JP2004195307A - Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid - Google Patents

Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid Download PDF

Info

Publication number
JP2004195307A
JP2004195307A JP2002364570A JP2002364570A JP2004195307A JP 2004195307 A JP2004195307 A JP 2004195307A JP 2002364570 A JP2002364570 A JP 2002364570A JP 2002364570 A JP2002364570 A JP 2002364570A JP 2004195307 A JP2004195307 A JP 2004195307A
Authority
JP
Japan
Prior art keywords
pressure fluid
pressure
fine particles
target substance
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002364570A
Other languages
Japanese (ja)
Inventor
Ryuichi Fukusato
隆一 福里
Satoru Yamauchi
悟留 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITEC Co Ltd
Original Assignee
ITEC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITEC Co Ltd filed Critical ITEC Co Ltd
Priority to JP2002364570A priority Critical patent/JP2004195307A/en
Publication of JP2004195307A publication Critical patent/JP2004195307A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique of performing the industrial production of microparticles and/or microcapsules of a polymeric substance by means of only a pipe without using any special high-pressure vessel. <P>SOLUTION: In producing the microparticles or the microcapsules by mixing a subcritical or supercritical high-pressure fluid with the objective substance in a state of a slurry, a paste, a solution, or a suspension and subjecting the mixture to evacuation, the high-pressure fluid and the objective substance are mixed with each other in a mixing section, the mixed solution from the mixing section is introduced into a second high-pressure fluid, and the second high-pressure fluid and the mixed solution are sprayed into an evacuation section through a nozzle. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、亜臨界乃至超臨界状態にある高圧流体を用いて、目的物質の微粒子化を進行させる技術に関し、特に、特別な高圧混合容器を用いることなく、ナノサイズの微粒子あるいは微細カプセルを製造することのできる方法およびその装置に関する。
【0002】
【従来の技術】
従来から、二酸化炭素を超臨界又は亜臨界の状態にして使用することにより、微粒子を得る技術が知られている。この超臨界乃至亜臨界流体場における微粒子の製造方法は、貧溶媒化法と急激膨張法とに大別され、貧溶媒化法はGAS法(GasAnti-Solvent)あるいは、SAS法(Supercritical fluid Anti-Solvent)として知られた方法であり、目的物資の溶解している有機溶媒に超臨界二酸化炭素を吹き込むことで有機溶媒の持つ溶解力を低下させて溶質を析出させる方法である。この場合、粒子径の制御は圧力変化速度でおこなっている。
【0003】
一方、急激膨張法はRESS法(Rapid Expansion of Supercritical Solution)及びPGSS法(Particle from Gas-saturated Solution/Suspension)とに大別される。この方式は、超臨界流体への目的物質の溶解及び目的物質の溶解した超臨界流体のノズルによる減圧操作によって構成されており、きわめて急速な目的物質の核形成によって微粒子を得るようになっている。そして、RESS法の特徴は有機溶媒を使用しない点に有る。一方、PGSS法は様々な用途の物質(塗装、接着剤、プラスチック添加剤など)に対してその粘度を下げるべく超臨界二酸化炭素を用いた噴霧操作を行うものであり、具体的には固体物質を液体あるいは超臨界流体などのキャリヤーに懸濁させてこれを噴霧することで微粒子あるいはコーティングをおこなわせるものである。
【0004】
さらに、PGSS法によるポリマー微粒子製造として、溶融状態の高分子物質に超臨界流体を溶解させあるいは、懸濁させ、次いでノズルを介して粒子を製造するものが知られている(特許文献1参照)。また、水溶液に溶解している目的物質が超臨界二酸化炭素と混合してエマルジョンを形成し、このエマルジョンを噴霧させることで二酸化炭素の膨張を行い微粒子化するものも知られている(特許文献2)。さらに、コア材料をマイクロカプセル形成ポリマーと混合させ、その中に超臨界流体を超臨界状態を保持するのに十分な温度と圧力で混合物に供給し、ポリマーを溶解させることなく、超臨界流体をポリマーに浸透させてポリマーを液化し、圧力を急速に開放してポリマーをコア材料の周囲に凝固させることによりマイクロカプセルを形成するものも知られている(特許文献3)。
【0005】
【特許文献1】
特表平9−508851号公報
【特許文献2】
米国特許第5639441号明細書
【特許文献3】
特表2000−511110号公報
【0006】
【発明が解決しようとする課題】
しかし、特許文献1に示されている溶融状態の高分子物質に超臨界流体を溶解させあるいは、懸濁させ、次いでノズルを介して粒子を製造するものでは、超臨界流体を高分子材料に溶解あるいは懸濁させるために、高圧発生装置としてのポンプのほかに、そこそこの容積を有する高圧容器を用いており、装置コストが嵩み、工業化を阻害するという問題を有している。
【0007】
また、特許文献2に示されている、水溶液に溶解している目的物質が超臨界二酸化炭素と混合してエマルジョンを形成し、このエマルジョンを噴霧させることで二酸化炭素の膨張を行い微粒子化するものでは、ティージョイント内での対向流によって超臨界二酸化炭素と目的物質とを混合させているが、その平衡到達については全く触れられていない。しかも水溶液が目的物質であることから、これを高分子物質に適用するにはさらなる改善が必要となる。
【0008】
さらに、コア材料をマイクロカプセル形成ポリマーと混合させ、その中に超臨界流体を超臨界状態を保持するのに十分な温度と圧力で混合物に供給し、ポリマーを溶解させることなく、超臨界流体をポリマーに浸透させてポリマーを液化し、圧力を急速に開放してポリマーをコア材料の周囲に凝固させることによりマイクロカプセルを形成するものでは、相平衡についての検討がなされていないため、コア材料とポリマーの複合体を製造することが出来ても、粒子径の制御、特に微細カプセルの製造は困難であるという問題が有った。
【0009】
本発明は、特別な高圧容器を用いることなく配管対応のみで高分子物質を対象とした微粒子及び/あるいは微細カプセルの工業生産が行える方法および装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上述の目的を達成するために、請求項1に記載の発明は、亜臨界ないし超臨界状態の高圧流体と、スラリー、ペースト、溶液あるいは懸濁状態の目的物質とを混合させたのち、減圧することによって微粒子や微細カプセルを製造するに当たって、亜臨界ないし超臨界状態の高圧流体と目的物質を混合部で混合し、混合部からの混合溶液を第2の高圧流体中に導入し、この第2の高圧流体と混合溶液とを減圧部にノズルを通じて噴霧することを特徴としており、請求項2に記載の発明は、亜臨界ないし超臨界状態の高圧流体と、スラリー、ペースト、溶液あるいは懸濁状態の目的物質とを混合させたのち、減圧することによって微粒子や微細カプセルを製造するにあたって高圧流体と目的物質を混合部で混合し、混合部からの混合溶液を二重管ノズルの内部通路に供給するとともに、二重管ノズルの外部通路に第2の高圧流体を供給し、この二重管ノズルから第2の高圧流体と混合溶液とを噴霧することを特徴としている。
【0011】
また、請求項3に記載の発明は、亜臨界ないし超臨界状態の高圧流体と、スラリー、ペースト、溶液あるいは懸濁状態の目的物質とを混合させたのち、減圧することによって微粒子や微細カプセルを製造するにあたって、高圧流体と目的物質を混合部で混合し、混合部からの混合溶液を気液分離装置に導入し、気相部あるいは液相部より選択的に導出した目的物質を第2の高圧流体中に導入し、この第2の高圧流体と目的物質とを減圧部にノズルを通じて噴霧することを特徴とし、請求項8に記載の発明は、亜臨界ないし超臨界状態の高圧流体と、スラリー、ペースト、溶液あるいは懸濁状態の目的物質とを混合させたのち、減圧することによって微粒子や微細カプセルを製造する装置を、高圧流体と目的物質とを混合する混合装置から導出した混合溶液導出路を、該混合溶液導出路とは別に設置した第2の高圧流体路に連通接続させて、混合溶液を分岐路中の高圧流体中に導入するように構成し、第2の高圧流体路の先端を減圧容器に配置したノズルに連通接続し、第2の高圧流体と混合溶液とを減圧容器内に噴霧することを特徴としている。
【0012】
請求項9に記載の発明は、高圧流体と目的物質とを混合する混合装置から導出した混合溶液導出路を減圧容器に配置した二重管ノズルの内部通路に供給するとともに、第2の高圧流体路を二重管ノズルの外部通路に連通接続し、この二重管ノズルから第2の高圧流体路を流れる第2の高圧流体と混合溶液とを減圧容器内に噴霧することを特徴とし、請求項10に記載の発明は、高圧流体と目的物質とを混合する混合装置から導出した混合溶液導出路に気液分離装置を挿入するとともに、第2の高圧流体路の先端部を減圧容器内に配設したノズルに連通接続し、前記分岐路に気液分離装置の気相部から導出した気体導出路と液相部から導出した液体導出路とをそれぞれ連通接続し、気相部あるいは液相部より選択的に導出した目的物質を第2の高圧流体路内を流れる第2の高圧流体中に導入し、この第2の高圧流体と目的物質とを減圧容器にノズルを通じて噴霧することを特徴としている。
【0013】
【発明の作用】
本発明では、亜臨界ないし超臨界状態の高圧流体と目的物質との混合溶液を第2の高圧流体に供給して混合させ、あるいは、混合溶液を気液分離装置に導入し、この気液分離装置で分離した気体又は液体を第2の高圧流体と混合させるようにしていることから、大きな内容積の高圧容器等の特別な高圧容器を用いることなく高圧流体を用いた微粒子や微細カプセルの製造が可能になる。
【0014】
また、スラリー、ペースト、溶液、あるいは懸濁状態の目的物質に亜臨界ないし超臨界状態にした高圧流体が溶解することになるから、高分子物質などの目的物質の粘度が低下し、その結果、高圧状態において大きなレイノルズ数(Re)を得ることが容易と生り、減圧噴霧操作によって、微細な目的物質の粒子を生成させることが可能になる。
【0015】
【発明の実施の形態】
図1は本発明を適用した微粒子や微細カプセルを製造する装置の第1実施形態を示す流れ図である。
図中符号(1)は加圧ポンプ(2)で加圧されて高圧流体となるガス体が貯蔵されているガス貯蔵容器であり、このガス貯蔵容器(1)に貯蔵されているガス体はガス加圧ポンプ(2)で亜臨界乃至超臨界状態となる圧力まで昇圧されるようになっている。また、図中符号(3)は微細化する目的物質の原料貯蔵容器であり、この原料貯蔵容器(3)に貯蔵されている原料(流動物)は流動物加圧ポンプ(4)により圧送されるようになっている。
【0016】
加圧されたガス体の供給路(5)と、加圧された原料流動物の供給路(6)とは合流して加圧流体流路(7)となり、この加圧流体流路(7)がスタティックミキサー(8)に連通接続してある。そして、亜臨界乃至超臨界状態となるまで加圧されたガス体と加圧された原料流動体とは、加圧流体流路(7)を流れる間に混合するとともに、スタティックミキサー(8)で十分混合されて平衡状態となった後、スタティクミキサー(8)から導出した混合液通路(9)で後述する高圧流体加速部(10)に混合溶液として導入されるようになっている。
【0017】
高圧流体加速部(10)は、加圧されたガス体の供給路(5)から分岐導出された分岐路(11)の一部で構成してあり、この分岐路(11)の先端部分は、減圧容器(12)内に形成したノズル(13)に連通接続されている。したがって、高圧流体加速部(10)に導入された混合溶液は高圧流体加速部(10)を流れる第2の高圧流体で希釈され、ノズル(13)から減圧容器(12)内に噴霧排出される。
【0018】
そして、高圧流体と平衡状態を保って減圧容器(12)内に噴霧された混合溶液は、瞬時に相分離し、次いで核形成・成長へと移行し、微粒子や微細カプセルとなって析出する。
【0019】
減圧容器(12)内に析出微粒子や微細カプセルは、図示を省略したノズルを介して粒子捕集槽に回収される。この回収した微粒子や微細カプセルを必要により、サイクロンや電気集塵機等の機器を用いて分級するようにしても良い。
【0020】
図2は本発明を適用した微粒子や微細カプセルを製造する装置の第2実施形態を示し、これは、前述の微粒子や微細カプセルを製造する装置での分岐路(11)の先端部を減圧容器(12)内に配設した二重管式ノズル(13a)の外筒(14)に連通接続するとともに、スタティックミキサー(8)から導出した混合液通路(9)の先端部を二重管式ノズル(13a)の内筒(15)に連通接続したものである。
【0021】
図3は本発明を適用した微粒子や微細カプセルを製造する装置の第3実施形態を示し、これは、第1実施形態における混合液通路(9)の先端部を気液分離装置(16)に接続し、この気液分離装置(16)の気相部から導出した気体流路(17)と液相部から導出した液体流路(18)とをそれぞれ高圧流体加速部(10)に連通接続してある。そして、この気体流路(17)と液体流路(18)とは択一的に高圧流体加速部(10)に連通接続するように制御されるようにしてある。
【0022】
前述の各実施形態では、ガス貯蔵容器(1)に貯蔵されているガス体をガス加圧ポンプ(2)で亜臨界乃至超臨界状態となる圧力まで昇圧したものを分岐して第2の高圧流体としているが、この第2の高圧流体は、全く別の経路から得るようにしても良い。
【0023】
なお、上記各実施形態では、加圧されたガス体の供給路(5)と、加圧された原料流動物の供給路(6)との合流個所から減圧容器(12)までの間の温度を制御するように構成してある。これは、原料物質が融点の高い高分子物質の場合等には配管路や配管中の機器類(バルブ等)に析出、閉塞することがあるため、原料物質によっては必要な構成となる。また、混合液通路(9)内を流れる混合溶液の粘性を検出し、その検出粘度に応じて第2の高圧流体供給量を制御することにより、減圧容器(12)内に噴霧される混合液の粘度を調整するようにしている。
【0024】
亜臨界乃至超臨界状態となる圧力まで昇圧する高圧流体としては、メタノール、エタノール、プロパノール等のアルコール類、パラフィン、オレフィン等の炭化水素類、二酸化炭素、アンモニア、水から選ばれた一種あるいはその混合物を使用することができるが、その中でも二酸化炭素を使用することが望ましい。二酸化炭素は、約31℃、7.3MPaで超臨界状態となることから、臨界温度が略室温付近にあり、比較的容易に超臨界状態を得ることができることになる。また、二酸化炭素は毒性や可燃性もなく、安全性の面でも好適であるうえ、原料ガスとして安価であることから、より低価格化を達成するうえでものぞましい。
【0025】
【実施例1】
次に第1実施形態で説明した装置を利用してポリスチレンの粒子を製造する場合の実施例を説明する。
原料としてのポリスチレンを充填している原料貯蔵容器(3)を195℃まで加熱し、流動化した原料を流動物加圧ポンプ(4)を用いて原料流動物の供給路(6)から加圧流体流路(7)に圧送する。この時、ポリスチレン単体でのレイノルズ数(Re)は0.0004であった。このポリスチレンの導入と同時にガス貯蔵容器(1)に貯蔵されている二酸化炭素ガスをガス加圧ポンプ(2)を用いて温度195℃、圧力175kg/cm3(17.16MPa)に加圧してガス体の供給路(5)から加圧流体流路(7)に送りこんだ。つまり、この加圧された二酸化炭素ガスは超臨界状態になっている。
【0026】
加圧流体流路(7)に供給された二酸化炭素ガスとポリスチレンとを含む混合溶液をスタティクミキサー(8)に供給し、スタティックミキサー(8)で完全に混合する。この時、二酸化炭素ガスはポリスチレンに対して5〜10倍量の比率で混入されており、レイノルズ数(Re)1000の混相流状態となる。この混相流状態の混合溶液を高圧流体加速部(10)に導入した。高圧流体加速部(10)にはガス加圧ポンプ(2)を用いて温度195℃、圧力175kg/cm3(17.15MPa)に加圧した二酸化炭素ガスが流通しており、高圧流体加速部(10)でのレイノルズ数(Re)は10000となる。
【0027】
そして、高圧流体加速部(10)に導入され、加圧されて超臨界状態になっている二酸化炭素ガスで希釈された混合溶液をノズル(13)で減圧容器(12)内に噴霧することで、粒子を製造した。このとき、圧力は100kg/cm3(9.81MPa)まで減圧した。なお、噴霧ノズル径は0.1mmのものを使用した。
【0028】
上述の製造された粒子を電子顕微鏡で確認したところ、粒子径は5ミクロンメートルの大きさの揃った粒子であることが確認できた。
【0029】
【実施例2】
上記実施例と同様の装置を使用して、ポリエステルの粒子を製造した。この場合の二酸化炭素ガスの加圧条件、温度条件は前記実施例と同様、温度195℃、圧力175kg/cm3(17.15MPa)であった。これにより、レイノルズ数(Re)は14286となり、0.5ミクロンメートルの粒子が製造できることを確認できた。
【0030】
【発明の効果】
本発明によれば超臨界ないし亜臨界状態の流体を微細粒子生成溶媒として使用しても、大きな内容積の高圧容器等の特別な高圧容器を用いることなく、目的物質の微粒子を製造することができる。さらに、処理量あるいは粒子径の制御は混合部での温度、圧力、及び流体流速の調整のみでよく、きわめて効率的な処理が可能となった。
【0031】
したがって、本発明は、ナノテクノロジーの応用分野として期待される電子材料、医薬品、化粧品、農薬、各種化学品、食品関連など多岐な用途、分野において、超臨界ないし亜臨界流体の優れた溶媒機能を発現させれることができ、工業生産において、プロセスの効率化を可能とする。しかも、従来では、得ることが困難であった、数ナノメートルサイズの粒子生成も可能にすることができる。
【図面の簡単な説明】
【図1】微粒子や微細カプセルを製造する装置の第1実施形態を示す流れ図である。
【図2】微粒子や微細カプセルを製造する装置の第2実施形態を示す流れ図である。
【図3】微粒子や微細カプセルを製造する装置の第3実施形態を示す流れ図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a technique for advancing microparticulation of a target substance using a high-pressure fluid in a subcritical or supercritical state, and in particular, to produce nano-sized fine particles or fine capsules without using a special high-pressure mixing vessel. And a device therefor.
[0002]
[Prior art]
Conventionally, a technique for obtaining fine particles by using carbon dioxide in a supercritical or subcritical state has been known. The method for producing fine particles in the supercritical or subcritical fluid field is roughly classified into a poor solvent method and a rapid expansion method.The poor solvent method is a GAS method (Gas Anti-Solvent) or a SAS method (Supercritical fluid Anti- This is a method known as Solvent), in which supercritical carbon dioxide is blown into an organic solvent in which the target substance is dissolved, whereby the solubility of the organic solvent is reduced to precipitate a solute. In this case, the control of the particle diameter is performed by the pressure change speed.
[0003]
On the other hand, the rapid expansion method is roughly classified into a RESS method (Rapid Expansion of Supercritical Solution) and a PGSS method (Particle from Gas-saturated Solution / Suspension). This method is configured by dissolving a target substance in a supercritical fluid and depressurizing the supercritical fluid in which the target substance is dissolved by a nozzle, so that fine particles are obtained by extremely rapid nucleation of the target substance. . The feature of the RESS method is that no organic solvent is used. On the other hand, the PGSS method is a spray operation using supercritical carbon dioxide to reduce the viscosity of substances for various uses (paints, adhesives, plastic additives, etc.). Is suspended in a carrier such as a liquid or a supercritical fluid, and sprayed, thereby forming fine particles or coating.
[0004]
Further, as the production of polymer fine particles by the PGSS method, there is known a method in which a supercritical fluid is dissolved or suspended in a polymer substance in a molten state, and then particles are produced through a nozzle (see Patent Document 1). . Further, there is also known a method in which a target substance dissolved in an aqueous solution is mixed with supercritical carbon dioxide to form an emulsion, and the emulsion is sprayed to expand carbon dioxide to form fine particles (Patent Document 2) ). Further, the core material is mixed with the microcapsule-forming polymer, and the supercritical fluid is supplied to the mixture at a temperature and pressure sufficient to maintain the supercritical state, without dissolving the polymer and dissolving the supercritical fluid. It is also known to form a microcapsule by infiltrating a polymer to liquefy the polymer, rapidly releasing pressure and solidifying the polymer around a core material (Patent Document 3).
[0005]
[Patent Document 1]
Japanese Patent Publication No. 9-508851 [Patent Document 2]
US Pat. No. 5,639,441 [Patent Document 3]
JP 2000-511110 A
[Problems to be solved by the invention]
However, in the method disclosed in Patent Document 1 in which a supercritical fluid is dissolved or suspended in a molten polymer substance and then particles are manufactured through a nozzle, the supercritical fluid is dissolved in the polymer material. Alternatively, in addition to a pump as a high-pressure generator, a high-pressure container having a moderate volume is used for suspending the apparatus, which has a problem that the apparatus cost is increased and industrialization is hindered.
[0007]
In addition, a target substance dissolved in an aqueous solution is mixed with supercritical carbon dioxide to form an emulsion, and the emulsion is sprayed to expand the carbon dioxide to form fine particles as disclosed in Patent Document 2. Discloses that supercritical carbon dioxide and a target substance are mixed by a counterflow in a tea joint, but there is no mention of achieving equilibrium. In addition, since the aqueous solution is the target substance, further improvement is required to apply it to the polymer substance.
[0008]
Further, the core material is mixed with the microcapsule-forming polymer, and the supercritical fluid is supplied to the mixture at a temperature and pressure sufficient to maintain the supercritical state, without dissolving the polymer and dissolving the supercritical fluid. In the case of forming microcapsules by infiltrating the polymer to liquefy the polymer, rapidly releasing the pressure and solidifying the polymer around the core material, phase equilibrium has not been studied. Even if a polymer composite can be produced, there is a problem that it is difficult to control the particle size, especially to produce a fine capsule.
[0009]
An object of the present invention is to provide a method and an apparatus capable of industrially producing fine particles and / or fine capsules for a polymer substance only for piping without using a special high-pressure vessel.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is to reduce the pressure after mixing a high pressure fluid in a subcritical or supercritical state with a target substance in a slurry, paste, solution or suspension state. In the production of fine particles and microcapsules, a subcritical or supercritical high-pressure fluid and a target substance are mixed in a mixing section, and a mixed solution from the mixing section is introduced into a second high-pressure fluid. The high-pressure fluid and the mixed solution are sprayed through a nozzle into a decompression unit, and the invention according to claim 2 is characterized in that a high-pressure fluid in a subcritical or supercritical state and a slurry, paste, solution or suspension After mixing with the target substance, the high-pressure fluid and the target substance are mixed in the mixing section to produce fine particles and fine capsules by reducing the pressure, and the mixed solution from the mixing section is double-pipe Supplies to the internal passage of the nozzle, is characterized by supplying a second high pressure fluid to the outer passage of the double-tube nozzle, for spraying a second high pressure fluid mixed solution from the double-tube nozzle.
[0011]
In addition, the invention according to claim 3 is to mix the high-pressure fluid in a subcritical or supercritical state with the target substance in a slurry, paste, solution or suspension and then reduce the pressure to reduce the fine particles or fine capsules. In manufacturing, a high-pressure fluid and a target substance are mixed in a mixing section, a mixed solution from the mixing section is introduced into a gas-liquid separator, and a target substance selectively derived from a gas phase section or a liquid phase section is subjected to a second step. The second high-pressure fluid and the target substance are introduced into a high-pressure fluid, and the second high-pressure fluid and the target substance are sprayed through a nozzle into a decompression unit. The invention according to claim 8, wherein the high-pressure fluid in a subcritical or supercritical state includes: After mixing the target substance in a slurry, paste, solution or suspension, the device that produces fine particles and microcapsules by reducing the pressure is derived from a mixing device that mixes the high-pressure fluid and the target substance. The mixed solution outlet channel is connected to a second high-pressure fluid channel installed separately from the mixed solution outlet channel to introduce the mixed solution into the high-pressure fluid in the branch channel. The end of the high-pressure fluid path is connected to a nozzle arranged in the decompression container, and the second high-pressure fluid and the mixed solution are sprayed into the decompression container.
[0012]
According to a ninth aspect of the present invention, a mixed solution outlet passage derived from a mixing device for mixing a high-pressure fluid and a target substance is supplied to an internal passage of a double tube nozzle arranged in a decompression container, and a second high-pressure fluid is supplied. Connecting the second high pressure fluid and the mixed solution flowing through the second high pressure fluid path to the reduced pressure vessel from the double pipe nozzle. In the invention described in Item 10, the gas-liquid separation device is inserted into the mixed solution outlet passage derived from the mixing device that mixes the high-pressure fluid and the target substance, and the distal end of the second high-pressure fluid passage is placed in the decompression container. A gas outlet path derived from the gas phase part of the gas-liquid separator and a liquid outlet path derived from the liquid phase part are connected and connected to the branch path. The target substance selectively derived from the part Introduced into the second high pressure fluid flowing through the fluid passage, and a second high pressure fluid and the target substance characterized by spraying through a nozzle in the vacuum vessel.
[0013]
Effect of the Invention
In the present invention, a mixed solution of a subcritical or supercritical high-pressure fluid and a target substance is supplied to and mixed with a second high-pressure fluid, or the mixed solution is introduced into a gas-liquid separation device, and the gas-liquid separation is performed. Since the gas or liquid separated by the device is mixed with the second high-pressure fluid, the production of fine particles and fine capsules using the high-pressure fluid without using a special high-pressure container such as a large internal volume high-pressure container Becomes possible.
[0014]
In addition, since the high-pressure fluid in the subcritical or supercritical state is dissolved in the slurry, paste, solution, or suspension of the target substance, the viscosity of the target substance such as a polymer substance decreases, and as a result, It is easy to obtain a large Reynolds number (Re) in a high-pressure state, and fine particles of the target substance can be generated by a reduced pressure spraying operation.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a flowchart showing a first embodiment of an apparatus for producing fine particles and fine capsules to which the present invention is applied.
In the drawing, reference numeral (1) denotes a gas storage container storing a gas body which is pressurized by a pressurizing pump (2) and becomes a high-pressure fluid, and the gas body stored in the gas storage container (1) is The pressure is increased by the gas pressurizing pump (2) to a pressure at which the state becomes subcritical or supercritical. Reference numeral (3) in the figure denotes a raw material storage container for the target substance to be miniaturized, and the raw material (fluid) stored in the raw material storage container (3) is pumped by a fluid pressurizing pump (4). It has become so.
[0016]
The supply path (5) for the pressurized gaseous material and the supply path (6) for the pressurized raw material fluid merge to form a pressurized fluid flow path (7). ) Is in communication with the static mixer (8). The gas body pressurized to a subcritical or supercritical state and the pressurized raw material fluid are mixed while flowing through the pressurized fluid flow path (7), and are mixed by the static mixer (8). After being sufficiently mixed and in an equilibrium state, the mixed solution is introduced as a mixed solution into a high-pressure fluid accelerating section (10) to be described later through a mixed solution passage (9) derived from the static mixer (8).
[0017]
The high-pressure fluid accelerating part (10) is composed of a part of a branch (11) branched and derived from a supply path (5) of a pressurized gas body, and a tip part of the branch (11) is Are connected to a nozzle (13) formed in the decompression container (12). Therefore, the mixed solution introduced into the high-pressure fluid accelerating section (10) is diluted with the second high-pressure fluid flowing through the high-pressure fluid accelerating section (10), and is sprayed and discharged from the nozzle (13) into the decompression vessel (12). .
[0018]
Then, the mixed solution sprayed into the decompression vessel (12) while maintaining an equilibrium state with the high-pressure fluid is instantaneously phase-separated, then moves to nucleation and growth, and is precipitated as fine particles and fine capsules.
[0019]
Precipitated fine particles and fine capsules in the decompression vessel (12) are collected in a particle collection tank via a nozzle not shown. If necessary, the collected fine particles and fine capsules may be classified using a device such as a cyclone or an electric dust collector.
[0020]
FIG. 2 shows a second embodiment of an apparatus for producing fine particles or microcapsules to which the present invention is applied. (12) is connected to the outer cylinder (14) of the double-tube nozzle (13a) disposed therein, and the tip of the mixed liquid passage (9) derived from the static mixer (8) is double-tube-type. This is connected to the inner cylinder (15) of the nozzle (13a).
[0021]
FIG. 3 shows a third embodiment of an apparatus for producing fine particles or microcapsules to which the present invention is applied. The gas flow path (17) derived from the gas phase part and the liquid flow path (18) derived from the liquid phase part of the gas-liquid separation device (16) are connected to the high-pressure fluid acceleration part (10). I have. The gas flow path (17) and the liquid flow path (18) are controlled so as to be alternatively connected to the high-pressure fluid acceleration unit (10).
[0022]
In each of the above embodiments, the gas stored in the gas storage container (1) is pressurized to a subcritical to supercritical state by the gas pressurizing pump (2), and the gas is branched to the second high pressure. Although it is a fluid, the second high-pressure fluid may be obtained from a completely different path.
[0023]
In each of the above embodiments, the temperature from the junction of the supply path (5) for the pressurized gaseous material and the supply path (6) for the pressurized raw material fluid to the decompression vessel (12) is measured. Is configured to be controlled. If the raw material is a polymer having a high melting point or the like, the raw material may be deposited or clogged on a pipe line or equipment (valve or the like) in the pipe, and thus may have a necessary configuration depending on the raw material. Further, by detecting the viscosity of the mixed solution flowing through the mixed solution passage (9) and controlling the second high-pressure fluid supply amount according to the detected viscosity, the mixed solution sprayed into the decompression container (12) is detected. The viscosity is adjusted.
[0024]
Examples of the high-pressure fluid for raising the pressure to a subcritical or supercritical state include alcohols such as methanol, ethanol, and propanol, hydrocarbons such as paraffin and olefins, carbon dioxide, ammonia, and a mixture thereof. Can be used, and among them, it is desirable to use carbon dioxide. Since carbon dioxide enters a supercritical state at about 31 ° C. and 7.3 MPa, the critical temperature is approximately at room temperature, and the supercritical state can be obtained relatively easily. In addition, carbon dioxide has no toxicity or flammability, is suitable in terms of safety, and is inexpensive as a raw material gas.
[0025]
Embodiment 1
Next, an example in which polystyrene particles are manufactured using the apparatus described in the first embodiment will be described.
A raw material storage container (3) filled with polystyrene as a raw material is heated to 195 ° C., and the fluidized raw material is pressurized from a raw material fluid supply path (6) using a fluid pressure pump (4). It is pumped to the fluid channel (7). At this time, the Reynolds number (Re) of the polystyrene alone was 0.0004. Simultaneously with the introduction of the polystyrene, the carbon dioxide gas stored in the gas storage container (1) is pressurized to a temperature of 195 ° C. and a pressure of 175 kg / cm 3 (17.16 MPa) using a gas pressurizing pump (2). It was sent from the body supply channel (5) to the pressurized fluid channel (7). That is, the pressurized carbon dioxide gas is in a supercritical state.
[0026]
The mixed solution containing the carbon dioxide gas and the polystyrene supplied to the pressurized fluid channel (7) is supplied to the static mixer (8), and is completely mixed by the static mixer (8). At this time, the carbon dioxide gas is mixed at a ratio of 5 to 10 times that of the polystyrene, and becomes a multiphase flow state having a Reynolds number (Re) of 1000. The mixed solution in the mixed-phase flow state was introduced into the high-pressure fluid accelerating section (10). Carbon dioxide gas pressurized to a temperature of 195 ° C. and a pressure of 175 kg / cm 3 (17.15 MPa) using a gas pressurizing pump (2) flows through the high-pressure fluid accelerating unit (10). The Reynolds number (Re) at (10) is 10,000.
[0027]
Then, the mixed solution introduced into the high-pressure fluid accelerating unit (10) and diluted with carbon dioxide gas that is pressurized and in a supercritical state is sprayed into the decompression vessel (12) by the nozzle (13). , To produce particles. At this time, the pressure was reduced to 100 kg / cm 3 (9.81 MPa). The diameter of the spray nozzle was 0.1 mm.
[0028]
When the produced particles were confirmed with an electron microscope, it was confirmed that the particles had a uniform size of 5 μm.
[0029]
Embodiment 2
Polyester particles were produced using the same apparatus as in the above example. In this case, the pressurizing condition and the temperature condition of the carbon dioxide gas were 195 ° C. and the pressure was 175 kg / cm 3 (17.15 MPa) as in the above-mentioned embodiment. As a result, the Reynolds number (Re) was 14286, and it was confirmed that particles of 0.5 μm could be produced.
[0030]
【The invention's effect】
According to the present invention, even if a fluid in a supercritical or subcritical state is used as a solvent for producing fine particles, it is possible to produce fine particles of a target substance without using a special high-pressure vessel such as a high-pressure vessel having a large internal volume. it can. Furthermore, the control of the throughput or the particle size only requires adjustment of the temperature, pressure and fluid flow rate in the mixing section, and extremely efficient processing has become possible.
[0031]
Therefore, the present invention provides an excellent solvent function for supercritical or subcritical fluids in a wide variety of applications and fields such as electronic materials, pharmaceuticals, cosmetics, agricultural chemicals, various chemicals, and foods, which are expected as application fields of nanotechnology. It can be expressed and enables the process to be more efficient in industrial production. In addition, it is possible to generate particles having a size of several nanometers, which were conventionally difficult to obtain.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a first embodiment of an apparatus for producing fine particles and fine capsules.
FIG. 2 is a flowchart showing a second embodiment of an apparatus for producing fine particles and fine capsules.
FIG. 3 is a flowchart showing a third embodiment of an apparatus for producing fine particles and fine capsules.

Claims (14)

亜臨界ないし超臨界状態の高圧流体と、スラリー、ペースト、溶液あるいは懸濁状態の目的物質とを混合させたのち、減圧することによって微粒子や微細カプセルを製造する方法であって、
高圧流体と目的物質を混合部で混合し、混合部からの混合溶液を第2の高圧流体中に導入し、この第2の高圧流体と混合溶液とを減圧部にノズルを通じて噴霧することを特徴とする高圧流体を用いて微粒子や微細カプセルを製造する方法。
Subcritical or supercritical high-pressure fluid, slurry, paste, after mixing the target substance in a solution or suspension, a method for producing fine particles and fine capsules by reducing the pressure,
The high-pressure fluid and the target substance are mixed in the mixing section, the mixed solution from the mixing section is introduced into the second high-pressure fluid, and the second high-pressure fluid and the mixed solution are sprayed to the decompression section through a nozzle. A method for producing fine particles and fine capsules using a high-pressure fluid.
亜臨界ないし超臨界状態の高圧流体と、スラリー、ペースト、溶液あるいは懸濁状態の目的物質とを混合させたのち、減圧することによって微粒子や微細カプセルを製造する方法であって、
高圧流体と目的物質を混合部で混合し、混合部からの混合溶液を二重管ノズルの内部通路に供給するとともに、二重管ノズルの外部通路に第2の高圧流体を供給し、この二重管ノズルから第2の高圧流体と混合溶液とを噴霧することを特徴とする高圧流体を用いて微粒子や微細カプセルを製造する方法。
Subcritical or supercritical high-pressure fluid, slurry, paste, after mixing the target substance in a solution or suspension, a method for producing fine particles and fine capsules by reducing the pressure,
The high-pressure fluid and the target substance are mixed in the mixing section, the mixed solution from the mixing section is supplied to the internal passage of the double pipe nozzle, and the second high-pressure fluid is supplied to the external passage of the double pipe nozzle. A method for producing fine particles or fine capsules using a high-pressure fluid, which comprises spraying a second high-pressure fluid and a mixed solution from a heavy pipe nozzle.
亜臨界ないし超臨界状態の高圧流体と、スラリー、ペースト、溶液あるいは懸濁状態の目的物質とを混合させたのち、減圧することによって微粒子や微細カプセルを製造する方法であって、
高圧流体と目的物質を混合部で混合し、混合部からの混合溶液を気液分離装置に導入し、気相部あるいは液相部より選択的に導出した目的物質を第2の高圧流体中に導入し、この第2の高圧流体と目的物質とを減圧部にノズルを通じて噴霧することを特徴とする高圧流体を用いて微粒子や微細カプセルを製造する方法。
Subcritical or supercritical high-pressure fluid, slurry, paste, after mixing the target substance in a solution or suspension, a method for producing fine particles and fine capsules by reducing the pressure,
The high-pressure fluid and the target substance are mixed in the mixing section, the mixed solution from the mixing section is introduced into the gas-liquid separator, and the target substance selectively derived from the gas phase or the liquid phase is introduced into the second high-pressure fluid. A method for producing fine particles or fine capsules using a high-pressure fluid, comprising introducing and spraying the second high-pressure fluid and a target substance through a nozzle into a decompression unit.
混合部がスタティックミキサーで構成されている請求項1ないし3のいずれか1項に記載した高圧流体を用いて微粒子や微細カプセルを製造する方法。The method for producing fine particles or fine capsules using a high-pressure fluid according to any one of claims 1 to 3, wherein the mixing unit comprises a static mixer. 混合部から減圧部までの間の温度を制御する請求項1ないし3のいずれか1項に記載した高圧流体を用いて微粒子や微細カプセルを製造する方法。The method for producing fine particles or fine capsules using a high-pressure fluid according to any one of claims 1 to 3, wherein the temperature between the mixing section and the decompression section is controlled. ノズルから減圧部に噴霧される混合液の粘性を検出し、その検出粘度に応じて第2の高圧流体供給量を制御する請求項1ないし3のいずれか1項に記載した高圧流体を用いて微粒子や微細カプセルを製造する方法。The high-pressure fluid according to any one of claims 1 to 3, wherein the viscosity of the mixed liquid sprayed from the nozzle to the pressure reducing unit is detected, and the second high-pressure fluid supply amount is controlled according to the detected viscosity. A method for producing fine particles and fine capsules. 高圧流体が、メタノール、エタノール、プロパノール等のアルコール、パラフィン、オレフィン等の炭化水素、二酸化炭素、アンモニア、水から選ばれた一種あるいはその混合物である請求項1ないし3のいずれか1項に記載した高圧流体を用いて微粒子や微細カプセルを製造する方法。The high-pressure fluid is one selected from alcohols such as methanol, ethanol and propanol, hydrocarbons such as paraffin and olefins, carbon dioxide, ammonia and water, or a mixture thereof, according to any one of claims 1 to 3. A method for producing fine particles and fine capsules using a high-pressure fluid. 亜臨界ないし超臨界状態の高圧流体と、スラリー、ペースト、溶液あるいは懸濁状態の目的物質とを混合させたのち、減圧することによって微粒子や微細カプセルを製造する装置であって、
高圧流体と目的物質とを混合する混合装置から導出した混合溶液導出路を第2の高圧流体路に連通接続させて、混合溶液を第2の高圧流体路中の高圧流体中に導入するように構成し、第2の高圧路の先端を減圧容器に配置したノズルに連通接続し、第2の高圧流体と混合溶液とを減圧容器内に噴霧することを特徴とする高圧流体を用いて微粒子や微細カプセルを製造する装置。
An apparatus for producing fine particles or fine capsules by mixing a high-pressure fluid in a subcritical or supercritical state with a slurry, a paste, a solution or a target substance in a suspended state, and then reducing the pressure.
A mixed solution outlet channel derived from a mixing device for mixing the high pressure fluid and the target substance is connected to the second high pressure fluid channel so as to introduce the mixed solution into the high pressure fluid in the second high pressure fluid channel. The second high-pressure path is connected to a nozzle arranged in a reduced-pressure vessel, and the second high-pressure path is connected to a nozzle, and the second high-pressure fluid and the mixed solution are sprayed into the reduced-pressure vessel. Equipment for manufacturing fine capsules.
亜臨界ないし超臨界状態の高圧流体と、スラリー、ペースト、溶液あるいは懸濁状態の目的物質とを混合させたのち、減圧することによって微粒子や微細カプセルを製造する装置であって、
高圧流体と目的物質とを混合する混合装置から導出した混合溶液導出路を減圧容器に配置した二重管ノズルの内部通路に供給するとともに、第2の高圧流体路を二重管ノズルの外部通路に連通接続し、この二重管ノズルから第2の高圧流体と混合溶液とを減圧容器内に噴霧することを特徴とする高圧流体を用いて微粒子や微細カプセルを製造する装置。
An apparatus for producing fine particles or fine capsules by mixing a high-pressure fluid in a subcritical or supercritical state with a slurry, a paste, a solution or a target substance in a suspended state, and then reducing the pressure.
A mixed solution outlet passage derived from a mixing device for mixing the high-pressure fluid and the target substance is supplied to an internal passage of a double tube nozzle arranged in a decompression container, and a second high-pressure fluid passage is connected to an external passage of the double tube nozzle. An apparatus for producing fine particles and fine capsules using a high-pressure fluid, wherein the second high-pressure fluid and the mixed solution are sprayed into the decompression vessel from the double-tube nozzle.
臨界ないし超臨界状態の高圧流体と、スラリー、ペースト、溶液あるいは懸濁状態の目的物質とを混合させたのち、減圧することによって微粒子や微細カプセルを製造する装置であって、
高圧流体と目的物質とを混合する混合装置から導出した混合溶液導出路に気液分離装置を挿入するとともに、第2の高圧流体路の先端部を減圧容器内に配設したノズルに連通接続し、第2の高圧流体路に気液分離装置の気相部から導出した気体導出路と液相部から導出した液体導出路とをそれぞれ連通接続し、気相部あるいは液相部より選択的に導出した目的物質を第2の高圧流体中に導入し、この第2の高圧流体と目的物質とを減圧容器にノズルを通じて噴霧することを特徴とする高圧流体を用いて微粒子や微細カプセルを製造する装置。
A high-pressure fluid in a critical or supercritical state, and a slurry, a paste, a solution or a target substance in a mixed state, and then a device for producing fine particles and fine capsules by reducing the pressure,
A gas-liquid separation device is inserted into a mixed solution outlet channel derived from a mixing device that mixes the high-pressure fluid and the target substance, and the distal end of the second high-pressure fluid channel is connected to a nozzle disposed in a decompression vessel. The second high-pressure fluid path is connected to a gas lead-out path derived from the gas-phase part of the gas-liquid separation device and a liquid lead-out path derived from the liquid-phase part, and is selectively connected to the gas-phase part or the liquid-phase part. The derived target substance is introduced into a second high-pressure fluid, and the second high-pressure fluid and the target substance are sprayed through a nozzle into a reduced-pressure container, thereby producing fine particles and fine capsules using the high-pressure fluid. apparatus.
混合装置がスタティックミキサーである請求項8ないし10のいずれか1項に記載した高圧流体を用いて微粒子や微細カプセルを製造する装置。The apparatus for producing fine particles or fine capsules using a high-pressure fluid according to any one of claims 8 to 10, wherein the mixing apparatus is a static mixer. 混合装置から減圧容器までを加熱可能に構成して、混合溶液を温度制御可能に構成した請求項8ないし10のいずれか1項に記載した高圧流体を用いて微粒子や微細カプセルを製造する装置。The apparatus for producing fine particles or fine capsules using a high-pressure fluid according to any one of claims 8 to 10, wherein a structure from the mixing device to the decompression vessel is configured to be heatable, and the temperature of the mixed solution is configured to be controllable. 減圧容器内に噴霧される混合液の粘度を検出する検出手段を配置し、その検出粘度に応じて第2の高圧流体の供給量を制御する請求項8ないし10のいずれか1項に記載した高圧流体を用いて微粒子や微細カプセルを製造する装置。The method according to any one of claims 8 to 10, wherein a detecting means for detecting a viscosity of the mixed liquid sprayed in the decompression container is arranged, and a supply amount of the second high-pressure fluid is controlled according to the detected viscosity. Equipment for producing fine particles and fine capsules using high-pressure fluid. 高圧流体が、メタノール、エタノール、プロパノール等のアルコール、パラフィン、オレフィン等の炭化水素、二酸化炭素、アンモニア、水から選ばれた一種あるいはその混合物である請求項8ないし10のいずれか1項に記載した高圧流体を用いて微粒子や微細カプセルを製造する装置。The method according to any one of claims 8 to 10, wherein the high-pressure fluid is one selected from alcohols such as methanol, ethanol and propanol, hydrocarbons such as paraffin and olefins, carbon dioxide, ammonia, and water, or a mixture thereof. Equipment for producing fine particles and fine capsules using high-pressure fluid.
JP2002364570A 2002-12-17 2002-12-17 Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid Pending JP2004195307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364570A JP2004195307A (en) 2002-12-17 2002-12-17 Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364570A JP2004195307A (en) 2002-12-17 2002-12-17 Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid

Publications (1)

Publication Number Publication Date
JP2004195307A true JP2004195307A (en) 2004-07-15

Family

ID=32762352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364570A Pending JP2004195307A (en) 2002-12-17 2002-12-17 Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid

Country Status (1)

Country Link
JP (1) JP2004195307A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021724A (en) * 2003-06-30 2005-01-27 Itec Co Ltd Method and apparatus for manufacturing fine particle by using high-temperature high-pressure water
JP2006232572A (en) * 2005-02-22 2006-09-07 Nippon Koki Co Ltd Apparatus for forming fine particle of chemically combined explosive, apparatus for manufacturing chemically combined fine particle explosive, and method for manufacturing chemicaly combined fine particle explosive
JP2007330964A (en) * 2006-05-19 2007-12-27 National Institute Of Advanced Industrial & Technology High-efficiency separation method and apparatus for solid/liquid mixture by supercritical carbon dioxide and/or liquid carbon dioxide
JP2008545534A (en) * 2005-06-10 2008-12-18 バッテル メモリアル インスティチュート Apparatus and method for mixing fluids comprising mixing at least one fluid with a near-critical or supercritical carrier fluid
JP2009154056A (en) * 2007-12-25 2009-07-16 Kao Corp Method of manufacturing composite particle
JP2011506059A (en) * 2007-12-07 2011-03-03 エクスプレイ ミクロパーティクルズ アクティエボラーグ Methods and structures for generating particles using subcritical fluids
JP2011081926A (en) * 2009-10-02 2011-04-21 Nikkiso Co Ltd Method of manufacturing reformed fine powder-like positive electrode material
JP2011091010A (en) * 2009-10-26 2011-05-06 Nikkiso Co Ltd Method for manufacturing for reformed fine-powder positive electrode material
KR101137795B1 (en) 2010-11-02 2012-04-20 서강대학교산학협력단 Mixing apparatus for fluid droplet
JP2012110888A (en) * 2010-11-04 2012-06-14 Ricoh Co Ltd Method for producing particle, method for producing toner, toner, developer, process cartridge, method for forming image, apparatus for forming image, and apparatus for producing particle
JP2012172074A (en) * 2011-02-22 2012-09-10 Ricoh Co Ltd Method for producing crystalline polyester resin particle, crystalline polyester resin dispersion, toner, and developer
JP2013107065A (en) * 2011-11-24 2013-06-06 Tohoku Univ Device for preparing fine particle
JP2013216847A (en) * 2012-03-13 2013-10-24 Ricoh Co Ltd Method for producing particle, particle, toner, developing agent and image forming device
JP2013230448A (en) * 2012-05-02 2013-11-14 Ricoh Co Ltd Method for producing particle and particle
JP2013241560A (en) * 2012-04-27 2013-12-05 Ricoh Co Ltd Release agent dispersion and image-forming toner using the same, and developer
WO2014077206A1 (en) * 2012-11-13 2014-05-22 Ricoh Company, Ltd. Method for producing particles and apparatus for producing particles
CN103875923A (en) * 2014-04-04 2014-06-25 王宏雁 Fat coated biological enzyme or micro-ecological preparation
CN106563399A (en) * 2016-11-18 2017-04-19 中北大学 Method for preparing nano microcapsule of shell-core structure from supercritical fluid
CN108144324A (en) * 2017-12-26 2018-06-12 上海纳米技术及应用国家工程研究中心有限公司 Multi-functional overcritical particle preparation system
WO2019093131A1 (en) * 2017-11-07 2019-05-16 株式会社神戸製鋼所 Mixing apparatus

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005021724A (en) * 2003-06-30 2005-01-27 Itec Co Ltd Method and apparatus for manufacturing fine particle by using high-temperature high-pressure water
JP2006232572A (en) * 2005-02-22 2006-09-07 Nippon Koki Co Ltd Apparatus for forming fine particle of chemically combined explosive, apparatus for manufacturing chemically combined fine particle explosive, and method for manufacturing chemicaly combined fine particle explosive
JP4635154B2 (en) * 2005-02-22 2011-02-16 日本工機株式会社 Particulate generating device for particulate compound explosives, apparatus for producing particulate compound explosives, and method for producing particulate compound explosives
JP2008545534A (en) * 2005-06-10 2008-12-18 バッテル メモリアル インスティチュート Apparatus and method for mixing fluids comprising mixing at least one fluid with a near-critical or supercritical carrier fluid
JP2007330964A (en) * 2006-05-19 2007-12-27 National Institute Of Advanced Industrial & Technology High-efficiency separation method and apparatus for solid/liquid mixture by supercritical carbon dioxide and/or liquid carbon dioxide
JP2011506059A (en) * 2007-12-07 2011-03-03 エクスプレイ ミクロパーティクルズ アクティエボラーグ Methods and structures for generating particles using subcritical fluids
JP2014166631A (en) * 2007-12-07 2014-09-11 Xspray Microparticles Ab Method of forming particle and configuration of the same
JP2009154056A (en) * 2007-12-25 2009-07-16 Kao Corp Method of manufacturing composite particle
JP2011081926A (en) * 2009-10-02 2011-04-21 Nikkiso Co Ltd Method of manufacturing reformed fine powder-like positive electrode material
JP2011091010A (en) * 2009-10-26 2011-05-06 Nikkiso Co Ltd Method for manufacturing for reformed fine-powder positive electrode material
KR101137795B1 (en) 2010-11-02 2012-04-20 서강대학교산학협력단 Mixing apparatus for fluid droplet
JP2012110888A (en) * 2010-11-04 2012-06-14 Ricoh Co Ltd Method for producing particle, method for producing toner, toner, developer, process cartridge, method for forming image, apparatus for forming image, and apparatus for producing particle
JP2012172074A (en) * 2011-02-22 2012-09-10 Ricoh Co Ltd Method for producing crystalline polyester resin particle, crystalline polyester resin dispersion, toner, and developer
JP2013107065A (en) * 2011-11-24 2013-06-06 Tohoku Univ Device for preparing fine particle
JP2013216847A (en) * 2012-03-13 2013-10-24 Ricoh Co Ltd Method for producing particle, particle, toner, developing agent and image forming device
JP2013241560A (en) * 2012-04-27 2013-12-05 Ricoh Co Ltd Release agent dispersion and image-forming toner using the same, and developer
JP2013230448A (en) * 2012-05-02 2013-11-14 Ricoh Co Ltd Method for producing particle and particle
US9669565B2 (en) 2012-05-02 2017-06-06 Ricoh Company, Ltd. Particles and method for producing particles
KR101652190B1 (en) * 2012-05-02 2016-08-29 가부시키가이샤 리코 Particles and method for producing particles
EP2844382A4 (en) * 2012-05-02 2015-05-27 Ricoh Co Ltd Particles and method for producing particles
KR20150013636A (en) * 2012-05-02 2015-02-05 가부시키가이샤 리코 Particles and method for producing particles
CN104411397A (en) * 2012-05-02 2015-03-11 株式会社理光 Particles and method for producing particles
WO2014077206A1 (en) * 2012-11-13 2014-05-22 Ricoh Company, Ltd. Method for producing particles and apparatus for producing particles
RU2603672C1 (en) * 2012-11-13 2016-11-27 Рикох Компани, Лтд. Particles production method and particles production device
US9611376B2 (en) 2012-11-13 2017-04-04 Ricoh Company, Ltd. Method for producing particles and apparatus for producing particles
JP2014097440A (en) * 2012-11-13 2014-05-29 Ricoh Co Ltd Production method of particle and particle production apparatus
CN103875923A (en) * 2014-04-04 2014-06-25 王宏雁 Fat coated biological enzyme or micro-ecological preparation
CN106563399A (en) * 2016-11-18 2017-04-19 中北大学 Method for preparing nano microcapsule of shell-core structure from supercritical fluid
CN106563399B (en) * 2016-11-18 2019-07-09 中北大学 A kind of method that supercritical fluid prepares " shell-core " structure nano microcapsules
WO2019093131A1 (en) * 2017-11-07 2019-05-16 株式会社神戸製鋼所 Mixing apparatus
JP2019084752A (en) * 2017-11-07 2019-06-06 株式会社神戸製鋼所 Mixing device
TWI698275B (en) * 2017-11-07 2020-07-11 日商神戶製鋼所股份有限公司 Mixing device
US11944944B2 (en) 2017-11-07 2024-04-02 Kobe Steel, Ltd. Mixing apparatus
CN108144324A (en) * 2017-12-26 2018-06-12 上海纳米技术及应用国家工程研究中心有限公司 Multi-functional overcritical particle preparation system

Similar Documents

Publication Publication Date Title
JP2004195307A (en) Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid
Hakuta et al. Fine particle formation using supercritical fluids
CA2329902C (en) Methods and apparatus for particle formation
Tu et al. Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent
US5851453A (en) Method and apparatus for the formation of particles
Tabernero et al. Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling
De Marco et al. Influence of pressure, temperature and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization
Battaglia et al. Techniques for the preparation of solid lipid nano and microparticles
CN101443109B (en) Method of synthesising coated organic or inorganic particles
Campardelli et al. Nanoparticle precipitation by supercritical assisted injection in a liquid antisolvent
Reverchon et al. Expanded micro-particles by supercritical antisolvent precipitation: interpretation of results
Djerafi et al. Supercritical anti-solvent precipitation of ethyl cellulose
WO2004071634A2 (en) Method for particle production using supercritical fluid
US6986846B2 (en) Method and apparatus for enhanced size reduction of particles using supercritical fluid liquefaction of materials
JP2004526560A5 (en)
DK1401563T4 (en) A process for producing micro and / or nano-particles
Foster et al. Application of dense gas techniques for the production of fine particles
Reverchon et al. Supercritical fluid processing of polymers: composite particles and porous materials elaboration
Weidner et al. Multifunctional composites by high-pressure spray processes
Reverchon et al. Supercritical fluids-assisted micronization techniques. Low-impact routes for particle production
CN108144324A (en) Multi-functional overcritical particle preparation system
EP1703965B1 (en) Device, method and use for the formation of small particles
JP2000225333A (en) Method and apparatus for producing stable fine particle
CN2601731Y (en) Muti-functional Sprayer head for supercritical fluid preparing particle
JP2004148174A (en) Method and apparatus for manufacturing fine particles by using supercritical fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805