JP2007330964A - High-efficiency separation method and apparatus for solid/liquid mixture by supercritical carbon dioxide and/or liquid carbon dioxide - Google Patents

High-efficiency separation method and apparatus for solid/liquid mixture by supercritical carbon dioxide and/or liquid carbon dioxide Download PDF

Info

Publication number
JP2007330964A
JP2007330964A JP2007134811A JP2007134811A JP2007330964A JP 2007330964 A JP2007330964 A JP 2007330964A JP 2007134811 A JP2007134811 A JP 2007134811A JP 2007134811 A JP2007134811 A JP 2007134811A JP 2007330964 A JP2007330964 A JP 2007330964A
Authority
JP
Japan
Prior art keywords
separation
liquid
solid
carbon dioxide
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007134811A
Other languages
Japanese (ja)
Other versions
JP4904514B2 (en
Inventor
Akira Suzuki
明 鈴木
Kunio Arai
邦夫 新井
Kenichi Shibata
健一 柴田
Fujio Tanaka
富士夫 田中
Kiyotaka Hatada
清隆 畑田
Michio Yonetani
道夫 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Chemical Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Santoku Chemical Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Chemical Industries Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Santoku Chemical Industries Co Ltd
Priority to JP2007134811A priority Critical patent/JP4904514B2/en
Publication of JP2007330964A publication Critical patent/JP2007330964A/en
Application granted granted Critical
Publication of JP4904514B2 publication Critical patent/JP4904514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Sludge (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-efficiency separation method for a solid/liquid mixture by supercritical carbon dioxide and/or liquid carbon dioxide, and to provide its apparatus. <P>SOLUTION: Provided are the method for separating the solid/liquid mixture including the step of separating the solid/liquid mixture by utilizing difference in the specific gravity by using supercritical carbon dioxide and/or liquid carbon dioxide as a solvent for separation by difference in the specific gravity; the method for separating the solid/liquid mixture including the step of separating the solid/liquid mixture by utilizing separation by difference in the specific gravity and extraction separation by combining the step of separation by difference in the specific gravity and the step of extraction separation using supercritical carbon dioxide and/or liquid carbon dioxide as a solvent for extraction separation; the method for separating the solid/liquid mixture including steps of mixing the solid/liquid mixture with supercritical carbon dioxide and/or liquid carbon dioxide and controlling the density and viscosity of a fluid after mixing the solid/liquid mixture with supercritical carbon dioxide and/or liquid carbon dioxide; and its apparatus. This can provide new, high-efficiency separation method and apparatus for the solid/liquid mixture using supercritical carbon dioxide as the solvent for separation by the difference in the specific gravity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超臨界二酸化炭素及び/又は液体二酸化炭素による固液混合物質の高効率分離法及び装置に関するものであり、更に詳しくは、超臨界二酸化炭素及び/又は液体二酸化炭素を用いて、スラリー廃液等の固液混合物質を比重差分離により、あるいは比重差分離と抽出分離により、高い分離効率で分離し、回収することを可能とする超臨界二酸化炭素及び/又は液体二酸化炭素を分離溶媒として用いた固液混合物質の新しい分離方法及びその装置に関するものである。   The present invention relates to a high-efficiency separation method and apparatus for a solid-liquid mixed material using supercritical carbon dioxide and / or liquid carbon dioxide, and more specifically, a slurry using supercritical carbon dioxide and / or liquid carbon dioxide. Using supercritical carbon dioxide and / or liquid carbon dioxide as a separation solvent that enables separation and recovery of solid-liquid mixed substances such as waste liquid by specific gravity difference separation or by specific gravity difference separation and extraction separation with high separation efficiency The present invention relates to a new separation method and apparatus for a solid-liquid mixed material used.

固液混合物を、例えば、半導体、太陽電池産業で排出される廃棄シリコンスラリーと仮定した場合、この廃棄スラリーは、シリコンインゴットをスライス加工する際に、クーラント(鉱油、ポリエチレングリコール、水等)と砥粒(SiC、ダイヤモンド、アルミナ等)を混合させたスラリー(研削剤)を用いることで発生する。スライス加工に使用したスラリーには、切削加工の際に発生したシリコン屑が多く含まれ、加工精度を劣化させることから、やがて廃棄される。この廃棄スラリーには、使用可能なクーラントや砥粒が含まれているため、廃棄スラリーからそれらの分離回収が望まれ、従来、様々なアイディアが提案されているが(特許文献1〜6)、何れも実用に至らない状況にある。また、近年、半導体や太陽電池の需要が大幅に増加しており、シリコンそのものも逼迫しつつあり、シリコン回収と言う観点からも効率的な分離が求められている。   Assuming that the solid-liquid mixture is, for example, waste silicon slurry discharged in the semiconductor and solar cell industries, this waste slurry is mixed with coolant (mineral oil, polyethylene glycol, water, etc.) and abrasive when slicing the silicon ingot. It is generated by using a slurry (abrasive) in which grains (SiC, diamond, alumina, etc.) are mixed. The slurry used for the slicing process contains a lot of silicon scrap generated during the cutting process and degrades the processing accuracy, and is eventually discarded. Since this waste slurry contains usable coolant and abrasive grains, it is desired to separate and recover them from the waste slurry. Conventionally, various ideas have been proposed (Patent Documents 1 to 6), None of them are in practical use. In recent years, the demand for semiconductors and solar cells has been greatly increased, and silicon itself is becoming tight, and efficient separation is required from the viewpoint of silicon recovery.

先行文献には、油系スラリー廃液を灯油などの抽出剤で希釈し、比重差で沈殿する砥粒(SiC)を回収する方法が開示されている(特許文献7)。また、他の先行文献には、フィルタープレスなどにより分離したスラリー廃液に、アルキルスルホン酸ナトリウムなどの捕集剤と起泡剤を配合して、微細気泡を上昇させることによって、SiC粒子を分離することが開示されている(特許文献8)。   Prior literature discloses a method of diluting an oil-based slurry waste liquid with an extractant such as kerosene and recovering abrasive grains (SiC) that precipitate due to a difference in specific gravity (Patent Document 7). In other prior literatures, SiC particles are separated by mixing fine particles with a collecting agent such as sodium alkyl sulfonate and a foaming agent in a slurry waste liquid separated by a filter press or the like. (Patent Document 8).

これらの方法では、分散剤新液の添加が必要であることや、スラリー廃液の有用成分を分離することで新たな廃棄物が発生する。そのため、溶媒の後処理を必要としない、超臨界二酸化炭素を用いた抽出分離方法が注目されている。先行文献では、亜臨界もしくは超臨界二酸化炭素を用いて、有機物を抽出分離した後、温度、圧力を下げて、二酸化炭素と有機物を分離し、更に、二酸化炭素を回収し、再度、亜臨界もしくは超臨界二酸化炭素にして抽出剤として使用する方法が開示されている(特許文献9)。このような超臨界二酸化炭素を利用したものとしては、その他、数多くの有機物溶解抽出技術が提案されているが、この種の方法では、目的抽出物質が超臨界二酸化炭素に溶解する物質に限定されるという問題があった。   In these methods, it is necessary to add a new dispersant, and new waste is generated by separating useful components of the slurry waste solution. For this reason, an extraction separation method using supercritical carbon dioxide that does not require post-treatment of a solvent has attracted attention. In the prior literature, after extracting and separating organic matter using subcritical or supercritical carbon dioxide, the temperature and pressure are lowered to separate carbon dioxide and organic matter, and further, carbon dioxide is recovered and again subcritical or A method of using supercritical carbon dioxide as an extractant is disclosed (Patent Document 9). A number of other organic substance dissolution extraction techniques have been proposed for using such supercritical carbon dioxide, but this type of method is limited to substances whose target extraction substance is soluble in supercritical carbon dioxide. There was a problem that.

特許第3199159号公報Japanese Patent No. 3199159 特開平11−48146号公報JP 11-48146 A 特開2002−28866号公報JP 2002-28866 A 特開2003−225700号公報JP 2003-225700 A 特開2000−254543号公報JP 2000-254543 A 特開平11−172237号公報JP-A-11-172237 特開平9−109144号公報JP-A-9-109144 特開2004−223321号公報JP 2004-223321 A 特開平8−183989号公報Japanese Patent Laid-Open No. 8-183989

このような状況の中で、本発明者らは、上記従来技術に鑑みて、超臨界二酸化炭素及び/又は液体二酸化炭素を用いた新しい固液混合物質の高効率分離技術を開発することを目標として鋭意研究を積み重ねた結果、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として使用し、かつ該溶媒により流体の密度及び粘性を調整する手法を用いた新しい固液混合物質の分離技術を確立することに成功し、本発明を完成するに至った。   Under such circumstances, the present inventors have aimed to develop a high-efficiency separation technique for a new solid-liquid mixed material using supercritical carbon dioxide and / or liquid carbon dioxide in view of the above-described conventional technology. As a result of intensive research, the separation of a new solid-liquid mixed material using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent and adjusting the density and viscosity of the fluid with the solvent is performed. The technology has been successfully established, and the present invention has been completed.

すなわち、本発明は、超臨界二酸化炭素及び/又は液体二酸化炭素を用いて、スラリー廃液等の固液混合物質を高い分離効率で分離することを可能とする新しい固液混合物質の分離方法及びその装置を提供することを目的とするものである。また、本発明は、超臨界二酸化炭素及び/又は液体二酸化炭素を用いた比重差分離と抽出分離を組み合わせて、また、該溶媒により流体の密度と粘性を制御して、高い分離効率で固液混合物質を分離し、回収することを可能とする新しい固液混合物質の分離方法及びその装置を提供することを目的とするものである。   That is, the present invention provides a new method for separating a solid-liquid mixed substance that can separate a solid-liquid mixed substance such as slurry waste liquid with high separation efficiency using supercritical carbon dioxide and / or liquid carbon dioxide, and the method thereof. The object is to provide an apparatus. In addition, the present invention combines the specific gravity difference separation using supercritical carbon dioxide and / or liquid carbon dioxide and the extraction separation, and also controls the density and viscosity of the fluid with the solvent, so that the solid-liquid can be obtained with high separation efficiency. It is an object of the present invention to provide a new solid-liquid mixed material separation method and apparatus capable of separating and recovering mixed materials.

上記課題を解決するための本発明は、以下の技術的手段より構成される。
(1)超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、固液混合物質を比重差を利用して分離することを特徴とする固液混合物質の分離方法。
(2)上記固液混合物質が、スラリー廃液である前記(1)に記載の固液混合物質の分離方法。
(3)上記スラリー廃液が、シリコンウエハ製造工程で発生するスラリー廃液である前記(2)に記載の固液混合物質の分離方法。
(4)比重差分離溶媒の密度を、温度及び/又は圧力条件を変えることにより調節して比重差分離による分離効率を制御し、及び/又は比重差分離溶媒の流速を調節して比重差分離による分離効率を制御する前記(1)に記載の固液混合物質の分離方法。
(5)前記(1)に記載の比重差分離工程と、超臨界二酸化炭素及び/又は液体二酸化炭素を抽出分離溶媒として用いた抽出分離工程を組み合わせて、固液混合物質を比重差分離及び抽出分離を利用して分離することを特徴とする固液混合物質の分離方法。
(6)上記比重差分離と抽出分離を同一系内で同時的に行う前記(5)に記載の固液混合物質の分離方法。
(7)比重差分離溶媒及び/又は抽出分離溶媒の密度を、温度及び/又は圧力条件を変えることにより調節して比重差分離及び/又は抽出分離による分離効率を制御し、及び/又は比重差分離溶媒及び/又は抽出分離溶媒の流速を調節して比重差分離及び/又は抽出分離による分離効率を制御する前記(5)に記載の固液混合物質の分離方法。
(8)上記比重差分離と抽出分離を同一系内で連続的に行う前記(5)に記載の固液混合物質の分離方法。
(9)比重差分離及び抽出分離を利用して分離した再利用可能な物質を回収するリサイクルプロセスを含む前記(5)に記載の固液混合物質の分離方法。
(10)超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、固液混合物質を比重差分離を利用して分離する分離装置であって、分離器の所定の位置に超臨界二酸化炭素及び/又は液体二酸化炭素を導入する手段及び固液混合物質を導入する手段を有し、分離器の系内の温度を調節する手段を具備していることを特徴とする固液混合物質の分離装置。
(11)分離器の下部に液体二酸化炭素又は超臨界二酸化炭素を送るための液体二酸化炭素の加圧手段、超臨界二酸化炭素にあっては、加熱手段、上記分離器の中間部に固液混合物質を送る加圧手段、上記比重差分離した固形物質を分離器の最下部に貯蔵する手段、比重差分離器の最上部から流出した分離溶媒と液体物質をろ過する手段、系内の圧力を調節する手段、分離溶媒と液体物質を分離する気液分離手段を具備している前記(10)に記載の固液混合物質の分離装置。
(12)超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒及び抽出分離溶媒として用いて、固液混合物質を比重差及び抽出分離を利用して分離する分離装置であって、比重差分離部、抽出分離部を垂直の同一の系内に含み、抽出分離部を下部、比重差分離部を上部に設置し、上記抽出分離部の所定の位置に超臨界二酸化炭素及び/又は液体二酸化炭素を導入する手段及び上記比重差分離部の所定の位置に固液混合物質を導入する手段を有し、分離器の系内の温度を調節する手段を具備していることを特徴とする固液混合物質の分離装置。
(13)上記抽出分離部の下部に液体二酸化炭素又は超臨界二酸化炭素を送るための液体二酸化炭素の加圧手段、超臨界二酸化炭素にあっては、加熱手段、上記比重差分離部の中間部に固液混合物質を送る手段、上記比重差分離部及び抽出分離部で分離した固形物質を分離器の最下部に貯蔵する手段、比重差分離部の最上部から流出した分離溶媒と液体物質をろ過する手段、系内の圧力を調節する手段、分離溶媒と液体物質を分離する気液分離手段を具備している前記(12)に記載の固液混合物質の分離装置。
(14)上記分離器内の温度を垂直方向の複数の部分で個別に制御する手段を有する前記(10)及び(12)に記載の固液混合物質の分離装置。
(15)上記気液分離装置が分離溶媒(液体二酸化炭素)の蒸発手段を有する前記(10)及び(12)に記載の固液混合物質の分離装置。
(16)気体分離溶媒(二酸化炭素ガス)を冷却凝縮することにより液体二酸化炭素とし、再循環させる溶媒の循環機構を有する前記(15)に記載の固液混合物質の分離装置。
(17)上記分離器下部に回収貯蔵された固形物質を連続的に排出する手段を有する前記(11)及び(13)に記載の固液混合物質の分離装置。
(18)上記固形物質の連続排出手段が、高圧水注入による水スラリーの排出手段である前記(17)に記載の固液混合物質の分離装置。
(19)上記高圧水注入による水スラリーの排出手段が、高圧固液分離手段を有する前記(18)に記載の固液混合物質の分離装置。
(20)上記高圧固液分離手段が、高圧フィルター又は高圧サイクロンである前記(19)に記載の固液混合物質の分離装置。
(21)固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を混合し、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素の混合後の流体の密度及び粘性を制御する前記(1)に記載の固液分離方法。
(22)固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を予め混合して流体の密度及び粘性を制御した後、比重差を利用して固液分離する前記(21)に記載の固液分離方法。
(23)固液混合物質と混合する超臨界二酸化炭素及び/又は液体二酸化炭素が、固形物分離後の流体を循環再利用したものである前記(22)に記載の固液分離方法。
(24)前記(21)に記載の固液分離方法で使用する装置であって、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を混合する手段、混合後の流体の密度及び粘性を制御する密度及び粘性調整手段を有することを特徴とする混合制御装置。
(25)前記(21)に記載の固液分離方法で使用する装置であって、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を予め混合し、その混合物を、流体の密度及び粘性を制御しながら比重差分離領域に供給する混合物供給手段を有することを特徴とする混合供給制御装置。
(26)前記(21)に記載の固液分離方法で使用する装置であって、固液分離後の流体を循環再利用するための流体循環手段を有することを特徴とする循環装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for separating a solid-liquid mixed material, wherein supercritical carbon dioxide and / or liquid carbon dioxide is used as a specific gravity difference separation solvent, and the solid-liquid mixed material is separated using the specific gravity difference.
(2) The solid-liquid mixed material separation method according to (1), wherein the solid-liquid mixed material is a slurry waste liquid.
(3) The method for separating a solid-liquid mixed material according to (2), wherein the slurry waste liquid is a slurry waste liquid generated in a silicon wafer manufacturing process.
(4) The density of the specific gravity difference separation solvent is adjusted by changing the temperature and / or pressure conditions to control the separation efficiency by the specific gravity difference separation, and / or the specific gravity difference separation is adjusted by adjusting the flow rate of the specific gravity difference separation solvent. The method for separating a solid-liquid mixed material according to the above (1), wherein the separation efficiency is controlled.
(5) The specific gravity difference separation step described in (1) above and the extraction separation step using supercritical carbon dioxide and / or liquid carbon dioxide as an extraction separation solvent are combined to separate and extract a solid-liquid mixed material by specific gravity difference. A method for separating a solid-liquid mixed material, wherein separation is performed using separation.
(6) The solid-liquid mixed substance separation method according to (5), wherein the specific gravity difference separation and the extraction separation are performed simultaneously in the same system.
(7) The density of the specific gravity difference separation solvent and / or the extraction separation solvent is adjusted by changing the temperature and / or pressure conditions to control the separation efficiency by the specific gravity difference separation and / or the extraction separation, and / or the specific gravity difference. The method for separating a solid-liquid mixed material according to (5) above, wherein the separation efficiency by specific gravity difference separation and / or extraction separation is controlled by adjusting the flow rate of the separation solvent and / or the extraction separation solvent.
(8) The solid-liquid mixed material separation method according to (5), wherein the specific gravity difference separation and the extraction separation are continuously performed in the same system.
(9) The method for separating a solid-liquid mixed material according to (5), including a recycling process for recovering a reusable material separated by using specific gravity difference separation and extraction separation.
(10) A separation apparatus that separates a solid-liquid mixed material using specific gravity difference separation using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent. Solid-liquid mixing comprising means for introducing critical carbon dioxide and / or liquid carbon dioxide and means for introducing a solid-liquid mixed substance, and means for adjusting the temperature in the system of the separator Substance separation device.
(11) Liquid carbon dioxide pressurizing means for sending liquid carbon dioxide or supercritical carbon dioxide to the lower part of the separator; for supercritical carbon dioxide, heating means; solid-liquid mixing in the intermediate part of the separator Pressurizing means for sending the substance, means for storing the solid substance separated by the specific gravity difference in the lowermost part of the separator, means for filtering the separated solvent and liquid substance flowing out from the uppermost part of the specific gravity difference separator, and the pressure in the system The solid-liquid mixed substance separation device according to (10), further comprising a means for adjusting and a gas-liquid separation means for separating the separation solvent and the liquid substance.
(12) A separation apparatus that separates a solid-liquid mixed material using a specific gravity difference and extraction separation using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent and an extraction separation solvent. The separation unit and the extraction / separation unit are included in the same vertical system, the extraction / separation unit is installed in the lower part, and the specific gravity difference separation unit is installed in the upper part. Supercritical carbon dioxide and / or liquid Means for introducing carbon and means for introducing the solid-liquid mixed substance at a predetermined position of the specific gravity difference separation section, and means for adjusting the temperature in the system of the separator. Separation device for liquid mixed substances.
(13) Liquid carbon dioxide pressurizing means for sending liquid carbon dioxide or supercritical carbon dioxide to the lower part of the extraction / separation section, and in the case of supercritical carbon dioxide, heating means, intermediate part of the specific gravity difference separation section Means for sending the solid-liquid mixed material to the unit, means for storing the solid substance separated in the specific gravity difference separation unit and extraction separation unit at the bottom of the separator, and the separation solvent and liquid substance flowing out from the top of the specific gravity difference separation unit The solid-liquid mixed substance separation device according to (12), comprising filtration means, means for adjusting the pressure in the system, and gas-liquid separation means for separating the separation solvent and the liquid substance.
(14) The solid-liquid mixed substance separation device according to (10) and (12), comprising means for individually controlling the temperature in the separator in a plurality of vertical portions.
(15) The solid-liquid mixed substance separation device according to (10) and (12), wherein the gas-liquid separation device includes an evaporation unit for a separation solvent (liquid carbon dioxide).
(16) The solid-liquid mixed substance separation device according to (15), which has a solvent circulation mechanism in which a gas separation solvent (carbon dioxide gas) is cooled and condensed to form liquid carbon dioxide and recycled.
(17) The solid-liquid mixed substance separation device according to (11) and (13), which has means for continuously discharging the solid substance collected and stored in the lower part of the separator.
(18) The solid-liquid mixed substance separation device according to (17), wherein the solid substance continuous discharge means is a water slurry discharge means by high-pressure water injection.
(19) The solid-liquid mixed substance separation device according to (18), wherein the water slurry discharging means by high-pressure water injection includes high-pressure solid-liquid separation means.
(20) The solid-liquid mixed substance separation device according to (19), wherein the high-pressure solid-liquid separation means is a high-pressure filter or a high-pressure cyclone.
(21) The solid-liquid mixed material and supercritical carbon dioxide and / or liquid carbon dioxide are mixed, and the density and viscosity of the fluid after mixing the solid-liquid mixed material and supercritical carbon dioxide and / or liquid carbon dioxide are controlled. The solid-liquid separation method according to (1).
(22) The solid-liquid mixed substance and supercritical carbon dioxide and / or liquid carbon dioxide are mixed in advance to control the density and viscosity of the fluid, and then solid-liquid separation is performed using a difference in specific gravity. Solid-liquid separation method.
(23) The solid-liquid separation method according to (22), wherein the supercritical carbon dioxide and / or liquid carbon dioxide to be mixed with the solid-liquid mixed material is obtained by circulating and reusing the fluid after solid separation.
(24) The apparatus used in the solid-liquid separation method according to (21), wherein the solid-liquid mixed material and supercritical carbon dioxide and / or liquid carbon dioxide are mixed, and the density and viscosity of the fluid after mixing. A mixing control apparatus comprising density and viscosity adjusting means for controlling the viscosity.
(25) An apparatus used in the solid-liquid separation method according to (21), wherein the solid-liquid mixed material and supercritical carbon dioxide and / or liquid carbon dioxide are mixed in advance, and the mixture is mixed with the density of the fluid and A mixture supply control device comprising a mixture supply means for supplying a specific gravity difference separation region while controlling viscosity.
(26) An apparatus for use in the solid-liquid separation method according to (21), further comprising a fluid circulation means for circulating and reusing the fluid after solid-liquid separation.

次に、本発明について更に詳細に説明する。
本発明は、スラリー廃液等の固液混合物質を高い分離効率で分離する方法であって、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、上記固液混合物質を比重差を利用して固液分離することを特徴とするものである。また、本発明は、上記比重差分離と、超臨界二酸化炭素及び/又は液体二酸化炭素を抽出分離溶媒として用いた抽出分離とを組み合わせて、上記固液混合物質を比重差分離及び抽出分離を利用して分離することを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a method for separating a solid-liquid mixed material such as slurry waste liquid with high separation efficiency, and using the supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent, Solid-liquid separation is performed using the difference. In addition, the present invention combines the specific gravity difference separation and the extraction separation using supercritical carbon dioxide and / or liquid carbon dioxide as an extraction separation solvent, and uses the specific gravity difference separation and extraction separation for the solid-liquid mixed material. And are separated.

本発明では、上記比重差分離による固液混合物質の分離プロセスにおいて、比重差分離溶媒の密度を温度及び/又は圧力条件を変えることにより調節して、及び/又は比重差分離溶媒の流速を調節して、比重差分離による分離効率を制御することが可能である。また、上記比重差分離及び抽出分離による固液混合物質の分離プロセスにおいても、同様に、溶媒の密度を、温度及び/又は圧力条件を変えることにより調節して、及び/又は溶媒の流速を調節して、比重差分離及び/又は抽出分離による分離効率を制御することが可能である。   In the present invention, in the solid-liquid mixed substance separation process by the specific gravity difference separation, the density of the specific gravity difference separation solvent is adjusted by changing temperature and / or pressure conditions, and / or the flow rate of the specific gravity difference separation solvent is adjusted. Thus, it is possible to control the separation efficiency by specific gravity difference separation. Similarly, in the solid-liquid mixed substance separation process by specific gravity difference separation and extraction separation, similarly, the density of the solvent is adjusted by changing the temperature and / or pressure conditions, and / or the flow rate of the solvent is adjusted. Thus, it is possible to control the separation efficiency by specific gravity difference separation and / or extraction separation.

本発明においては、超臨界二酸化炭素及び/又は液体二酸化炭素を固液混合物質と効率的に接触混合することで、例えば、固液混合物質中に含まれる油系成分に超臨界二酸化炭素及び/又は液体二酸化炭素が溶解し、混合流体の密度及び粘性が低下する。これにより、固形物の限界流速が増大し、比重差により固液分離が効率的に行われる。   In the present invention, supercritical carbon dioxide and / or liquid carbon dioxide is efficiently contact-mixed with a solid-liquid mixed substance, for example, supercritical carbon dioxide and / or oil components contained in the solid-liquid mixed substance. Alternatively, liquid carbon dioxide dissolves, and the density and viscosity of the mixed fluid decrease. As a result, the critical flow velocity of solids increases, and solid-liquid separation is efficiently performed due to the difference in specific gravity.

本発明では、上記比重差分離による固液混合物質の分離プロセスにおいて、混合流体の密度及び粘性を、温度及び/又は圧力を変えることにより調節して、比重差分離による分離効率を制御することが可能である。また、固液混合物質中の固形物の密度及び/又は粒径が異なる場合には、固形物の限界流速に対し、混合流体の分離機内上昇流速を制御することで固形物同士の分離が可能である。   In the present invention, in the separation process of the solid-liquid mixed material by the specific gravity difference separation, the density and viscosity of the mixed fluid may be adjusted by changing the temperature and / or pressure to control the separation efficiency by the specific gravity difference separation. Is possible. Also, when the density and / or particle size of solids in the solid-liquid mixed material is different, the solids can be separated from each other by controlling the rising speed of the mixed fluid in the separator relative to the limit flow rate of the solids. It is.

ここで、固液混合物質が、例えば、油系のスラリー廃液の場合について説明すると、スラリー廃液は、スプレーノズルより比重差分離器に噴出供給され、超臨界二酸化炭素及び/又は液体二酸化炭素と接触し、更に比重差分離器内で撹拌を行う。その結果、スラリー廃液中の油系成分に超臨界二酸化炭素及び/又は液体二酸化炭素が効率的に接触溶解し、溶解後の混合流体の密度及び粘性が低下するため、スラリー廃液に含まれる固形物を比重差により分離することを可能とする固液混合物質の分離プロセス及び分離装置を構築することができる。   Here, the case where the solid-liquid mixed material is, for example, an oil-based slurry waste liquid will be described. The slurry waste liquid is jetted and supplied from the spray nozzle to the specific gravity difference separator, and comes into contact with supercritical carbon dioxide and / or liquid carbon dioxide. Further, stirring is performed in a specific gravity difference separator. As a result, supercritical carbon dioxide and / or liquid carbon dioxide are efficiently contact-dissolved in the oil-based components in the slurry waste liquid, and the density and viscosity of the mixed fluid after dissolution are reduced, so that the solids contained in the slurry waste liquid It is possible to construct a solid-liquid mixed substance separation process and separation apparatus that can separate the components by specific gravity difference.

また、上記固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を予め、ミキサー/又は高圧配管内部で混合し、混合後、比重差分離領域に混合流体を供給することで、上記比重差分離を達成することも可能である。また、固液混合物質と混合する超臨界二酸化炭素及び/又は液体二酸化炭素が、固形物分離後の流体を循環し再利用する方法を用いても上記比重差分離を達成できる。   In addition, the solid-liquid mixed substance and supercritical carbon dioxide and / or liquid carbon dioxide are mixed in advance in a mixer / or high-pressure pipe, and after mixing, the mixed fluid is supplied to the specific gravity difference separation region, thereby the specific gravity difference. It is also possible to achieve separation. Further, the above-described specific gravity difference separation can be achieved even by using a method in which the supercritical carbon dioxide and / or liquid carbon dioxide mixed with the solid-liquid mixed material circulates and reuses the fluid after the solid separation.

本発明においては、液体二酸化炭素に加え、温度31.17℃以上で圧力7.386MPa以上の超臨界二酸化炭素が用いられる。この超臨界流体の密度は液体に近く、拡散係数は液体に比べて著しく高く、無極性、弱極性油脂を溶解する作用を有し、その溶解力は温度及び/又は圧力を変えることで変化する。また、二酸化炭素は、圧力条件のみで気化、除去及び液化、再利用が可能であり、これらの循環プロセスを容易に構築することが可能である。   In the present invention, in addition to liquid carbon dioxide, supercritical carbon dioxide having a temperature of 31.17 ° C. or higher and a pressure of 7.386 MPa or higher is used. The density of this supercritical fluid is close to that of a liquid, and its diffusion coefficient is significantly higher than that of a liquid. It has the action of dissolving nonpolar and weakly polar oils and fats, and its dissolving power changes by changing temperature and / or pressure. . Carbon dioxide can be vaporized, removed, liquefied and reused only under pressure conditions, and these circulation processes can be easily constructed.

本発明では、上記固液混合物質として、好適には、例えば、一般的な研磨・切削剤スラリー廃液、シリコンウエハ製造過程で発生するシリコンスラリー廃液等のスラリー廃液が例示される。これらのスラリー廃液中には、研削剤、研磨剤として使用される砥粒、クーラント等が含まれている。砥粒としては、例えば、微粒アルミナ、コロイダルシリカ、炭化ケイ素、酸化セリウム、酸化ケイ素、ボロンカーバイト、ボロンナイトライド、酸化ジルコニウム、微粒ダイヤモンド、微粒サファイヤが例示される。また、クーラントとしては、例えば、鉱物油等の油系クーラント、ポリ水溶性グリコール類、アミン類等の水系クーラント、及び潤滑剤等が例示される。また、クーラントには、界面活性剤、水、及び溶剤等が含まれている場合がある。   In the present invention, preferable examples of the solid-liquid mixed material include slurry waste liquids such as a general polishing / cutting agent slurry waste liquid and a silicon slurry waste liquid generated in a silicon wafer manufacturing process. These slurry waste liquids contain abrasives, abrasive grains used as abrasives, coolants, and the like. Examples of the abrasive grains include fine alumina, colloidal silica, silicon carbide, cerium oxide, silicon oxide, boron carbide, boron nitride, zirconium oxide, fine diamond, and fine sapphire. Examples of the coolant include oil-based coolants such as mineral oil, water-based coolants such as poly water-soluble glycols and amines, and lubricants. The coolant may contain a surfactant, water, a solvent, and the like.

一般に、研削剤、研磨剤では、通常、上記砥粒は、クーラント、潤滑剤に分散されている。それらのスラリー廃液には、上記砥粒、シリコン等の切粉、研磨屑、ワイヤソーに由来する鉄屑、砕けた砥粒のかけら等の固形分が含まれている。スラリー廃液の組成として、例えば、シリコンウエハ製造工程で発生するスラリー廃液の場合、一般的には、SiC砥粒が48〜55w%、クーラントが30〜35wt%、Si屑が9〜10%、その他として、鉄屑の割合となる。本発明は、上記スラリー廃液に限らず、それらと同等ないし類似の性状及び組成を有するあらゆる種類の固液混合物質の分離手段として適用可能である。   Generally, in abrasives and abrasives, the abrasive grains are usually dispersed in a coolant and a lubricant. These slurry waste liquids contain solids such as the above-mentioned abrasive grains, chips such as silicon, polishing scraps, iron scraps derived from wire saws, and fragments of crushed abrasive grains. As a composition of slurry waste liquid, for example, in the case of slurry waste liquid generated in a silicon wafer manufacturing process, generally, SiC abrasive grains are 48 to 55 w%, coolant is 30 to 35 wt%, Si scrap is 9 to 10%, and others As a percentage of iron scrap. The present invention is not limited to the above-described slurry waste liquid, and can be applied as a means for separating all kinds of solid-liquid mixed substances having properties and compositions equivalent or similar to those.

超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、固液混合物質を比重差を利用して分離する場合は、固液混合物質を、超臨界二酸化炭素及び/又は液体二酸化炭素を送り込んだ比重差分離器の中間部から投入し、比重差を利用して、固液分離を行い、例えば、上層部に油系成分、下層部に固形物質を分離させる。例えば、クーラントとして鉱物油を用いたシリコンスラリー廃液の場合、上層部にクーラントが分離し、下層部に固形物が沈殿する。この沈殿した固形物を外部へ排出した後、界面活性剤を含有する水溶液を回収した固形物に添加、混合、静置することにより、上澄みとして、シリコン切粉及び鉄屑が、また、沈殿として、SiCが分離する。必要に応じて、混合時に超音波を照射することや、上澄み部に磁石を入れることで、鉄屑が効率的に回収できる。上記の操作を繰り返し行なうことで、SiCが精製されて、砥粒として再使用が可能な状態となる。   When supercritical carbon dioxide and / or liquid carbon dioxide is used as a specific gravity difference separation solvent and a solid-liquid mixed material is separated using a specific gravity difference, the solid-liquid mixed material is separated from the supercritical carbon dioxide and / or liquid dioxide. A specific gravity difference separator into which carbon is fed is introduced from an intermediate portion, and solid-liquid separation is performed using the specific gravity difference. For example, an oil component is separated into an upper layer portion and a solid substance is separated into a lower layer portion. For example, in the case of a silicon slurry waste liquid using mineral oil as a coolant, the coolant is separated in the upper layer portion and the solid is precipitated in the lower layer portion. After discharging this precipitated solid matter to the outside, an aqueous solution containing a surfactant is added to the collected solid matter, mixed, and allowed to stand, so that silicon chips and iron scraps are also obtained as a supernatant, as a precipitate. , SiC separates. If necessary, iron scraps can be efficiently recovered by irradiating ultrasonic waves during mixing or by putting a magnet in the supernatant. By repeating the above operation, SiC is refined and can be reused as abrasive grains.

本発明では、上記比重差分離において、比重差分離溶媒である超臨界二酸化炭素及び/又は液体二酸化炭素の温度及び/又は圧力を変えて密度を変化させることで、及び/又は分離溶媒の流速を調節することで、分離効率を高めることができる。例えば、固液混合物質を構成する液体成分(低密度ρ)と固体成分(高密度ρ)を分離するためには、比重差分離溶媒の密度ρCO2が、ρ<ρCO2<ρの関係にあることが必要であり、比重差分離溶媒の密度を調節することにより、高い分離効率を達成することができる。シリコンスラリー廃液の場合、液体成分であるクーラントの密度は約800kg/m、固体主成分であるSiCの密度は約3000kg/mであるから、比重差分離溶媒の密度は800kg/m以上3000kg/m以下であることが求められる。 In the present invention, in the specific gravity difference separation, the density is changed by changing the temperature and / or pressure of the supercritical carbon dioxide and / or liquid carbon dioxide, which is the specific gravity difference separation solvent, and / or the flow rate of the separation solvent is increased. By adjusting, the separation efficiency can be increased. For example, in order to separate the liquid component (low density ρ L ) and the solid component (high density ρ H ) constituting the solid-liquid mixed substance, the density ρ CO2 of the specific gravity difference separation solvent is ρ LCO2 <ρ. It is necessary to be in the relationship of H , and high separation efficiency can be achieved by adjusting the density of the specific gravity difference separation solvent. In the case of silicon slurry waste liquid, the density of the coolant, which is a liquid component, is about 800 kg / m 3 , and the density of SiC, which is a solid main component, is about 3000 kg / m 3 , so the density of the specific gravity difference separation solvent is 800 kg / m 3 or more. It is required to be 3000 kg / m 3 or less.

分離溶媒の密度が800kg/m以上であれば、クーラントを上部に分離することが可能となり、3000kg/m以下であれば、SiCを下部に分離することができる。ただし、二酸化炭素の密度が3000kg/mを越えるということはないので、実質上は800kg/m以上であればよい(固体二酸化炭素ドライアイスでも1500kg/m程度)。この条件は、飽和の液体二酸化炭素であれば飽和温度17℃(その時の飽和圧力5.3MPa)以下で、加圧液体二酸化炭素又は超臨界二酸化炭素であれば、20MPaの時47℃以下、30MPaの時67℃以下で達成される。 If the density of the separation solvent is 800 kg / m 3 or more, the coolant can be separated into the upper part, and if it is 3000 kg / m 3 or less, SiC can be separated into the lower part. However, since the density of carbon dioxide does not exceed 3000 kg / m 3 , it may be substantially 800 kg / m 3 or more (about 1500 kg / m 3 even in solid carbon dioxide dry ice). For saturated liquid carbon dioxide, this condition is a saturation temperature of 17 ° C. (saturation pressure at that time 5.3 MPa) or less, and for pressurized liquid carbon dioxide or supercritical carbon dioxide, 20 MPa, 47 ° C. or less, 30 MPa. This is achieved at 67 ° C. or lower.

一方、固体粒子の沈降性は、ストークス式から計算される限界流速で評価され、この数値より小さな分離溶媒の上昇速度となるように流速が決定される。言い換えるならば、一定流速に対しては限界流速よりも分離溶媒の上昇速度が十分小さくなるように分離器の断面積(内径)が決定されることを意味する。SiCの粒径を10μmと仮定し、分離溶媒として、40℃・20MPaの超臨界二酸化炭素(密度840kg/m)を用いる場合、限界流速は5.4m/hと計算されるので、超臨界二酸化炭素の上昇速度は、これより十分に小さな数値となるように流速が調節されることが好ましい。 On the other hand, the sedimentation property of the solid particles is evaluated by a critical flow rate calculated from the Stokes equation, and the flow rate is determined so that the rising speed of the separation solvent is smaller than this value. In other words, it means that the cross-sectional area (inner diameter) of the separator is determined so that the rising speed of the separation solvent is sufficiently smaller than the critical flow rate for a constant flow rate. Assuming that the particle size of SiC is 10 μm and supercritical carbon dioxide (density 840 kg / m 3 ) at 40 ° C. and 20 MPa is used as a separation solvent, the critical flow rate is calculated as 5.4 m / h. It is preferable that the flow rate is adjusted so that the rising speed of carbon dioxide is a value sufficiently smaller than this.

また、水系スラリーの場合には、液体成分は水であり、密度は1000kg/mであるので、比重差分離溶媒の密度は、それ以上大きな数値が求められる。この条件は、飽和の液体二酸化炭素であれば、飽和温度−14℃(その時の飽和圧力2.4MPa)以下で、加圧液体二酸化炭素であれば、20MPaの時5℃以下、30MPaの時15℃以下で、超臨界二酸化炭素であれば、50MPaの時36℃以下で達成される。本操作によれば、低温度の状態で脱水、乾燥が可能となる。いずれにしても、分離操作が終了した段階で、溶媒、液体成分及び固形物質のうち、再利用可能な物質を回収し、再使用することができる。 In the case of an aqueous slurry, since the liquid component is water and the density is 1000 kg / m 3 , a larger numerical value is required for the density of the specific gravity difference separation solvent. For saturated liquid carbon dioxide, this condition is a saturation temperature of −14 ° C. (saturation pressure at that time 2.4 MPa) or less, and for pressurized liquid carbon dioxide, it is 5 ° C. or less at 20 MPa and 15 at 30 MPa. If it is supercritical carbon dioxide below ℃, it is achieved at 36 ℃ or below at 50 MPa. According to this operation, dehydration and drying can be performed at a low temperature. In any case, when the separation operation is completed, a reusable substance out of the solvent, liquid component, and solid substance can be recovered and reused.

次に、本発明では、上記比重差分離と、超臨界二酸化炭素及び/又は液体二酸化炭素を抽出分離溶媒として用いた抽出分離を組み合わせて、固液混合物質を比重差分離及び抽出分離を利用して分離することができる。この場合、上記抽出分離は、基本的には、固液混合物質を超臨界二酸化炭素及び/又は液体二酸化炭素と接触させ、例えば、油系成分を抽出分離溶媒に溶解抽出することで固液分離が行われる。この抽出分離工程においても、抽出分離溶媒の温度及び/又は圧力を調節すること、及び/又は抽出分離溶媒の流速を調節することで、分離効率を向上させることが可能である。   Next, in the present invention, the specific gravity difference separation is combined with the extraction separation using supercritical carbon dioxide and / or liquid carbon dioxide as the extraction separation solvent, and the solid-liquid mixed substance is utilized by the specific gravity difference separation and the extraction separation. Can be separated. In this case, the above-mentioned extraction / separation basically involves solid-liquid separation by bringing the solid-liquid mixed material into contact with supercritical carbon dioxide and / or liquid carbon dioxide and, for example, dissolving and extracting oil components in the extraction / separation solvent. Is done. Also in this extraction / separation step, it is possible to improve the separation efficiency by adjusting the temperature and / or pressure of the extraction / separation solvent and / or adjusting the flow rate of the extraction / separation solvent.

例えば、油系クーラントの場合、高圧条件下で超臨界二酸化炭素の溶媒効果で高い抽出効率が得られる。超臨界二酸化炭素は、高い拡散性、浸透性を有し、かつ低粘度であるので、固形物質の微細構造への進入が容易であり、高い抽出効率が期待できる。一般に、スラリー廃液の場合、溶解成分のうち98%wt%以上が回収され、また、ドライプロセスであることから、抽出されたクーラントは変性がなく、二酸化炭素の残留や、不純物の混入もない良質のクーラントを回収することができる。   For example, in the case of oil-based coolant, high extraction efficiency can be obtained due to the solvent effect of supercritical carbon dioxide under high pressure conditions. Since supercritical carbon dioxide has high diffusibility and permeability and low viscosity, it is easy for a solid substance to enter the microstructure, and high extraction efficiency can be expected. In general, in the case of slurry waste liquid, 98% wt% or more of the dissolved components are recovered, and since it is a dry process, the extracted coolant is not denatured and has no residual carbon dioxide or impurities. The coolant can be recovered.

本発明では、上記比重差分離と抽出分離を、同一の系内で行うことが可能である。これらの分離を、例えば、第一ステップで比重差分離を実施し、第二ステップで抽出分離を実施するように、分離装置の上段を比重差分離器とし、下段を抽出分離器として構成することが好ましい。また、上記プロセスにより固液分離させて得られた固形物質から、再利用可能な物質を回収することができる。例えば、シリコンスラリー廃液の場合、この沈殿した固形物を外部へ排出した後、界面活性剤を含有する水溶液を回収した固形物に添加、混合、静置することにより、上澄みとしてシリコン切粉及び鉄屑が、また、沈殿としてSiCが分離するので、再利用可能なSiCを効率良く回収することができる。   In the present invention, the specific gravity difference separation and the extraction separation can be performed in the same system. For example, the upper stage of the separation apparatus is configured as a specific gravity difference separator and the lower stage is configured as an extraction separator so that the specific gravity difference separation is performed in the first step and the extraction separation is performed in the second step. Is preferred. In addition, a reusable substance can be recovered from the solid substance obtained by solid-liquid separation by the above process. For example, in the case of silicon slurry waste liquid, the precipitated solid matter is discharged to the outside, and then an aqueous solution containing a surfactant is added to the collected solid matter, mixed, and allowed to stand to obtain silicon chips and iron as a supernatant. Since SiC is separated as waste and as precipitate, reusable SiC can be efficiently recovered.

上述のように、比重差分離器と抽出分離器を一体的に構成することで、抽出分離工程における超臨界二酸化炭素及び/又は液体二酸化炭素による抽出効率を著しく高めることが可能となり、また、それにより、使用する溶媒の容量、抽出時間、装置の容量及び大きさを大幅に減少させることが可能となる。一方、本発明では、上記比重差分離と抽出分離を別の系内で行うことも適宜可能である。   As described above, by integrating the specific gravity difference separator and the extraction separator integrally, it is possible to remarkably increase the extraction efficiency of supercritical carbon dioxide and / or liquid carbon dioxide in the extraction separation process. As a result, the volume of the solvent used, the extraction time, the capacity and size of the apparatus can be greatly reduced. On the other hand, in the present invention, the specific gravity difference separation and the extraction separation can be appropriately performed in separate systems.

また、本発明では、上記固液分離方法において、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を混合し、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素の混合後の流体の密度及び粘性を制御すること、また、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を予め混合して流体の密度及び粘性を制御した後、比重差を利用して固液分離すること、また、固液混合物質と混合する超臨界二酸化炭素及び/又は液体二酸化炭素が、固形物分離後の流体を循環再利用したものであること、を好ましい実施の態様としている。   In the present invention, in the solid-liquid separation method, the solid-liquid mixed substance and supercritical carbon dioxide and / or liquid carbon dioxide are mixed, and after mixing the solid-liquid mixed substance and supercritical carbon dioxide and / or liquid carbon dioxide, The density and viscosity of the fluid are controlled, and the solid-liquid mixed material and supercritical carbon dioxide and / or liquid carbon dioxide are mixed in advance to control the density and viscosity of the fluid. It is a preferred embodiment that liquid separation and supercritical carbon dioxide and / or liquid carbon dioxide mixed with a solid-liquid mixed material are obtained by circulating and reusing fluid after solid separation.

本発明では、上記二酸化炭素を排気することなく、蒸発、冷却、凝縮を通して、液体二酸化炭素として再循環させるクローズドシステムから構成される循環機構を設置することが可能であり、それにより、二酸化炭素を繰り回して使用することができる。また、本発明では、上記固液混合物質の投入、比重差分離と抽出分離、及び固液分離、回収の操作を、流通式装置で連続的に行うことで、固液混合物質の連続分離プロセス及び装置を構築することができる。   In the present invention, it is possible to install a circulation mechanism composed of a closed system that recirculates as liquid carbon dioxide through evaporation, cooling, and condensation without exhausting the carbon dioxide. Can be used repeatedly. Further, in the present invention, the solid-liquid mixed substance is continuously separated from the solid-liquid mixed substance by continuously performing the operations of charging the solid-liquid mixed substance, specific gravity difference separation and extraction separation, and solid-liquid separation and recovery with a flow-type apparatus. And a device can be constructed.

本発明では、固液混合物質の分離装置として、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、固液混合物質を比重差分離を利用して分離する分離装置であって、分離器の所定の位置に超臨界二酸化炭素及び/又は液体二酸化炭素を導入する手段及び固液混合物質を導入する手段を有し、分離器の系内の温度を調節する手段を具備していることを特徴とする固液混合物質の分離装置を構築することができる。   In the present invention, as a solid-liquid mixed substance separation apparatus, a supercritical carbon dioxide and / or liquid carbon dioxide is used as a specific gravity difference separation solvent, and a solid-liquid mixed substance is separated using specific gravity difference separation. And means for introducing supercritical carbon dioxide and / or liquid carbon dioxide at a predetermined position of the separator and means for introducing a solid-liquid mixed material, and means for adjusting the temperature in the system of the separator. Therefore, it is possible to construct a solid-liquid mixed substance separation device.

そして、本発明では、好適には、上記分離装置において、分離器の下部に液体二酸化炭素又は超臨界二酸化炭素を送るための液体二酸化炭素の加圧手段、超臨界二酸化炭素にあっては、加熱手段、上記分離器の中間部に固液混合物質を送る加圧手段、上記比重差分離した固形物質を分離器の最下部に貯蔵する手段、比重差分離器の最上部から流出した分離溶媒と液体物質をろ過する手段、系内の圧力を調節する手段、分離溶媒と液体物質を分離する気液分離手段を具備する装置を使用して、スラリー廃液等の固液混合物質の分離、回収及び再利用システムを構築することができる。   In the present invention, preferably, in the separation apparatus, in the supercritical carbon dioxide, a heating means for liquid carbon dioxide for sending liquid carbon dioxide or supercritical carbon dioxide to the lower part of the separator. Means, a pressure means for sending the solid-liquid mixed material to the intermediate part of the separator, a means for storing the solid substance separated by the specific gravity difference at the bottom of the separator, and a separation solvent flowing out from the top of the specific gravity difference separator; Separation, collection and recovery of solid-liquid mixed substances such as slurry waste liquid using a device comprising means for filtering liquid substances, means for adjusting pressure in the system, and gas-liquid separation means for separating the separation solvent and liquid substances A reuse system can be constructed.

また、本発明では、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒及び抽出分離溶媒として用いて、固液混合物質を比重差及び抽出分離を利用して分離する分離装置であって、比重差分離部、抽出分離部を垂直の同一の系内に含み、抽出分離部を下部、比重差分離部を上部に設置し、上記抽出分離部の所定の位置に超臨界二酸化炭素及び/又は液体二酸化炭素を導入する手段及び上記比重差分離部の所定の位置に固液混合物質を導入する手段を有し、分離器の系内の温度を調節する手段を具備していることを特徴とする固液混合物質の分離装置を構築することができる。   Further, in the present invention, there is provided a separation apparatus that separates a solid-liquid mixed material using a specific gravity difference and extraction separation using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent and an extraction separation solvent. The specific gravity difference separation unit and the extraction separation unit are included in the same vertical system, the extraction separation unit is installed in the lower part and the specific gravity difference separation unit is installed in the upper part, and supercritical carbon dioxide and / or Or a means for introducing liquid carbon dioxide and a means for introducing a solid-liquid mixed substance into a predetermined position of the specific gravity difference separation unit, and a means for adjusting the temperature in the system of the separator. A solid-liquid mixed material separation apparatus can be constructed.

そして、本発明では、好適には、上記分離装置において、上記抽出分離部の下部に、液体二酸化炭素又は超臨界二酸化炭素を送るための液体二酸化炭素の加圧手段、超臨界二酸化炭素にあっては、加熱手段、上記比重差分離部の中間部に固液混合物質を送る手段、上記比重差分離部及び抽出分離部で分離した固形物質を分離器の最下部に貯蔵する手段、比重差分離部の最上部から流出した分離溶媒と液体物質をろ過する手段、系内の圧力を調節する手段、分離溶媒と液体物質を分離する気液分離手段を具備する装置を使用して、スラリー廃液等の固液混合物質の分離、回収及び再利用システムを構築することができる。   In the present invention, preferably, in the separation apparatus, the liquid carbon dioxide pressurizing means for sending liquid carbon dioxide or supercritical carbon dioxide, supercritical carbon dioxide is provided below the extraction separation unit. The means for heating, the means for sending the solid-liquid mixed material to the intermediate part of the specific gravity difference separation part, the means for storing the solid substance separated by the specific gravity difference separation part and the extraction separation part at the bottom of the separator, the specific gravity difference separation Using a device equipped with a means for filtering the separation solvent and liquid substance flowing out from the top of the section, a means for adjusting the pressure in the system, and a gas-liquid separation means for separating the separation solvent and the liquid substance, slurry waste liquid etc. It is possible to construct a system for separating, recovering and reusing solid-liquid mixed materials.

この場合、上記システムに、分離溶媒と液体成分を分離する蒸発手段により分離溶媒を気体として回収し、冷却、凝縮を通して液体二酸化炭素として再循環させる溶媒の循環機構を設置することも適宜可能である。また、分離器下部に回収された固形物質を連続的に排出する手段を設けることもできる。この連続排出により、分離器内に固形物質の貯蔵が必要なくなるので、分離器の小型化に直結する。本発明では、上記装置を構成する各手段の具体的な構成については、特に制限されるものではなく、固液混合物質の種類、装置の使用目的等に応じて任意に設計することができる。   In this case, it is also possible to appropriately install in the above system a solvent circulation mechanism in which the separation solvent is recovered as a gas by an evaporation means for separating the separation solvent and the liquid component, and recirculated as liquid carbon dioxide through cooling and condensation. . In addition, a means for continuously discharging the collected solid substance can be provided at the lower part of the separator. This continuous discharge eliminates the need for solid material storage in the separator, which directly leads to a reduction in the size of the separator. In the present invention, the specific configuration of each means constituting the apparatus is not particularly limited, and can be arbitrarily designed according to the type of solid-liquid mixed substance, the purpose of use of the apparatus, and the like.

更に、本発明では、上記固液分離方法で使用する装置であって、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を混合する手段、混合後の流体の密度及び粘性を制御する密度及び粘性調整手段を有する混合制御装置、また、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を予め混合し、その混合物を流体の密度及び粘性を制御しながら比重差分離領域に供給する混合供給制御装置、更に、固液分離後の流体を循環再利用するための流体循環手段を有する循環装置、を構築することができる。   Furthermore, in the present invention, the apparatus used in the above-mentioned solid-liquid separation method is a means for mixing a solid-liquid mixed material with supercritical carbon dioxide and / or liquid carbon dioxide, and controls the density and viscosity of the fluid after mixing. A mixing control device having density and viscosity adjusting means, and a solid-liquid mixed material and supercritical carbon dioxide and / or liquid carbon dioxide are mixed in advance, and the mixture is placed in the specific gravity difference separation region while controlling the density and viscosity of the fluid. It is possible to construct a mixed supply control device to be supplied and a circulation device having a fluid circulation means for circulating and reusing the fluid after solid-liquid separation.

従来、シリコンウエハ製造工程で発生するスラリー廃液中に大量に含まれている使用可能なSiCやクーラントを回収、再利用する方法が種々試みられている。しかし、何れの方法も、大量の有機溶剤、強酸・強アルカリ、希アルカリ水溶液、界面活性剤等を用いたり、超音波照射等の特別な処理を併用する必要があること、そのために、新たにそれらの廃液の処理工程が必要となること等から、実際には、スラリーからの有価物の回収はほとんど行われていないのが実情であった。また、既存の有機溶剤による抽出法に代わる方法として、抽出溶媒として超臨界二酸化炭素を用いて、スラリー廃液中の有価物を回収する方法も提案されているが、抽出操作だけで高い抽出効率を達成するには大量の抽出溶媒が必要となり、装置の小型化、抽出効率や有価物の回収率の向上等には大きな制約があった。   Conventionally, various methods for recovering and reusing usable SiC and coolant contained in a large amount in a slurry waste liquid generated in a silicon wafer manufacturing process have been tried. However, in any method, it is necessary to use a large amount of organic solvent, strong acid / strong alkali, dilute alkaline aqueous solution, surfactant, etc., or to use a special treatment such as ultrasonic irradiation. Actually, in reality, there is almost no recovery of valuable materials from the slurry due to the necessity of processing the waste liquid. In addition, a method for recovering valuable materials in slurry waste liquid using supercritical carbon dioxide as an extraction solvent has been proposed as an alternative to the extraction method using existing organic solvents. In order to achieve this, a large amount of extraction solvent is required, and there are significant restrictions on downsizing the apparatus, improving the extraction efficiency and the recovery rate of valuable materials.

また、従来の比重差分離方法では、遠心分離機等を使用したが、この種の方法では、分離効率が悪く、完全な分離ができない。また、分離効率を良くするために、溶媒希釈する方法もあるが、分離後、希釈溶媒を目的物質から分離することや、希釈溶媒の後処理が必要になる。これに対し、本発明では、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、あるいは比重差分離溶媒及び抽出溶媒として用いて、固液混合物質を分離することを特徴とするものである。本発明では、比重差分離溶媒に、常温、常圧で気体となる二酸化炭素を使用するため、分離後の物質に溶媒は残留しない上に、後処理の必要もない。特に、超臨界二酸化炭素は、温度、圧力を変えることで容易に密度を変化させられる上に、従来の比重差分離で使用していた分離溶媒の水やアルコール、有機溶媒等より、圧倒的に粘度が低いため、高い分離効率が得られる。更に、超臨界二酸化炭素は、温度の可変で簡単に密度を変えられるので、例えば、同一系内で分離目的物質を比重差で粗く分離した後、比重差で分離しきれなかった目的物質を抽出分離することが可能であり、それにより、従来技術の超臨界二酸化炭素抽出を圧倒的に上まわる高い分離効率が得られる。   Moreover, in the conventional specific gravity difference separation method, a centrifugal separator or the like is used. However, with this type of method, separation efficiency is poor and complete separation is not possible. In order to improve the separation efficiency, there is a method of diluting the solvent. However, after the separation, it is necessary to separate the diluted solvent from the target substance and to perform a post-treatment of the diluted solvent. In contrast, the present invention is characterized by separating solid-liquid mixed substances using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent or using a specific gravity difference separation solvent and an extraction solvent. To do. In the present invention, carbon dioxide, which is a gas at normal temperature and pressure, is used as the specific gravity difference separation solvent, so that the solvent does not remain in the separated material and there is no need for post-treatment. In particular, the density of supercritical carbon dioxide can be easily changed by changing the temperature and pressure, and it is overwhelming by the separation solvents such as water, alcohol, and organic solvents that were used in the conventional specific gravity difference separation. Since the viscosity is low, high separation efficiency can be obtained. In addition, since the density of supercritical carbon dioxide can be changed easily by changing the temperature, for example, after separating the target substance separated by specific gravity roughly in the same system, the target substance that could not be separated by the specific gravity difference is extracted. Separation is possible, resulting in a high separation efficiency that overwhelms the prior art supercritical carbon dioxide extraction.

すなわち、本発明では、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いること、あるいは比重差分離溶媒及び抽出溶媒として用いることにより、溶媒の使用量の大幅な低減及び装置の小型化と、有価物の分離効率の向上を同時に達成することを可能とするものである。本発明は、固液混合物中の有価物を、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒及び/又は抽出分離溶媒として用いて、比重差分離及び/又は抽出分離するための高効率分離法を提供するものとして有用である。   That is, in the present invention, supercritical carbon dioxide and / or liquid carbon dioxide is used as a specific gravity difference separation solvent, or a specific gravity difference separation solvent and an extraction solvent, thereby greatly reducing the amount of solvent used and reducing the size of the apparatus. And improvement of separation efficiency of valuable materials can be achieved at the same time. The present invention is a method for separating a specific value in a solid-liquid mixture by using a specific gravity difference separation and / or extraction separation using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent and / or an extraction separation solvent. It is useful as providing an efficient separation method.

本発明により、次のような効果が奏される。
(1)超臨界二酸化炭素(SC−CO)及び/又は液体二酸化炭素を比重差分離溶媒及び抽出溶媒として用いることで、効率良く固液分離及び抽出操作ができ、固形物から粒度分布が均一の粒子を効率良く分離回収できる。
(2)スラリー廃液から固液分離及び比重差分離により、再利用可能な有価成分を分離回収することができる。
(3)本発明により、例えば、シリコンスラリー廃液のリサイクルプロセスを構築することを実現できる。
(4)本発明では、SC−CO抽出による固液分離法の抽出効率と比べて3倍以上の高い抽出効率が得られる。
(5)比重差分離溶媒として、常温、常圧で気体となる二酸化炭素を使用するので、分離後の物質に溶媒が残留することがなく、後処理の必要もない、という利点が得られる。
(6)超臨界二酸化炭素の密度を、温度、圧力を変えることで容易に変化させることが可能であり、それにより、被処理物質の密度に対応した比重差分離及び/又は抽出分離の条件を任意に設定することが可能である。
(7)比重差分離溶媒である超臨界二酸化炭素は、水や有機溶媒等と比べて、粘度がきわめて低いため、非常に高い分離効率が得られる。
(8)比重差分離溶媒である二酸化炭素は、温度、圧力を変えることで容易に密度及び粘性を変化させることが可能であり、被処理物質に合わせた密度及び粘性条件を任意に設定することができる。
The following effects are exhibited by the present invention.
(1) By using supercritical carbon dioxide (SC-CO 2 ) and / or liquid carbon dioxide as a specific gravity difference separation solvent and extraction solvent, solid-liquid separation and extraction operations can be performed efficiently, and the particle size distribution is uniform from the solid matter. Can be separated and recovered efficiently.
(2) Reusable valuable components can be separated and recovered from the slurry waste liquid by solid-liquid separation and specific gravity difference separation.
(3) According to the present invention, for example, it is possible to construct a recycling process of silicon slurry waste liquid.
(4) In the present invention, a high extraction efficiency of 3 times or more can be obtained as compared with the extraction efficiency of the solid-liquid separation method by SC-CO 2 extraction.
(5) Since carbon dioxide, which is a gas at normal temperature and pressure, is used as the separation solvent for specific gravity difference, there is an advantage that the solvent does not remain in the separated substance and there is no need for post-treatment.
(6) The density of supercritical carbon dioxide can be easily changed by changing the temperature and pressure, whereby the specific gravity difference separation and / or extraction separation conditions corresponding to the density of the substance to be treated can be set. It is possible to set arbitrarily.
(7) Supercritical carbon dioxide, which is a specific gravity difference separation solvent, has a very low viscosity as compared with water, organic solvents, and the like, and therefore, very high separation efficiency can be obtained.
(8) Carbon dioxide, which is a specific gravity difference separation solvent, can be easily changed in density and viscosity by changing temperature and pressure, and arbitrarily set density and viscosity conditions according to the material to be treated. Can do.

次に、添付図面を参照し、本発明の実施の形態を具体的に説明する。以下に、超臨界二酸化炭素による固液混合物の高効率分離装置の実施形態の一例を示す。   Next, embodiments of the present invention will be specifically described with reference to the accompanying drawings. Below, an example of embodiment of the highly efficient separation apparatus of the solid-liquid mixture by a supercritical carbon dioxide is shown.

本装置は、本発明に係る固液混合物の高効率分離装置の実施形態の一例であって、図1は、本発明の比重差分離・抽出器と固形物回収装置の構成を示す断面図である。図中、比重差分離・抽出器本体1は、縦型連続式比重差分離・抽出装置であって、比重差分離と抽出を同時進行で行う分離装置である。図1に示すように、超臨界二酸化炭素は、比重差分離・抽出器本体1の最下部から送られ、比重差分離・抽出器の最上部から比重差分離・抽出器本体1の系外に排出される。   This apparatus is an example of an embodiment of a high-efficiency separation apparatus for a solid-liquid mixture according to the present invention, and FIG. is there. In the figure, a specific gravity difference separator / extractor main body 1 is a vertical continuous specific gravity difference separator / extractor, and is a separator that performs specific gravity difference separation and extraction simultaneously. As shown in FIG. 1, supercritical carbon dioxide is sent from the lowermost part of the specific gravity difference separation / extractor body 1, and from the uppermost part of the specific gravity difference separation / extractor to outside the system of the specific gravity difference separation / extraction body 1. Discharged.

比重差分離・抽出器本体1の上層に比重差分離部2を有し、下層には、撹拌機10を設けた抽出部3を備えている。また、分離対象の固液混合物質を比重差分離部2の中央に供給する固液混合物質の移送用高圧定量ポンプ4及び固液混合物質貯槽5を備えている。更に、比重差分離・抽出器本体1の下には、分離した固形物を流水により連続回収する固形物回収装置11を備えている。固形物回収装置11では、高圧定量ポンプ8で水を供給し、連続排出される固形物を水スラリーとして連続回収する。水及び水スラリーが比重差分離・抽出器本体1に混入しないように、背圧弁9で液面レベルが一定になるように制御する。   The specific gravity difference separation / extractor body 1 has a specific gravity difference separation unit 2 in the upper layer, and a lower layer is provided with an extraction unit 3 provided with a stirrer 10. Further, a high-pressure metering pump 4 for transferring a solid-liquid mixed material for supplying a solid-liquid mixed material to be separated to the center of the specific gravity difference separation unit 2 and a solid-liquid mixed material storage tank 5 are provided. Furthermore, below the specific gravity difference separator / extractor body 1, there is provided a solid matter recovery device 11 for continuously recovering the separated solid matter with running water. In the solid matter recovery device 11, water is supplied by the high-pressure metering pump 8, and the continuously discharged solid matter is continuously recovered as a water slurry. The back pressure valve 9 controls the liquid level to be constant so that water and water slurry do not enter the specific gravity difference separator / extractor body 1.

比重差分離・抽出器本体1は、比重差分離部2と抽出部3を同一系内に有し、比重差分離部2の温度をヒーター6で制御し、抽出部の温度をヒーター7で制御することで、超臨界二酸化炭素の密度をそれぞれに設定することが可能であり、比重差分離部2では、比重差分離に適した超臨界二酸化炭素の密度を設定し、抽出部3を抽出に適した超臨界二酸化炭素の密度もしくは温度にそれぞれ設定することが可能である。   The specific gravity difference separator / extractor body 1 has a specific gravity difference separation unit 2 and an extraction unit 3 in the same system, the temperature of the specific gravity difference separation unit 2 is controlled by the heater 6, and the temperature of the extraction unit is controlled by the heater 7. Thus, the density of supercritical carbon dioxide can be set for each. In the specific gravity difference separation unit 2, the density of supercritical carbon dioxide suitable for specific gravity difference separation is set, and the extraction unit 3 is used for extraction. Each can be set to a suitable supercritical carbon dioxide density or temperature.

図2は、本実施形態の一例の全体のフロー図である。本実施形態の固液混合物の高効率分離装置は、二酸化炭素を比重差分離・抽出器に供給する二酸化炭素供給ラインと、比重差分離・抽出器本体1を備え、また、比重差分離・抽出器の下に、分離固形物を水スラリーで回収する固形物回収装置11、更には、比重差分離・抽出器の最上部から分離液体及び二酸化炭素を回収し、分離液体と二酸化炭素をそれぞれ分離回収する気液分離回収装置から構成される二酸化炭素循環型の連続式固液混合物の高効率分離装置である。凝縮器15は、気液分離器I23及び気液分離器II28から分離回収される気体の二酸化炭素及び液化炭酸ガスボンベ13から補給する液体二酸化炭素を冷却装置14で冷却し、貯槽する。更に、凝縮器15には、液面レベル計と温度計,圧力計が装備され、常に一定量の液体二酸化炭素を貯槽することが可能である。   FIG. 2 is an overall flowchart of an example of the present embodiment. The solid-liquid mixture high-efficiency separation apparatus of this embodiment includes a carbon dioxide supply line for supplying carbon dioxide to a specific gravity difference separation / extraction device, and a specific gravity difference separation / extraction device body 1, and also has a specific gravity difference separation / extraction. Under the vessel, the solids recovery device 11 that recovers the separated solids with water slurry, and further, the separation liquid and carbon dioxide are recovered from the top of the specific gravity difference separation / extraction device, and the separation liquid and carbon dioxide are separated respectively. This is a high-efficiency separator for a continuous solid-liquid mixture of a carbon dioxide circulation type constituted by a gas-liquid separator for recovery. The condenser 15 cools the gaseous carbon dioxide separated and recovered from the gas-liquid separator I23 and the gas-liquid separator II28 and the liquid carbon dioxide replenished from the liquefied carbon dioxide cylinder 13 with the cooling device 14, and stores them. Furthermore, the condenser 15 is equipped with a liquid level meter, a thermometer, and a pressure gauge, and can always store a certain amount of liquid carbon dioxide.

二酸化炭素供給ラインは、凝縮器15に貯槽した液体二酸化炭素を予冷却器16で予冷却し、高圧定量ポンプ17で液体二酸化炭素を移送する。更に、高圧定量ポンプ17で移送された液体二酸化炭素は、流量計18及び加熱器19を経由し、比重差分離・抽出器本体1に供給される。また、高圧定量ポンプ17の吐出流量を可変させることで、超臨界二酸化炭素流速による固液混合物の分離効率を制御することが可能である。   The carbon dioxide supply line precools the liquid carbon dioxide stored in the condenser 15 with the precooler 16 and transfers the liquid carbon dioxide with the high-pressure metering pump 17. Further, the liquid carbon dioxide transferred by the high-pressure metering pump 17 is supplied to the specific gravity difference separator / extractor body 1 via the flow meter 18 and the heater 19. Further, by varying the discharge flow rate of the high-pressure metering pump 17, it is possible to control the separation efficiency of the solid-liquid mixture by the supercritical carbon dioxide flow rate.

固形物回収装置11は、比重差分離・抽出器本体1の下に配設され、高圧定量ポンプ8で水を供給し、分離固形物を連続で水スラリーとして回収する。回収する水スラリーの流量は、高圧定量ポンプ8で制御し、更に、水及び水スラリーが比重差分離・抽出器本体1に混入しないように、背圧弁9で液面レベルが一定になるように制御する。   The solid matter recovery device 11 is disposed under the specific gravity difference separator / extractor body 1 and supplies water with the high-pressure metering pump 8 to continuously recover the separated solid matter as a water slurry. The flow rate of the recovered water slurry is controlled by the high-pressure metering pump 8, and the liquid level is kept constant by the back pressure valve 9 so that water and water slurry do not enter the specific gravity difference separator / extractor body 1. Control.

比重差分離・抽出器本体1の最上部から移送された分離液体及び二酸化炭素は、高圧フィルター20でフィルタリングされ、分離液体及び二酸化炭素とともに移送されてきた僅かな固形物を捕集し、分離液体及び二酸化炭素だけを後段に排出する。高圧フィルター20を経由した分離液体及び二酸化炭素は、背圧弁21で減圧され、更に、背圧弁21に設置した加熱器及びラインヒーター24で加熱され、気液分離器I23に移送される。   The separation liquid and carbon dioxide transferred from the top of the specific gravity difference separator / extractor body 1 are filtered by the high-pressure filter 20 to collect a small amount of solids transferred together with the separation liquid and carbon dioxide, and the separation liquid And only carbon dioxide is discharged to the subsequent stage. The separation liquid and carbon dioxide that have passed through the high-pressure filter 20 are depressurized by the back pressure valve 21, further heated by the heater and line heater 24 installed in the back pressure valve 21, and transferred to the gas-liquid separator I 23.

気液分離器I23に移送された分離液体及び二酸化炭素は、加熱器30で再度加熱され、気体二酸化炭素は、活性炭31に移送され、分離液体は、気液分離器II28に移送される。気液分離器II28に移送された分離液体は、加熱器29で再加熱され、完全に二酸化炭素を気化させて、気体二酸化炭素を活性炭31に移送し、分離液体を気液分離器II28に捕集する。また、気液分離器II28に捕集された分離液体は、バルブ25,バルブ26,バルブ27を操作し、連続運転中に取り出すことも可能である。気液分離器I23及び気液分離器II28から移送された気体二酸化炭素は、活性炭31で気体二酸化炭素とともにベーパーになり移送された分離液体を捕集し、気体二酸化炭素だけを後段の凝縮器15に移送する。   The separation liquid and carbon dioxide transferred to the gas-liquid separator I23 are heated again by the heater 30, the gaseous carbon dioxide is transferred to the activated carbon 31, and the separation liquid is transferred to the gas-liquid separator II28. The separated liquid transferred to the gas-liquid separator II28 is reheated by the heater 29 to completely vaporize carbon dioxide, transfer the gaseous carbon dioxide to the activated carbon 31, and capture the separated liquid in the gas-liquid separator II28. Gather. The separated liquid collected in the gas-liquid separator II28 can be taken out during continuous operation by operating the valve 25, the valve 26, and the valve 27. The gaseous carbon dioxide transferred from the gas-liquid separator I23 and the gas-liquid separator II28 becomes vapor together with the gaseous carbon dioxide by the activated carbon 31 and collects the separated separated liquid, and only the gaseous carbon dioxide is collected in the subsequent condenser 15. Transport to.

次に、比較実験及び実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   Next, the present invention will be specifically described based on comparative experiments and examples, but the present invention is not limited to the following examples.

比較実験
(1)SC−CO抽出試験装置
本比較例では、ヒーター及び撹拌機を備えた抽出器(容量75ml、SU316製)、背圧弁、気液分離器、COボンベ、COを冷却するための冷却器、定量ポンプから構成されるSC−CO抽出装置を使用した。図3に、該SC−CO抽出装置の概要を示した。この装置において、定量ポンプで移送された液体COは抽出器でSC−COになり、試料のスラリー廃液と接触し、クーラントはSC−COに溶解してSC−COとともに抽出器からでて行き、固形物質が残存する。抽出器を出たSC−COは、背圧弁以降で大気圧となり、気液分離器で、クーラントを分離し、COは系外に分離排出される。
Comparative experiment (1) SC-CO 2 extraction test apparatus In this comparative example, an extractor (capacity 75 ml, manufactured by SU316) equipped with a heater and a stirrer, a back pressure valve, a gas-liquid separator, a CO 2 cylinder, and CO 2 are cooled. A SC-CO 2 extraction device composed of a cooler and a metering pump was used. FIG. 3 shows an outline of the SC-CO 2 extraction apparatus. In this device, the liquid CO 2 which is transported by the metering pump is turned SC-CO 2 at extractor contacts the slurry waste fluid sample, the coolant from the extractor together with SC-CO 2 was dissolved in SC-CO 2 Go out and the solid material remains. The SC-CO 2 exiting the extractor becomes atmospheric pressure after the back pressure valve, the coolant is separated by the gas-liquid separator, and the CO 2 is separated and discharged out of the system.

(2)試料及び分離試験フロー
本比較例では、試料として、SiC:48wt%、シリコン切粉:9wt%、鉄屑:4wt%、クーラント(鉱物油):39wt%からなるスラリー廃液を用いた。また、本比較例における試験フローを図4に示した。
(2) Sample and separation test flow In this comparative example, a slurry waste liquid consisting of SiC: 48 wt%, silicon chip: 9 wt%, iron scrap: 4 wt%, coolant (mineral oil): 39 wt% was used as a sample. The test flow in this comparative example is shown in FIG.

(3)SC−CO抽出試験
抽出器にスラリー廃液を26g仕込み、設定圧力(10〜34MPa)で液体COを抽出器に送った。抽出器を35℃あるいは150℃に加温し、抽出を開始した。抽出温度35℃では、SC−COを5.9g/minで60min流通させて抽出を行った。一方、150℃では、SC−COを5.9g/minで120min流通させて抽出を行った。
(3) SC-CO 2 extraction test 26 g of slurry waste liquid was charged into the extractor, and liquid CO 2 was sent to the extractor at a set pressure (10 to 34 MPa). The extractor was heated to 35 ° C. or 150 ° C., and extraction was started. At an extraction temperature of 35 ° C., extraction was performed by circulating SC-CO 2 at 5.9 g / min for 60 min. On the other hand, at 150 ° C., extraction was performed by circulating SC-CO 2 at 5.9 g / min for 120 min.

(4)SiC回収試験
SC−COで固液分離した固形物を外部へ取り出した後、界面活性剤を含有する水溶液を回収した固形物に添加、混合、静置することにより、シリコン切粉、鉄屑等は、上澄みに移行し、SiCは、下部に沈殿した。沈殿したSiCを残し、上澄みとして浮遊するシリコン切粉を分離し、鉄屑は同工程中で磁石により回収した。この操作を複数繰り返すことによりSiCを回収した。
(4) SiC recovery test After taking out the solid material solid-liquid separated with SC-CO 2 to the outside, the aqueous solution containing the surfactant is added to the recovered solid material, mixed, and allowed to stand, thereby leaving silicon chips. , Iron scraps, etc. moved to the supernatant, and SiC precipitated in the lower part. The precipitated SiC was left, the floating silicon chips were separated as a supernatant, and the iron scrap was collected by a magnet in the same process. By repeating this operation a plurality of times, SiC was recovered.

(5)結果
図5に、クーラント回収率と操作圧力との関係を示した。クーラント回収率は、抽出したクーラント量×100/スラリー廃液中のクーラント量で表わされる。図に示されるように、35℃では20MPa以上で、150℃では34MPaでクーラント回収率90%以上を示した。しかしながら、また、図6(クーラント抽出率とCO密度の関係)に示したように、クーラント抽出率(抽出したクーラント量/使用したCO量)は、CO密度の増加の効果が顕著であるものの、最大でも0.03gクーラント/gCO以下と低く、単なる抽出分離では経済的ではないことが明らかとなった。
(5) Results FIG. 5 shows the relationship between the coolant recovery rate and the operating pressure. The coolant recovery rate is expressed by the extracted coolant amount × 100 / the coolant amount in the slurry waste liquid. As shown in the figure, the coolant recovery rate was 90% or more at 35 ° C. and 20 MPa or more, and 150 ° C. and 34 MPa. However, as shown in FIG. 6 (relationship between the coolant extraction rate and the CO 2 density), the coolant extraction rate (the amount of extracted coolant / the amount of CO 2 used) has a remarkable effect of increasing the CO 2 density. Although there is a maximum, it is as low as 0.03 g coolant / gCO 2 or less, and it has become clear that simple extraction separation is not economical.

図7に、回収SiCの粒度分布を示した。回収したSiCには、シリコン切粉や鉄屑の混入がないこと、更に、スラリー廃液中には砕けて不要なSiCの微粉末も多く混入しているが、本分離法では不要な微粉末のSiCも排除でき、粒度の整ったSiCが得られること、が明らかとなった。   FIG. 7 shows the particle size distribution of the recovered SiC. The recovered SiC is free of silicon chips and iron scrap, and the slurry waste liquid also contains a lot of crushed and unnecessary SiC fine powder. It was revealed that SiC can be eliminated and SiC having a uniform particle size can be obtained.

本実施例では、比重差による分離器と抽出器を同一系内に設けた分離装置を用いて、スラリー廃液の分離を行った。スラリー廃液の組成は、SiCが48wt%、シリコン切粉が9wt%、鉄屑が4wt%、クーラント(鉱物油)が39wt%であった。図8に、本実施例で用いた分離装置の概略図を示す。図中、1は固液混合物分離装置本体(比重差分離・抽出器本体)であり、2は比重差分離による比重差分離部、3は溶媒抽出による抽出部、4はスラリーを圧入する高圧定量ポンプ、5はスラリーの貯槽(固液混合物質貯槽)、16、17は液体二酸化炭素を予冷却し、圧入する予冷却器、高圧ポンプ、19は予備加熱器、6、7は超臨界二酸化炭素流体の温度を調節するためのヒーター、20は高圧フィルター、21は圧力を制御する背圧弁、28は気液分離器IIを各々示す。   In this example, the slurry waste liquid was separated using a separation apparatus in which a separator and an extractor based on a specific gravity difference were provided in the same system. The composition of the slurry waste liquid was 48 wt% for SiC, 9 wt% for silicon chips, 4 wt% for iron scrap, and 39 wt% for coolant (mineral oil). FIG. 8 shows a schematic diagram of the separation apparatus used in this example. In the figure, 1 is a solid-liquid mixture separation device main body (specific gravity difference separation / extraction device main body), 2 is a specific gravity difference separation part by specific gravity difference separation, 3 is an extraction part by solvent extraction, and 4 is a high-pressure determination in which slurry is injected. Pumps, 5 are slurry storage tanks (solid-liquid mixed substance storage tanks), 16 and 17 are precoolers for precooling and pressurizing liquid carbon dioxide, high pressure pumps, 19 are preheaters, and 6 and 7 are supercritical carbon dioxides. A heater for adjusting the temperature of the fluid, 20 is a high pressure filter, 21 is a back pressure valve for controlling the pressure, and 28 is a gas-liquid separator II.

液体COを設定圧力(20MPa)になるまで分離装置本体1に送り、流量を設定値(1kg/h))に調節した後、加熱器19、ヒータ6、7の加熱を開始し、各部の温度が設定温度になるまで加熱を継続した。本実験では、比重差分離部2、抽出部3とも40℃とし、到達後はその温度を保持するように加熱を制御した。温度・圧力とも設定値に達し、安定したことを確認した後、スラリー廃液の供給を設定値(0.2kg/h)で開始した。運転直後からクーラントは上方に、SiCなど固形物は下方に移動し、クーラントは気液分離器II28下部に、固形物は抽出部3下部に保持された。 The liquid CO 2 is sent to the separation apparatus main body 1 until the set pressure (20 MPa) is reached, and after the flow rate is adjusted to the set value (1 kg / h), heating of the heater 19 and the heaters 6 and 7 is started. Heating was continued until the temperature reached the set temperature. In this experiment, both the specific gravity difference separation unit 2 and the extraction unit 3 were set to 40 ° C., and the heating was controlled so as to maintain the temperature after reaching. After confirming that the temperature and pressure reached the set values and were stable, the slurry waste liquid supply was started at the set values (0.2 kg / h). Immediately after the operation, the coolant moved upward, the solid matter such as SiC moved downward, the coolant was held at the bottom of the gas-liquid separator II28, and the solid matter was held at the bottom of the extraction unit 3.

運転は、温度・圧力条件が安定してから1時間行い、スラリー廃液の供給を停止した。廃液供給停止後も分離器1への超臨界二酸化炭素の供給はしばらく継続し、分離器1内のクーラントを排出させた。その後、加熱を停止し、分離器1内の圧力が大気圧になるまで減圧した。分離器1内の圧力を確認後、抽出部3下部の固形物貯留部を解放し、固形物を採取した。抽出率は固形物中のクーラントの量を評価することにより、供給クーラント量からの引き算で求めた。使用した二酸化炭素量は、気液分離器II28以降に設けたマスフローメータの積算値を用いた。   The operation was performed for 1 hour after the temperature and pressure conditions were stabilized, and the supply of slurry waste liquid was stopped. The supply of supercritical carbon dioxide to the separator 1 was continued for a while even after the waste liquid supply was stopped, and the coolant in the separator 1 was discharged. Thereafter, the heating was stopped, and the pressure in the separator 1 was reduced until the pressure became atmospheric pressure. After confirming the pressure in the separator 1, the solid substance storage part at the lower part of the extraction part 3 was released, and the solid substance was collected. The extraction rate was determined by subtracting from the amount of coolant supplied by evaluating the amount of coolant in the solid. The amount of carbon dioxide used was the integrated value of a mass flow meter provided after the gas-liquid separator II28.

上述の分離操作で、シリコンインゴットのスライス工程で発生する廃棄スラリーの固液分離を行い、超臨界二酸化炭素の抽出分離のみで固液分離した場合の抽出効率と、比重差分離と抽出分離を組み合わせた系で分離した場合の抽出効率を比較した。その結果を図9に示す。図に示されるように、比重差分離と抽出分離を組み合わせた系で固液分離した方が、3倍以上の抽出効率が得られることが分かった。   In the above separation operation, solid waste separation of waste slurry generated in the slicing process of silicon ingot is performed, and the extraction efficiency in the case of solid-liquid separation only by supercritical carbon dioxide extraction separation is combined with specific gravity difference separation and extraction separation. The extraction efficiencies when separated in different systems were compared. The result is shown in FIG. As shown in the figure, it was found that extraction efficiency of 3 times or more can be obtained by solid-liquid separation using a system combining specific gravity difference separation and extraction separation.

本実施例では、固液混合物質と超臨界二酸化炭素を高圧配管内で混合する系を設けた分離装置を用いて、スラリー廃液の分離を行った。スラリー廃液の組成は、SiC50%、シリコン切粉、Fe屑19%、クーラント31%であった。図10に、本実施例で用いた分離装置の概略図を示す。図中、1は固液分離装置本体(比重差分離・抽出器本体)であり、4はスラリーを圧入する高圧ポンプ(高圧定量ポンプ)、5はスラリーの貯槽(固液混合物質貯槽)、16、17は液体二酸化炭素を予冷却し、圧入する予冷却器、高圧定量ポンプ、19は予備加熱器、6、7は超臨界二酸化炭素流体の温度を調整するためのヒーター、20は高圧フィルター、21は圧力を制御する背圧弁、28は気液分離器IIを示す。   In this example, the slurry waste liquid was separated using a separation apparatus provided with a system for mixing a solid-liquid mixed substance and supercritical carbon dioxide in a high-pressure pipe. The composition of the slurry waste liquid was SiC 50%, silicon chips, Fe scrap 19%, and coolant 31%. FIG. 10 shows a schematic diagram of the separation apparatus used in this example. In the figure, 1 is a solid-liquid separator main body (specific gravity difference separator / extractor main body), 4 is a high-pressure pump (high-pressure metering pump) for press-fitting slurry, 5 is a slurry storage tank (solid-liquid mixed substance storage tank), 16 , 17 is a precooler for precooling and pressurizing liquid carbon dioxide, a high pressure metering pump, 19 is a preheater, 6 and 7 are heaters for adjusting the temperature of the supercritical carbon dioxide fluid, and 20 is a high pressure filter. 21 is a back pressure valve for controlling pressure, and 28 is a gas-liquid separator II.

液体COを系内洗浄ライン36より設定圧力(29MPa)になるまで固液分離装置本体1に送りながら、予備加熱器19、ヒーター6、7の加熱を行い、設定温度(35℃)になるまで加熱を継続し、到達後はその温度を保持するように加熱を制御した。圧力と温度の制御とともにCOを設定流量(0.6kg/h)に調整し、更にCO導入口をバルブ32とバルブ33を切り替えてスラリーCO混合ライン35よりCOの供給を行った。その後、バルブ34を開放してスラリー廃液を設定量(0.14kg/h)供給した。クーラントは固液分離装置本体1の上方からCOに同伴されて流出し、気液分離器II28で捕集された。SiC,シリコン切粉,Fe屑の固形物は、下方の固形物回収装置11に捕集された。 While the liquid CO 2 is sent from the in-system cleaning line 36 to the solid-liquid separator main body 1 until the set pressure (29 MPa) is reached, the preheater 19 and the heaters 6 and 7 are heated to reach the set temperature (35 ° C.). The heating was continued until the temperature reached, and the temperature was controlled so as to maintain the temperature after reaching the temperature. The CO 2 was adjusted to set the flow rate (0.6 kg / h) together with the control of pressure and temperature, were supplied CO 2 from the slurry CO 2 mixing line 35 further CO 2 inlet by switching the valve 32 and the valve 33 . Thereafter, the valve 34 was opened to supply a set amount (0.14 kg / h) of slurry waste liquid. The coolant was discharged from the upper part of the solid-liquid separator main body 1 along with CO 2 and collected by the gas-liquid separator II28. The solids of SiC, silicon chips, and Fe scrap were collected in the lower solids recovery device 11.

運転は、スラリー廃液の供給開始から約4時間行い、スラリーの供給停止後、バルブ32を開けた後、バルブ33を閉め、COの供給を系内洗浄ラインに切り替えて、2時間30分運転し、固液分離装置本体(比重差分離・抽出器本体)1内のクーラントを排出させた。その後、加熱を停止し、固液分離装置本体1内の圧力が大気圧になるまで減圧した。減圧後、固形物回収装置11を開放し、固形物を採取した。固形物回収装置11、高圧フィルター20、気液分離器28の各箇所において、SiC、シリコン切粉,Fe屑、クーラントの各物質の総供給量に対する回収量を評価した。 The operation is performed for about 4 hours from the start of the supply of the slurry waste liquid. After the supply of the slurry is stopped, the valve 32 is opened, the valve 33 is closed, and the CO 2 supply is switched to the in-system cleaning line. The coolant in the solid-liquid separator main body (specific gravity difference separator / extractor main body) 1 was discharged. Thereafter, the heating was stopped, and the pressure in the solid-liquid separator main body 1 was reduced until the pressure became atmospheric pressure. After depressurization, the solid matter recovery device 11 was opened and the solid matter was collected. At each location of the solid matter recovery device 11, the high-pressure filter 20, and the gas-liquid separator 28, the recovery amount with respect to the total supply amount of each substance of SiC, silicon chips, Fe scrap, and coolant was evaluated.

上述の分離操作で、シリコンインゴットのスライス工程で発生するスラリー廃液と超臨界二酸化炭素を混合し、スラリー廃液中のクーラントを低密度化及び低粘性化することで、スラリー廃液中の固形物を効率的に沈降分離できることが分かった。図11に、各ポイントでの回収物質と回収率を示す。   In the above separation operation, the slurry waste liquid generated in the slicing process of the silicon ingot and supercritical carbon dioxide are mixed, and the coolant in the slurry waste liquid is reduced in density and viscosity so that the solids in the slurry waste liquid can be efficiently used. It was found that it was possible to settle and separate. FIG. 11 shows the recovered substance and recovery rate at each point.

以上詳述したように、本発明は、超臨界二酸化炭素及び/又は液体二酸化炭素による抽出分離と比重差分離を組み合わせて、固液混合物質を高効率で分離する方法及び装置に係るものであり、本発明により、従来技術である超臨界二酸化炭素抽出法をはるかに上回る高い分離効率で固液混合物質から再利用可能な物質を分離回収することが実現できる。また、本発明により、超臨界二酸化炭素及び/又は液体二酸化炭素を用いて固液混合物質に含まれる媒体の密度及び粘性を制御することで、従来法の超臨界二酸化炭素抽出法をはるかに上回る分離効率で固液混合物質を分離でき、再利用可能な物質を回収することが実現できる。本発明は、例えば、シリコンスラリー廃液等のスラリー廃液の固液分離及び再利用可能な有用物質のリサイクルプロセスを構築すること、及び一般的な固液混合物の高効率分離法として適用することを可能とする新しい固液混合物の高効率分離技術を提供するものとして高い技術的意義を有する。   As described in detail above, the present invention relates to a method and apparatus for separating a solid-liquid mixed material with high efficiency by combining extraction separation with supercritical carbon dioxide and / or liquid carbon dioxide and specific gravity difference separation. According to the present invention, it is possible to separate and recover a reusable substance from a solid-liquid mixed substance with a high separation efficiency far exceeding that of the conventional supercritical carbon dioxide extraction method. In addition, according to the present invention, supercritical carbon dioxide and / or liquid carbon dioxide is used to control the density and viscosity of the medium contained in the solid-liquid mixed material, thereby far exceeding the conventional supercritical carbon dioxide extraction method. Solid-liquid mixed substances can be separated with separation efficiency, and it is possible to recover reusable substances. The present invention can be applied to, for example, a solid-liquid separation of slurry waste liquid such as silicon slurry waste liquid and a recycling process of useful materials that can be reused, and a high-efficiency separation method for general solid-liquid mixtures. It has a high technical significance as providing a high-efficiency separation technique for a new solid-liquid mixture.

好ましい実施態様(比重差・抽出分離器)を示す。A preferred embodiment (specific gravity difference / extraction separator) is shown. 好ましい実施態様(全体構成)を示す。A preferred embodiment (overall configuration) is shown. 比較例で用いたSC−CO抽出試験装置の概略図を示す。It shows a schematic diagram of a SC-CO 2 extraction test apparatus used in Comparative Example. 比較例における試験フローを示す。The test flow in a comparative example is shown. クーラント回収率と操作圧力の関係を示す。The relationship between the coolant recovery rate and the operating pressure is shown. クーラント抽出率とCO密度の関係を示す。It shows a coolant extraction rate and CO 2 density relationship. 回収SiCの粒度分布を示す。The particle size distribution of recovered SiC is shown. 比重差分離と抽出分離を同一系内で同時に行う分離装置の概略図を示す。The schematic diagram of the separation apparatus which performs specific gravity difference separation and extraction separation simultaneously in the same system is shown. SC−COによる廃スラリーの分離効率の比較結果を示す。It shows the comparison results of the separation efficiency of the waste slurry by SC-CO 2. 実施例2で用いた分離装置の概略図を示す。The schematic of the separation apparatus used in Example 2 is shown. 上記分離装置を用いて分離操作を実施したときの各ポイントにおける回収物質と回収率を示す。The recovered material and the recovery rate at each point when the separation operation is carried out using the separation apparatus are shown.

符号の説明Explanation of symbols

1 比重差分離・抽出器本体
2 比重差分離部
3 抽出部
4 高圧定量ポンプ
5 固液混合物質貯槽
6 ヒーター
7 ヒーター
8 高圧定量ポンプ
9 背圧弁
10 撹拌機
11 固形物回収装置
12 安全弁
13 液化炭酸ガスボンベ
14 冷却装置
15 凝縮器
16 予冷却器
17 高圧定量ポンプ
18 流量計
19 加熱器
20 高圧フィルター
21 背圧弁
22 安全弁
23 気液分離器I
24 ラインヒーター
25 バルブ
26 バルブ
27 バルブ
28 気液分離器II
30 加熱器
31 活性炭
32 バルブ
33 バルブ
34 バルブ
35 スラリーCO混合ライン
36 系内洗浄ライン
DESCRIPTION OF SYMBOLS 1 Specific gravity difference separation / extractor body 2 Specific gravity difference separation part 3 Extraction part 4 High-pressure metering pump 5 Solid-liquid mixed substance storage tank 6 Heater 7 Heater 8 High-pressure metering pump 9 Back pressure valve 10 Stirrer 11 Solid matter collection device 12 Safety valve 13 Liquefaction carbonic acid Gas cylinder 14 Cooling device 15 Condenser 16 Precooler 17 High pressure metering pump 18 Flow meter 19 Heater 20 High pressure filter 21 Back pressure valve 22 Safety valve 23 Gas-liquid separator I
24 Line heater 25 Valve 26 Valve 27 Valve 28 Gas-liquid separator II
30 Heater 31 Activated carbon 32 Valve 33 Valve 34 Valve 35 Slurry CO 2 mixing line 36 In-system cleaning line

Claims (26)

超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、固液混合物質を比重差を利用して分離することを特徴とする固液混合物質の分離方法。   A method for separating a solid-liquid mixed material, wherein supercritical carbon dioxide and / or liquid carbon dioxide is used as a specific gravity difference separation solvent, and the solid-liquid mixed material is separated using the specific gravity difference. 上記固液混合物質が、スラリー廃液である請求項1に記載の固液混合物質の分離方法。   The method for separating a solid-liquid mixed material according to claim 1, wherein the solid-liquid mixed material is a slurry waste liquid. 上記スラリー廃液が、シリコンウエハ製造工程で発生するスラリー廃液である請求項2に記載の固液混合物質の分離方法。   The method for separating a solid-liquid mixed material according to claim 2, wherein the slurry waste liquid is a slurry waste liquid generated in a silicon wafer manufacturing process. 比重差分離溶媒の密度を、温度及び/又は圧力条件を変えることにより調節して比重差分離による分離効率を制御し、及び/又は比重差分離溶媒の流速を調節して比重差分離による分離効率を制御する請求項1に記載の固液混合物質の分離方法。   The density of the specific gravity difference separation solvent is adjusted by changing the temperature and / or pressure conditions to control the separation efficiency by the specific gravity difference separation, and / or the flow rate of the specific gravity difference separation solvent is adjusted to achieve the separation efficiency by the specific gravity difference separation. The method for separating a solid-liquid mixed material according to claim 1, wherein the solid-liquid mixed material is controlled. 請求項1に記載の比重差分離工程と、超臨界二酸化炭素及び/又は液体二酸化炭素を抽出分離溶媒として用いた抽出分離工程を組み合わせて、固液混合物質を比重差分離及び抽出分離を利用して分離することを特徴とする固液混合物質の分離方法。   The specific gravity difference separation step according to claim 1 is combined with the extraction separation step using supercritical carbon dioxide and / or liquid carbon dioxide as an extraction separation solvent, and the solid-liquid mixed substance is utilized by specific gravity difference separation and extraction separation. And separating the solid-liquid mixed material. 上記比重差分離と抽出分離を同一系内で同時的に行う請求項5に記載の固液混合物質の分離方法。   The solid-liquid mixed material separation method according to claim 5, wherein the specific gravity difference separation and the extraction separation are performed simultaneously in the same system. 比重差分離溶媒及び/又は抽出分離溶媒の密度を、温度及び/又は圧力条件を変えることにより調節して比重差分離及び/又は抽出分離による分離効率を制御し、及び/又は比重差分離溶媒及び/又は抽出分離溶媒の流速を調節して比重差分離及び/又は抽出分離による分離効率を制御する請求項5に記載の固液混合物質の分離方法。   The density of the specific gravity difference separation solvent and / or the extraction separation solvent is adjusted by changing the temperature and / or pressure conditions to control the separation efficiency by the specific gravity difference separation and / or the extraction separation, and / or the specific gravity difference separation solvent and 6. The method for separating a solid-liquid mixed material according to claim 5, wherein the separation efficiency by specific gravity difference separation and / or extraction separation is controlled by adjusting the flow rate of the extraction separation solvent. 上記比重差分離と抽出分離を同一系内で連続的に行う請求項5に記載の固液混合物質の分離方法。   The solid-liquid mixed material separation method according to claim 5, wherein the specific gravity difference separation and the extraction separation are continuously performed in the same system. 比重差分離及び抽出分離を利用して分離した再利用可能な物質を回収するリサイクルプロセスを含む請求項5に記載の固液混合物質の分離方法。   The method for separating a solid-liquid mixed material according to claim 5, further comprising a recycling process for recovering the reusable material separated using specific gravity difference separation and extraction separation. 超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、固液混合物質を比重差分離を利用して分離する分離装置であって、分離器の所定の位置に超臨界二酸化炭素及び/又は液体二酸化炭素を導入する手段及び固液混合物質を導入する手段を有し、分離器の系内の温度を調節する手段を具備していることを特徴とする固液混合物質の分離装置。   A separation apparatus that separates a solid-liquid mixed material using specific gravity difference separation using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent, wherein the supercritical carbon dioxide is placed at a predetermined position of the separator. And / or means for introducing liquid carbon dioxide and means for introducing a solid-liquid mixed substance, and further comprising means for adjusting the temperature in the system of the separator, apparatus. 分離器の下部に液体二酸化炭素又は超臨界二酸化炭素を送るための液体二酸化炭素の加圧手段、超臨界二酸化炭素にあっては、加熱手段、上記分離器の中間部に固液混合物質を送る加圧手段、上記比重差分離した固形物質を分離器の最下部に貯蔵する手段、比重差分離器の最上部から流出した分離溶媒と液体物質をろ過する手段、系内の圧力を調節する手段、分離溶媒と液体物質を分離する気液分離手段を具備している請求項10に記載の固液混合物質の分離装置。   Liquid carbon dioxide pressurizing means for sending liquid carbon dioxide or supercritical carbon dioxide to the lower part of the separator, and in the case of supercritical carbon dioxide, heating means, and a solid-liquid mixed substance is sent to the intermediate part of the separator Pressurizing means, means for storing the solid substance separated by the specific gravity difference at the bottom of the separator, means for filtering the separated solvent and liquid substance flowing out from the top of the specific gravity difference separator, means for adjusting the pressure in the system The solid-liquid mixed substance separation device according to claim 10, further comprising gas-liquid separation means for separating the separation solvent and the liquid substance. 超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒及び抽出分離溶媒として用いて、固液混合物質を比重差及び抽出分離を利用して分離する分離装置であって、比重差分離部、抽出分離部を垂直の同一の系内に含み、抽出分離部を下部、比重差分離部を上部に設置し、上記抽出分離部の所定の位置に超臨界二酸化炭素及び/又は液体二酸化炭素を導入する手段及び上記比重差分離部の所定の位置に固液混合物質を導入する手段を有し、分離器の系内の温度を調節する手段を具備していることを特徴とする固液混合物質の分離装置。   A separation apparatus for separating a solid-liquid mixed material using a specific gravity difference and extraction separation using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent and an extraction separation solvent, comprising a specific gravity difference separation unit, The extraction / separation unit is included in the same vertical system, the extraction / separation unit is installed in the lower part and the specific gravity difference separation unit is installed in the upper part, and supercritical carbon dioxide and / or liquid carbon dioxide is introduced into a predetermined position of the extraction / separation part. And a means for introducing the solid-liquid mixed material into a predetermined position of the specific gravity difference separating section, and further comprising means for adjusting the temperature in the system of the separator. Separation device. 上記抽出分離部の下部に液体二酸化炭素又は超臨界二酸化炭素を送るための液体二酸化炭素の加圧手段、超臨界二酸化炭素にあっては、加熱手段、上記比重差分離部の中間部に固液混合物質を送る手段、上記比重差分離部及び抽出分離部で分離した固形物質を分離器の最下部に貯蔵する手段、比重差分離部の最上部から流出した分離溶媒と液体物質をろ過する手段、系内の圧力を調節する手段、分離溶媒と液体物質を分離する気液分離手段を具備している請求項12に記載の固液混合物質の分離装置。   Liquid carbon dioxide pressurizing means for sending liquid carbon dioxide or supercritical carbon dioxide to the lower part of the extraction / separation part, in the case of supercritical carbon dioxide, heating means, solid liquid in the intermediate part of the specific gravity difference separation part Means for sending the mixed substance, means for storing the solid substance separated in the specific gravity difference separation section and the extraction separation section at the bottom of the separator, means for filtering the separation solvent and liquid substance flowing out from the top of the specific gravity difference separation section The apparatus for separating a solid-liquid mixed material according to claim 12, further comprising: means for adjusting the pressure in the system; and gas-liquid separation means for separating the separation solvent and the liquid substance. 上記分離器内の温度を垂直方向の複数の部分で個別に制御する手段を有する請求項10及び12に記載の固液混合物質の分離装置。   13. The solid-liquid mixed substance separation device according to claim 10, further comprising means for individually controlling the temperature in the separator in a plurality of vertical portions. 上記気液分離装置が分離溶媒(液体二酸化炭素)の蒸発手段を有する請求項10及び12に記載の固液混合物質の分離装置。   13. The solid-liquid mixed substance separation device according to claim 10 or 12, wherein the gas-liquid separation device has a separation solvent (liquid carbon dioxide) evaporation means. 気体分離溶媒(二酸化炭素ガス)を冷却凝縮することにより液体二酸化炭素とし、再循環させる溶媒の循環機構を有する請求項15に記載の固液混合物質の分離装置。   The solid-liquid mixed substance separation device according to claim 15, wherein the gas separation solvent (carbon dioxide gas) is converted into liquid carbon dioxide by cooling and condensing, and has a solvent circulation mechanism for recirculation. 上記分離器下部に回収貯蔵された固形物質を連続的に排出する手段を有する請求項11及び13に記載の固液混合物質の分離装置。   14. The solid-liquid mixed substance separation device according to claim 11 and 13, further comprising means for continuously discharging the solid substance collected and stored in the lower part of the separator. 上記固形物質の連続排出手段が、高圧水注入による水スラリーの排出手段である請求項17に記載の固液混合物質の分離装置。   The solid-liquid mixed substance separation device according to claim 17, wherein the solid substance continuous discharging means is a water slurry discharging means by high-pressure water injection. 上記高圧水注入による水スラリーの排出手段が、高圧固液分離手段を有する請求項18に記載の固液混合物質の分離装置。   The apparatus for separating a solid-liquid mixed material according to claim 18, wherein the means for discharging the water slurry by the high-pressure water injection includes a high-pressure solid-liquid separation means. 上記高圧固液分離手段が、高圧フィルター又は高圧サイクロンである請求項19に記載の固液混合物質の分離装置。   The solid-liquid mixed substance separation device according to claim 19, wherein the high-pressure solid-liquid separation means is a high-pressure filter or a high-pressure cyclone. 固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を混合し、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素の混合後の流体の密度及び粘性を制御する請求項1に記載の固液分離方法。   The solid-liquid mixed material and supercritical carbon dioxide and / or liquid carbon dioxide are mixed, and the density and viscosity of the fluid after mixing the solid-liquid mixed material and supercritical carbon dioxide and / or liquid carbon dioxide are controlled. The solid-liquid separation method described. 固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を予め混合して流体の密度及び粘性を制御した後、比重差を利用して固液分離する請求項21に記載の固液分離方法。   The solid-liquid separation method according to claim 21, wherein the solid-liquid mixed material and supercritical carbon dioxide and / or liquid carbon dioxide are mixed in advance to control the density and viscosity of the fluid, and then the solid-liquid separation is performed using the difference in specific gravity. . 固液混合物質と混合する超臨界二酸化炭素及び/又は液体二酸化炭素が、固形物分離後の流体を循環再利用したものである請求項22に記載の固液分離方法。   23. The solid-liquid separation method according to claim 22, wherein the supercritical carbon dioxide and / or liquid carbon dioxide mixed with the solid-liquid mixed material is obtained by circulating and reusing the fluid after the solid separation. 請求項21に記載の固液分離方法で使用する装置であって、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を混合する手段、混合後の流体の密度及び粘性を制御する密度及び粘性調整手段を有することを特徴とする混合制御装置。   The apparatus used in the solid-liquid separation method according to claim 21, wherein the solid-liquid mixed substance is mixed with supercritical carbon dioxide and / or liquid carbon dioxide, and the density for controlling the density and viscosity of the fluid after mixing. And a viscosity control means. 請求項21に記載の固液分離方法で使用する装置であって、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を予め混合し、その混合物を、流体の密度及び粘性を制御しながら比重差分離領域に供給する混合物供給手段を有することを特徴とする混合供給制御装置。   The apparatus used in the solid-liquid separation method according to claim 21, wherein a solid-liquid mixed substance and supercritical carbon dioxide and / or liquid carbon dioxide are mixed in advance, and the mixture is controlled for density and viscosity of the fluid. A mixture supply control device comprising a mixture supply means for supplying to the specific gravity difference separation region. 請求項21に記載の固液分離方法で使用する装置であって、固液分離後の流体を循環再利用するための流体循環手段を有することを特徴とする循環装置。   The apparatus for use in the solid-liquid separation method according to claim 21, further comprising a fluid circulation means for circulating and reusing the fluid after the solid-liquid separation.
JP2007134811A 2006-05-19 2007-05-21 Highly efficient separation method and apparatus for solid-liquid mixture with supercritical carbon dioxide and / or liquid carbon dioxide Active JP4904514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134811A JP4904514B2 (en) 2006-05-19 2007-05-21 Highly efficient separation method and apparatus for solid-liquid mixture with supercritical carbon dioxide and / or liquid carbon dioxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006140942 2006-05-19
JP2006140942 2006-05-19
JP2007134811A JP4904514B2 (en) 2006-05-19 2007-05-21 Highly efficient separation method and apparatus for solid-liquid mixture with supercritical carbon dioxide and / or liquid carbon dioxide

Publications (2)

Publication Number Publication Date
JP2007330964A true JP2007330964A (en) 2007-12-27
JP4904514B2 JP4904514B2 (en) 2012-03-28

Family

ID=38930942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134811A Active JP4904514B2 (en) 2006-05-19 2007-05-21 Highly efficient separation method and apparatus for solid-liquid mixture with supercritical carbon dioxide and / or liquid carbon dioxide

Country Status (1)

Country Link
JP (1) JP4904514B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297665A (en) * 2008-06-13 2009-12-24 National Institute Of Advanced Industrial & Technology Solid-liquid separation method of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide, and its device
JP2013078737A (en) * 2011-10-05 2013-05-02 Itec Co Ltd Liquid extraction device and fluid removing method
CN104950960A (en) * 2015-06-17 2015-09-30 长春工业大学 Method for accurately controlling temperature and pressure of supercritical extraction process
CN108409075A (en) * 2018-03-23 2018-08-17 李凡 A kind of oil base drilling wastes supercritical fluid extraction separating treatment system and method
CN115738355A (en) * 2022-10-10 2023-03-07 浙江金斯顿流体设备有限公司 Supercritical fluid separator
CN117164211A (en) * 2023-11-03 2023-12-05 南京昆领自控有限公司 Method for pretreating sludge by using liquid carbon dioxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166403A (en) * 1986-10-20 1988-07-09 Hitachi Ltd Gas-resin fractionation method and its device
JP2003137903A (en) * 2001-09-06 2003-05-14 Natl Starch & Chem Investment Holding Corp Method for purifying starch
JP2004195307A (en) * 2002-12-17 2004-07-15 Itec Co Ltd Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid
JP2006315099A (en) * 2005-05-10 2006-11-24 Santoku Kagaku Kogyo Kk Recovery treatment method of waste liquid of silicon cutting slurry
JP2007169305A (en) * 2005-12-19 2007-07-05 Mitsubishi Materials Corp Method for recovering rubber from organic waste liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166403A (en) * 1986-10-20 1988-07-09 Hitachi Ltd Gas-resin fractionation method and its device
JP2003137903A (en) * 2001-09-06 2003-05-14 Natl Starch & Chem Investment Holding Corp Method for purifying starch
JP2004195307A (en) * 2002-12-17 2004-07-15 Itec Co Ltd Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid
JP2006315099A (en) * 2005-05-10 2006-11-24 Santoku Kagaku Kogyo Kk Recovery treatment method of waste liquid of silicon cutting slurry
JP2007169305A (en) * 2005-12-19 2007-07-05 Mitsubishi Materials Corp Method for recovering rubber from organic waste liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297665A (en) * 2008-06-13 2009-12-24 National Institute Of Advanced Industrial & Technology Solid-liquid separation method of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide, and its device
JP2013078737A (en) * 2011-10-05 2013-05-02 Itec Co Ltd Liquid extraction device and fluid removing method
CN104950960A (en) * 2015-06-17 2015-09-30 长春工业大学 Method for accurately controlling temperature and pressure of supercritical extraction process
CN108409075A (en) * 2018-03-23 2018-08-17 李凡 A kind of oil base drilling wastes supercritical fluid extraction separating treatment system and method
CN115738355A (en) * 2022-10-10 2023-03-07 浙江金斯顿流体设备有限公司 Supercritical fluid separator
CN117164211A (en) * 2023-11-03 2023-12-05 南京昆领自控有限公司 Method for pretreating sludge by using liquid carbon dioxide
CN117164211B (en) * 2023-11-03 2024-01-30 南京昆领自控有限公司 Method for pretreating sludge by using liquid carbon dioxide

Also Published As

Publication number Publication date
JP4904514B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4904514B2 (en) Highly efficient separation method and apparatus for solid-liquid mixture with supercritical carbon dioxide and / or liquid carbon dioxide
JP5722601B2 (en) Silicon cutting waste treatment method
EP2207869B1 (en) Method for treating spent abrasive slurry
JP2011502346A (en) Method and system for manufacturing wafer-like slices from substrate material
JP2006315099A (en) Recovery treatment method of waste liquid of silicon cutting slurry
CN102648330B (en) For the method removing and reclaiming Hydrocarbon from drilling cuttings
JP4520331B2 (en) Method for producing hydrogen gas
JP2008290897A (en) Method and apparatus for recovering silicon
JP4966938B2 (en) Silicon regeneration method
JP5109012B2 (en) Solid-liquid separation method and apparatus of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide
CN102746934A (en) Method for recovering water-soluble cutting fluid from silicon wafer cutting fluid
JP2008189723A (en) Method and apparatus for recovering organic solvent from waste
JP2003311141A (en) Method and apparatus for treating organic matter
JP2010047443A (en) Silicon refining method, silicon refining apparatus and recycled abrasive grain
JP2005349507A (en) Coolant recycling device and waste slurry recycling system, as well as waste coolant recycling method and waste slurry recycling method
CN102811817B (en) Method and apparatus for magnetic retention refuse removing oil
EP2664579A1 (en) Method and apparatus for recycling and treating wastes of silicon wafer cutting and polishing processes
KR101020151B1 (en) Device and method for recycling slurry
US20150232762A1 (en) Separating hydrocarbons and inorganic material
KR100975877B1 (en) Water cutting oils and the production system and the method thereof for silicon ingot
KR20050096329A (en) Recycling system for waste oil sludge
JP2004082247A (en) Slurry management method and device for wire saw
CN220335046U (en) Thermal desorption deoiling device for oil-based mud
CN109312212B (en) Grinding fluid
TWI415714B (en) Saw the slurry management device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4904514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250