及びその製造方法
JP5382201B2 (ja) * 2010-06-17 2014-01-08 新日鐵住金株式会社 構造用継手部材
US8820813B2 (en) 2010-06-17 2014-09-02 Nippon Steel & Sumitomo Metal Corporation Structural member
US9381953B2 (en) 2010-06-17 2016-07-05 Nippon Steel & Sumitomo Metal Corporation Structural member
US9815136B2 (en) 2013-03-13 2017-11-14 Honda Motor Co., Ltd. Method for single-sided resistance welding
JP2015058467A (ja) * 2013-09-20 2015-03-30 日本電気株式会社 接合構造及び接合方法、金属リード

Similar Documents

Publication Publication Date Title
JP6041374B2 (ja) 板厚の異なる鋼板のスポット溶接方法
JP7135760B2 (ja) 溶接用電極加工装置および溶接用電極加工方法
JP2006055898A (ja) 抵抗スポット溶接方法
CN105579181A (zh) 电阻点焊装置、复合电极以及电阻点焊方法
JP2007331012A (ja) 抵抗溶接方法および抵抗溶接構造体
JP5451890B2 (ja) スパークプラグの製造方法
JP6094079B2 (ja) 抵抗スポット溶接方法
JP6010739B2 (ja) リベット及びリベット接合構造
JP5906618B2 (ja) 抵抗スポット溶接方法
JP5491093B2 (ja) 抵抗溶接装置
JP6060579B2 (ja) 抵抗スポット溶接方法
KR102394629B1 (ko) 핫스탬핑 강판의 접합방법
JP6712634B2 (ja) 金属シートを高サイクルレートで低抵抗溶接するための装置及び方法
JP6762445B1 (ja) アルミニウム材のスポット溶接方法
JP2008161896A (ja) 溶接条件設定方法、装置、及びコンピュータプログラム
JP2009190046A (ja) 高張力鋼板のスポット溶接方法と高張力鋼板の溶接継手
JP2008149353A (ja) 中空管体と板材との抵抗溶接方法
JP3239760B2 (ja) プロジェクション成形方法およびプロジェクション溶接方法
JP2007152397A (ja) プレス成形方法およびプレス成形用プレス素材
JP2003320462A (ja) プロジェクション溶接方法、および抵抗溶接用プロジェクション
JP5082249B2 (ja) 抵抗スポット溶接方法
JP6414805B2 (ja) スポット溶接装置及びスポット溶接方法
JP5782720B2 (ja) 超音波接合装置
JP7334561B2 (ja) 突合せ溶接方法及びその装置
US20050178745A1 (en) Projection weld-bonding system and method